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Abstract

The analysis of the intraday dynamics of covariances among high-frequency returns is challenging due to

asynchronous trading and market microstructure noise. Both effects lead to significant data reduction and may

severely affect the estimation of the covariances if traditional methods for low-frequency data are employed. We

propose to model intraday log-prices through a multivariate local-level model with score-driven covariance matrices

and to treat asynchronicity as a missing value problem. The main advantages of this approach are: (i) all available

data are used when filtering the covariances, (ii) market microstructure noise is taken into account, (iii) estimation

is performed by standard maximum likelihood. Our empirical analysis, performed on 1-second NYSE data, shows

that opening hours are dominated by idiosyncratic risk and that a market factor progressively emerges in the

second part of the day. The method can be used as a nowcasting tool for high-frequency data, allowing to study

the real-time response of covariances to macro-news announcements and to build intraday portfolios with very

short optimization horizons.
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1 Introduction

A large class of conditional covariance models have been proposed in the econometric literature and their

use is widespread in risk and portfolio management at daily or lower frequencies. Popular multivariate

dynamic time-series models include the class of multivariate extensions of the univariate GARCH model

of Engle (1982) and Bollerslev (1986) and the Dynamic Conditional Correlation (DCC) model of Engle

(2002). A drawback of these models is that they are misspecified if data are recorded with observational

noise and require synchronization in case data are irregularly spaced. As a consequence, they cannot be

straightforwardly applied to intraday data, since high-frequency prices are contaminated by microstructure

noise and assets are traded asynchronously. Both effects may lead to ignore a large portion of the data and to

significantly underestimate the correlations. The problem of estimating and forecasting intraday volatilities

and correlations is, however, of crucial importance in high-frequency finance. For instance, an high-frequency

trader is interested in rebalancing the portfolio on an intraday basis, and thus she needs accurate short-term

covariance forecasts. Similarly, the study of the intraday dependencies of financial assets is useful to examine

the reaction of the market to external information and has a theoretical relevance in market microstructure

research.

We contribute to the literature on intraday covariance estimation by proposing a modeling strategy that

can handle both asynchronous trading and microstructure effects. High-frequency log-prices are modeled

through a conditionally normal local-level model where the efficient log-prices are affected by measurement

errors and the covariances of both the efficient returns and the noise are time-varying. In this state-space

representation, asynchronous trading can be treated as a standard missing value problem. Essentially, this

means that a multivariate time-series with asynchronous observations is regarded as a synchronized time-

series with missing values. The dynamics of the time-varying parameters are driven by the score of the

conditional density (Creal et al. 2013, Harvey 2013). The latter can be computed in closed form using the

Kalman filter (Creal et al. 2008, Delle Monache et al. 2016, Delle Monache et al. 2019), and thus estimation

proceeds via standard maximum likelihood.

The main advantage of the proposed approach is that it allows to model the covariances of the latent

efficient returns using all the available observed prices. In standard conditional covariance models, the

covariances of the observed returns are instead modeled. While in low frequency data observed price models

are essentially equivalent to observed return models, in high-frequency data the latter are subject to several

distortions and are affected by data reduction. For instance, in order to deal with asynchronous trading, it

is a standard practice to impute the missing trades by previous-tick interpolation. The latter produces a

large number of zero returns, which are known to jeopardize the inference of the covariances. This effect is

analogous to the downward bias of high-frequency sample covariances, the well-known “Epps effect” (Epps

1979), which arises when using previous-tick interpolation (see Hayashi and Yoshida 2005 and references

therein). Our approach, treating asynchronicity as a missing value problem, avoids the introduction of

artificial zero returns and thus it is not subject to bias. As it will be shown in our simulation study,

alternative methods to deal with asynchronous trading in observed return models, e.g. the missing value

approach of Lucas et al. (2016), lead to significant data reduction.
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Microstructure effects, which are generally modeled as measurement errors, constitute an additional

source of distortion in the inference of standard conditional covariance models. As in error-in-variables

models, they lead to a bias in the estimation of the parameters. By modeling the covariances of the latent

efficient returns, we are guaranteed that the recovered covariance estimates are not affected by microstructure

noise. Compared to standard conditional covariance models, the proposed approach is thus specifically

designed to deal with high-frequency data and can easily be employed to construct intraday portfolios. To

this end, we discuss two alternative parameterizations of the covariance matrix leading to positive-definite

estimates.

Since Andersen and Bollerslev (1997) and Tsay (2005), it is known that intraday volatilities have the

typical U-shape, being larger at the opening and closing hours of the trading day. In contrast, due to

the aforementioned difficulties, the intraday behavior of correlations has received less attention. Notably

exceptions are given by the work of Bibinger et al. (2019), who proposed a nonparametric spot covariance

estimator for intraday data, and that of Koopman et al. (2018), which is based on dynamic copula models.

The main difference between our approach and the dynamic copula of Koopman et al. (2018) is that we

model the dependencies of the latent efficient returns instead of the observed returns. As a consequence,

our approach does not suffer from data reduction when applied to high-frequency data and it is robust to

microstructure noise. Multivariate GARCH generalizations have been proposed, among others, by Engle

and Kroner (1995), Tse and Tsui (2002), van der Weide (2002), Alexander (2002), Engle (2002), Creal et al.

(2011). As underlined above, asynchronicity and market microstructure effects can lead to several unwanted

features in the inference of these models. In our simulation and empirical study, we examine in detail the

impact of these two effects on the DCC model of Engle (2002) and the t-GAS model of Creal et al. (2011).

Score-driven models are a general class of observation-driven models (Cox 1981) where the dynamics of

the time-varying parameters are driven by the score of the conditional likelihood. They have been successfully

applied in the recent econometric literature (see e.g. Creal et al. 2011, Creal et al. 2014 and Oh and Patton

2018). One of the main advantages of this class of models is that the conditional log-likelihood can be

written in closed form, and thus estimation is performed by standard maximum likelihood. In a linear-

Gaussian state-space representation, the score of the system matrices can be computed through the Kalman

filter, as described by Creal et al. (2008), Delle Monache et al. (2016) and Delle Monache et al. (2019). We

build upon these results to estimate and forecast the intraday covariances in our state-space representation.

The Monte-Carlo analysis presented in this paper has three main goals. First, we investigate the finite

sample properties of the maximum likelihood estimator. We find that it remains unbiased even in case

many observations are missing. Then, we use the model as a filter for a misspecified DGP and compare

it to standard dynamic models employed in a low-frequency setting. We find that, in the presence of

measurement errors and asynchronous observations, standard methods are subject to a downward bias. The

local-level model performs significantly better, as it exploits all the available data and provides robustness

to measurement errors. Finally, we investigate the performance of the model in the presence of fat-tails and

asynchronicity and/or measurement errors. To this end, we use the t-GAS model of Creal et al. (2011) to

simulate the intraday log-prices and the covariances. After randomly censoring the log-prices, we estimate
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both the local-level model and the t-GAS. We find that, as the number of missing observations increases, the

local-level model provides lower in-sample and out-of-sample average losses. The t-GAS, being a model for

the observed returns, is indeed subject to large data reduction in the presence of asynchronous observations.

A similar result is obtained when we add a measurement error to the simulated log-prices. We conclude

that, in an high-frequency setting, the use of the local-level model is preferable to that of correctly specified

observed return models, even under extreme fat-tails.

We apply the model to transaction data of 10 NYSE stocks. The in-sample analysis based on the AIC

reveals that the local-level model fits the data significantly better than standard conditional covariance

models for low-frequency data. We find that correlations have an increasing pattern. The rate of increase is

larger during the first two hours, then correlations increase at a slower rate and tend to decrease during the

last 15 minutes of the trading day. By analyzing the dynamics of the largest eigenvalues of the correlation

matrix, we interpret this phenomenon as the emergence of a market factor that progressively explains a

larger fraction of the total variance of the market.

The local-level model, being robust to asynchronous trading, can be estimated at ultra high frequencies

(1-second in our application) and thus provides a description of the dynamics of the covariances at very small

time scales. This allows us to study the real-time response of correlations to macro-news announcements.

Once macro-news arrive on the market, they are instantaneously captured by the model, even if very few

assets are traded at that moment. The method can thus be employed as a nowcasting tool for high-frequency

data. This interesting feature shares some similarities with the macroeconomic literature on nowcasting,

where dynamic factor models are used to update the forecasts of macroeconomic variables based on mixed-

frequency observations (see e.g. Giannone et al. 2008, Creal et al. 2014 and Delle Monache et al. 2016). In

the second part of the empirical analysis, we assess the performance of the model as a nowcasting tool for

high-frequency data. We construct intraday out-of-sample portfolios with short investment horizons and find

that the portfolios built through the local-level model feature significantly lower ex-post risk. Furthermore,

the local-level model provides reliable intraday Value-at-Risk assessment, whereas the competing approaches

largely fail in assessing the risk of high-frequency returns.

