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Abstract

How informative is a time series representation of a given vector of observables

about the structural shocks and impulse response functions in a DSGE model? In

this paper we refer to this econometrician’s problem as “E-invertibility” and consider

the corresponding information problem of the agents in the assumed DGP, the DSGE

model, which we refer to as “A-invertibility” We consider how the general nature

of the agents’ signal extraction problem under imperfect information impacts on the

econometrician’s problem of attempting to infer the nature of structural shocks and

associated impulse responses from the data. We also examine a weaker condition of

recoverability. A general conclusion is that validating a DSGE model by comparing

its impulse response functions with those of a data VAR is more problematic when we

drop the common assumption in the literature that agents have perfect information

as an endowment. We develop measures of approximate fundamentalness for both

perfect and imperfect information cases and illustrate our results using analytical and

numerical examples.

JEL Classification: C11, C18, C32, E32.

Keywords: Invertibility/Fundamentalness, VARs, agent perfect versus imperfect in-

formation, recoverability
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1 Introduction

How informative is time series representation of a given vector of observables about the

structural shocks and impulse response functions (IRFs) in a DSGE model? This invert-

ibility/fundamentalness problem, first pointed out in the economics literature by Hansen

and Sargent (1980), is often described in the literature as one of missing information on

the part the econometrician. It occurs when she is faced with a number of observables that

is less than the number of shocks; some observable variables of the system are observed

with a lag; models feature anticipated shocks with a delayed effect on the system such

as “news” shocks; and even with square systems with a particular choice of observables

observed with neither delayed effects, nor a lag. In this paper we refer to this econome-

trician’s problem as “E-invertibility”; our contribution is to consider the corresponding

information problem of the agents in the assumed DGP, the DSGE model, which we refer

to as “A-invertibility”.

Agents may or may not have perfect information, an assumption we argue that must

be justifiable in terms of the underlying structure of the model. We study how the general

nature of the agents’ signal extraction problem under imperfect information impacts on

the econometrician’s problem of attempting to infer the nature of structural shocks and

associated impulse responses from the data. While the agents’ problem under imperfect

information is in many respects analogous to that of a standard signal extraction problem,

it has an additional, and crucial, added complication: the solution to their signal extraction

problem will in general feed back, via optimising behaviour, into the behaviour of any

endogenous states. As a direct result the filtering process itself thus increases the state

space relative to the benchmark case of perfect information. We show that this in turn

has significant effects on the econometrian’s problem.

We start in Section 2 by briefly considering the nature of informational imperfection.

While there is a growing literature on the impact of imperfect information in DSGEs1

1Imperfect information (II) in representative agent models was initiated by Minford and Peel (1983) and
generalised by Pearlman et al. (1986) - henceforth PCL - with major contributions by Collard and Dellas
(2004) and Collard and Dellas (2006), who showed that II can act as an endogenous persistence mechanism
in the business cycle. Ellison and Pearlman (2011) incorporates II into a statistical learning environment.
Applications with estimation were made by Collard et al. (2009), Neri and Ropele (2012) and Levine et al.
(2012). II models with heterogenous agents distinguish local (idiosyncratic) information and (aggregate)
information e.g. Nimark (2008), Nimark (2014), Ilut and Saijo (2016) and Graham and Wright (2010).
Recent papers close to ours are Blanchard et al. (2013) and Forni et al. (2017) who examine invertibility in
a simple model with II and heterogeneous agents who have noisy observations of news shocks. Our paper
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many (indeed most) models of the macro-economy are still solved and/or estimated on

the assumption that agents are simply provided with perfect information, effectively as an

endowment. We argue that these perfect or imperfect information assumptions should be

consistent with choice of a complete vs incomplete markets structure of the model.

The main results of the paper then focus on the econometric implications of agents

having imperfect information. We start by showing (Theorem 1) how to map a very general

class of models with imperfect information into a form that allows us to apply the solution

technique originally introduced by PCL. We then show (Theorem 2) the necessary link

between “A-invertibility” (agents can infer the structural shocks from their information set:

a history of some set of observables, IAt =
{
mA
i

}t
i=−∞ , which is assumed to be of strictly

lower dimension than under (endowed) perfect information) and “E-invertibility” (the

econometrician can do the same based on their own information set, IEt =
{
mE
i

}t
i=−∞).

Having established the (restrictive) conditions under which E-invertibility can occur (a

generalisation of the “Poor Man’s Invertibility Condition” (PMIC) of Fernandez-Villaverde

et al. (2007)), we then consider the nature of the econometrician’s problem when these

conditions are not satisfied, due to a failure of A-invertibility.2

When A-invertibility fails the true dynamics of the system’s response to structural

shocks will, as noted above, in general have a state space dimension strictly greater than

under perfect information. But we show (Theorem 3) that the observable dynamics will

always have the same state space dimension as under perfect information. Equivalently,

the data generating process (DGP) in the absence of A-invertibility is a non-minimal

spectral factorization of the spectrum of the agents’ information set, incorporating a set

of Blaschke factors that map the true structural shocks to observable white noise innova-

tions. In the terminology of Lippi and Reichlin (1994), this means that true time series

representation of the observables is both nonfundamental3 and “nonbasic” (i.e., of higher

VARMA order).

This implies two closely related results that arise from the features of the true DGP:

provides a general treatment of the issues explored in these two papers.
2Excellent recent surveys of invertibility/fundamentalness and the relationship between VAR and DSGE

models are provided by Sims (2012) and Giacomini (2013). However, in common with the literature, these
surveys explore the issue without examining the information assumptions of the agents in the underlying
structural model.

3In the context of the class of models we examine, E-invertibility is equivalent to fundamentalness of
the time series representation, so when E-invertibility fails, the structural shocks are nonfundamental.

2



1. Any fundamental time series representation of the observables (typically via a VAR

approximation), is at best an approximation to a minimal spectral factorization. It

cannot therefore possibly generate the true impulse response functions of the system.

2. A recent important paper, Chahrour and Jurado (2017), has argued that even when

E-invertibility fails, nonfundamental structural shocks may be “recoverable”: i.e.,

the econometrician may be able to estimate the t−dated shocks and their associated

impulse responses, from a dataset of T observations, with arbitrary precision, for

t ∈ (τ, T − τ) for sufficiently large values of τ . But we show (Theorem 4) that the

non-minimal nature of the true process means that any shocks that are recoverable

from an a-theoretical (hence minimal) time series representation cannot be linearly

related to the true structural shocks.

While both these features imply pessimism about econometric inference when A-

invertibility fails, we suggest three key reasons to temper this pessimism:

• In many applications A-invertibility does not fail and we provide examples including

a standard RBC model with the appropriate choice of observables and the estimated

model of Smets and Wouters (2007).

• In the context of a structural DSGE model, the Blaschke factors that generate the

non-minimality of the GDP are not arbitrary, since they can be related back to the

underlying structure of the model Thus, subject to identification of the appropriate

parameters4 that generate the Blaschke factors an econometrician will, at least in

principle, be able to recover structural shocks even from E-non-invertible systems,

using full sample information.

• We derive measures of approximate fundamentalness which allow us to diagnose

whether at least some structural shocks can be derived perfectly from the data, and,

if not, whether they can at least be derived to some chosen degree of precision.5

We also consider other possible ways that have been proposed to circumvent the

non-fundamentalness of structural shocks.
4We do not address issues of parameter identification in this paper, since these are clearly endemic to

all DSGE estimation, whether under API or AII.
5This provides a generalization of Beaudry et al. (2016), Forni et al. (2017) and Forni et al. (2019) to

a DGP where agents have imperfect information.
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2 Information Assumptions, the Agents’ Problem and A-

Invertibility

This section first discusses the relationship between our informational assumptions and the

market environment (complete vs incomplete markets). We then show that a general class

of linear rational expectations models can always be transformed into the form utilized by

PCL to generalize the solution of Blanchard and Kahn (1980) where agents have imperfect

rather than perfect information. We provide outline RE solutions in these two cases, and

provide a definition of A-invertibility.

2.1 Information in Macroeconomic Models

Many (indeed most) models of the macro-economy are solved on the assumption that

agents have perfect information. Under certain circumstances this assumption can be

justified by the assumed market environment. Radner (1979) established that under con-

ditions of complete markets, market equilibrium must usually imply revelation of perfect

information. However, a wide range of macroeconomic models developed over the past

two or three decades have been predicated on some element of market incompleteness.

Market incompleteness need not necessarily imply imperfect information; but perfect in-

formation is only consistent with market completeness (as in the representative agent

framework)6 and with incomplete markets becomes an assumed endowment. Graham and

Wright (2010), building on earlier analysis by King (1983), argue that assumptions on in-

formation sets in any macroeconomic model should consistent with the underlying market

structure (complete versus incomplete markets). They propose a concept of “market-

consistent information”, i.e., agents only use market prices to infer the underlying states

of the economy, and show that, in a heterogeneous agent simple linear RBC model, impulse

responses based on a perfect information solution are highly misleading.7

6Svensson and Woodford (2003) make the same point in a different language when they write:“It does
not make sense that any state variables should matter for the determination of economically relevant
quantities ... if they are not known to anyone in the private sector. But if all private agents are to have a
common information set, they must then have full information about the relevant state variables”.

