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Abstract: The Small Carry-on Impactor onboard Hayabusa2 performed the first impact 

experiment on a small asteroid, which allowed to study the crater formation mechanism on the 

rubble pile asteroid Ryugu. Here, we show that an artificial impact crater with a diameter >10 

meters was formed, which has a semi-circular shape, a deposition rim and a central pit. The 

Deployable CAMera 3 recorded for >18 minutes images of the impact outcome, showing the 5 

ejecta curtain growth and the ejecta deposition on the surface. The observed ejecta curtain was 

asymmetric and heterogeneous, and a detachment of the whole curtain from the surface was 

never observed. These observations indicate that the artificial crater was formed in the gravity-

dominated regime with possible implications on Ryugu’s surface age. [122 words] 

One Sentence Summary: An artificial impact crater with a diameter >10 meters was formed 10 

with asymmetric and heterogeneous ejecta curtains on the asteroid Ryugu. [118 characters] 

Main Text: The near-earth asteroid 162173 Ryugu was explored by the Japanese spacecraft 

Hayabusa2 since June 2018, providing the first detailed images of a small asteroid belonging to 

the C taxonomic class and the entire surface was found to be covered with countless boulders 

with a maximum size >100 m (1, 2). The regolith layer on the surface of Ryugu under 15 

microgravity conditions of about 1×10-4 m s-2 was expected to have strength originating from 

cohesion forces between regolith grains, and the maximum strength of the surface layer was 

estimated theoretically to be 1 kPa (3). In principle, this surface strength should control the crater 

formation process under microgravity conditions and consequently reduce drastically the impact 

crater size compared to the expected size on a strengthless surface (4). Crater scaling laws used 20 

to predict the crater size formed by hypervelocity impacts on small bodies as a function of 

impact conditions are necessary in order to construct a crater chronology on asteroid Ryugu and 

depending on the considered law, the surface age could differ by more than one order of 

magnitude (1). 

A Small Carry-on Impactor (SCI) was equipped with Hayabusa2 spacecraft in order to form 25 

an artificial impact crater (SCI crater, hereafter) on the surface of Ryugu. The SCI crater enables 

us to access the asteroid interior for investigating the subsurface properties by remote sensing 

and for acquiring subsurface material by active sampling (5, 6). Furthermore, the SCI impact is 

the first precious opportunity to study the impact crater formation process under a microgravity 

environment on a real asteroid surface. In particular, conventional crater scaling laws for the 30 

crater size and the ejecta velocity distribution can be verified at the actual size of an asteroid, and 

the SCI impact is a unique and valuable anchor to compare with numerous numerical simulations 

of the impact cratering processes in a microgravity environment (7). Its results, in particular the 

relation between projectile size and crater size, can thus be applied to natural craters on Ryugu in 

order to evaluate with higher reliability the crater chronology.  35 

The SCI operation was carried out on 5 April, 2019 and was successfully accomplished to 

form a visible artificial impact crater on Ryugu. The production and evolution of impact ejecta 

from the surface of Ryugu were also successfully observed by a Deployable CAMera 3 

(DCAM3) (8). About 2 weeks after the SCI impact, Hayabusa2 and its Optical Navigation 

Camera-Telescopic (ONC-T) looked for the SCI crater at an altitude of 1.7 km, then found it at a 40 

latitude 7.9° N and a longitude 301.3° E as shown in Fig. 1A and B, very close to the aiming 

point at a latitude 6.00° N and a longitude 303.00° E in a north area of the equatorial ridge. The 

impact angle was estimated to be ~60° measured from the local horizontal surface (8).  

Both the aiming point area of the SCI impact and the SCI crater were observed by ONC-T 

before and after the SCI impact at an altitude of 1.7 km (Fig. 1A and B). The comparison of both 45 

images with a resolution of ~17 cm/pixel reveals a large impact crater (Fig. 1B). It is noticeable 
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that a dozen of boulders larger than several 10 cm in the middle area in Fig. 1A were driven 

away from the surface, and more impressively, a huge boulder with a size of 5 m (named as 

M.B.) initially buried underground before the impact was excavated and moved about 3 m 

toward the northwest and upward more than 1 m above the initial surface after the impact. In the 

image before the impact, the boulder M.B. lied adjacent to the other huge boulder located at the 5 

right side in the image (named as S.B.) (Fig. 1A), but this boulder S.B. was hardly moved by the 

SCI impact. This may be due to the fact that S.B. was part of a bedrock buried below the crater 

floor at some depth, preventing any motion as a result of the SCI impact. We thus speculate that 

S.B. and its thick bedrock stopped the crater growth toward the southeast. The crater morphology 

profile can be seen in a Digital Elevation Map (DEM) (Fig. 2) (8). We can recognize a 10 

deposition rim surrounding the SCI crater and the height of the rim is measured to be as high as 

40 cm in Fig. 2. The deposition rim is a strong evidence for the crater formation occurring in the 

gravity-dominated regime (9). 

