
Querying Encrypted Data in Graph Databases

Nahla Aburawi1, Frans Coenen1, and Alexei Lisitsa1

1Department of Computer Science, University of Liverpool, UK

{nahla.aburawi, coenen, A.lisitsa}@liverpool.ac.uk

Abstract. Encryption is an effective way to protect sensitive data in a database
from various attacks. Querying encrypted data, however, becomes a challenge.
Either the data should be decrypted before the querying, leaving it vulnerable to
server-side attacks, or one has to apply computationally expensive methods for
querying encrypted data. In this paper, we present a flexible mechanism for the
execution of queries over encrypted graph databases. Data privacy is protected
at the server side, through the use of multi-layered encryption and encryption
layer adjustment, conducted dynamically during the execution of queries. The
proposed scheme reveals less information to the adversary than in the case of
static adjustment done prior to execution. We report on the implementation of
the scheme as applied to a subset of Cypher graph queries (graph traversal
queries) directed at a Neo4j graph database. The experimental results show the
efficiency of query execution for various types of query on encrypted graph
data stores.

Keywords: Graph databases; Encryption Adjustment; Data privacy; Security;

1 Introduction

Database security is attracting considerable interest due to the importance of data that

is routinely hosted in enterprise databases, the large amounts of found in

organizations of all sizes, from large corporations to small businesses. The goal of

database security involves protecting the database from unauthorised or accidental

access to data, modification or destruction.

In order to protect data integrity and privacy, data encryption has been used, as an

active protection mechanism. One of the most challenging and important aspect of

data encryption is how to query the encrypted data. Starting from the influential work

of Popa et al. [9] a lot of research has been conducted in the field of querying

encrypted database, avoiding full data decryption. Using multi-layered encryption and

appropriate encryption adjustment procedures is the key to finding the right balance

between security and query execution performance.

In this paper we present different mechanisms for adjusting encryption layers in

the context of graph databases [11]. In order to provide a reasonable trade-off between

data security protection and data processing efficiency CryptGraphDB [3] utilizes

multi-layered encryption and encryption adjustment, inspired by the CryptDB system

for relational DBs [9]. The graph query is translated into an encrypted form before

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/323057692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

processing. The encryption layers of the data are adjusted accordingly at the server

side. Subsequently, the query is executed on a server and the encrypted results are
sent back to a user where they are finally decrypted. In both, CryptDB and
CryptGraphDB approaches various types of encryption are used, organized as

encryption onion layers. Notice that in all mentioned works and in this paper only the
variants of symmetric encryption as opposed to asymmetric (public key) encryption

are used.

At the outermost layer highly secure encryption schemes that leak virtually

nothing about the data are typically used. Most common examples of such encryption

schemes are random, or randomized (RND) encryption schemes [10], meaning that

the same plain text values are likely to be translated into different cipher texts under

same encryption key. To make it possible to execute some queries over encrypted

data which require, for example, equality checks, the encryption level should be

adjusted to become a deterministic layer (DET). This allows for equality checking to

be done, without revealing any more information. The DET layer can be easily

provided by any deterministic symmetric encryption algorithm (e.g. DES or AES).

In this paper we elaborate a traversal-aware encryption adjustment mechanism for

graph databases, first proposed in [2], report on its implementation for a subset of

Cypher queries (traversal queries) and empirically evaluate its efficiency. The

proposed mechanism reveals only the information required to execute the query. By

using this approach, we can observe that not all property values in the graph are

adjusted with respect to the DET layer, but only required values are adjusted, while

the rest are still in the RND layer. One of the major drawbacks of the traditional way

to search an encrypted database is to decrypt all the data to the DET layer, then find

the required records. Apart from representing a significant security risk, this

traditional approach is resource intensive particularly when considering a large

number of records. Our technique shows a clear advantage by dynamically adjusting

encryption layers as query execution progresses. In this way less information is

revealed to any adversary watching the execution of the query on the encrypted store;

while, as demonstrated in the paper, being reasonably efficient. The graph database

system used to analyse the approach is Neo4j as developed by Neo Technology in

2007 [14].

The remainder of this paper is organized as follows. The related work is outlined

in Section 2. In Section 3 querying of encrypted graph DB, as proposed in [2, 3], is

presented. Section 4 then explains the implementation of the proposed traversal-aware

encryption adjustment and case studies. The experiments and analyses of the

performance of the proposed approach is presented in Section 5. Some conclusions

and some suggested areas for future work are presented in Section 6.