7Angeletos and Lian (2016) examine these issues in the context of what they refer to as incomplete infor-
mation literature. Here a comment on terminology is called for. Our use of perfect/imperfect information
corresponds to the standard use in dynamic game theory when describing the information of the history
of play driven by draws by Nature from the distributions of exogenous shocks. Complete/incomplete in-
formation refers to agent’s beliefs regarding each other’s payoffs and information sets. In our set-up this
informational friction is absent.

4



We show in Section 2.4 that our model with imperfect information as set out in the

following sections can be shown, in general, to be consistent with a limiting case of an

incomplete markets model where in linear form agents are ex ante identical but ex post

heterogeneous. Then the set-up (2) with which we start is expressed only in terms of

aggregates.

The following simple filtering problem illustrates this point. Agent i in the economy

observes an exogenous shock process xi,t which is the sum of an aggregate component xt

and a n.i.i.d idiosyncratic component εi,t; i.e.,

xi,t = xt + εi,t ; εi,t ∼ N(0, σεi) (1)

Then assuming an AR1 process xt = ρxxt−1 + εx,t; εx,t ∼ N(0, σεx), from the Kalman

Filter for agent i we have the RE up-dating:

Ei[xt|xi,t] = Ei[xt|xi,t−1] + Jx(xi,t − Ei[xt|xi,t−1])

= (1− Jx)ρxxt−1 + Jxxi,t

where the Kalman gain in this case is

Jx =
σ2
εx

σ2
εx + σ2

εxi

To arrive at the model with II or PI considered in the rest of the paper we then make

a crucial assumption. We consider the (empirically plausible) limit as the signal for xt

becomes very noisy (
σεxi
σεx
→ ∞), Jx → 0 and the idiosyncratic component provides no

information. Then the model with incomplete markets can be set up purely in terms

of aggregates as in the rest of the paper and resembles a representative agent model

that allows for the possibility of perfect or imperfect information. However we shall also

show, by example, that our II solution procedure gives the same equilibrium as the high

idiosyncratic shock volatility limiting case of hierarchy models.8

In the general case without the limiting assumption heterogeneity (incomplete mar-

kets)s induces a solution via a hierarchy of expectations (Townsend (1983), Nimark (2008),

8See Appendix B.
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Graham and Wright (2010)), the state space increases and in principle becomes infinite.9

However recent work by Rondina and Walker (2017) and Huo and Takayama (2018) have

shown how one can solve these models by completely different methods. Our paper can

be viewed as a stepping-stone to extending the results of Rondina and Walker (2017) to

a more general framework of heterogeneous information, which will add to the issues we

raise in this paper about the validity of using VAR estimation to generate impulse response

functions when information is imperfect.

2.2 The Agents’ Problem

We begin by writing a linearized RE model in the following general form

A0Yt+1,t +A1Yt = A2Yt−1 + Ψεt mE
t = LEYt mA

t = LAYt (2)

where matrix A0 may be singular, Yt is an n× 1 vector of macroeconomic variables; and

εt is a k × 1 vector of Gaussian white noise structural shocks.10 We assume that the

structural shocks are normalized such that their covariance matrix is given by the identity

matrix i.e., εt ∼ N(0, I).

We define Yt,s ≡ E
[
Yt|IAs

]
where IAt is information available at time t to economic

agents, given by IAt = {mA
s : s ≤ t}. We assume that all agents have the same information

set about some strict subset of the elements of Yt, hence information is in general imperfect.

Note that measurement errors can be accounted for by including them in the vector εt. In

the special case that agents are endowed with perfect information, LA = I (the identity

matrix). At this stage we focus solely on the agents’ informational problem: we specify

the properties of m× 1 vector mE
t where m ≤ k, the vector of observables available to the

econometrician, in Sections 3.1 and 3.2 below.

This section is structured so that we first show how (2) can be transformed into a state

space form utilised by PCL, a generalization of the Blanchard-Kahn form (Theorem 1),

and then provide the RE saddle-path stable solution to the agents’ problem under perfect

and imperfect information.

9Numerical solution methods rely on the perceived convergence of expectational hierarchies, but there
is as yet no theoretical justification for this.

10The Gaussian framework is adopted throughout our paper, but see Gouriéroux et al. (2019) for a
relaxation of this assumption in their examination of both identification and fundamentalness issues.
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2.3 Conversion to PCL Form

Anderson (2008) lists a selection of methods that can be used to solve (2) for the case

when agents have perfect information. The most well-known of these are Sims (2002) and

Blanchard and Kahn (1980) - henceforth BK - but as the former points out, it is not always

obvious how to write a system of the form (2) in BK form even under perfect information.

We shall be using a generalized version of the BK form that was utilised by PCL,

which provided a solution under imperfect information. In order to move seamlessly from

(2) to results that are based on PCL, we introduce our first key result, which appears to

be novel in the literature: 11

Theorem 1. For any information set, (2) can always be converted into the following form,

as used by PCL

 zt+1

xt+1,t

 =

 G11 G12

G21 G22

 zt

xt

+

 H11 H12

H21 H22

 zt,t

xt,t

+

 B

0

 εt+1 (3)

mA
t =

[
M1 M2

] zt

xt

+
[
M3 M4

] zt,t

xt,t

 (4)

where zt, xt are vectors of backward and forward-looking variables, respectively.

Proof of Theorem 1. See Appendix A.1.

The expressions involving zt,t, xt,t arise from rewriting the model in PCL form (3).

This transformation (outlined in Appendix A.1) involves a novel iterative stage which

replaces any forward-looking expectations with the appropriate model-consistent updating

equations. This reduces the number of equations with forward-looking expectations, while

increasing the number of backward-looking equations one-for-one. But at the same time

it introduces a dependence of the additional backward-looking equations on both state

estimates zt,t
(
≡ E[zt|IAt ]

)
and estimates of forward-looking variables, xt,t. The presence

of the latter is the key feature that distinguishes our results on invertibility from those of

11The nearest to our construction for perfect information only is found in Boucekkine et al. (1996), but
for a less general set-up than (2).

7



Baxter et al. (2011) - henceforth BGW - the applicability of which is restricted to cases

where all forward-looking variables are directly observable.

For later convenience we define matrices G and H conformably with zt and xt and

define two more structural matrices F and J

G ≡

 G11 G12

G21 G22

 H ≡

 H11 H12

H21 H22

 (5)

F ≡ G11 −G12G
−1
22 G21 J ≡M1 −M2G

−1
22 G21 (6)

F and J capture intrinsic dynamics in the system, that are invariant to expectations

formation (i.e., by substituting from the second block of equations in (3) we can write

zt = Fzt−1+ additional terms; mA
t = Jzt+ additional terms).

The reason for transforming the equations of the model from (2) is that the correspond-

ing solution method of Sims (2002) does not extend easily to imperfect information.12

2.4 II as a Limiting Case of Incomplete Markets

A follow-up paper by the authors will show in the time domain how a variation of the

solution (16)–(17) can be implemented that will match the results generated by Rondina

and Walker (2017) for heterogeneous agents using the Wiener-Kolmogorov prediction for-

mulae. Here we show that in the limit as the idiosyncratic measurement error variance for

the heterogeneous agents tends to infinity, the solution is indeed given by (16)–(17).

We start for convenience with a variation of the model setup of (3)–(4), which takes

account of the decisions made by each agent i:

zt+1 = G11zt +G12xt +

∫
(Eit[H11zt +H12xt])di+Bεt+1 (7)

xit = G−1
22 (−G21 + Eit[xt+1 −H21zt −H22xt]) (8)

where xt =
∫
xitdi is the average of all the {xit}. The information set of for each agent i

12We give an indication of how to modify the latter method to extend to imperfect information in
Appendix C, and the implication is that to complete the task requires techniques no less complicated than
those used in PCL.
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is made up of past and current mA
it, given in the Rondina and Walker (2017) case by

mA
it = M1zt +M2xt + Eit[M3zt +M4xt] + vit vit ∼ N(0, V ) (9)

This particular setup is not very useful for describing the limit as the diagonal elements

of V tend to infinity; even if V is not of full rank, the number of observations from mA
it

that are not ignored by agents will now be less than the number of shocks εt. This would

not therefore be a limiting case relevant to invertibility and VARs.

Instead, we assume a variant of the simple example in Nimark (2008); all agents i

observe both (a variant of) mA
t as in (4), and in addition observe some or all of the shocks

εt with noise:

mA
i1t = M1zt +M2xt + Eit[M3zt +M4xt] (10)

mA
i2t = εt + vit (11)

where vit ∼ N(0, V ). As the diagonal terms of V tend to infinity, the private information

mA
i2t becomes worthless, and the expectations of all the agents are identical. As a result

the system can be described by (3)–(4).