In order to measure the shape of the SCI crater, we used the DEM to produce an ortho-

corrected image, on which we could then trace the top of the deposition rim and determine the 15 

crater shape (Fig. 1C). We found that the SCI crater has a semicircular shape with a major axis of 

17±1 m corresponding to the crater rim diameter (𝐷rim). This shape is not an effect of the oblique 

impact but is rather due to the blocking effect of bedrock, such as S.B. lying southeast of the 

impacted region (Fig. 1B) (8). Considering the usual symmetry of the crater formation process, 

we assume that the SCI impact point is the center of the semicircle showing the SCI crater rim. 20 

Since the crater diameter (𝐷) is conventionally measured at an initial surface elevation and is 

different from the crater rim diameter, we used the empirical equation 𝐷=𝐷rim/1.3 to estimate the 

crater diameter as done in (10). Thus, we determine the crater radius of the SCI crater to be 

6.5±0.4 m, and this crater radius was confirmed by the DEM (Fig. 2A).  

We found a pit close to the impact point on the crater floor (8). The pit entrance is at a depth 25 

of 1.7 m from the initial surface (Fig. 2B); the diameter and the depth of the pit is >2 m and 0.6 

m, respectively. The pit has a conical shape similar to a simple crater in laboratory experiments 

(9). A central pit is commonly observed in tiny craters on lunar surface because the lunar 

subsurface has a layered structure consisting of a relatively hard layer covered with cohesionless 

regolith (11). Therefore, the pit might result from the SCI impact on a subsurface layer with a 30 

cohesion strength. The cohesion strength of this subsurface layer is estimated to be between 130 

Pa and 300 Pa (8). Since the depth of the pit is measured to be 2.7 m from the rim top, the depth 

to rim diameter ratio of the SCI crater is 0.16. This value is almost similar to that of the natural 

craters found on Ryugu from 0.14 to 0.2 (1).  

Inside the crater, although several large and middle size boulders (1.9 m to 0.6 m) are placed 35 

on it, the wall shows an absence of roughness and therefore looks smooth (Fig. 1D). These 

boulders are buried inside the wall and could have been exposed by the excavation flow during 

the crater growth. The crater wall has a different size frequency distribution of boulders from that 

on the nearby area (Fig. S3): the number density of boulders on the wall is 1/3 of that in the C01-

C region (10°N, 300°E), about 20 m west of the impact point, although the surface condition in 40 

this region could be similar to the impact point before the SCI impact in submeter resolution. 

Thus, the SCI crater wall might be filled with fine regolith. Assuming that the crater wall 

represents the subsurface structure revealed by the excavation flow, we conclude that the 

subsurface layer is dominated by fine regolith. 

DCAM3 successfully observed impact ejecta generated by the SCI impact from the 45 

beginning to more than 18 minutes after the impact. Fig. 3A-F shows the successive images 
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taken by DCAM3 from 5 s to 498 s after the impact. We see a very clear narrow white line, 

showing the impact ejecta curtain growing from the surface toward the north with an angle of 

40° measured from the surface at 5 s (Fig. 3A). The impact ejecta curtain was observed to be 

asymmetric in the early stage of the crater formation: an ejecta growth toward the south seems 

absent, but a faint scattered light showing low speed ejecta is visible at the root of the ejecta 5 

curtain.  

At 36 s and 100 s, the northward ejecta curtain becomes clearer and extends further. Besides 

the northward ejecta curtain, two more discrete ejecta curtains are recognized in these images: 

they are visible at the middle and left of the ejected region (Fig. 3B, C). At the root of the ejecta 

curtain, a continuous ejecta curtain shown as a shadow begins to grow both vertically and 10 

horizontally, and this ejecta growth could originate from the crater growth together with the 

continuous excavation of the subsurface material. 