2 Related Work

One of the challenges of querying encrypted databases is revealing unnecessary data

while performing the adjustment of the encryption layers. In a classical CryptDB

paper [9], dealing with such an issue for JOIN queries for relational databases, the

authors introduced a special JOIN-aware encryption mechanism. In [3] a CryptDB-

like approach, referred to as CryptGraphDB, was proposed for graph databases and it

was particularly noted that due to absence of a JOIN operator in the Cypher graph

query language, there is no need in use of JOIN-aware encryption; however, the

problem of unnecessarily revealing information after encryption layer adjustment

continued to exist. To address this problem, in a position paper [2] a novel scheme of

traversal-aware encryption adjustment for graph DBs was proposed and theoretically

discussed, but no implementation, or empirical evaluation was reported. The work on

structured encryption and controllable disclosure presented in [6] provided an

interesting alternative to the methods developed in [2, 3, 9] and this paper. In

particular [6] uses a different cryptographic scheme under which the whole (graph)

data structure is encrypted, not only the data elements. The latter, unlike the approach

we present in this paper, could make an implementation of the methods of [6] on the

top of an existing graph DBMS challenging. The detailed comparison of both

approaches is a topic of future research.

3 Querying of Encrypted Graph DB: Existing Approach

As noted above, there has been little work on querying encrypted graph databases. The

only work that the authors are aware of is the work on Graph CryptDB presented in [3]

and, the work on Traversal-Aware Encryption Adjustment presented in [2]. In both

cases, the implementation was done with respect to Neo4j graph DBMS and Cypher as

a query language. Each is discussed in further detail in the following two sub-sections.

3.1 Graph CryptDB

CryptGraphDB [3] works by executing Cypher queries over an encrypted graph

database. By translating the query into an encrypted form, executing it over the

encrypted data on the server without any decryption and sending the results back to

the user where they can be decrypted. In this way data privacy is protected

at the server side. At the core of the Graph CryptDB are three ideas espoused by
CryptDB [9] : (1) a Cypher-aware encryption strategy which maps Cypher queries to
the encryption schemes; (2) Adjustable query-based encryption that lets
CryptGraphDB adjust the encryption level of each data item based on the user query;
and (3) Onion encryption to change data encryption levels in an efficient manner.

CryptGraphDB is composed of two parts: a trusted client-side frontend, and an

untrusted DBMS server. The frontend keeps track of the database schema as seen by

the application without encryption, and the current level of onion encryption exposed

in the server for each data item. On the other hand, the server keeps track of the

encrypted schema; the encrypted format of user data (the lowest level of encryption

revealed to the server). It provides confidentiality for data content and for names of

labels and properties; also, it does not hide the entire graph structure, the number of

nodes, or the approximate size of data in bytes.

Processing a query Q in CryptGraphDB, as shown in Figure 1, involves four

steps:

1. The application issues a query, that is rewritten by the proxy by anonymizing

each label, node and relationship names; and encrypts each constant in the query

with the most private encryption scheme (RND).

2. The proxy checks whether the DBMS needs to adjust the encryption level. If so, it

sends an update query to adjust the encryption level.

3. The proxy sends the encrypted query to the DBMS server to be executed using a

standard Cypher and returns the encrypted results.

4. The DBMS server returns the encrypted query result which are decrypted by the

proxy and sent back to the application.

Fig. 1 The typical query flow in Graph CryptDB

In [3] the simple encryption adjustment method is proposed. Initially, each value

in the graph is encrypted using RND, the outermost layer. At the second of the above

steps checking by the proxy prior to query execution is done using simple syntactical

criteria. In particular, if a value of some attribute may be required for the query

in a plaintext form, or encrypted at DET level, the corresponding adjustments will be
done across the whole data store. As was pointed out in [2] this may lead to
unnecessary information leaks and therefore a more advanced Traversal-Aware
Encryption Adjustment method for alleviating this issue was proposed in [2] as
discussed in the following subsection.

An example of query processing with simple encryption adjustment

Given a query of the form:

MATCH (node:person)-[:knows]->()
WHERE node.name = {"Tom"}

RETURN node.age

In order to allow the equality check, this query needs to pass to the DET layer as detailed

in Table 1.