2.5 The Agents’ Solution under Perfect Information (API)

Here we assume that agents directly observe all elements of Yt, hence of (zt, xt). Hence

zt,t = zt, xt,t = xt, and using the standard BK solution method there is a saddle path

satisfying

xt +Nzt = 0 where
[
N I

]
(G+H) = ΛU

[
N I

]
(12)

where ΛU is a matrix with unstable eigenvalues. If the number of unstable eigenvalues of

(G+H) is the same as the dimension of xt, then the system will be determinate.13

To find N , consider the matrix of eigenvectors W satisfying

W (G+H) = ΛUW (13)

13Note that in general, as Sims (2002) has pointed out, the dimension of xt will not match the number
of expectational variables in (2), as we see in the algorithm for the proof of Theorem 1 (see Appendix A.1).
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Then, as for G and H, partitioning W conformably with zt and xt, from PCL we have

N = −W−1
22 W21 (14)

From the saddle-path relationship (14), the saddle-path stable RE solution under API is

zt = Azt−1 +Bεt xt = −Nzt (15)

where A ≡ G11 +H11 − (G12 +H12)N .

2.6 The Agents’ Solution under Imperfect Information (AII)

For the general case, in which agents have imperfect information (AII), the transformation

of (2) into the form (3) and (4) in Theorem 1 allows us to apply the solution techniques

originally derived in PCL. We briefly outline this solution method below.

Following Pearlman et al. (1986), we apply the Kalman filter updating given by

 zt,t

xt,t

 =

 zt,t−1

xt,t−1

+K

mA
t −

[
M1 M2

] zt,t−1

xt,t−1

− [ M3 M4

] zt,t

xt,t


The Kalman filter was developed in the context of backward-looking models, but extends

here to forward-looking models. The agents’ best estimate of {zt, xt} based on current

information is a weighted average of their best estimate using last period’s information

and the new information mA
t . Thus the best estimator of (zt, xt) at time t− 1 is updated

by the ”Kalman gain” K of the error in the predicted value of the measurement14.

Using the Kalman filter, the solution as derived by PCL15 can be expressed in terms of

the impact of the structural shocks on the processes zt,t−1 (the predictions of zt) and z̃t (the

unobservable prediction errors zt−zt,t−1), which describe the pre-determined zt = z̃t+zt,t−1

and non-predetermined variables xt:

Predictions : zt+1,t = Azt,t−1 +APAJ ′(JPAJ ′)−1Jz̃t (16)

14K is solved endogenously as K =

[
PAJ ′

−NPAJ ′
]

[(M1 −M2N)PAJ ′]−1, where PA is defined below,

but is not directly incorporated into the solution for xt, zt.
15Now implemented in Dynare, together with associated estimation software - see Appendix J.

10



Non-predetermined : xt = −Nzt,t−1 −G−1
22 G21z̃t − (N −G−1

22 G21)PAJ ′(JPAJ ′)−1Jz̃t

Prediction Errors : z̃t = F [I − PAJ ′(JPAJ ′)−1J ]z̃t−1 +Bεt (17)

Measurement Equation: mA
t = Ezt,t−1 + EPAJ ′(JPAJ ′)−1Jz̃t (18)

where E ≡M1 +M3 − (M2 +M4)N and we recall definitions of matrices F and J in (6).

The matrix A, as defined after (15), is the autoregressive matrix of the states zt under

API; B captures the direct (but unobservable) impact of the structural shocks εt; F, as

defined after Theorem 1, captures the intrinsic dynamics of zt. P
A = E[z̃tz̃

′
t] is the solution

of a Riccati equation given by

PA = QAPAQA
′
+BB′ where QA = F − FPAJ ′(JPAJ ′)−1J (19)

To ensure stability of the solution PA, we also need to satisfy the convergence condition,

that QA has all eigenvalues in the unit circle.16 Since there is a unique solution of the

Riccati equation that satisfies this condition, it follows that the solution (16)–(17) is also

unique thereby extending this property of the perfect information BK solution to the

imperfect information case.

2.7 A-Invertibility: When Imperfect Information Replicates Perfect In-

formation

By inspection of equations (16) to (17) is evident that for the general case, imperfect infor-

mation introduces nontrivial additional dynamics into the responses to structural shocks -

a contrast which is crucial to much of our later analysis. However there is a special case of

the general problem under imperfect information, in which, despite agents’ information set

being a subset of the the information set under API, the solution to the agents’ problem

still approaches the complete information solution, and indeed asymptotically replicates

it.

Definition 2.1. A-Invertibility. The system in (2) is A-invertible if agents can infer

the true values of the shocks εt from the history of their observables,
{
mA
s : s ≤ t

}
, or

16To explain this, we note that the iterative version of this over time is given by PAt+1 = QAt P
A
t Q

A′
t +BB′,

where QAt = F − FPAt J
′(JPAt J

′)−1J ; For small deviations ∆PAt = PAt − PA from steady state, one can

show that ∆PAt+1 = QA∆PAt Q
A′ and this will only converge to 0 if QA is a stable matrix.
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equivalently, if PA = BB′ is a stable fixed point of the agents’ Ricatti equation, (19).

Setting PA = BB′ in (19), it follows that the condition for A-invertibility17 is that

QA = F − FB(JB)−1B is a stable matrix, and we shall see below that A-invertibility is

a crucial determinant of whether an econometrician can derive the structural shocks from

the history of the observables.

3 Background Results

There are several fairly standard results in Kalman filtering, invertibility, spectral analysis

and recoverability that are essential to understand the theorems below, and we first cover

these briefly. The reader familiar with this literature can skip some if not all the sub-

sections below and proceed to Section 4 for the main results of the paper.

3.1 The ABCD (and E) of VARs

We first note the general feature of state-space representations of the type that arise

naturally from our solution method in Section 2.

Consider an econometrician’s representation of the general form

st = Ãst−1 + B̃εt mE
t = Ẽst (20)

This “ABE” representation form is the form usually found in the statistics literature. In

contrast the following “ABCD” form is often but not exclusively used in the economics

literature, e.g., Fernandez-Villaverde et al. (2007)

st = Ãst−1 + B̃εt mE
t = C̃st−1 + D̃εt (21)

It is straightforward to show that any ABE form implies an ABCD form, with C̃ = ẼÃ

and D̃ = ẼB̃. Appendix D shows that (less obviously) the reverse also applies; it also

shows that all of the state-space models that are used in the statistics, control theory and

econometrics literature can be rewritten in terms of one another.
17BGW refer to A-invertibility as “Asymptotic Invertibility”, in contrast to the case where the t-dated

state variables can be derived directly from the t-dated observables (which requires LA to be square and
invertible). In this paper, we use the term invertibility in the time series sense, which does not distinguish
direct from asymptotic invertibility.
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3.2 E-Invertibility

Definition 3.1. E-Invertibility. The system in (2) is E-invertible if the values of the

shocks εt can be deduced from the history of the econometrician’s observables,
{
mE
s : s ≤ t

}
.

The condition for the system (20) to be E-invertible is a version of the PMIC of

Fernandez-Villaverde et al. (2007),18 which is obtained by some algebraic manipulation of

(21): they assume a ‘square system’ with m = k (an assumption we relax when we consider

the innovations representation and when we come to Section 6 on measures of approximate

invertibility/fundamentalness). They also assume that D̃ (now a square matrix) is non-

singular. Then from (21) we have εt = D̃−1(mE
t − C̃Lst) where L is the lag operator.

Hence from (21) we have

(I − ÃL)st = B̃εt = B̃D̃−1(mE
t − C̃Lst)

from which we obtain st = [I − (Ã− B̃D̃−1C̃)L]−1B̃D̃−1mE
t and hence

εt = D̃−1(mE
t − C̃st−1) = D̃−1(mE

t − C̃[I − (Ã− B̃D̃−1C̃)L]−1B̃D̃−1mE
t−1) (22)

Expanding (I −X)−1 = I +X +X2 + · · ·) we then have

εt = D̃−1

mE
t − C̃

∞∑
j=1

(Ã− B̃D̃−1C̃)jB̃D̃−1mE
t−j

 (23)

A necessary and sufficient condition for the summation to converge is that Ã − B̃D̃−1C̃

has stable eigenvalues (eigenvalues within the unit circle in the complex plane).19

The PMIC transforms into ABE notation as follows: we note that the following term

in (23) can be written in two equivalent ways

C̃(Ã− B̃D̃−1C̃)j = ẼÃ(Ã− B̃(ẼB̃)−1ẼÃ)j = ẼÃj(I − B̃(ẼB̃)−1Ẽ)jÃ (24)

so that the PMIC requirements are that ẼB̃ is invertible and that Ã(I − B̃(ẼB̃)−1Ẽ) has

18This result appears to date back at least to the work of Brockett and Mesarovic (1965).
19A slightly weaker condition than invertibility is fundamentalness which allows some eigenvalues to be

on the unit circle. However we use the two terms interchangeably and in fact, if we restrict our models to
have only stationary variables, then the two concepts are equivalent.
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stable eigenvalues.

A final observation is that invertibility does not require the ABE representation to

be in minimal (i.e. controllable and observable) form; we mention this since the ABE

representation of the imperfect information solution below might not be minimal20.

3.3 The Spectrum of a Stochastic Process and Blaschke Factors

The spectrum of a stochastic process is a representation of all its second moments - auto,

cross and auto-cross covariances, so that a VAR with sufficient lags will pick up all of these

moments to a high degree of accuracy.