The three discrete ejecta curtains previously observed grow more and more in both size and 

thickness, and become more visible at 192 s (Fig. 3D). It seems that the crater growth still 

continues at this time. One more discrete ejecta curtain can be recognized as a dark shadow in 15 

this image at the center of the ejected region and looks growing toward the line of sight of 

DCAM3, but a visible ejecta curtain cannot be observed in the southeast area. The surface of 

Ryugu is covered with many large boulders with a power law size distribution and they are also 

buried in the subsurface (1). The SCI impact area was also covered with boulders >0.6 m and 

some of them had most of their volume buried in the ground (Fig. 1A). These boulders could 20 

cause a heterogeneous ejecta growth, which would then result in discrete ejecta curtains, i.e., the 

boulders on or under the surface might stop the excavation flow, separating the ejecta curtain 

into four components. 

In general, a detachment of the whole ejecta curtain from the ground occurs during crater 

formation in the strength regime but not in the gravity regime (5). In fact, a detachment of the 25 

ejecta curtain was never observed in the successive images until 192 s where it was observed, 

and furthermore we confirmed in the other recorded images that the ejecta detachment did not 

occur through the SCI crater formation process during the whole 498 s. We propose, therefore, 

that the SCI crater was formed not in the strength, but in the gravity-dominated regime.  

The distribution of discrete ejecta curtains around the SCI impact crater was analyzed by 30 

using the image at 192 s together with ONC-T images of the SCI crater area obtained before the 

impact. The direction and the covered area of each discrete ejecta curtain on Ryugu’s surface 

were identified on the images taken by ONC-T with the reference of DCAM3 line of sight. Fig. 

4B shows the distribution of the ejecta curtains mapped on an ONC-T surface image; each 

numbered sector on the map corresponds to the numbered discrete ejecta curtain (Fig. 4A), while 35 

the continuous ejecta curtain is displayed by a semicircle at the center. It is quite impressive that 

the whole ejecta curtain, including the discrete curtains as well as the continuous curtain, was 

only distributed on the northwest-side. This ejecta curtain distribution map can be compared with 

an ONC-T v-band reflectance difference map (8) in this area as shown in Fig. 4C: the darker 

colored area shows the larger decrease of the reflectance factor and this area is believed to be 40 

covered with a relatively thick ejecta deposit. This darkened area is asymmetric against the 

crater: there are 4 discrete extended areas and there is no or only a very faint black colored area 

in the southeast area of the crater. These features of the reflectance difference map are very well 

consistent with our ejecta distribution map, so that we are convinced that the map represents the 

spatial distribution of the ejecta deposit and the ejected subsurface material corresponds to a low 45 

reflectance on Ryugu. 
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At 396 s and 498 s, a surface pattern of Ryugu behind ejecta curtains can be completely seen 

(Fig. 3E, F), showing that the optical thickness of the ejecta curtain at those times was rather 

thinner than that at 192 s. In these images, we see a deep gray elliptic area surrounded by the 

discrete ejecta curtains. We consider that the deep grey color of this area is an intrinsic color of 

the surface, and we suggest that it represents the excavated area and/or the ejecta deposit area. 5 

Since the crater growth would already stop after 300 s (8), the ejecta curtains observed in these 

images were on the way to just falling onto the surface in each ballistic trajectory. The elliptic 

area in the image at 498 s was analyzed and the major axis of the ellipse was determined to be 36 

m.  

Since the structures of the SCI crater and the ejecta curtains as described above support the 10 

interpretation that the SCI crater was formed in the gravity-dominated regime, we calculate the 

SCI crater radius using the conventional 𝜋 scaling law applied for a typical sand (cohesionless) 

surface (8). The calculated radius is 6.87 m, which is slightly larger than that of the observed SCI 

crater of 6.5 m. Although the SCI impact crater is about 5 % smaller than that calculated for 

sand, it can only be formed on a cohesionless surface such as one made of sand, because even a 15 

small amount of cohesion would limit the crater growth in this microgravity environment and 

prohibits the crater diameter to be >10 m (8), as observed. Then, we can reasonably conclude 

that the surface of Ryugu must be composed of sand-like cohesionless material. According to the 

𝜋 scaling law, we can estimate the optimal 𝑘1value applicable to the surface of Ryugu by 

adopting the SCI crater radius of 𝑅 = 6.5 m (8); we obtain 𝑘1 = 0.56 if we assume that other 20 

parameters related to the coupling parameter are the same as typical values for sand, and they 

could be suitable for cohesionless targets at high impact velocities: 𝜇 = 0.41 and 𝜈 = 0.4 (8, 10). 