Table 1. Data layout at the server where the application table on the left is created at the server
from the table on the right.

person person

Step (1), Proxy sends to the DBMS: UPDATE person SET name=DECRYPT

RND(name), DBMS decrypts entire name property to DET layer:

DECRYPT name, RND(a4a895a87052) = UD82Pv8uGNi7

Next, Proxy updates its internal state to log that name is currently at layer

DET in the DBMS.
Step (2), the proxy encrypts "Tom", to the DET layer encryption value of

UD82Pv8uGNi7, then, proxy generates query and sends it to DBMS:

MATCH (node:person)-[:knows]->()
WHERE node.name = {""UD82Pv8uGNi7"}
RETURN node.age

Step (3), the proxy receives encrypted RND level result e6ba69bdf08c and decrypts

it using: DECRYPT age,DET(DECRYPT age,RND(e6ba69bdf08c))= 29.
Lastly, proxy sends decrypted result 29 to the application.

3.2 Traversal-Aware Encryption Adjustment

The idea of Traversal-Aware Encryption Adjustment (TAEA) is quite natural and

simple. During the query execution the paths starting with nodes with specific names

values and progressing alongside specified relationships are traversed. The execution

may perform additional checks of some properties of encountered nodes.

name at RND age at RND name at DET age at DET

a4a895a87052 e6ba69bdf08c UD82Pv8uGNi7 33TPfYgeYDKb

9d60b415e6e7 686097aa7a7a j39IjDVyx/+ NMtqlsMp8Qaf

name age

Tom 29

Smith 22

So, the adjustment will not be everywhere, but just along the query execution path.

The scheme of traversal-aware encryption adjustment is dynamic, and the encryption

adjustment happens not before the query execution, but rather it gradually progresses

alongside the execution.

The scheme follows the simple principles defined in [2]:

– Encryption adjustments and traversal query execution are interlaced;

– The adjustments happen in-between traversal steps;
– The adjustment is performed to enable one step of traversal using all information

accumulated to this step, in particular the set of nodes traversed so far.

By considering a simple case study in [2] (an execution of a simple query “on a

paper”) it was shown that indeed TAEA may reveal less information to a potential

attacker as compared with simple adjustment. However, the study in [2] was only a

proof-of-concept study.

4 Towards Implementation of TAEA

In this section we describe an implementation of TAEA for a subset of the Cypher

queries. We start with simple examples first. In general, an execution of a query with

TAEA over an encrypted graph data store requires an execution of interlaced partial

queries and encryption adjustment updates. While it is possible to compose these

partial queries and updates using the WITH construct of Cypher, and thereby to

execute all the sequence automatically (in one go), for simplicity, here we present the

required sequence of separate queries and updates. The composition is discussed later

in sub-section 5.2.

Query with a single relationship. Consider a query Q consisting of one link and two

search criteria:

MATCH (node1: label1)-[:Relationship]->(node2: label2)

WHERE node1.propertyA = {value1} AND
node2.propertyB = {value2} RETURN node2

The query Q, using the TAEA scheme, is processed, as follows:

1. Each value starts out encrypted with the most private encryption level where data

is encrypted using the RND scheme.

2. To check the equality for the first part of the WHERE clause,

node1.propertyA = value1, we need to lower the encryption of

propertyA to level DET. The proxy issues this query to the server UPDATE

Label1 SET propertyA = DECRYPT RND(propertyA), that use the
DECRYPT RND UDFs, where DECRYPT RND is a user defined function
implementing decryption which is discussed in sub-section 4.1.

3. Executing the query Q to allow the initial search node1.propertyA =
encrypted value1 for nodes of Q to be executed. Here encrypted
value1 is the encryption of value1, when the path required in the main query

Q start as:

MATCH (node1:label1)-[:Relationship]->(node2:label2)
WHERE node1.propertyA = {encrypted value1}

RETURN node2 AS result

Where result is used as an alias for the result column name.

4. Lowering the encryption level of node2.propertyB for nodes that are

reachable from the outgoing of Q to DET layer.

5. Processing the second part of the query Q:

MATCH (node1:label1)-[:Relationship]->(result:label2)
WHERE result.property2 = {encrypted value2}

RETURN result

6. Finally, proxy decrypts the results from the server and returns them to the user.

Query with multiple relationships In the case of having a query Q consisting of

multiple statements and two search criteria, as follows:

MATCH(node1:label)-[Rel1]->(node2:label)-[Rel2]->(node3:label)
WHERE node1.propertyA={value1} AND node2.propertyB = {value2}
AND node3.propertyC = {value3}

RETURN node3

Processing a query Q of the above form under TEAE is as follows:

1. Each value in the graph is encrypted using the RND scheme.

2. According to the first part node1.propertyA=value1 of Q, we need to

lower the encryption of propertyA to level DET. By using DECRYPT RND UDF:
UPDATE Label SET propertyA = DECRYPT RND(propertyA).