We collect in an online appendix several extensions of the proposed methodology. First, in order to

avoid the detrimental effect of jumps, which may occur at high frequencies, we propose a modification to

the standard Gaussian algorithm that provides robust estimates of both the latent efficient log-prices and

the covariances. Inspired by Harvey and Luati (2014) and Buccheri et al. (2019a), we replace the Gaussian

scores driving the dynamics of the time-varying parameters with the scores of a Student-t density. The

implementation of the alternative update scheme serves also as a robustness check for our Monte-Carlo

and empirical results. Second, we discuss alternative parameterizations of the covariances which reduce the

number of parameters when the cross-section dimension increases. Finally, we show how intraday volatility

patterns can be included in the model.

The remaining part of the paper is organized as follows: in Section (2) we describe the methodology

in its full generality, including the parameterization of the correlations and the estimation method; Section

(3) discusses the results of Monte-Carlo experiments; in Section (4) we provide empirical evidence on the
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advantages of the model over standard techniques and study the intraday dynamic behavior of covariances;

Section (5) concludes. Model extensions are presented in the online supplemental material.

2 Framework

2.1 Model

Let t ∈ [0, S] and denote by Xt = (X
(1)
t , . . . , X

(n)
t )′ an n × 1 vector of intraday efficient log-prices. We

consider T equally-spaced observation times 0 ≤ t0 < t1 < · · · < tT−1 ≤ S and propose to model Xti ,

i = 0, . . . , T − 1, as a random walk with heteroskedastic innovations:

Xti = Xti−1
+ ηti , ηti ∼ (0, Qti) (1)

The time-varying covariance matrix Qti describes the dynamics of volatilities and correlations of the efficient

returns and is the main object of interest of this paper. The efficient log-price Xti is unobservable because

of market microstructure effects (e.g. bid-ask bounce). Let Yti be the n × 1 vector of observed log-prices.

We write:

Yti = Xti + εti , εti ∼ (0, Hti) (2)

where εti is an uncorrelated measurement error term representing market microstructure effects. The two

innovations ηti and εti are assumed to be independent from each others. The covariances in Hti are allowed to

vary over time to capture potential dynamic effects in microstructure noise. For instance, the bid-ask spread

has a well-known intraday pattern, being larger at the opening hours and then declining throughout the day

(McInish and Wood 1992). The model in Eq. (1), (2) is at the basis of traditional market microstructure

analysis of trading frictions, asymmetric information and inventory control (Roll 1984, Hasbrouck 1993,

Madhavan 2000).

2.2 Time-varying covariances

Eq. (1) describes the martingale dynamics of the efficient log-price process, whereas Eq. (2) is the associated

measurement equation. We can re-write both equations as:

Yt = Xt + εt, εt ∼ (0, Ht) (3)

Xt = Xt−1 + ηt, ηt ∼ (0, Qt) (4)

where, without loss of generality, we have set ti − ti−1 = 1. The model described by Eq. (3), (4) is known

as local-level model (Harvey 1991, Durbin and Koopman 2012). If the two covariance matrices Ht and

Qt are constant, the local-level model can be estimated by quasi-maximum likelihood through the Kalman

filter. This is the route of Corsi et al. (2015) and Shephard and Xiu (2017), who propose a quasi-maximum

likelihood estimator of the integrated covariance of high-frequency log-prices. We are interested here in a

different problem, namely the dynamic modeling of the covariances of both the noise and the efficient returns.
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A convenient method to handle the model described by Eq. (3), (4) is to assume that the disturbance

terms are conditionally normal (Harvey 1991). Let Ft−1 be the σ-field generated by the observations of the

log-price process up to time t− 1. The conditionally normal local-level model reads:

Yt = Xt + εt, εt|Ft−1 ∼ NID(0, Ht) (5)

Xt = Xt−1 + ηt, ηt|Ft−1 ∼ NID(0, Qt) (6)

Conditionally on the information available at time t− 1, the distributions of εt and ηt are thus normal, with

known covariance matrices Ht and Qt. The Kalman filter can be applied to compute the likelihood in the

usual prediction error form. As discussed by Harvey (1991), conditionally normal state-space models allow

to “inject” nonlinear dynamics in the model while still preserving the possibility of applying the standard

Kalman filter. In our empirical framework, this is a substantial advantage, given that the Kalman filter easily

handles missing values and allows to reconstruct the efficient price based on all the available observations.

We now need to specify the law of motion of Ht and Qt. Score-driven models (Creal et al. 2013, Harvey

2013) are a general class of observation-driven models (Cox 1981). In score-driven models, parameters are

updated based on the score of the conditional density. The GARCH model of Bollerslev (1986), the EGARCH

model of Nelson (1991) and the ACD model of Engle and Russell (1998) are examples of models that can

be recovered in this general framework. In addition, score-driven models satisfy an information theoretic

criterion, as shown by Blasques et al. (2015). Motivated by the flexibility of score-driven models, we choose

to model the dynamics of Ht and Qt based on the score of the conditional density.

Similarly to the DCC model of Engle (2002), we decompose the covariance matrix Qt as:

Qt = DtRtDt (7)

where Dt = diag(Qt)
1/2 is a diagonal matrix of standard deviations and Rt is a correlation matrix. For

parsimony, we assume that the covariance matrix Ht of the noise is diagonal. Such assumption can be

relaxed at the expense of increasing considerably the number of time-varying parameters. However, as

pointed out by Corsi et al. (2015), in the static case the off-diagonal elements of Ht are found to be close to

zero, and thus they assume a diagonal matrix. A similar assumption is made by Shephard and Xiu (2017).

Let ft denote the vector of time-varying parameters. We write:

ft =


log(diag(Ht))

log(diag(D2
t ))

φt

 (8)

where φt is a q × 1 vector depending on the parameterization of the correlation matrix Rt. The latter will

be discussed in Section (2.3). The number of components of ft is thus k = 2n+ q.

The update rule in score-driven models is given by:

ft+1 = ω +Ast +Bft (9)

where st is the scaled score vector:
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st = (It|t−1)−1∇t, ∇t =

[
∂log p(Yt|ft,Ft−1,Θ)

∂f ′t

]′
, It|t−1 = E[∇t∇′t] (10)

The k × 1 vector ω and the k × k matrices A,B are included in the vector Θ of static parameters to be

estimated. Let nt ≤ n denote the number of assets traded at time t. The conditional log-likelihood is given

by:

log p(Yt|ft,Ft−1,Θ) =
nt
2

log(2π)− 1

2

(
log |Ft|+ v′tF

−1
t vt

)
(11)

where vt and Ft are defined in Section (2) of the online appendix.

As shown by Delle Monache et al. (2019), the score ∇t = ∂ log p(Yt|ft,Ft−1,Θ)/∂ft and the Fisher

information matrix It|t−1 = Et−1[∇t∇′t] can be computed as:

∇t = −1

2

[
Ḟ ′t (Int ⊗ F−1

t )vec(Int − vtv′tF−1
t ) + 2v̇′tF

−1
t vt

]
(12)

It|t−1 =
1

2

[
Ḟ ′t (F

−1
t ⊗ F−1

t )Ḟt + 2v̇′tF
−1
t v̇t

]
(13)

Together with vt and Ft, the computation of ∇t and It|t−1 requires v̇t and Ḟt, which denote derivatives of vt

and Ft with respect to the time-varying parameter vector ft. They can be computed through the expressions

reported in Section (2) of the online appendix.

By running in parallel the Kalman filter and the filter in Eq. (9), we update the time-varying parameters

and compute the conditional log-likelihood in Eq. (11). The static parameters Θ are estimated by optimizing

the log-likelihood function through standard quasi-Newton algorithms:

Θ̂ = argmax
Θ

T∑
t=1

log p(Yt|ft,Ft−1,Θ) (14)

Restrictions on the structure of A, B are discussed in the empirical application in Section (4). In Section

(1.1) of the online appendix, we discuss an alternative update scheme which improves over the above method

in the presence of jumps. The robust filter is simply obtained by replacing the Gaussian scores appearing in

the update of the efficient price and of the covariances with the scores of a Student-t density.