The spectrum (or spectral density) Φy(L) of a stochastic process yt of dimension r is

defined to be Φy(L) =
∑∞

k=−∞ cov(yt, yt−k)L
k, and this is a rational function of L if yt

can be expressed as a state space system with finite dimension. It is a standard result

that the spectrum of the ABE system above is given by Ẽ(I − ÃL)−1B̃B̃′(I − Ã′L)−1Ẽ′.

Definition 3.2. A rational spectral density Φy(L) admits a spectral factorization of the

form Φy(L) = W (L)W ′(L−1). A minimal spectral factorization (Baggio and Ferrante

(2016)) is one where the McMillan degree of W (L) is a minimum. 21

Of importance for our main results below is the Blaschke factor b(L) = (1−aL)/(L−a),

which has the easily verifiable property that b(L)b(L−1) = 1. This implies that if y1t = εt

is a scalar white noise process, with spectrum given by Φy1(L) = var(εt), then y2t =

b(L)εt has the same spectrum. The second-moment properties of y1t and y2t are therefore

identical; however although there is a minimal realization of y2t in ABCD form (xt =

1
axt−1 +(a− 1

a)εt, yt = xt−1−aεt), it is not a minimal spectral factorization of the process,

which is given by the fundamental representation y2t = ηt, where var(ηt) = var(εt).

Crucially the IRFs of y1t and y2t in response to a shock to εt are completely different, with

the latter being non-zero at all lags.

20To show this, suppose that (Ã, B̃) is not controllable; then there exists an eigenvalue-eigenvector pair
(λ, x) such that x′Ã = λx′, x′B̃ = 0. It is then trivial to show that x′Ã(I − B̃(ẼB̃)−1Ẽ) = λx′. But we
have assumed that Ã is a stable matrix, so an uncontrollable mode cannot be the source of non-invertibility.
The same conclusion can be drawn for non-observability, for which there exists an eigenvalue-eigenvector
pair (µ, y) such that Ãy = µy, Ẽy = 0.

21The Smith-McMillan representation (Youla (1961)) of a rational matrix function W (L) is given by

W (L) = Γ(L)diag(n1(L)
d1(L)

, ..., nr(L)
dr(L)

)Θ(L), where Γ(L),Θ(L) have determinants equal to a constant, dk(L)

divides dk+1(L) and nk(L) divides nk−1(L). The McMillan degree of W (L) is the highest power of L in
d1(L)d2(L)...dr(L).

14



More generally, for the scalar case, suppose W (L) = n(L)/d(L). Now use a Blaschke

factor to define W1(L) = (1−aL)/(L−a)W (L), so that W1(L)W1(L−1) = W (L)W (L−1).

This changes n(L) to n(L)(1 − aL) and d(L) to d(L)(L − a). The degree of the latter is

obviously greater than that of d(L), so that W1(L) is a non-minimal spectral factorization.

To reiterate the point raised earlier, if yt = W1(L)εt represents the true response to the

structural shock, then a VAR econometrician will estimate a very good approximation to

W (L) but would have no way of inferring the correct impulse response.

3.4 Recoverability and Agents’ Information sets

In the absence of E-invertibility, the best the econometrician can do, given the history

of the observations, is to estimate the innovations representation (see below) of the true

model. However a recent literature, initiated by Chahrour and Jurado (2017), has raised

the possibility that non-invertible structural shocks may be recoverable, in a finite sample

of length T, from the full sample history
{
mE
i : i = 1..T

}
for t ∈ (τ, T−τ) for τ sufficiently

large. Analogously to invertibility, recoverability is an asymptotic concept: the shock εt is

recoverable if it can be written as a convergent sum of both past and future observables,

in which case the impact of both initial and terminal conditions on any observation in the

interior of the sample becomes vanishingly small as T →∞.

Recoverability, reviewed more didactically in Appendix E, makes the assumption that

a vector process can be represented as a finite order VARMA: whether by direct estima-

tion, or as an approximation, based on a finite order VAR.22 A fundamental VARMA

representation is a minimal spectral factorization; but there is a finite set of alternative

nonfundamental representations of the same order that have an identical autocovariance

(Lippi & Reichlin (1994): each of these is also a minimal spectral factorization of the same

process.

Thus a VAR econometrician who is well enough informed can reconstruct an alternative

minimal spectral factorization that can approximate a true minimal spectral factorization,

and the shocks to any such representation are recoverable. However, the VAR econome-

trician cannot reconstruct a non-minimal spectral factorization; we show below that this

arises under imperfect information, in the absence of A-invertibility. Key to this is the

22See Appendix E.
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following lesser-known result due to Lindquist and Picci (2015) in their Corollary 16.5.7

and Lemma 16.5.8:

Lemma 3.4. Let (20) be a minimal representation of the spectral factor of a stationary

stochastic process. There is a one-to-one correspondence between symmetric solutions of

the Riccati equation (27) P = ÃP Ã′ − ÃP Ẽ′(ẼP Ẽ′)−1ẼP Ã′ + B̃B̃′ and minimal spec-

tral factors that retain stationarity; this correspondence is defined via the state space

representation

wt = Ãwt−1 + PẼ′(ẼP Ẽ′)−1ηt mE
t = Ẽwt ηt ∼ N(0, ẼP Ẽ′) (25)

Thus for a square system, these alternative solutions for P lead to transfer functions from

shocks to observables that differ by one or more Blaschke factors. However what we need

subsequently is a result that we can deduce from this lemma, which derives from the PMIC

matrices associated with (25) that arise from the general solution for P and the particular

solution P = B̃B̃′, namely Ã− ÃP Ẽ′(ẼP Ẽ′)−1Ẽ and Ã− ÃB̃(ẼB̃)−1Ẽ:

Corollary 3.4. If P is a symmetric solution of (27), then the eigenvalues of Ã −

ÃP Ẽ′(ẼP Ẽ′)−1Ẽ and Ã− ÃB̃(ẼB̃)−1Ẽ are either identical or reciprocals of one another.

3.5 The Econometrician’s Innovations Process

We now consider the general nature of the time series representation of the system that

the econometrician can extract from the history of the observables. At this stage we do

need to make any assumptions about the number of observables vs shocks, other than to

assume that m ≤ k.

For any given set of observables, mE
t , the econometrician’s updating equation for state

estimates, assuming convergence of the Kalman filtering matruces, is

Etst+1 = ÃEt−1st + ÃPEẼ′(ẼPEẼ′)−1et, et = mE
t − ẼEt−1st et ∼ N(0, ẼPEẼ′)

(26)

where Es denotes expectations conditioned on the econometrician’s information set at time

s, and et ≡ mE
t −Et−1m

E
t , the innovations to the observables in period t, conditional upon

information in period t− 1.

The Riccati matrix PE = cov(st − Et−1st) for this Kalman filter is given in the limit
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by

PE = QEPEQE
′
+ B̃B̃′ where QE = Ã− ÃPEẼ′(ẼPEẼ′)−1Ẽ (27)

To ensure stability of the solution PE , it must satisfy the convergence condition that QE

is a stable matrix, analogous to the requirement for QA above; a sufficient condition is

either that Ã is a stable matrix, or else the controllability of (Ã, B̃) and observability23 of

(Ẽ, Ã) .

Note that if we subtract the first equation of (26) from the first equation of (20),

we are able to evaluate cov(st+1 − Etst+1, εt+1) = B̃, from which it follows that the

covariance between the innovations process and the shocks is given by cov(et, εt) =

cov(E(st − Et−1st), εt) = ẼB̃. We shall use this property later to evaluate how cor-

related are the residuals from a VAR to the structural shocks.

The Kalman Filter updated expectation of the state st given the extra information at

time t is given by Etst = Et−1st + PEẼ′(ẼPEẼ′)−1et, and a little manipulation of (26)

enables us to obtain the alternative steady state innovations representation as

Etst = ÃEt−1st−1 + PEẼ′(ẼPEẼ′)−1et mE
t = ẼEtst (28)

This representation will be our main focus, but the representation of the innovations

process in (26) is important in proving some of our theoretical results because it provides

a means of evaluating the innovations process, and is essential for addressing approximate

fundamentalness.

The innovations et to this representation have a dimension m equal to the number of

observables, and the representation is valid given our general assumption as stated above

that m ≤ k.

The discussion up to now then leads to the following Lemma which applies for any

general information set:

Lemma 3.5. The innovations representation (28) applies for m ≤ k iff Ã and QE has

stable eigenvalues. Sufficient conditions for this to hold are the observability and control-

lability of (Ã, B̃, Ẽ).

23Reduction to minimal form with these properties is fairly straightforward.
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3.6 The Innovations Representation under E-invertibility

When the structural shock system (20) is E-invertible, this means that PE = B̃B̃′ is a

stable solution to the Riccati equation, which in turn requires QE = Ã − ÃB̃(ẼB̃)−1Ẽ

to be a stable matrix. This is identical to the PMIC requirement and implies that the

innovations process et from the filtering problem converges to ẼB̃εt as t→∞. As a result,

the state vector st is observable asymptotically by the econometrician.