3. As Q has multiple links, we start with the first part R which is (node1)-

[Rel1]->(node2), and execute the query Q to allow the initial search

node1.propertyA=encrypt(value1) for nodes of Q to be executed.

When the path required in the main query Q start as:

MATCH (node1:label)-[Rel1]->(node2:label)-[Rel2]-
>(node3:label)
WHERE node1.propertyA = {encrypt(value1)}

RETURN node2 AS result

Here, result is used as an alias for result column name of Q , while
encrypt(value1) is the encryption of value1.

4. In order to implement the second part Q of Q, we need to lower the encryption

level of result.propertyB for nodes that have an incoming relationship

with the result variable of Q to the DET layer.

5. Processing the second part Q of the query Q:

MATCH (result)<-[Rel2]-(node3:label)
WHERE node3.propertyB = {encrypted value2}
RETURN result

6. Finally, proxy decrypts the results and sends them back to the user.

We now consider general case of the simple traversal query of the form:

MATCH(node1:label_1)-[:Relationship1]->...(node_i:label_i)-

[:Relationship_i]->...(node_k: label_k)

WHERE node_1.property_1={value1} AND ... node_i.property_i
= {value_i}... AND node_k.property_k = {value_k}

RETURN node_k

The following is the process for resolving a query Q of the above form using the

TEAE scheme:

1. Encrypt all values at RND layer.

2. Lowering the encryption of property 1 to level DET, by using
decryptRND UDF: SET property 1 =decryptRND(property 1).

3. Execute Q which is the first part of Q when the path required start as:

MATCH(node_1:label_1)-[:Relationship1]->(node_i:label_i)

WHERE node_1.property_1 = {encrypt(value1)}

RETURN node_i AS result

Here, result is used as an alias for the result column name of Q , while
encrypt(value1) is the encryption of value1.

4. In order to execute the second part Q of Q, we need to lower the encryption level
of result.property-i for nodes that have an incoming relationship with
result of Q to the DET layer. Then, execute Q as:

MATCH (result)<-[:Relationship_i]-(node_k:label_k)

WHERE result.property_i={encrypt(value_i)}

RETURN result_1

5. For Q , lower the encryption of property_k for nodes that have an incoming

relationship with result_1 of Q2 to DET, ...
6. Finally, proxy decrypts the results and sends them back to the user.

4.1 Implementation

We implemented a prototype system for evaluating the performance of traversal-

aware encryption adjustment. To build this prototype, we utilized AES (Advanced

Encryption Standard) algorithm [1]. For the RND layer we used AES in CBC mode

with an initialization vector (IV) obtained as the hash of ID of the node to which

encrypted data belong to. For DET layer we used AES in ECB mode. The security

parameter of AES key encryption schemes is 128-bit.

We create a set of User-Defined Functions (UDFs) to be called directly from Cypher

queries [15]. The functions encryptDET, encryptRND, decryptRND, and decryptDET

implement encryption and decryption for the DET and RND layers, respectively. UDFs

are written in Java, they are packaged in a Jar-file, deployed into the

$NEO4J_HOME/plugins, and then can be called in the same way as any other

Cypher function.

4.2 Case studies

In this sub-section we present several examples of the queries executed on a particular

graph data store under different encryption adjustment policies using implemented

UDFs for encryption and decryption. Suppose we have a graph database of Person

and two properties of interest: name and age, and the relationships KNOWS; the

scenario is illustrated in Figure 2. Consider the Cypher query as follows:

MATCH (node1:person)-[:KNOWS]->(node2:person)
WHERE node1.name = "Tom" AND node2.age = "22"
RETURN node2

Fig. 2 Example data layout schema at the server of the graph database.

For this study, we considered the execution of the above query in three modes:

(1) non-encrypted; (2) encrypted with simple adjustment; and (3) with traversal-

aware encryption adjustment.

Non-encrypted The search criteria WHERE clause has two parameters, starts with

node1.name = "Tom" when executed gives an output of three nodes

{Smith,22}, {Smith,35},{Lee,18} to be traversed (these are reached from

the {Tom,29} node in one step via the KNOWS relation). Next, execute the second

part of the query node2.age = "22". Lastly, get the {Smith,22} node as the
final result.