2.3 Parameterization of Rt

To have a full model specification, we need to choose a parameterization for the correlation matrix Rt.

We restrict our attention to parameterizations that guarantee a positive-definite correlation matrix. One

possibility is to use hyperspherical coordinates, as in Creal et al. (2011). Another possibility is given by the

equicorrelation parameterization of Engle and Kelly (2012).

In the first case, we write the correlation matrix as Rt = Z ′tZt. The matrix Zt has the form:

Zt =



1 c12 c13 . . . c1n

0 s12 c23s13 . . . c2ns1n

0 0 s23s13 . . . c3ns2ns1n

...
...

...
...

0 0 0 . . .
∏n−1
k=1 skn


(15)
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where cij = cos θij and sij = sin θij . Note that the time index has been omitted for ease of notation. The

i-th column of Zt contains the hyperspherical coordinates of a vector of unit norm in an i-th dimensional

subspace of Rn, which is parameterized by i − 1 angles. We have therefore n(n − 1)/2 angles, equal to the

number of correlations in Rt. We set φt = [θ12,t, θ13,t, . . . , θn−1n,t]
′ in Eq. (8), so that q = n(n− 1)/2. The

number of time-varying parameters is thus k = 2n+ n(n− 1)/2.

In the equicorrelation parameterization, the correlation matrix Rt is written as:

Rt = (1− ρt)In + ρtJn (16)

where Jn denotes an n × n matrix of ones. The correlation matrix Rt is positive-definite if and only if the

parameter ρt satisfies the constraint −1/(n− 1) ≤ ρt ≤ 1. One possibility to guarantee this constraint is to

write:

ρt =
1

2

[(
1− 1

n− 1

)
+

(
1 +

1

n− 1

)
tanh(θt)

]
(17)

as in Koopman et al. (2018). We set φt = θt, so that q = 1. The number of time-varying parameters is thus

k = 2n + 1. The equicorrelation parameterization is very parsimonious, as it assumes the same correlation

for all couples of assets. Notwithstanding, it has been proven to be effective in several empirical problems

(see discussions in Engle and Kelly 2012).

3 Monte-Carlo analysis

3.1 Finite-sample properties

We first study the finite sample properties of the maximum likelihood estimator through Monte-Carlo sim-

ulations. We set n = 10, the same number of assets in our empirical application in Section (4). The number

of time-varying parameters is thus k = 2n + n(n − 1)/2 = 65 in the parameterization with hyperspherical

coordinates and k = 2n+ 1 = 21 in the equicorrelation parameterization. In the first experiment, we assume

that the static parameters ω, A, B have the following structure:

ω =


ωh

ωd

ωr

 , A = diag


Ah

Ad

Ar

 , B = diag


Bh

Bd

Br

 (18)

where ωh, Ah, Bh are n×1 vectors driving the variances of the noise, ωd, Ad, Bd are n×1 vectors driving the

variances of the efficient returns and ωr, Ar, Br are q×1 vectors driving the correlations. We further constraint

the elements in each vector to be equal among each other. The number of static parameters is therefore

equal to nine. In particular, we set: ωh = −0.0461ιn, ωd = −0.0461ιn, ωr = 0.0185ιq, A
h = Ad = 0.04ιn,

Ar = 0.04ιq, B
h = Bd = 0.98ιn, Br = 0.98ιq. The values of ωh, ωd are set in such a way that the signal-

to-noise ratio (defined as the ratio between the unconditional standard deviation of the efficient returns and

that of the measurement error) is similar to that found on empirical data, which is on average equal to one

(see Table 5).
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After simulating the log-prices, we randomly censor the observations to mimic asynchronous trading. In

real financial markets, the missing value probability changes throughout the day. It has an inverse U-shape

pattern, being lower at the opening and closing hours of the trading day. We use a scheme similar to that

of Buccheri et al. (2019b) to generate missing values. The missing value probability is written as:

pt = θtξt (19)

where θt is a common seasonal pattern and ξt is a stochastic component. The seasonal pattern is given by:

θt = θ̄
[
b− a(t2 − t)

]
(20)

where a = 0.45, b = 0.34 and θ̄ is a normalization ensuring that 1/T
∑T

0 θt = 1. The values of a and b

are obtained by fitting θt to the average missing value probability pattern found in the dataset used in our

empirical application. Let F (x) denote the cumulative distribution function of a standard normal random

variable and let {ζt} be an i.i.d. sequence of standard normal random variables. The stochastic component

ξt is generated as:

ξt = F (ut) (21)

ut = ut−1 +
(
F−1(λ)− ut−1

)
/T + σu

√
Tζt (22)

where σu = 0.25. The value of λ determines the unconditional mean of the probability of missing values. In

our study, we change λ to generate scenarios with different levels of sparsity.

To set the initial values of the time-varying parameters, we estimate a local-level model with constant

parameters in the subsample comprising the first 100 observations. This can be done through the EM

algorithm, as described by Corsi et al. (2015). We then set f1 based on Eq. (8), with Ht, Dt, Rt equal to

the EM estimates. We simulate N = 1000 time-series of T = 2000 observations and consider four scenarios

characterized by λ = 0, 0.3, 0.5, 0.8. Table (1) reports the summary statistics of the maximum likelihood

estimates in the parameterization with hyperspherical coordinates. Table (2) reports analogous statistics

obtained with the equicorrelation parameterization. The results show that, in both parameterizations, the

maximum likelihood estimates concentrate around the true parameters. Not surprisingly, missing values

lead to an increase of the variance of the estimator. However, even in the highly asynchronous scenario with

λ = 0.8, relative errors remain small for all the parameters in ω, A, B.

In the second experiment, we assume that ω, A, B have the following structure:

ω =


0
...

0

 , A = diag


Ah

Ad

Ar

 , B = diag


1
...

1

 (23)

Under these random-walk type restrictions, the time-varying parameters do not mean revert to an uncon-

ditional level. As shown in Section (4.2), such restriction provides a better description of the dynamics of

intraday covariances and it is thus employed to estimate the local-level model on empirical data. We set

Ah = Ad = 0.01ιn, Ar = 0.01ιq and report in Table (3) the summary statistics of the maximum likelihood
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λ Mean Std Mean Std Mean Std

ωh = −0.0461ιn ωd = −0.0461ιn ωr = 0.0185ιq

0.0 -0.0461 0.0036 -0.0461 0.0026 0.0185 0.0005

0.3 -0.0484 0.0126 -0.0486 0.0101 0.0203 0.0033

0.5 -0.0492 0.0169 -0.0492 0.0145 0.0215 0.0051

0.8 -0.0477 0.0204 -0.0480 0.0210 0.0219 0.0153

Ah = 0.04ιn Ad = 0.04ιn Ar = 0.04ιq

0.0 0.0398 0.0017 0.0399 0.0013 0.0400 0.0006

0.3 0.0411 0.0053 0.0388 0.0057 0.0403 0.0032

0.5 0.0414 0.0070 0.0387 0.0075 0.0420 0.0047

0.8 0.0386 0.0118 0.0385 0.0111 0.0426 0.0083

Bh = 0.98ιn Bd = 0.98ιn Br = 0.98ιq

0.0 0.9800 0.0016 0.9800 0.0011 0.9800 0.0005

0.3 0.9781 0.0055 0.9792 0.0042 0.9783 0.0032

0.5 0.9779 0.0070 0.9790 0.0072 0.9777 0.0040

0.8 0.9791 0.0107 0.9797 0.0093 0.9750 0.0143

Table 1: Mean and standard deviations of maximum likelihood estimates of the local-level model in the parameter-

ization with hyperspherical coordinates under the restrictions in Eq. (18).

λ Mean Std Mean Std Mean Std

ωh = −0.0461ιn ωd = −0.0461ιn ωr = 0.0185ιq

0.0 -0.0469 0.0081 -0.0468 0.0073 0.0196 0.0059

0.3 -0.0475 0.0109 -0.0472 0.0102 0.0205 0.0094

0.5 -0.0485 0.0144 -0.0483 0.0137 0.0216 0.0125

0.8 -0.0472 0.0228 -0.0479 0.0215 0.0224 0.0220

Ah = 0.04ιn Ad = 0.04ιn Ar = 0.04ιq

0.0 0.0400 0.0035 0.0398 0.0035 0.0393 0.0057

0.3 0.0409 0.0048 0.0400 0.0049 0.0375 0.0076

0.5 0.0414 0.0061 0.0398 0.0059 0.0368 0.0094

0.8 0.0386 0.0111 0.0378 0.0100 0.0366 0.0142

Bh = 0.98ιn Bd = 0.98ιn Br = 0.98ιq

0.0 0.9796 0.0035 0.9797 0.0031 0.9788 0.0063

0.3 0.9794 0.0047 0.9795 0.0044 0.9775 0.0101

0.5 0.9789 0.0063 0.9790 0.0059 0.9760 0.0138

0.8 0.9793 0.0099 0.9791 0.0093 0.9751 0.0148

Table 2: Mean and standard deviations of maximum likelihood estimates of the local-level model in the parameter-

ization based on the equicorrelation matrix under the restrictions in Eq. (18).
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estimates. As in the previous experiment, the parameter estimates concentrate around the true values and

the variances increase with the number of missing values. Overall, we conclude that maximum likelihood

provides satisfactory parameter estimates in all the considered scenarios.