4 The Econometrician’s Problem, E-Invertibility and Re-

coverability

This section shows how the econometrician’s problem relates to the solution of the agents’

problem presented in subsections 2.5 and 2.6. It also provides the main theoretical results

of the paper. It establishes that for square systems (when the number of shocks is equal to

the number of observables m = k), and if E-invertibility holds when agents in the model

have perfect information, an additional condition must be satisfied for the system to still

be E-invertible for the imperfect information case. Only if this holds do the solutions

under perfect and imperfect information coincide. For possibly non-square systems and

m ≤ k it examines the dynamic properties of the innovations representation when this

extra condition fails and shows that in this case recoverability of structural shocks from

an atheoretic time series representation is impossible. All these results raise questions

about the appropriateness of comparing impulse responses of VARs with those of a DSGE

model.

4.1 Informational Assumptions

In our central case we assume that the econometrician always has the same information

set, which is the same as the information set available to the agents under AII. Thus

under AII, we assume that mE
t = mA

t . Under API, we assume that the econometrician’s

observations mE
t are the same as under AII; then, using (15), it follows that under API

mE
t = Ezt, where E is defined above after (18).

Having derived two key results below (Theorems 2 and 4) under this assumption, we

consider the implications of the econometrician’s information set being a strict subset of
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that of the agents.

Both the API and AII representations of the previous section are in the ABE form of

(20). In particular for API, given the informational assumptions set out above, we have

st = zt, Ã = A, B̃ = B, Ẽ = E, while for AII, we have

st =

 zt,t−1

z̃t

 (29)

Ã ≡

 A APAJ ′(JPAJ ′)−1J

0 F [I − PAJ ′(JPAJ ′)−1J ]

 (30)

B̃ ≡

 0

B

 (31)

Ẽ ≡ [E EPAJ ′AJ ′−1J ] (32)

The advantages of using the ABE state-space form in what follows are (i) the Riccati

equation is simpler than for any of the other formulations (ii) the solution under imperfect

information is much simpler to express and, most usefully, (iii) the representation of the

model using the innovations process (see Section 3.5 above) has the same structure as the

original model.

4.2 E-invertibility When Agents Have Perfect Information (API)

The conditions for API+E-invertibility are straightforward, and merely mimic the PMIC

requirements of the previous section, but with Ã = A, B̃ = B, Ẽ = E, st = zt. Hence:

Lemma 4.2. If agents have perfect information (API), the conditions for E-invertibility

(as in Definition 3.1) are: the square matrix EB is of full rank and A(I −B(EB)−1E) is

a stable matrix.

4.3 E-Invertibility When Agents Have Imperfect Information (AII)

We now consider the more general case of E-invertibility when agents have imperfect

information.

Theorem 2. Assume that the number of observables equals the number of shocks (m = k) .

19



Assume further that the PMIC conditions in Lemma 4.2 hold (so the system would be

E-invertible under API) but agents do not have perfect information. Then each of the

following conditions is necessary and sufficient for each of the other two (i.e., the three

conditions are equivalent):

a) AII is E-invertible (see Definition 3.1)

b) The square matrix JB is of full rank, and F (I −B(JB)−1J) is a stable matrix.

c) AII is A-invertible (see Definition 2.1)

The counter-intuitive feature of this Theorem is that it is derived under the assump-

tion that the econometrician has the same information set as the agents under imperfect

information (AII). If the conditions for API+E-invertibility are satisfied, then if the econo-

metrician had an identical information set, and agents had perfect information (API) then

the system would be E-invertible. But Theorem 2 states these conditions are necessary but

not sufficient for E-invertibility under AII: crucially, E-invertibility is only possible under

AII if the solution to the agents informational problem replicates perfect information: that

is the conditions that satisfy A-invertibility must also hold.

While there is a clear mathematical parallel between the conditions for API+E-invertibility

in Lemma 4.2 and the conditions in part (b) of Theorem 2, the crucial difference is that

the former depend on the nature of the saddlepath solution (i.e., on the matrices N and

hence A), while those in part (b) of Theorem 2 do not. In Sections 5 and 7 below we

illustrate Theorem 2 with examples of information sets that satisfy the PMIC conditions

in Lemma 4.2 but do or do not satisfy the extra conditions (b) in Theorem 2.

From the authors’ experience with numerous RE models, the most common reason

(other than the obvious ones that observations are lagged or noisy) for AII not to be

equivalent to API is associated with:

Corollary 2.1. Suppose that EB is of full rank and invertible, but J is not of full row

rank, then A-invertibility fails.

To explain this result, consider the case where J = M1 −M2G
−1
22 G21 is not of full

rank. Let U be a matrix that satisfies UJ = 0 i.e., UM1 = UM2G
−1
22 G21. Define V as the

orthogonal complement of U (i.e., UV ′ = 0 ). Then rewriting the set of measurements mt

as their linear transformation mU
t = Umt and mV

t = V mt we have a further corollary:
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Corollary 2.2. mV
t contains all the available information about current shocks whereas

mU
t is unaffected by these shocks and is redundant of information about them.

4.4 The Innovations Process for AII without E-invertibility

In the absence of E-invertibility, Lemma 3.5 showed that there is still an innovations repre-

sentation under mild conditions. The counterpart to the innovations representation in (28)

is, in population, a finite order fundamental24 VARMA (or VAR(∞)) in the observables,

mE
t , with innovations et. This can either be directly estimated via its state space repre-

sentation (using DYNARE, for example), or, more commonly, it may be approximated by

a finite-order VAR(p) approximation. When the conditions stated in Theorem 2 do not

hold, the VARMA or VAR approximation will generate a series of reduced-form residuals

that are a linear transformation of et in (28) but not of the structural shocks εt.

We now examine the properties of the innovations representation as in (28) under

general conditions when a failure of A-invertibility leads to a failure of E-invertibility.

Theorem 3. Consider the case where there is a failure of A-invertibility under AII, and

hence (from Theorem 2) of E-invertibility. The state space process that generates the

impulse response functions of the structural shocks (16)–(18), is of a higher dimension

than the innovations representation of the RE saddle-path solution, where the latter is of

the same dimension as API and is given by:

ξt+1 = Aξt + ZE′(EZE′)−1et+1 mE
t = Eξt et ∼ N(0, EZE′) (33)

where ξt is a vector process of precisely half the dimension of st in (28) and

Z = AZA′ −AZE′(EZE′)−1EZA′ + PAJ ′(JPAJ ′)−1JPA (34)

Remarkably, this result tells us that even though the dynamics of the RE saddle-path

solution under imperfect information are considerably more complex and add more inertia

than under perfect information (and hence have a state space representation of twice the

dimension), the innovations process et is generated by equations that are of the same

24We deliberately use the term fundamental here, rather than invertible, to reflect the fact that estimated
VARs may contain stationary transformations of unit root processes.
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dimension as under API.25

The implication of this result is profound, of major significance for empirical work,

and one of the main results of this paper.

Corollary 3.1. Since the spectrum of (33) must be identical to that of (16)-(17), it follows

that in the absence of A-invertibility the latter is a non-minimal spectral factorization. It

therefore incorporates a set of Blaschke factors (Lippi and Reichlin (1994)), whose pres-

ence cannot be detected by an estimated a-theoretical representation. Hence the statistical

properties of data as generated by the model under AII and represented by a fundamen-

tal VARMA or VAR approximation cannot in general generate the true impulse response

functions

In empirical work, a common approach (in the tradition of, for example, Christiano

et al. (2005)) is to compare impulse responses by applying a structural identification

scheme to the estimated VAR(p) with the impulse responses implied by their structural

DSGE model. In contrast Kehoe (2006), advocates the approach of Sims (1989) and

Cogley and Nason (1995) which compares impulse responses of a finite order, finite sam-

ple structural VAR estimated on the data with a VAR with the same structure, run on

artificially generated data from the model.

However, for both approaches in the absence of E-invertibility, the reduced form resid-

uals in the data VAR are not a linear transformation of the structural shocks εt (even with

correct choice of identification matrix), but are instead a finite-order, finite-sample esti-

mate of et in (28). In the absence of E-invertibility, et is not a linear transformation of εt

and it follows that comparisons of impulse response functions may be seriously misleading.

4.5 The Innovations Representation When the Econometrician Knows

Strictly Less Than the Agents

A criticism of the imperfect information approach that we have been using thus far is that

it is possible that agents will have more information about the variables of the model than

the econometrician has, although this does not necessarily imply that agents have perfect

information. This would imply that the properties of the model solution still embody

25This result is a generalisation of BGW, Corollary 1, p302, but without relying on their assumption
that all forward-looking variables are observable.
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those of Theorem 3, i.e., that a VAR estimation by agents would not be able to replicate

the IRFs of shocks.

Corollary 3.2. If the econometrician’s information set is a subset of that of the agents

and the system is not A-invertible, then the innovations process as estimated by the econo-

metrician will again be of the same dimension as under API, and thus will be of lower

dimension than the true system in (16)–(18).

The implication therefore is that with any failure of A-invertibility, then provided the

econometrician is no better informed than the agents, one should be wary of using an

unrestricted VAR (or indeed VARMA) to generate the IRFs of the structural shocks.