Encrypted with simple adjustment We observe from Figure 2 that the schema of the

graph database at plain status. Initially, each value in the graph is encrypted within the

RND layer as the outermost layer, as follows:

MATCH (n)

SET n.name =
encryptRND((encryptDET(n.name)),ID(n)),n.age=encryptRND
((encryptDET(n.age)),ID(n))

Where encryptRND and encryptDET are a user defined function

implementing the encryption as mentioned in sub-section 4.1. Resolution of the query

requires the lowering of the encryption of name and age to level DET (as we need to

check the equality). To do so, we need to update the data by using SET clauses:

MATCH (n)

SET n.name = decryptRND(n.name,ID(n)) AND

n.age=decryptRND(n.age,ID(n))

Next, the proxy generates a query and sends it to DBMS:

MATCH (node1:person)-[:KNOWS]->(node2:person)

WHERE node1.name = "UD82Pv8uGNi7" AND node2.age =
"NMtqlsMp8Qaf"
RETURN node2

Where, "UD82Pv8uGNi7" and "NMtqlsMp8Qaf" are the encryption of "Tom" and

"22", respectively. Lastly, proxy receives the encrypted result

{j39IjDVyx/+,NMtqlsMp8Qaf}. Proxy sends the decrypted result {Smith,22}
to the application.

Encrypted using Traversal-Aware Encryption Adjustment We note from Figure 2
that the graph at plain status. Initially, each value in the database is encrypted with the

most secure RND layer, as listed in Table 2. The advantage is that the server can learn

nothing about the data values.

Returning to resolving the example query Q:

MATCH (node1:person)-[:KNOWS]->(node2:person)
WHERE node1.name = "Tom" AND node2.age = "22"
RETURN node2

Subsequently, we need to remove the onion layer, as WHERE node1.name="Tom"

requires lowering the encryption of name to level DET, the proxy issues the following

query to the server UPDATE Label SET name = DECRYPT RND(name),

Table 2. Plain text data, encryption at the RND layer and encryption at the DET layer
(Ciphertexts shown are not full-length).

name age name at RND age at RND name at DET age at DET

Tom 29 a4a895a87052 e6ba69bdf08c UD82Pv8uGNi7 33TPfYgeYDKb
Smith 22 9d60b415e6e7 686097aa7a7a j39IjDVyx/+ NMtqlsMp8Qaf

Tom 39 9b078f653478 21da9938c098 UD82Pv8uGNi7 Ss67Waxq2n+m

Lee 18 6cf77f7817b1 bcb86ac44437 RQpqwfEE8Kbm fxEYkxe7g+P27L

Smith 35 e7a86cbc36ff 83e6b8ab0edc j39IjDVyx/+ 5K6xJRUEJ2s+

Jones 32 141a99a21cf4 dfd2e8d1dfa2 ax+/5Q23fEl4 z0sfDuU2mIP/

Perry 47 ca06d68f7c6b c1051d53aae2 0nPCg1bAxh8R oSLl00rhMbeZ

Sara 38 a5cb936cd7ed 7ed31f9f083d Z+NQr9J7iSRi V01kYVwG13GU

Perry 38 c32f8d5d66a1 49521d4f028e 0nPCg1bAxh8R V01kYVwG13GU

Tom 40 5f2041a58089 56c26c25e4d UD82Pv8uGNi7 rXhFoilgAFoO

that use the decryptRND UDFs, where decryptRND is a user defined function

implementing decryption which is discussed in sub-section 4.1.

Then we execute the query Q that process the initial search for nodes where the
path required to resolve the original query Q may start:

MATCH (node1:person)-[:KNOWS]->(node2:person)
WHERE node1.name = "UD82Pv8uGNi7"

RETURN node2 AS output

Here the output variable is used as an alias for the result column name of Q ,

and UD82Pv8uGNi7 is the encryption of Tom. As a result of the first stage of the

query resolution, there are three nodes as the outgoing of the n.name =

"UD82Pv8uGNi7" node.

Before processing the second part of the query Q, WHERE y.age = "22", we

need to lower the encryption level of the age property of nodes in the output

variable ONLY to the DET layer.