λ Mean Std Mean Std Mean Std

hyperspherical

Ah = 0.01ιn Ad = 0.01ιn Ar = 0.01ιq

0.0 0.0100 0.0009 0.0100 0.0005 0.0100 0.0002

0.3 0.0085 0.0040 0.0106 0.0039 0.0099 0.0021

0.5 0.0082 0.0059 0.0120 0.0053 0.0113 0.0027

0.8 0.0080 0.0110 0.0111 0.0102 0.0129 0.0071

equicorrelation

Ah = 0.01ιn Ad = 0.01ιn Ar = 0.01ιq

0.0 0.0099 0.0013 0.0099 0.0012 0.0098 0.0025

0.3 0.0117 0.0019 0.0116 0.0018 0.0103 0.0032

0.5 0.0120 0.0028 0.0122 0.0027 0.0109 0.0043

0.8 0.0129 0.0076 0.0122 0.0065 0.0115 0.0090

Table 3: Mean and standard deviations of maximum likelihood estimates of the local-level model under the restric-

tions in Eq. (23).

3.2 Assessing the effect of noise and asynchronicity

In this section we aim to assess the effect of measurement errors and asynchronous trading on common

dynamic correlation models and to show the advantages provided by the proposed modeling strategy. High-

frequency log-prices are typically synchronized before being analyzed. The most popular synchronization

scheme is previous-tick interpolation, consisting in filling the missing values with the previous available price.

Such procedure (and other similar schemes) leads to a downward bias of correlations toward zero. In the

literature on realized covariance estimation, the latter is known as the “Epps effect” (Epps 1979). As it is

shown here, a similar bias arises when estimating dynamic correlations. The presence of measurement errors

is an additional source of bias for the estimated correlations. This is not surprising, as attenuation biases

due to measurement errors occur in several econometric and statistics problems, e.g. in error-in-variables

models.

For simplicity, we consider a bivariate model generated as follows:

Yt = Xt + εt, εt ∼ N(0, H) (24)

Xt = Xt−1 + ηt, ηt ∼ N(0, DRtD) (25)

where H = hI2, D = dI2 and:

Rt =

 1 ρt

ρt 1

 (26)
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Figure 1: Estimates of LL (solid line), g-GAS (dashed line), DCC (dotted line) and EWMA (solid circle line)

averaged over all simulations in the scenario (δ = 2, λ = 0.5). We also show the simulated correlation (grey line).

The correlation coefficient ρt obeys the following dynamic patterns:

1. Sine ρt = bs sin(csπt)

2. Fast Sine ρt = bf sin(cfπt)

3. Step ρt = αs − βs(1t<T/4 + 1T/2<t<3T/4)

4. Ramp ρt = 1
br

mod (t+ ar, cr)

5. Model ρt = exp (ht)/[1 + exp (ht)]

where ht is an AR(1) process:

ht+1 = cm + bmht + amφt, φt ∼ N(0, 1)

and T is the number of observations. The parameters governing the dynamics of ρt are chosen as: bs =

bf = 0.4, cs = 4/T , cf = 8/T , αs = 0.25, βs = 0.5, br = 5/16T , ar = T/8, cr = T/4, bm = 0.99,

cm = −0.4(1 − bm), am = 0.01. The variance h of the measurement errors is constant and equal to 0.1

for all the simulated patterns. The variance d2 of the latent efficient returns is computed based on the

signal-to-noise ratio δ = d/
√
h. We consider three different scenarios with δ = 0.5 (low signal), 1 (moderate

signal), 2 (high signal). As it is evident in Section (4), these values are close to those estimated on real data.

Once observations have been generated, we apply a censoring scheme similar to that used in the previous

12



analysis. In particular, we consider three scenarios with λ = 0, 0.3, 0.5, where λ denotes the unconditional

mean of the probability of missing values.

We generate N = 250 simulations of T = 6000 observations for each dynamic pattern and for each

scenario. As benchmarks, we consider:

• The DCC model of Engle (2002)

• An EWMA scheme given by: Q̂t+1 = γQ̂t + (1− γ)rtr
′
t, γ = 0.96

• The g-GAS model of Creal et al. (2011)

The g-GAS is an observed return model for dynamic correlations based on a Gaussian conditional density.

The DCC and the EWMA are estimated by synchronizing the data through previous-tick interpolation.

Depending on the value of λ, previous-tick leads to a large number of zero returns. In order to attenuate

the effect of the noise and of the zero returns, we sample the observations at a lower frequency. This

procedure is commonly employed, for instance, when computing the realized covariance. Indeed, at lower

frequencies, returns are less affected by microstructure noise and by staleness effects due to the absence of

trading. A natural consequence of subsampling is that a significant portion of the data is neglected. However,

subsampling greatly improves the correlation estimates of the DCC and the EWMA, which otherwise would

be extremely biased toward zeros. In each scenario, the new sampling frequency is set as the one minimizing

the MSE in a pre-simulation study with N = 20 simulations. The selected values range in the interval

between 3 and 6 time units.

The g-GAS model is instead estimated using the missing value approach of Lucas et al. (2016), consisting

in computing the score with respect to the marginal density of the available data. As the conditional density

is a multivariate Gaussian, the marginals are readily available in closed form.

Both in-sample and out-of-sample losses are computed. To this end, the sample is divided into two

subsamples containing the same number of observations. Thus, there are Tsub = 3000 observations available

for the in-sample estimation of the local-level model and of the g-GAS. In the case of the DCC, the number

of available in-sample observations depends on the sampling frequency. The second subsample is used to

compute the out-of-sample losses. The parameterization used in the local-level model and in the g-GAS is

the one based on hyperspherical coordinates.

Figure (1) shows, in the scenario (δ = 2, λ = 0.5), the average of the correlations estimated by the four

models. Even by sampling returns at lower frequencies, DCC and EWMA estimates are biased toward zero.

This is mainly a consequence of asynchronicity, which is high in this scenario. The g-GAS is not affected by

zero-returns because, similarly to the local-level model, asynchronicity is treated as a missing value problem.

However, it is not robust to measurement errors and, being a model for the observed returns, it is also subject

to data reduction when prices are not synchronized (see Section 3.3 for further details on this effect). As a

consequence, even the g-GAS estimates are biased.

Figure (2) shows the average correlations in the scenario (δ = 1, λ = 0). The DCC and the EWMA have

again a downward bias. In contrast to the previous scenario, the bias is now entirely due to measurement

errors because there are no missing values in this scenario. Similarly, the g-GAS significantly underestimates
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Figure 2: Estimates of LL (solid line), g-GAS (dashed line), DCC (dotted line) and EWMA (solid circle line)

averaged over all simulations in the scenario (δ = 1, λ = 0). We also show the simulated correlation (grey line).

the correlations. The bias is more pronounced in the g-GAS, since the effect of measurement errors in the

DCC and EWMA is mitigated by the use of lower aggregation frequencies. Thus, in a high-frequency setting,

the use of standard dynamic correlation models leads to data reduction and underestimates (absolute value

of) correlations.

Table (4) reports in-sample and out-of-sample MSE of the four models in all the simulated scenarios. The

local-level significantly outperforms the benchmark models. In particular, the relative differences increase

in patterns “step”, “ramp” and “model”, characterized by frequent changes or stochasticity. Indeed, by

exploiting all the available observations, the local-level can track the variation of these patterns with a

higher efficiency.
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3.3 Comparison with fat-tail return models

High-frequency data may exhibit extreme movements during flash crashes or in correspondence of macro-

news announcements. It is therefore important to investigate the quality of the correlation estimates provided

by the proposed approach in the presence of outliers. Creal et al. (2011) introduced a score-driven dynamic

correlation model, named t-GAS, based on a multivariate Student-t distribution. The conditional density of

the log-returns in the t-GAS is:

p(rt|Σt, ν) =
Γ(ν+n

2 )

Γ(ν2 )[(ν − 2)π]n/2|Σt|1/2

(
1 +

r′tΣtrt
ν − 2

)−(ν+n)/2

(27)

The covariances in Σt obey the usual score-driven update rule. Different parameterizations for Σt are

possible, such as the one discussed in Section (2.3) based on hyperspherical coordinates.