In that case, the following crater size scaling law is the most suitable one for the surface of 

Ryugu; 𝜋𝑅 = 0.56 ∙ 𝜋2
−0.17𝜋4

0.0014. This result could directly affect the results of the crater 

chronology on Ryugu studied by Sugita et al. (2019) (1). Based on collision frequency models 25 

for the main belt (13, 14), two estimates of the surface age of Ryugu have been obtained: one is 

1.58×108 years for a surface composed of a dry-soil with cohesion and another is 8.9×106 years 

for a cohesionless surface. Our crater size scaling law built from the crater size produced by the 

SCI, supports the younger age estimated for a cohesionless surface. Moreover, it suggests that 

the crater retention age of the top 1 m of the surface layer is ~1×105 years or younger when 30 

crater production functions on Ryugu for near-Earth orbits based on (12, 13) was used (8). The 

age and evolution history of Ryugu’s surface should be refined by using our scaling law that 

matches an actual experiment on Ryugu’s surface provided by the SCI. [2500 words] 
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Fig. 1. ONC images of the SCI crater. (A) SCI aiming point area taken at 1.72 km altitude 

before the impact (hyb2_onc_20190321_192706_tvf_l2b, spatial resolution is four times 

improved through deconvolution). Large boulders named as Mobile Boulder (M.B.) and Stable 5 

Boulder (S.B.) are shown by arrows. (B) SCI aiming point area taken at 1.72 km altitude after 

the impact (hyb2_onc_20190425_031226_tvf_l2b, deconvolution image). (C) Morphology of the 

SCI crater (hyb2_onc_20190516_023615_tvf_l2c). This image of the SCI impact area is ortho-

corrected. The SCI crater is shown by a yellow dashed semicircle. (D) Close up image of a 

rectangular area of Fig. 1C taken at 115 m altitude (hyb2_onc_20190613_020217_tvf_l2c). A pit 10 

entrance is shown by a dashed curve. 
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Fig. 2. Topography of the SCI crater. (A) Digital Elevation Map of the SCI impact area. The 

scale bar is 5m. A black dashed semicircle shows the crater rim with the diameter of 17 m, and a 

red dashed semicircle shows the crater with the diameter of 13 m. The height of 0 m is a base 

height which we measured the crater rim from. The contour map in this area is shown in Fig. S2. 5 

(B) Cross section of the SCI crater. Traverse lines are shown in Fig. 2A, and the radial distance 

is measured from a point C. The deposition rim, pit, crater floor, and M.B. are shown in the 

figure. 

  



Submitted Manuscript: Confidential 

10 

 

 

 

Fig. 3. DCAM3 images of the SCI impact. Elapsed time after the impact are (A) 5 s 

(hyb2_dcam3d_img-f_01309_l1c), (B) 36 s (hyb2_dcam3d_img-f_01340_l1c), (C) 100 s 

(hyb2_dcam3d_img-f_01404_l1c), (D) 192 s (hyb2_dcam3d_img-f_01496_l1c), (E) 396 s 5 

(hyb2_dcam3d_img-f_01700_l1c), and (F) 498 s (hyb2_dcam3d_img-f_01802_l1c). A scale of 

25 m calibrated by the distance between boulders b3 and b8 is show in each image. Note that the 

impact point moved toward DCAM3 due to the rotation of Ryugu. 

  



Submitted Manuscript: Confidential 

11 

 

 

 

Fig. 4. Distributions of the SCI ejecta curtain. (A) DCAM3 image taken at 192 s. Four 

discrete ejecta curtains are identified and numbered from 1 to 4 on the image. (B) ONC v-band 

image map. The line of sight of DCAM3 recording the image of Fig. 4A is shown by an arrow. 5 

Numbered discrete ejecta curtains and a continuous ejecta curtain are projected on the ONC 

image by numbered sectors and a semicircle colored light orange. (C) The map of ONC v-band 

reflectance factor difference between before and after the SCI impact around the SCI crater. 

Typical reflectance factor of this area is about 0.018, thus the value of -0.0036 in this map 

represents the decrease of reflectance by about 20% after SCI impact. There are four discrete 10 

extended areas colored darkened numbered from 1 to 4. Please note that the same pre-SCI shape 

model is used for both of pre- and post-SCI reflectance calculation to detect weak reflectance 

change due to ejecta deposit outside of the crater. 
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