Then we execute the query Q , implementing the next step of Q execution:

MATCH (n: person)-[:KNOWS]->(output)
WHERE output.age = "NMtqlsMp8Qaf"
RETURN output

Lastly, Proxy receives the encrypted result of the above implementation

{j39IjDVyx/+q,NMtqlsMp8Qaf} , decrypts the result and sends the decrypted

result back {Smith,22} to the application. This solution improves on previous

methods by not decrypting all age properties at the DET layer, but only decrypting

what the query resolution requires.

Bounded traversal In order to investigate how the traversal-aware adjustment works

with a specific variable length path, we return to the database example that is

presented in Figure 2, a variable length path of between 1 and 3 relationships from

node1 to node2 is considered below. For example, if we assume a query Q:

MATCH (node1)-[*1..3]->(node2)

WHERE node1.name = ’Smith’ AND node2.age = ’38’
RETURN node2

At the start point all values are held in the RND layer. We then move values to the

DET layer using the function UPDATE Label SET P = DECRYPT RND, where

P corresponds to name. Thereafter, we perform the query Q processing the initial

search for nodes when the path required in the original query Q starts as:

MATCH (node1)-[*1..3]->(node2)
WHERE node1.name = "j39IjDVyx/+"
RETURN node2 AS output

Again, the output variable is used as an alias for the result column name of Q ,

j39IjDVyx/+ corresponds to the encryption of Smith. Further execution of Q

shows that there are six nodes as the outgoing of node1.name =

"j39IjDVyx/+" condition. Before processing the second part of the query Q,

WHERE node2.age = "38", we need to lower the encryption level of the age

property of nodes in the output variable to the DET layer.

Next we execute the query Q , implementing the next step of Q execution:

MATCH (node1)-[*1..3]->(output)
WHERE output.age = ’V01kYVwG13GU’
RETURN output

Where V01kYVwG13GU is the encryption of "38". Finally, Proxy receives the

encrypted result of the above implementation {Z+NQr9J7iSRi,V01kYVwG13GU},

and sends the decrypted result {Sara,38} back to the application.

Unbounded traversal Now, we need to see the affect when the path length between

nodes is unbounded; when the variable path length of any number of relationships

from node1 to node2 is unlimited. With reference to the example graph in Figure 2,

assume the following query Q:

MATCH (node1)-[*]->(node2)

WHERE node1.name = ’Smith’ AND node2.age = ’38’
RETURN node2

To resolve the query the DET layer for name is required. We process the query Q
to allow the initial search for nodes to be executed, when the path required in the

original query Q starts as:

MATCH (node1)-[*]->(node2)

WHERE node1.name = "j39IjDVyx/+"

RETURN node2 AS output

At this stage the output variable is used as an alias for the result column of Q ,

j39IjDVyx/+ corresponds to the encryption of Smith. Further execution of Q

indicates that there are seven nodes in output using the filter node1.name =
"j39IjDVyx/+".

As soon as the lowering of the encryption level of the age property of the nodes in

the output variable to the DET layer has been done, we can process the second part

of the query Q, which is WHERE node2.age = "38". Next we execute Q , to

implement the next step of Q:

MATCH (node1)-[*]->(output)

WHERE output.age = ’V01kYVwG13GU’
RETURN node2

Where V01kYVwG13GU is the encryption of "38". The Proxy receives the
encrypted results from the previous implementation:

{Z+NQr9J7iSRi,V01kYVwG13GU} and {0nPCg1bAxh8R,V01kYVwG13GU}

; and decrypts the results {Sara,38} and {Perry,38} and returns them to the
user.

5 Experiments and Performance Analysis

In this section we report on the results of experiments conducted to show the validity

of the approach and estimate the performance.

5.1 Datasets

In order to study the traversal-aware encryption adjustment concept a variety of

datasets have been used. A total of five Neo4j databases were constructed (Table 3).

Each database consists of a number of nodes and edges, and each node has a different

number of properties, as well as relationships.

For the case study we consider a particular graph database instance. In this
example scenario we have nodes with the label Person, and group of properties of

interest: name, age, and gender. Graph datasets were created to contain approximately
10, 100, 500, 1000, and 10000 nodes to aid in assessing execution time of queries
over non-encrypted data and encrypted data.

The system used for testing ran on Windows, version 10. It has an Intel Core 2

Duo CPU running at 3.40 GHz and has 16 GB of RAM. The benchmarking program

was the only application running when the results were created, but the machine was

connected to the Internet and standard system processes were running.