In this simulation study, we use Eq. (27) as a data generating process for the log-returns. After computing

the log-prices, the censoring scheme described in Section (3.1) is applied to mimic asynchronous trading.

We then estimate the correlations using the t-GAS and the local-level model. The t-GAS is estimated using

the missing-value approach of Lucas et al. (2016). As in the case of the g-GAS, the latter can be applied

straightforwardly, since the marginals of a multivariate Student-t density are known in closed form (see e.g.

Golam Kibria and Joarder 2017.)

The missing value approach avoids the introduction of artificial zero returns. However, it induces signif-

icant data reduction, as only consecutive trades can be used to compute the returns. For instance, if the

i-th assets is traded at time t but not at time t − 1, the return ri,t is treated as a missing value and the

information related to the price of the i-th asset at time t is lost. In contrast, at time t the local-level model

exploits the observation of the price of the i-the asset to reconstruct the vector of the n efficient prices and

to update the covariances.

To illustrate such effect, we simulate the log-prices through a t-GAS model with n = 10 and, in order to

emphasize the effect of fat-tails, we set ν = 3. Ten different scenarios are considered, characterized by an

increasing level of sparsity (λ = 0, 0.1, . . . , 0.9). We perform N = 250 simulations of time-series of T = 6000

log-prices. As in the previous study, the first subsample of Tsub = 3000 log-prices is used to estimate the three

models, whereas the second subsample is used to compute the out-of-sample forecasts. As a loss measure,

we use the Frobenius distance, defined as:

||Σ̂t − Σt||F =

√
Tr[(Σ̂t − Σt)2] (28)

The parameterization of Rt used in the two models is that based on hyperspherical coordinates, and the

static parameters driving the dynamic elements in Ht, Dt and Rt have the restrictions in Eq. (18).

Figure (3) shows on the left the average out-of-sample losses of the two models. There is an evident

trade-off between fat-tails and asynchronicity. Not surprisingly, if data are synchronized (λ = 0), the t-

GAS performs significantly better than the Gaussian local-level. However, once missing values come into

play, the latter tends to improve its relative performance. The average loss of the t-GAS quickly increases

with λ. In particular, for λ > 0.5, the Gaussian local-level provides better out-of-sample forecasts. The

16



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

MSE t-GAS

MSE LL

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MSE t-GAS

MSE LL

Figure 3: Left: average out-of-sample Frobenius losses, as a function of the average probability of missing values λ,

of the t-GAS and the local-level model. The DGP is a t-GAS with ν = 3. Right: average out-of-sample Frobenius

losses of the same models as a function of the signal-to-noise ratio δ. The DGP is a t-GAS with ν = 3 contaminated

by a Student-t distributed measurement error with νerr = 3 and we set λ = 0.

rapid deterioration of the relative performance of the t-GAS in the presence of missing values is due to the

aforementioned effect of data reduction.

We obtain similar results when adding a noise to the simulated log-prices. In a second experiment, we

ignore asynchronicity, but contaminate the log-prices with a zero-mean Student-t distributed measurement

error with νerr = 3. We consider different levels of the signal-to-noise ratio, from δ = 0.1 to δ = 100. As

shown on the right in Figure (3), for δ < 50, the average out-of-sample loss of the Gaussian local-level is

significantly lower that that of the t-GAS. This is due to the fact that, in the local-level, we model the

covariances of the latent returns instead of the observed returns. Of course, adding noise and asynchronicity

together would lead to further increase the relative difference between the local-level model and the t-GAS.

We provide additional Monte-Carlo evidences in Section (1.1.1) of the online appendix, where we show the

results obtained with the alternative update scheme based on the scores of the Student-t density.

As it is evident from our empirical application, high-frequency data are characterized by high levels of

sparsity (λ > 0.8) and are significantly noisy (δ ≈ 1). In light of the results of this section, we conclude

that the use of the local-level model is more suited in a high-frequency setting, where these two effects are

extremely important.

4 Empirical illustration

4.1 Dataset

Hereafter, to make the exposition clear, we denote by LLh the local-level model with hyperspherical coor-

dinates and by LLe the local-level model with the parameterization based on equicorrelations. Our dataset

contains 1-second transaction data of 10 most frequently traded NYSE assets in 2014. Data are related to
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Symbol Asset Avg. duration (sec) λavg Avg. n. of trades δavg

XOM Exxon Mobil Corporation 5.434 0.816 4304 1.178

C Citigroup Inc 6.135 0.836 3832 1.246

JPM JPMorgan Chase 6.250 0.840 3743 0.999

HAL Halliburton Company 6.369 0.843 3690 0.872

CVX Chevron 6.579 0.848 3553 0.850

DIS Walt Disney 6.622 0.849 3543 0.846

JNJ Johnson & Johnson 6.666 0.850 3529 0.809

SLB Schlumberger Limited 6.802 0.853 3454 0.613

DAL Delta Air Lines 6.993 0.857 3348 0.766

WMT Walmart 7.042 0.858 3325 0.698

Table 5: Summary statistics and average signal-to-noise ratio of the high-frequency transaction data employed in

the empirical analysis.

transactions from 02-01-2014 to 31-12-2014, including a total of 251 business days. The exchange opens at

9.30 and closes at 16.00 local time, so that the number of seconds per day is T = 23400. We perform the

standard procedures described by Barndorff-Nielsen et al. (2009) to clean the data. Table (5) shows the

summary statistics of the ten assets, including the average duration in seconds between trades, the average

probability of missing values λavg (computed as the average fraction of missing values per day) and the

average number of trades per day. We also report the average signal-to-noise ratio δavg, computed from the

matrices Dt, Ht estimated through the LLh model. Specifically, δavg is defined as the ratio Dt,ii/
√
Ht,ii,

i = 1, . . . , 10, averaged over all the timestamps.

The figures in the table provide a first evidence on the relevance of asynchronous trading and microstruc-

ture effects in high-frequency data. The average probability of missing values is greater than 80%, indicating

large levels of sparsity even for the liquid assets included in this dataset. The average signal-to-noise is close

to one, implying that also microstructure effects play a relevant role. As done in the simulation study in

Section (3), we thus aim to show the advantages of the proposed method over standard techniques ignoring

these effects.

We point out that the time-resolution of one second is the highest available in our dataset. If millisecond

or microsecond data are available, one could assume a higher resolution to exploit all the observed prices. At

those resolutions, data are extremely sparse, with a lot of timestamps where the prices of all the assets are

missing. If the latter circumstance occurs, the update equations of the Kalman filter simplify considerably,

as discussed in Section (2) of the online appendix. Even the computation of the score in Eq. (12) simplifies,

since it becomes equal to zero. Therefore, while the number of recursions increase, most of them become

extremely simple from a computational point of view.
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Restriction type 23 Jan 11 Apr 27 May 6 Aug 4 Sep 16 Oct

Mean-reverting −6.1237 −7.0196 −6.4519 −4.5173 −4.7355 −10.2073

Random-walk −6.2291 −7.1361 −6.5344 −4.6845 −4.7890 −10.226

Table 6: AIC (×105) statistics computed on six randomly selected trading days with the mean-reverting restriction

based on Eq. (18) and the random-walk restriction based on Eq. (23).

4.2 In-sample analysis

The vector ω and the matrices A, B in the dynamic equation (9) have dimensions k×1 and k×k, respectively.

For n = 10, k is equal to 21 in the equicorrelation parameterization, whereas it is equal to 65 in the

parameterization based on hyperspherical coordinates. It is therefore necessary to impose some restrictions

on the parameter space in order to estimate the model. We perform an AIC test to choose among different

restrictions. Specifically, we compare the mean-reverting restriction in Eq. (18) with the random-walk type

restriction in Eq. (23). Table (6) reports the AIC statistics of the LLh model estimated on six randomly

selected trading days with the two restrictions. The AIC provided by the random-walk type restriction is

always lower than that of the mean-reverting restriction. As it is shown in the next sections, the intuitive

reason behind this result is that intraday covariances have non-stationary dynamics which do not mean

revert to an unconditional level. A similar result holds for the LLe model. We therefore implement the

random-walk type restriction when applying the local-level model in all the subsequent analyses.