4.6 Are the Structural Shocks Recoverable when E-invertibilty Fails?

In Section 3.4 we noted that, in the absence of E-invertibility, there is a finite set of

nonfundamental representations of the observables, the shocks to which are not invertible,

but are recoverable. But the key feature of such representations, that makes recoverability

possible, is that all such representations admit a minimal spectral factorisation of the

spectrum of the observables. Yet we have shown that, when AII fails, the true data

generating process implies a non-minimal spectral factorisation26 due to the presence of

Blatschke factors that map the true structural shocks, εt to et, the innovations to the

observables. Thus we immediately have the following further result:

Theorem 4. If the model has intrinsic (saddle-path) dynamics (i.e., the saddle-path ma-

trix N 6= 0) and the system is not A-invertible then the true data generating process is a

non-minimal spectral factorization of the spectrum of the agents’ information set. Hence

the structural shocks are not recoverable from any atheoretic time series representation

of the observables (or VAR approximation thereof), which must imply a minimal spectral

factorization of the data.

Thus when AII is not E-invertible, and there are saddle-path dynamics, when convert-

ing the innovations process representation of the former into any non-invertible represen-

tation, such alternative representations will always retain the dimension of the innovations

26Or equivalently, in Lippi & Reichlin’s (1994) terminology, the implied nonfundamental VARMA rep-
resentation is also non-basic (ie., is of higher order).
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process. Since the latter, as we have seen, is of dimension lower than that of the state space

describing the effect of individual shocks under II, it follows that the two representations

can never be equivalent. Hence the non-E-invertible structural shocks are not recoverable

from any stochastically minimal representation,, whether fundamental or nonfundamen-

tal.27

Thus, at least in this form, recoverability cannot provide an alternative means of

using VARs for deriving impulse response functions of structural shocks under imperfect

information in the absence of E-invertibility

Does this mean that recoverability has no applicability at all to such models? On the

contrary, Theorem 3 and Corollary 3.1 showed that the true model has a non-minimal

stochastic representation, incorporating a set of Blaschke factors. From an atheoretic

perspective, while any such factors may exist in principle, they can be of arbitrary form.

However, in the context of a structural model with AII these Blaschke factors are not

arbitrary, since they can be related back to the underlying structure of the model Thus,

subject to identification of the appropriate parameters28 that generate Blaschke factors

an econometrician may, at least in principle be able to recover structural shocks even to

E-non-invertible systems. We illustrate this possibility in a simple analytical example in

the next section.

5 An Analytical Example: A Simple RBC Model

We can illustrate Theorems 2 to 4 with a simple analytical example:29 that extends

the one-variable example of BGW, that uses the linearised ‘stochastic growth’ model of

Campbell (1994), with a single observable, the real interest rate. BGW note that this

example can be derived as a limiting case of the model of Graham and Wright (2010)

which assumes that the agents information set is “market-consistent”: agents also have

information on their own wage, which contains both idiosyncratic and aggregate effects;

27Note that Forni et al. (2017) have an example where recoverability does hold but their very simple
model (See Appendix I) lacks the intrinsic dynamics referred to in the Theorem.

28We do not address issues of parameter identification in this paper, since these are clearly endemic to
all DSGE estimation, whether under API or AII.

29Theorem 1 does not apply to this example, given its simplicity, but is applied in a wide range of more
complex models in Section 7 below. See also Appendix B for another example also used by Nimark (2008)
to illustrate Theorems 2 and 3. This provides an example of the failure of A-invertibility owing to lagged
observations.
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but the simple case below can be shown to represent a limiting case as the variance of

the idiosyncratic component goes to infinity. But BGW consider only the informational

problem of the agents; they do not address the econometricians’ problem.

From Appendix G.2, the model is a special case of the full RBC model considered in

the Section 7.1 below. In linearized form it has the following structure

Capital : kt+1 = λ1kt + λ2εa,t + (1− λ1 − λ2)ct (35)

Consumption : ct+1,t − ct = −κkt+1,t (36)

Measurement: Interest Rate mA
t = mE

t = εa,t − kt ∝ rt−1 (37)

where, under the assumption of a zero-growth steady state, λ1 ≡ 1 + r and λ2 ≡

α (r + δ) / (1− α) > 0, where r is the average real interest rate, δ is the depreciation

rate, and α is the exponent on labour in a Cobb-Douglas production function; parameter

κ ≡ σα(1−α)
1+r

(
r+δ
1−α

)α
where σ is the elasticity of inter-temporal substitution.

The single shock εa,t is a technology shock, which raises the marginal product of capital

and hence the return (the single observable), while an increase in capital reduces it. The

informational problem for agents thus arises from the ambiguity of the signal when there

is a rise in returns: while it could indicate an improvement in technology, it could also

indicate that capital is lower than was previously estimated.

To simplify the algebra, technology itself is assumed to have zero persistence,30 and

the return has been normalised such that the constant that would usually multiply the

terms in the interest rate equation has been set to 1.

This system can be set up in the form of (3) as


εa,t+1

kt+1

ct+1,t

 =


0 0 0

λ2 λ1 1− λ1 − λ2

0 0 1 + κ(λ1 + λ2 − 1)



εa,t

kt

ct

+


0 0 0

0 0 0

−κλ2 −κλ1 0



εa,t,t

kt,t

ct,t

+


1

0

0

 εa,t+1

(38)

mA
t = mE

t = [1 − 1 0]


εa,t

kt

ct

 εa,t ∼ N(0, σ2) (39)

30If technology is an AR(1), as in BGW, this introduces an aditional AR root into the representation
below, and complicates the algebra somewhat, but without changing any of the substantive results.
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Using our earlier notation, we obtain (after a little effort for matrix A)

F =

 0 0

λ2 λ1

 J = E = [1 − 1] A =

 0 0

λ2
λ1
µ µ

 (40)

where 0 and µ are the stable eigenvalues of the system.

It then follows that if agents have perfect information (API) it is straightforward to

show that the L-operator representation of the interest rate is an ARMA(1,1) given by

mE
t = E(I −AL)−1Bεt =

(
1− (λ1+λ2)µL

λ1

1− µL

)
εa,t (41)

It is possible to show (by exploiting the properties of the linearisation constants and the

stable eigenvalue, µ) that the MA parameter is (λ1+λ2)µ
λ1

is non-negative, but, for different

values of the elasticity of intertemporal substitution, σ and hence κ may lie either below or

above unity. Thus the representation may, at least, be fundamental. If this is the case it

follows directly that under API the PMIC is satisfied, and hence the system is E-invertible

(Lemma 4.2).
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Figure 1: E-invertibility for the RE Solution of Campbell (1994)’s RBC Model

Note: Using the analytical example this looks for suitable combinations of α and σ for which E-invertibility holds
where we requires the inverse of the root of the MA component from the ARMA(1,1) representation to be less than
1 (this is the MA parameter on y-axis). The grid for α ∈ [0.5, 0.8] (x-axis) and σ ∈ [0.1, 1] (the bottom blue curve
is for σ = 0.1 with a step size of 0.1).
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However, under AII, the stable solution to the Ricatti equation is given by PA =

σ2diag(1, (λ1 + λ2)2 − 1) and the Kalman gain is given by

PAJ ′(JPAJ ′)−1J =

 1
(λ1+λ2)2

1
(λ1+λ2)2

− 1

 [1 − 1] (42)

so, as noted above, any positive shock to the interest rate is ascribed in part to an estimated

positive shock to technology, but also in part to a downward adjustment to the estimate of

the capital stock. Stability of the solution to the Ricatti equation is given by the stability

of

QA = F (I − PAJ ′(JPAJ ′)−1J) =

 0 0

λ1 + λ2 − 1
λ1+λ2

1
λ1+λ2

 (43)

which is a stable matrix since 1 < (λ1 + λ2).31

Thus, despite the fact that the PMIC may be sometimes be satisfied under API, the

system can never be A-invertible: AII does not replicate API. Hence, from Theorem 2,

the system is not E-invertible.

It is easy to show that the L-operator representation of the interest rate under AII is

then given by

mE
t = E(I −AL)−1PAJ ′(JPAJ ′)−1J(I −QAL)−1Bεt

= −(λ1 + λ2)

(
1− µL

(λ1+λ2)λ1

1− µL

)(
1− (λ1 + λ2)L

L− (λ1 + λ2)

)
εa,t (44)

= −(λ1 + λ2)

(
1− µL

(λ1+λ2)λ1

1− µL

)
et (45)

Note that in the second line, the third term in brackets is a Blaschke factor which

ensures that et, the innovation to the observable, is white noise, conditional upon the

information set (assumed symmetric for both agents and the econometrician). Thus under

both AII and API the interest rate has an ARMA(1,1) representation, which must imply

that the innovations representation of the system under AII is of the same dimension as

under API (illustrating Theorem 3 and Corollary 3.1).

Figure 2 compares the impulse responses to the technology shock εa,t in the API, AII

31The alternative solution of the Riccati equation is PA = diag(1, 0) but this is not a stable solution
since it implies that QA = diag(0, λ1), which is an unstable matrix.
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cases given by (41) and (44) with the that of the innovation et given by (45).
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Figure 2: Simple RBC Model. Impulse Responses to a Technology Shock for API and AII
compare with Innovation.