5.2 Queries

To test the approach, we executed the queries Q1 – Q5 below over non-encrypted data
and over encrypted data using traversal-aware encryption adjustment where
applicable. We refer to encrypted versions of the queries as Q'1 – Q'5. This particular
set of queries was selected to test some commonly used in graph databases queries.

Q1: Find all orphan nodes (no incoming edges and no outgoing edges).

MATCH (node)

WHERE not((node)-[]-())
RETURN node

Q2: Basic Relationships Matching

MATCH (node1)-[:KNOWS]->(node2)

WHERE node1.name = ’Tom’ AND node2.age = ’22’
RETURN node2.name, node2.age

Q3: Adding Relationship Length

MATCH (node1)-[:KNOWS]->(node2)-[:KNOWS]->(node3)

WHERE node1.name = ’Jones’ AND node2.age = ’47’ AND
node3.gender = ’Female’

RETURN node3.name, node3.age, node3.gender

Q4: Variable Relationship Length

MATCH (node1)-[:KNOWS*1..3]->(node2)

WHERE node1.name = ’Jones’ AND node2.age = ’38’
RETURN node2.name, node2.age

Q5: Infinite Length and Length Limit

MATCH (node1)-[:KNOWS*]->(node2)

WHERE node1.name = ’Jones’ AND node2.age = ’38’
RETURN node2.name, node2.age

Notice that execution of each of Q'2 – Q'5, requires the execution of several

queries/updates (unlike the single query execution of non-encrypted versions). In
order to make a fair comparison we composed query/update parts of Q'i by using

WITH clauses. Having WITH enabled the query parts to be chained together, passing
the outputs from one to be used as starting points or criteria in the next. As in these

queries the first condition is WHERE node1.name=’value’ we need to adjust the

encryption level of name to the DET layer to allow equality checking. Take for
example, Q'2, as follows:

(1) MATCH (node1)-[:KNOWS]->(node2)
(2) WHERE node1.name=decryptRND(encryptRND
(encryptDET(’Tom’), ID(node1)),ID(node1))}

(3) SET node2.age= decryptRND(node2.age,ID(node2))
(4) with node2
(5) MATCH (node1:Person)-[:KNOWS]->(node2)
(6) WHERE node2.age = decryptRND
(encryptRND(encryptDET(’22’), ID(node2)),ID(node2))

(7) return decryptDET(node2.name), decryptDET(node2.age)

In step (1), we have a MATCH clause to determine the direction of the relationship

and its depth. In step (2), as all values are held in the RND layer, we need to decrypt

the name property within the DET layer, in order to allow the equality checking. In
step (3), we lower the encryption of the age property for nodes in the previous step. In

step (4), by using WITH we can pass the previous result so that it becomes the starting

criteria to the next part of the query. In step (5) we determine the direction of the
relationship. In step (6) we implement the second condition. In step (7) we return the
result in plain text format.

5.3 Results

Each query was run over all five databases and execution times (in milliseconds) for

non-encrypted data and encrypted data was collected, as presented in Table 3.

The queries Q1 and Q'1, to find orphan nodes, resulted in a similar result for both
the non-encrypted and encrypted databases. Those nodes were iterated through,
checking each node for the presence of edges. For the queries Q2 - Q5 the execution
time was clearly faster, this was expected since the queries over non-encrypted
databases do not require any encryption layer adjustment.

Table 3. Query results using different graph database sizes (milliseconds).

Database No. of Nodes No. of Relationships Q1 Q2 Q3 Q4 Q5 Q'1 Q'2 Q'3 Q'4 Q'5

DB1 10 9 1 2 2 4 3 1 5 6 9 7

DB2 100 82 1 4 4 3 4 2 20 20 18 15

DB3 500 410 4 2 2 2 4 4 36 32 35 34

DB4 1000 820 4 2 2 2 4 4 63 61 58 55

DB5 10000 8200 4 2 2 2 4 15 555 504 505 655

From an overall perspective, the retrieval time for non-encrypted databases is

small and roughly similar for all datasets. For the encrypted case, the execution time

clearly grows with the size of the database but remains in a practically feasible range

(under a second) for the largest considered dataset.

6 Conclusion

In this paper, we reported on the implementation and evaluation of traversal- aware

encryption adjustment mechanism for querying encrypted data in graph databases.

The method provides better security protection against server-side attacks while

keeping good implement ability and reasonable performance of query execution.