Parameter t-GAS LLh LLe

Ah
- 0.0323 0.0179

- (0.0137) (0.0117)

Ad
0.1515 0.0226 0.0210

(0.0373) (0.0088) (0.0093)

Ar
0.0232 0.0048 0.0057

(0.0109) (0.0018) (0.0029)

ν
13.555 - -

(4.2204) - -

Table 7: Average of maximum likelihood estimates of parameters Ah, Ad, Ar, ν of t-GAS, LLh and LLe models. The

averages are computed over the whole sample of 251 business days. Standard deviations are indicated in parenthesis.

We estimate the two local-level specifications on each business day of 2014 (the average estimation time

on Matlab 2018 is 28.3 min on an i7-2600 CPU at 3.40GHz). In order to initialize time-varying parameters,

we proceed as in Section (3.1), i.e. we estimate the static version of the model in a pre-sample including

the first 10 minutes of the trading day. The starting values of the time-varying parameters are then set

equal to the static estimates. We compare the covariance estimates obtained by the local-level model to the

covariances of the t-GAS model. As in Creal et al. (2011), the correlations in the t-GAS are parameterized

using the hyperspherical coordinates. In the presence of asynchronous data, the t-GAS can be estimated
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Figure 4: Left: daily AIC of LLh, t-GAS and DCC models. Right: AIC of LLe normalized by the AIC of the LLh

model.

by previous-tick synchronization or using the missing value approach of Lucas et al. (2016). As discussed

in Sections (3.2), (3.3), the first method generates a lot of zero returns, whereas the second implies data

reduction, as a consequence of modeling returns rather than prices. We use the missing value approach,

as zero returns dramatically jeopardize the estimation of the covariances in the t-GAS. The same random-

walk type restrictions on static parameters are implemented for the t-GAS. Table (7) shows the average

and the standard deviation of the estimated parameters of the two local-level specifications and of the t-

GAS. We note that the degrees of freedom parameter ν of the t-GAS is close to 13, which would suggest

that the conditional distribution of high-frequency returns is not fat-tailed. This is most likely due to the

misspecification induced by microstructure noise, which affects the inference of the t-GAS parameters.

As an additional benchmark, we use the DCC model estimated through the previous-tick interpolation.

In order to attenuate microstructure effects, we aggregate the data at the sampling frequency of one minute.

At frequencies higher than one minute the estimated correlations are even more biased, while at lower

frequencies the inference becomes extremely inefficient due to data reduction.

Figure (4) shows on the left the daily AIC provided by the LLh, the t-GAS and the DCC. The AIC of

the LLh is significantly lower than that of the other two models. These differences are mainly due to data

reduction, and provide a quantitative assessment of the relevance of this effect. On the right, we plot the

AIC of the LLe model normalized by the AIC of the LLh. We note that the relative difference between LLh

and LLe is small, meaning that the equicorrelation structure does not lead to an excessive deterioration of

the in-sample fit of the model.

Figure (5) shows the estimated intraday volatilities and correlations, averaged over the whole sample

of 251 business days. The volatilities are also averaged over the 10 assets, whereas the correlations are

averaged over all the couples of assets. The intraday pattern of the volatilities provided by the t-GAS is

above that of the two local-level models. The reason is that the estimated volatilities in the t-GAS include

the microstructure noise volatility. Instead, the local-level model sets the efficient return volatilities in Dt

apart from the noise volatilities in Ht. In the t-GAS, microstructure effects thus lead to an upward bias
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Figure 5: Intraday average volatilities (left) and correlations (right) of LLh, LLe, t-GAS and DCC models. Volatil-

ities are average over all the 10 assets, whereas correlations are averaged over all couples of assets.

in the estimated variances. The average volatility estimated by the DCC is closer to that of the two local-

level models. Microstructure effects in the DCC are indeed attenuated by the lower aggregation frequency.

However, previous-tick interpolation leads to correlations which are extremely biased toward zero. The

average correlations of the t-GAS are significantly less biased compared to DCC correlations, confirming

the ability of the missing value approach to avoid the distortions due to the introduction of artificial zero

returns. Nevertheless, they suffer from the additional bias due to microstructure effects. Overall, the in-

sample analysis provides clear evidence that the proposed approach based on the local-level specification is

more suited when modeling intraday covariances.

The intraday patterns of the local-level model with hyperspherical coordinates are close to those provided

by the equicorrelation parameterization, in accordance with the result in Figure (4). Larger deviations are

observed in the correlations, in particular in the first part of the trading day, where the average equicorrelation

increases at a slightly higher rate, and during the last few minutes, where the decrease is more pronounced.

4.3 Intraday dynamics of the covariances

We now study in more detail the estimates provided by the local-level model with the aim to extract mean-

ingful information on the behavior of the intraday covariances. To gain insights on the level of heterogeneity

of correlations, we perform the analysis using the parameterization based on hyperspherical coordinates. We

first examine the variation of the intraday patterns over time. To this purpose, we take averages of the

estimated time-varying parameters over assets or couples of assets. For t = 1, . . . , 23400 and j = 1, . . . , 251,

we compute:

d̃jt =
1

n

n∑
i=1

Dj
t (i, i), h̃jt =

1

n

n∑
i=1

√
Hj
t (i, i)

δ̃jt =
1

n

n∑
i=1

Dj
t (i, i)√
Hj
t (i, i)

, ρ̃jt =
2

n(n− 1)

∑
p>q

Rjt (p, q)
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where n = 10. Similarly, to examine the variation of the intraday patterns among different assets, we take

averages of time-varying parameters over time. For t = 1, . . . , 23400 and i, p = 1, . . . , 10, q < p we compute:

d̄it =
1

N

N∑
j=1

Dj
t (i, i), h̄it =

1

N

N∑
j=1

√
Hj
t (i, i),

δ̄it =
1

N

N∑
j=1

Dj
t (i, i)√
Hj
t (i, i)

, ρ̄p,qt =
1

N

N∑
j=1

Rjt (p, q)

where N = 251. The average intraday pattern can be computed by averaging the variables labeled with a

“tilde” over j = 1, . . . , 251 or, equivalently, by averaging the variables labeled with a bar over i, p = 1, . . . , n

and q < p. For each timestamp t = 1, . . . , 23400, Figures (6) and (7) show 10%, 90% quantiles of the

variables denoted by “tilde” and 10%, 90% quantiles of the variables denoted by bars, respectively. We also

report in each figure the average intraday pattern of the time-varying parameters.
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Figure 6: Average intraday patterns of the estimated LLh time-varying parameters Dt, H
1/2
t , δt and Rt. For each

t = 1, . . . , 23400, we report 10% and 90% quantiles of the distribution (over days) of averages of Dt, H
1/2
t , δt and Rt

(over assets or couples of assets).

The efficient return volatilities in Dt are large at the beginning of the trading day and gradually decline

in the remaining part of the day. The average intraday pattern of the microstructure noise volatility has
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two regimes: a steep decline from 9:30 to 10:00 and a slow decline from 10:00 until the end of the trading

day. This dynamic behavior is close to the typical intraday pattern of bid-ask spreads (see e.g. McInish

and Wood 1992), confirming that the local-level model consistently sets apart the efficient log-price process

from microstructure effects. The signal-to-noise ratio exhibits a similar pattern: it is larger at the beginning

of the day (δ ≈ 3), whereas it is lower in the remaining part of the day (δ ≈ 1), indicating that prices are

significantly affected by microstructure effects during a large portion of the trading day.

Correlations exhibit an interesting increasing pattern. They are low at the beginning of the trading day,

implying that the dynamics of log-prices are largely affected by idiosyncratic risk in that part of the day.

We then observe a steep increase until 11:00, which is associated to the fast decline of the volatilities. After

11:00, correlations increase, though at a lower rate, until 15:45. Thereafter, we observe a steep decline of all

the correlations.

Figure (8) shows the average intraday pattern of the first five eigenvalues of the correlation matrix Rt.

We note that the explanatory power of the first eigenvalue, associated to the market factor, progressively

increases during the trading day. This implies that, while at the beginning of the day the dynamics are

dominated by idiosyncratic risk, a systematic component emerges in the second part of the day. This

component is associated to market risk, as all the remaining eigenvalues decrease in time. Such results

are in agreement with the empirical findings of Allez and Bouchaud (2011), who employ standard sample

correlations to study the intraday evolution of the correlations. An increase of correlations during the trading

day is also found by Bibinger et al. (2019) and Koopman et al. (2018).