Finally, this example also clearly illustrates Theorem 4. If the econometrician is purely

data-driven, then the model that is estimated using interest rate data would be the

ARMA(1,1) representation in the last line of (45). The non-fundamental counterpart

is mE
t = −(λ1 + λ2)

(
µ

(λ1+λ2)λ1
−L

1−µL

)
ηt. Both et and ηt are recoverable. In an atheoretic

application of recoverability, either one of these representations could be assumed to be

the correct one, but neither is a scaling of the true structural shock, thus illustrating

Theorem 4.

The failure of this atheoretic application of recoverability arises because the atheoretic

econometrician would have no idea that the true representation involved a Blaschke factor.

In contrast the DSGE econometrician estimating the system under AII would estimate

using the same innovations process. But, taking a structural approach, on the identifying

assumption that λ1 = 1 + r is known, it follows that λ2 and µ are identified, and it would

then be possible to completely characterize the correct representation as (45). As a result

εt would be recoverable to the DSGE econometrician.
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6 Approximate Fundamentalness

This section examines, for possibly non-square systems, measures of approximate funda-

mentalness when invertibility fails for both perfect and imperfect information cases.32

Two methods are notable in this regard: Beaudry et al. (2016) recommend using

the difference in variances between the innovations process and the structural shocks,

motivated by the perfect information case (28) which can be written as

et = mt − Ezt,t−1 = E(zt − zt,t−1) = EA(zt−1 − zt−1.t−1) + EBεt (46)

Under invertibility, zt−1 − zt−1.t−1 has a value of 0, so that regressing the innovations

process et on this latter term yields (in the scalar case) a perfect lack of fit R2 = 0. For

the univariate case, in general we have R2 = 1−var(εt)/var(et). In the multivariate case,

cov(et) = EPEE′, so that the departure of this from cov(EBεt) yields a measure of how

similar the innovations process is to the structural shocks.

However in the empirical literature using VARs it is common to focus on just one shock

such as in the examination of the hours-technology question in Gali (1999). To address

fundalmentalness on a shock-by-shock basis, one requires the Choleski decomposition of

EPEE′ = V V ′, or else a decomposition that depends for example on long run effects of

each shock i.e., an SVAR decomposition. The corresponding R2
i for each shock is then

given by

R2
i = 1− uii U = V −1EBB′E′(V ′)−1 = (uij) (47)

The further is R2
i from 0, the worse is the fit.

6.1 A Multivariate Measure with Perfect Information

An obvious multivariate version of this is R = I − V −1EBB′E′(V ′)−1, and the maximum

eigenvalue of R would then be a measure of the overall fit of the innovations to the

fundamentals. In addition one can check whether any fundamentals can be perfectly

identified by examining the eigenvalues of the difference between the variances of the

32See also Canova and Ferroni (2018) for a treatment of (what we call) E-invertibility and the interpre-
tation of SVAR where the number of structural shocks exceed the number of observables.
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innovations and and the fundamentals

BPI = EPEE′ − EBB′E′ (48)

Any zero eigenvalues coupled with the corresponding eigenvector will provide a means of

decomposing the covariance matrix of the innovations EPEE′.

Forni et al. (2019) suggest that one can use VARs as well for ‘short systems’, where

the number of observables is smaller than the number of shocks. Utilising the underlying

VARMA model, they suggest regressing the structural shocks against the innovations

process, i.e., for the structural shock i, choose the least-squares vector mi by minimizing

the sum of squares of εi,t −m′iet. Clearly, the theoretical value of this is

m̂i = cov(et)
−1cov(et, εi,t) = (EPEE′)−1(EB)i (49)

where (EB)i denotes the ith column of EB. A measure of goodness of fit is then

FPIi = cov(εi,t)− cov(εi,t, et)cov(et)
−1cov(et, εi,t) = 1− (EB)′i(EP

EE′)−1(EB)i (50)

Thus one can as usual define a linear transformation of the Met (where M is made up

of the rows m′i) as representing the structural shocks, but only take serious note of those

shocks where the goodness of fit is close to 0. Once again, one can use the multivariate

measure of goodness of fit

FPI = I −B′E′(EPEE′)−1EB (51)

where the diagonal terms then correspond to the terms Fi of (50). In (51) we note that

EPEE′ = cov(et) from the steady state of (27), and (EB)i = cov(et, εi,t).

If the number of measurements is equal to the number of shocks, and if Fi = 0 for all i,

then since FPI is by definition a positive definite matrix, it must be identically equal to 0.

Of course, it may be the case that none of the Fi are zero, but that a linear combination

of the structural shocks are exactly equal to a linear combination of the residuals. In

addition, we might specify a particular value of the R2 (e.g. R2
s = 0.9) fit of residuals to

fundamentals such that we are happy to approximate the fundamental by the best fit of
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residuals.33

The maximum eigenvalue of FPI then provides a measure of overall non-fundamentalness.

It must of course be emphasised that none of these measures can be obtained directly from

the data. The papers cited above all provide details of how simulations on the underlying

VARMA models can indicate how to make appropriate inferences on the structural shocks

using just the data and a VAR estimation.

6.2 A Multivariate Measure with Imperfect Information

Collard and Dellas (2004) and Collard and Dellas (2006) provide examples where there are

large differences in the impulse response functions under imperfect and perfect information,

and indeed Theorem 3 appears to indicate that this may be a major issue. In addition,

Levine et al. (2012), for an estimated DSGE model, find that such differences are quite

large as well.

As we have seen for the perfect information case above, it is quite straightforward to

obtain goodness of fit measures for the individual shocks from the multivariate measures,

so for convenience we only list the latter. Firstly, the Beaudry et al. (2016) measure,

which can be abbreviated to the difference between the variances of the innovations and

the fundamentals, is given by

BII = EZE′ − EBB′E′ (52)

where Z is given by (A.24).

Likewise, the multivariate Forni et al. (2019) measure can, after some effort, be written

as

FII = I −B′J ′(JPAJ ′)−1JPAE′(EZE′)−1EPAJ ′(JPAJ ′)−1JB (53)

Analogously to the perfect information case, EZE′ = cov(et), with EPAJ ′(JPAJ ′)−1JB =

cov(et, εt). The latter follows firstly because from (18) and (A.26) we can write et =

E(zt,t−1 − s̄1t) + EPAJ ′(JPAJ ′)−1Jz̃t. The first term is clearly independent of εt, while

the covariance of the second term with εt is obtained by calculating E[z̃t+1ε
′
t+1] in (16).

We can bring together (51) and (53) in the following final Theorem of the paper.

33A perfect fit in the Forni et al. (2019) case is Fi = 0, R2
i = 1.
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Theorem 5. Consider the more general case with the number of structural shocks possibly

greater than the number of measurements. (a) All zero eigenvalues of FPI or FII , for the

perfect or imperfect information cases respectively, correspond to a perfect fit between a

linear combination of fundamentals and a best regression fit of residuals; (b) The number

of eigenvalues of FPI or FII that are less than 1−R2
s, where R2

s is the chosen threshold for

R2, correspond to the number of linear combinations of fundamentals that can be obtained

approximately from the residuals.

In addition FIIi corresponds to a measure of goodness of fit of the innovations residuals

to the structural shocks, and provides information as to how well the VAR residuals

correspond to the fundamentals. Note however that these measures correspond to the

case when all observables are of current variables. While it is not difficult to perform

the appropriate calculations in the case when some variables are current and others are

lagged, it is not straightforward to write down a mathematical expression in such a case.

Nevertheless we can apply the ideas above when all variables are lagged. In particular,

the theoretical value of FII,lagged can now be defined as

FII,lagged = cov(εt)− cov(εt, et−1)cov(et−1)−1cov(et−1, εt) (54)

cov(et−1) is of course equal to cov(et) = EZE′, so the only change is to cov(et−1, εt),

which after a little effort can be derived as

cov(et−1, εt) = EAPAJ ′(JPAJ ′)−1JB − EAZE′(EZE′)−1EPAJ ′(JPAJ ′)−1JB

+EPAJ ′(JPAJ ′)−1JFB − EPAJ ′(JPAJ ′)−1JFPAJ ′(JPAJ ′)−1JB (55)

Then the fit FII,laggedi to the ith shock is just given by the ith main diagonal term of

FII,lagged.

In a later section we compare numerically these perfect and imperfect information

multivariate measures of the fit of the innovations to the fundamentals for a DSGE model.
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7 Applications to RBC and NK Models

This section illustrates our theoretical results using numerical solutions of RBC and NK

models. We consider and implement invertibility conditions of Theorem 2 and the multi-

variate measure of goodness of fit set out in Section 6. For the latter our focus is on (51)

and (53), the corresponding measures of correlation between et and εt, for the perfect and

imperfect information cases, respectively, where cov(et) = EPEE′ and cov(et) = EZE′

are the covariance matrices of the innovation processes for the two cases, and cov(εt) of the

structural shocks in the model. As noted, the maximum eigenvalue provides a measure of

overall non-fundamentalness. In addition, any zero eigenvalues provide information as to

which structural shocks can be satisfactorily identified (i.e., evidence of partial sufficiency

of individual shocks in the system).