Security The considered case studies have shown the trade-off between simple and

traversal-aware encryption adjustment policies. The simple policy requires less

queries and updates to be followed, on the other hand, the traversal-aware policy

provides better security, as it reveals less information to a possible server- side

attacker. With the latter policy, as observed above not all age property values were

adjusted to the DET layer, just those required to allow the query execution to progress.

Performance We report on experiments and performance of the proposed schema in

the Appendix. To evaluate the proposed mechanism a collection of five databases was

created, the proposed approach was tested using five types of Cypher queries. The

evaluation was conducted by doing experiments that measure the execution time for a

set of queries directed at both non-encrypted data and encrypted data with different

dataset sizes. Our results are encouraging, but still, need to be validated using larger

data sets.

Implementability Similar to the methods in [2, 3, 9] and unlike the methods in [6,

13] the proposed mechanism does not need to change the inner structure of the DBMS

because it is implemented as a set of layers above the DBMS. In particular, the

proposed approach is compatible with a concurrency control for multi-user DBMS,

but related security aspects and performance evaluation in multi-user environment

need to be addressed in future work.

References

1. A. M. Abdullah: Advanced Encryption Standard (AES) Algorithm to Encrypt and Decrypt
Data. In: Cryptography and Network Security, pp. 1–12. Proceedings, Lo- cation (2017)

2. N. Aburawi, F. Coenen, and A. Lisitsa: Traversal-Aware Encryption Adjustment
for Graph Databases. In: 7th International Conference on Data Science, Technology and
Applications, pp. 381–387. Proceedings, Portugal (2018)

3. N. Aburawi, A. Lisitsa, and F. Coenen: Querying Encrypted Graph Databases.
In: 4th International Conference on Information Systems Security and Privacy, pp. 447–451.
Proceedings, Portugal (2018)

4. S. Ali, A. Rauf, and S. Mahfooz: UPDATE query over encrypted data. In: International Conference on
Computer Networks and Information Technology, pp. 279–282. Proceedings, Pakistan (2011)

5. J. Al-Saraireh: An Efficient Approach for Query Processing Over Encrypted Database. Journal of
Computer Science 13(10), 548–557 (2017)

6. M. Chase and S. Kamara: Structured Encryption and Controlled Disclosure, in Proc. of Advances in
Cryptology - ASIACRYPT 2010, 577–594, 2010

7. N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg, P.
Selmer, and A. Taylor: Cypher: An Evolving Query Language for Property Graphs. In: 18th SIGMOD
International Conference on Management of Data, pp. 1433–1445. Proceedings, USA (2018)

8. L. Liu and J. Gai: A Method of Query over Encrypted Data in Database”. In: International Conference
on Computer Engineering and Technology, pp. 23–27. Pro- ceedings, China (2009)

9. R. A. Popa and C.M.S. Redfield, N. Zeldovich and H. Balakrishnan: CryptDB: Protecting
Confidentiality with Encrypted Query Processing. In: 23rd ACM Symposium on Operating Systems
Principles, pp. 85–100. Proceedings, Portugal (2011)

10. R. L. Rivest, A. T. Sherman: Randomized Encryption Techniques. In: D. Chaum

(ed.) Advances in Cryptology, pp 145–163. Springer US, Boston, MA (1983)
11. I. Robinson , J. Webber , and E. Eifrem: Graph Databases. 1st edn. OReilly Media, Inc.,

United States of America (2013)

12. A. Turu Pi, O. Koroglu, and E. Zimanyi: Graph Databases and Neo4J. University

libre de Bruxelles (2017)
13. P. Xie and E. Xing : CryptGraph: Privacy Preserving Graph Analytics on En- crypted

Graph. In: CoRR journal, volume: abs/1409.5021, archivePrefix = arXiv, (2014)
14. Neo4j, Inc. (2019) Neo4j Homepage. https://neo4j.com Accessed 20 Feb 2019
15. Neo4j, Inc. (2019) User Defined Procedures and Functions.

https://neo4j.com/developer/procedures-functions/ Accessed 18 April 2019
16. openCypher (2019) openCypher Resources. https://www.opencypher.org/resources

Accessed 13 June 2019
17. C. Willemsen and M. Bachman (2019) Cypher: Variable Length Relationships by Example.

https://graphaware.com/graphaware/2015/05/19/neo4j-cypher-variable- length-
relationships-by-example.html Accessed 15 June 2019

http://www.opencypher.org/resources