On some specific days, the time-varying parameters deviate substantially from their average intraday

pattern. To this purpose, we plot in Figures (9), (10) the quantities d̃jt , h̃
j
t , δ̃

j
t and ρ̃jt computed in corre-

spondence of two meetings of the Federal Open Market Committee (FOMC), the first on 30-04-2014 and the

second on 30-07-2014. Compared to the average intraday patterns, we observe significant deviations in the

interval between 14:00 to 15:00, coinciding with the press conference in which economic news are released

by the central bank. The local-level model, exploiting all the available 1-second data, instantaneously up-

dates the time-varying parameters, allowing to reconstruct in high resolution the dynamic interaction of the

covariances with the external information. FOMC events are characterized by an increase of volatilities at

14:00, followed by a decline in the subsequent minutes. The increase of the microstructure noise volatility

at 14:00 is in agreement with the fact that bid-ask spreads are observed to increase during public announce-

ments. After 15:00, volatilities go back to their average pattern. Correlations are also characterized by a

significant increase in correspondence of the opening of the FOMC. It is worth pointing out that, due to

data reduction, standard return models would not provide such high resolution description of covariance

dynamics. The additional empirical results reported in the online appendix in Section (1.1.2) show that, on

FOMC days, the covariances behave similarly even under the robust filtering algorithm based on the scores

of the Student-t density. Thus, the fast increase in variances and correlations is not due to misspecification,

but is an effect of the release of new information.

The fact that the local-level model rapidly responds to new information arriving on the market shares some

similarities with the macroeconomic literature on nowcasting, where dynamic factor models estimated on
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Figure 7: Average intraday patterns of the estimated LLh time-varying parameters Dt, H
1/2
t , δt and Rt. For each

t = 1, . . . , 23400, we report 10% and 90% quantiles of the distribution (over assets or couples of assets) of averages of

Dt, H
1/2
t , δt and Rt (over days).

mixed-frequency observations are used to update the forecasts of macroeconomic variables (see e.g. Giannone

et al. 2008, Creal et al. 2014 and Delle Monache et al. 2016). In a similar fashion, the local-level model can

be employed as a nowcasting tool for high-frequency data, as shown in the next section.

4.4 Intraday out-of-sample analysis: portfolio selection and VaR assessment

In this section, we examine the performance of the local-level model as a nowcasting tool for high-frequency

data. We perform two empirical tests that are typically employed to assess the quality of covariance forecasts

in the financial econometric literature. The main novelty of our empirical setting is that we work on an

intraday basis, considering short optimization horizons. Intraday risk and portfolio management have became

increasingly popular due to high-frequency automatic trading, which accounts today for about 50% of total

trades in the US equity market (see e.g. Karmakar and Paul 2019).

In the first test, we construct intraday Global Minimum Variance (GMV) portfolios and compare the ex-

post realized variance of the portfolios constructed through the LLh and LLe models with that of the portfolios

constructed through alternative methods. We adopt the following strategy: on each day j = 2, . . . , 251, we
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Figure 8: Average intraday pattern of the first five eigenvalues of the estimated LLh correlation matrix Rt.

build a sequence of 1-minute portfolios using the parameter estimates recovered on day j − 1. We rebalance

the portfolios every minute, ending up with 390 portfolios per day. Following Engle and Colacito (2006)

and Patton and Sheppard (2009), we choose as “best covariance estimator” the one minimizing the ex-post

portfolio variance, computed as:

σ2
j =

390∑
k=1

(ŵ′k,jrk,j)
2 (29)

where ŵk,j denotes the solution of the GMV problem at minute k of day j and rk,j is the vector of 1-minute

returns at minute k of day j. We employ the same dataset of n = 10 assets used in the previous analysis.

As benchmarks, we consider the t-GAS model, the DCC and the EWMA. The DCC and the EWMA are

estimated by synchronizing the prices at the frequency of one minute, whereas the t-GAS is estimated using

the missing value approach. The ex-post realized portfolio variances provided by the different methods are

compared through the Model Confidence Set (MCS) of Hansen et al. (2011). In particular, we consider a

MCS with a confidence level of 90% (denoted by M90%) and perform a MCS analysis on each day of the

dataset, ending up with 250 MCS tests.

Table (8) reports the results of the analysis. The first line shows the average of σ2
j , over j = 2, . . . , 251.

The second and third lines show the number of days in which the corresponding portfolio is included in the

MCS and the average p-values. We observe that the two local-level specifications feature significantly lower

ex-post portfolio variances. The competing approaches, including the t-GAS, are instead excluded from the

MCS in the vast majority of the cases.

As a second test, we perform a VaR assessment in the spirit of Creal et al. (2011). However, we work

at the intraday level and compute the 1-minute VaR of the previously constructed GMV portfolios at 99%

and 95% confidence levels. To assess the quality of the VaR forecasts, we compute the coverage, defined as

the fraction of VaR exceedances within the trading day. In Table (8), we report the average, over the 250

business days, of the coverage provided by each model. We use the Kupiec (1995) test with a significance
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Figure 9: We plot d̃jt , h̃
j
t , δ̃

j
t , ρ̃jt computed for j = 82, corresponding to 30-04-2014

level of 5% to assess the statistical significance of the estimated coverage values. The null hypothesis HK0 in

the Kupiec test is that the coverage is equal to 1-CL, where CL denotes the VaR confidence level. In Table

(8) we also report the number of rejections of HK0 and the average p-values.

The two local-level specifications provide a good matching to the nominal confidence. The benchmark

models clearly fail in capturing the risk of high-frequency asset returns. In particular, we note that the

t-GAS provides a very small coverage, meaning that it heavily overestimates the risk. This is not surprising,

as we have seen in Figure (5) that the effect of microstructure noise on the t-GAS is to overestimate the

variances. Concerning the relative performance between LLh and LLe models, in both the portfolio and the

VaR tests we find that the LLh features slightly larger average p-values and that the null assumption in the

two tests is rejected a larger number of times for the LLe model. Overall, our results suggest that, while

the in-sample loss due to the equicorrelation assumption is not large, the LLh model provides significant

out-of-sample forecast gains in common intraday financial applications.
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5 Conclusions

In this paper we analyze the problem of intraday covariance modeling with noisy and asynchronous prices

and propose a modeling strategy that handles both effects. Specifically, we model intraday data through a

conditionally normal local-level model with time-varying covariance matrices. The dynamics of the covari-

ances are driven by the score of the conditional density, allowing to write the log-likelihood in closed form.

In this framework, asynchronous trading is treated as a standard missing value problem, which is easily

handled by the Kalman filter.

The main advantage of the proposed approach is that we model the covariances of the latent efficient

returns instead of the observed returns. In high-frequency data, where observations are asynchronous, models

for observed returns are indeed subject to several distortions. One the one hand, if data are synchronized

by previous-tick interpolation, a large number of artificial zero returns arises which lead to a downward bias

in the estimated correlations. If a missing value approach is adopted, observed return models are instead

subject to large data reduction. On the other hand, microstructure noise leads to additional biases in the

estimation of the intraday covariances in observed return models.

In our simulation analysis we study the finite sample properties of the maximum likelihood estimator
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LLh LLe t-GAS DCC EWMA

Ex-post Portfolio Variance

Avg. variance 0.5428 0.5501 0.5895 0.6987 0.7023

N. of days in M90% 170 165 98 23 0

Avg. p-value 0.6599 0.6238 0.2621 0.0061 0.0000

99% VaR

Avg. coverage 0.0198 0.0202 0.0016 0.4976 0.4812

N. of rejections of HK
0 67 82 198 250 250

Avg. p-value 0.2681 0.2151 0.0236 0.000 0.000

95% VaR

Avg. coverage 0.0566 0.0605 0.0038 0.4976 0.4923

N. of rejections of HK
0 48 52 239 250 250

Avg. p-value 0.2885 0.2885 0.0025 0.000 0.0000

Table 8: Top: Average variance (×105) of 1-minute GMV portfolios constructed through out-of-sample covariance

forecasts of LLh, LLe, t-GAS and DCC models. We report the number of days in which the models are included in

M90% and the average of the p-values of the MCS test. Middle: Average coverage of 1-minute VaR’s at 99% CL

obtained from the covariance forecasts of GMV portfolios. We report the number of rejections of the Kupiec test

with a significance level of 5% and the average p-value. Down: As before, but VaR’s are computed at 95% CL.

and find that it remains unbiased in scenarios characterized by high levels of sparsity. We then show the

advantages of the proposed methodology over standard correlation models for observed returns. In particular,

in the presence of missing values, the use of our methodology is preferable even under a misspecified data

generating process with a fat-tailed conditional density. The reason lies in the ability of the local-level

model to use all the available prices in order to reconstruct the efficient price and the covariance dynamics.

In contrast, correctly specified return models are subject to large data reduction, and the quality of their

estimates rapidly deteriorates as data become more sparse.

The advantages of the methodology are then assessed on 1-second transaction data of 10 NYSE stocks.

The in-sample analysis based on the AIC reveals that benchmark return models are heavily affected by data

reduction and that correlations are biased due to market microstructure effects. The analysis of the intraday

covariances shows that, while the first trading hours are dominated by idiosyncratic risk, a market risk factor

progressively emerges in the second part of the trading day, with the correlations among all couples of assets

increasing until the last few minutes of trading. The fact that all the available prices are used to estimate

the covariances allows to capture instantaneously fast changes on covariance dynamics due to macro-news

announcements, such as those released during FOMC announcements.

Finally, we test the local-level model as a nowcasting tool for high-frequency data. To this purpose, we

design an intraday out-of-sample portfolio experiment and compare the ex-post realized variance of portfolios

constructed through competing estimators. We found that, in most of the days in our dataset, the variance

of portfolios based on local-level forecasts is significantly lower than other portfolio variances. We also find

that the local-level model provides reliable intraday Value-at-Risk assessment, whereas standard methods
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largely fail in measuring the risk of high-frequency returns.

References

Alexander, C., 2002. Principal component models for generating large GARCH covariance matrices. Eco-

nomic Notes 31, 337–359.

Allez, R., Bouchaud, J.P., 2011. Individual and collective stock dynamics: intra-day seasonalities. New

Journal of Physics 13, 025010.

Andersen, T., Bollerslev, T., 1997. Intraday periodicity and volatility persistence in financial markets.

Journal of Empirical Finance 4, 115–158.

Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N., 2009. Realized kernels in practice: trades

and quotes. The Econometrics Journal 12, C1–C32.

Bibinger, M., Hautsch, N., Malec, P., Reiss, M., 2019. Estimating the spot covariation of asset

prices—statistical theory and empirical evidence. Journal of Business & Economic Statistics 37, 419–

435.

Blasques, F., Koopman, S.J., Lucas, A., 2015. Information-theoretic optimality of observation-driven time

series models for continuous responses. Biometrika 102, 325.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31,

307–327.

Buccheri, G., Bormetti, G., Corsi, F., Lillo, F., 2019a. Filtering and smoothing with score-driven models.

Working paper .

Buccheri, G., Livieri, G., Pirino, D., Pollastri, A., 2019b. A closed-formula characterization of the Epps

effect. Quantitative Finance .

Corsi, F., Peluso, S., Audrino, F., 2015. Missing in asynchronicity: A Kalman-EM approach for multivariate

realized covariance estimation. Journal of Applied Econometrics 30, 377–397.

Cox, D., 1981. Statistical analysis of time series: Some recent developments [with discussion and reply].

Scandinavian Journal of Statistics 8, 93–115.

Creal, D., Koopman, S.J., Lucas, A., 2008. A general framework for observation driven time-varying param-

eter models. SSRN Electronic Journal .

Creal, D., Koopman, S.J., Lucas, A., 2011. A dynamic multivariate heavy-tailed model for time-varying

volatilities and correlations. Journal of Business & Economic Statistics 29, 552–563.

Creal, D., Koopman, S.J., Lucas, A., 2013. Generalized autoregressive score models with applications.

Journal of Applied Econometrics 28, 777–795.

29



Creal, D., Schwaab, B., Koopman, S.J., Lucas, A., 2014. Observation-driven mixed-measurement dynamic

factor models with an application to credit risk. The Review of Economics and Statistics 96, 898–915.

Delle Monache, D., Petrella, I., Venditti, F., 2016. Adaptive state space models with applications to the

business cycle and financial stress. CEPR Discussion Paper .

Delle Monache, D., Petrella, I., Venditti, F., 2019. Price dividend ratio and long-run stock returns: a score

driven state space model. Working paper .

Durbin, J., Koopman, S., 2012. Time Series Analysis by State Space Methods: Second Edition. Oxford

Statistical Science Series, OUP Oxford.

Engle, R., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United

Kingdom inflation. Econometrica 50, 987–1007.

Engle, R., 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive

conditional heteroskedasticity models. Journal of Business & Economic Statistics 20, 339–50.

Engle, R., Colacito, R., 2006. Testing and valuing dynamic correlations for asset allocation. Journal of

Business & Economic Statistics 24, 238–253.

Engle, R., Kelly, B., 2012. Dynamic equicorrelation. Journal of Business & Economic Statistics 30, 212–228.

Engle, R., Russell, J., 1998. Autoregressive conditional duration: A new model for irregularly spaced

transaction data. Econometrica 66, 1127–1162.

Engle, R.F., Kroner, K.F., 1995. Multivariate simultaneous generalized ARCH. Econometric Theory 11,

122–150.

Epps, T.W., 1979. Comovements in stock prices in the very short run. Journal of the American Statistical

Association 74, 291–298.

Giannone, D., Reichlin, L., Small, D., 2008. Nowcasting: The real-time informational content of macroeco-

nomic data. Journal of Monetary Economics 55, 665 – 676.

Golam Kibria, B.M., Joarder, A.H., 2017. A short review of multivariate t-distribution. Journal of Statistical

Research .

Hansen, P.R., Lunde, A., Nason, J.M., 2011. The model confidence set. Econometrica 79, 453–497.

Harvey, A., 1991. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University

Press.

Harvey, A., Luati, A., 2014. Filtering with heavy tails. Journal of the American Statistical Association 109,

1112–1122.

Harvey, A.C., 2013. Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and

Economic Time Series. Cambridge University Press. Econometric Society Monographs.

30



Hasbrouck, J., 1993. Assessing the quality of a security market: A new approach to transaction- cost

measurement. The Review of Financial Studies 6, 191–212.

Hayashi, T., Yoshida, N., 2005. On covariance estimation of non-synchronously observed diffusion processes.

Bernoulli 11, 359–379.

Karmakar, M., Paul, S., 2019. Intraday portfolio risk management using VaR and CVaR:a CGARCH-EVT-

copula approach. International Journal of Forecasting 35, 699 – 709.

Koopman, S.J., Lit, R., Lucas, A., Opschoor, A., 2018. Dynamic discrete copula models for high-frequency

stock price changes. Journal of Applied Econometrics 0. doi:10.1002/jae.2645.

Kupiec, P.H., 1995. Techniques for verifying the accuracy of risk measurement models. The Journal of

Derivatives 3, 73–84.

Lucas, A., Opschoor, A., Schaumburg, J., 2016. Accounting for missing values in score-driven time-varying

parameter models. Economics Letters 148, 96 – 98.

Madhavan, A., 2000. Market microstructure: A survey. Journal of Financial Markets 3, 205 – 258.

McInish, T.H., Wood, R.A., 1992. An analysis of intraday patterns in bid/ask spreads for NYSE stocks.

The Journal of Finance 47, 753–764.

Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59,

347–370.

Oh, D.H., Patton, A.J., 2018. Time-varying systemic risk: Evidence from a dynamic copula model of CDS

spreads. Journal of Business & Economic Statistics 36, 181–195.

Patton, A.J., Sheppard, K., 2009. Evaluating Volatility and Correlation Forecasts. Springer Berlin Heidel-

berg, Berlin, Heidelberg. pp. 801–838.

Roll, R., 1984. A simple implicit measure of the effective bid-ask spread in an efficient market. The Journal

of Finance 39, 1127–1139.

Shephard, N., Xiu, D., 2017. Econometric analysis of multivariate realised QML: Estimation of the covaria-

tion of equity prices under asynchronous trading. Journal of Econometrics 201, 19 – 42.

Tsay, R.S., 2005. Analysis of financial time series. Wiley series in probability and statistics, Wiley-

Interscience, Hoboken (N.J.).

Tse, Y.K., Tsui, A.K.C., 2002. A multivariate generalized autoregressive conditional heteroscedasticity

model with time-varying correlations. Journal of Business & Economic Statistics 20, 351–362.

van der Weide, R., 2002. GO-GARCH: A multivariate generalized orthogonal GARCH model. Journal of

Applied Econometrics 17, 549–564.

31