7.1 Example 1: Invertibility and Fundamentalness Measures for RBC

Model

We first consider a standard RBC model set out in Appendix G. Example 1 presents a

simplified non-linear RBC model without investment adjustment costs and variable hours

(i.e. Ht = H̄ = 1 and % = 0), in line with the linearized model of Campbell (1994).34

With two shock processes, At and Gt (normalized such that cov(εt) = I) the following

combinations of two observables (from a set of observables: (Yt, Ct, It,Wt, Rt, RK,t)) result

in A-invertibility: (mE
t = mA

t =Yt, Ct), (Yt, It), (Yt,Wt) and (Ct,Wt). Since mE
t = mA

t =

these combinations also imply E-invertibility. On the other hand for the following combi-

nations A-invertibility fails: (Yt, Rt), (Wt, Rt) and (Ct, Rt).

Table 1 below summarises a complete set of combinations of two observables for this

model, i.e., c = 6!
(6−2)!2! = 15, based on the rank and stability conditions of Theorem

2. Table 1 also checks the difference between perfect and imperfect information in terms

of identifying the fundamentals from the perspective of VARs via the eigenvalues of FPI

and FII , assuming that the RBC Model is the true DGP. Figure 3 shows the E- and A-

invertibility regions for the RBC model with RK,t the only observable and one shock, At.

For E-invertibility under API, it requires the risk parameter σc � 1 and this completely

agrees with the numerical results reported in Table 2. As we now have a complete agree-

34The results for the richer model are reported in Appendix G.
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ment between the numerical and analytical results with RK,t observable and one shock in

Section 5 and Table 2, respectively, we turn to Table 1 for the RBC invertibility checks,

examining two cases for (σc, α) = (0.3, 0.6) and (σc, α) = (2, 0.6), respectively.
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Figure 3: E- and A-invertibility Regions over Parameters σc and α

Note: This shows the E- and A-invertibility regions for the linearized model of Campbell (1994) set out as an
analytical example in Section 5 and in Appendix G.2, and a simplified non-linear RBC model presented in Table 2.
In line with Figure 1, σc ∈ [0.1, 2] and α ∈ [0.5, 0.8].

The most common non-obvious reason for A-invertibility to fail for both cases is indi-

cated from the second to fourth columns of the table, where J is not of full row rank.35

Theorem 2 also establishes an extra condition, given that models API are E-invertible,

that the square matrix JB is of full rank, and F (I − B(JB)−1J) is a stable matrix (has

all eigenvalues inside the unit circle), for AII to be E-invertible too. In Table 1, we report

the only cases with (Ct, It) and (Ct, RK,t) when this eigenvalue condition for AII is not

satisfied, despite J being full rank. Another interesting special case is the model with

observable set (Wt, RK,t), where API is not E-invertible and is therefore not equivalent to

AII; even though EB is of full rank A
(
I −B(EB)−1E

)
is not a stable matrix.

For the case of the RE saddle-path solution being A-invertible, the solution (19) is

PA = BB′ and, from which it follows that FPI = FII = 0, and the two processes are

35See Corollary 2.1.
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Information Set E-Invertibility A-Invertibility? Notes Eigenvalues of FPI and FPI Diagonal values
under API? of FPI and FII

RBC Case 1: σc = 0.3 and α = 0.6

(Yt, Ct), (Yt, It) E, EB, J ,JB are of full rank
(Yt,Wt), (Ct,Wt) YES YES A(I −B(EB)−1E) is stable eig(FPI) ≡ eig(FII) = [0, 0] FPIi = FIIi = [0, 0]
(It,Wt), (It, RK,t) F (I −B(JB)−1J) is stable

E, EB are of full rank
(Yt, Rt) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]

J ,JB are rank deficient eig(FII) = [0.0007, 1] FIIi = [0.0007, 1]

(Ct, Rt) YES NO Ditto eig(FPI) = [0, 0] FPIi = [0, 0]
eig(FII) = [0.4488, 1] FIIi = [0.4499, 0.9989]

(It, Rt) YES NO Ditto eig(FPI) = [0, 0] FPIi = [0, 0]
eig(FII) = [0.0132, 1] FIIi = [0.0425, 0.9707]

(Wt, Rt) YES NO Ditto eig(FPI) = [0, 0] FPIi = [0, 0]
eig(FII) = [0.0007, 1] FIIi = [0.0007, 1]

E, EB are of full rank
(Ct, It) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]

J ,JB are of full rank eig(FII) = [0, 0.2279] FIIi = [0.0228, 0.2051]
F (I −B(JB)−1J) is not stable

(Yt, RK,t) NO NO EB is rank deficient eig(FPI) = [0, 1] FPIi = [0, 1]
JB is rank deficient eig(FII) = [0, 1] FIIi = [0, 1]

E, EB are of full rank
(Wt, RK,t) NO NO A(I −B(EB)−1E) is not stable eig(FPI) = [0, 1] FPIi = [0, 1]

J ,JB are of full rank eig(FII) = [0, 1] FIIi = [0, 1]
F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Ct, RK,t) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]

J ,JB are of full rank eig(FII) = [0, 0.9771] FIIi = [0.0006, 0.9765]
F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Rt, RK,t) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]

J ,JB are rank deficient eig(FII) = [0.2399, 1] FIIi = [0.2399, 1]

RBC Case 2: σc = 2 and α = 0.6

(Yt, Ct), (Yt, It) E, EB, J ,JB are of full rank
(Yt,Wt), (Ct,Wt) YES YES A(I −B(EB)−1E) is stable eig(FPI) ≡ eig(FII) = [0, 0] FPIi = FIIi = [0, 0]

(It,Wt), (Ct, It), (It, RK,t) F (I −B(JB)−1J) is stable

E, EB are of full rank
(Yt, Rt) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]

J ,JB are rank deficient eig(FII) = [0.0051, 1] FIIi = [0.0051, 1]

(Ct, Rt) YES NO Ditto eig(FPI) = [0, 0] FPIi = [0, 0]
eig(FII) = [0.0392, 1] FIIi = [0.0392, 0.9999]

(It, Rt) YES NO Ditto eig(FPI) = [0, 0] FPIi = [0, 0]
eig(FII) = [0.0051, 1] FIIi = [0.1602, 0.8411]

(Wt, Rt) YES NO Ditto eig(FPI) = [0, 0] FPIi = [0, 0]
eig(FII) = [0.0051, 1] FIIi = [0.0051, 1]

E, EB are of full rank
(Ct, RK,t) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]

J ,JB are of full rank eig(FII) = [0, 0.984] FIIi = [0.0001, 0.9839]
F (I −B(JB)−1J) is not stable

(Yt, RK,t) NO NO EB is rank deficient eig(FPI) = [0, 1] FPIi = [0.0008, 0.9992]
JB is rank deficient eig(FII) = [0, 1] FIIi = [0.0005, 0.9995]

E, EB are of full rank
(Wt, RK,t) NO NO A(I −B(EB)−1E) is not stable eig(FPI) = [0, 1] FPIi = [0, 1]

J ,JB are of full rank eig(FII) = [0, 1] FIIi = [0, 1]
F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Rt, RK,t) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]

J ,JB are rank deficient eig(FII) = [0.0954, 1] FIIi = [0.0954, 1]

Table 1: Exact and Approximate Invertibility Checks for RBC Model (Order
of Shocks: At, Gt)

Note: Check Conditions in Lemma 4.2 and Theorem 2. This is the simplified RBC model without investment
adjustment costs and variable hours (i.e. Ht = H̄ = 1 and % = 0). We consider two cases for (σc, α) = (0.3, 0.6)
and (σc, α) = (2, 0.6).
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Information Set E-Invertibility A-Invertibility? Notes Eigenvalues of FPI and FPI
under API?

RBC Case 1: σc = 0.3 and α = 0.6

E, EB, J ,JB are of full rank
(Ct) YES YES A(I −B(EB)−1E) is stable eig(FPI) ≡ eig(FII) = [0]

F (I −B(JB)−1J) is stable

E, EB are of full rank
(Rt) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0]

J ,JB are rank deficient eig(FII) = [1]

E, EB are of full rank
(RK,t) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0]

J ,JB are of full rank eig(FII) = [1]
F (I −B(JB)−1J) is not stable

(Yt) YES NO Ditto eig(FPI) = [0]
eig(FII) = [1]

(It) YES NO Ditto eig(FPI) = [0]
eig(FII) = [0.9847]

(Wt) YES NO Ditto eig(FPI) = [0]
eig(FII) = [1]

RBC Case 2: σc = 2 and α = 0.6

E, EB, J ,JB are of full rank
(Ct), (It) YES YES A(I −B(EB)−1E) is stable eig(FPI) ≡ eig(FII) = [0]

F (I −B(JB)−1J) is stable

E, EB are of full rank
(Rt) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0]

J ,JB are rank deficient eig(FII) = [1]

E, EB are of full rank
(RK,t) NO NO A(I −B(EB)−1E) is not stable eig(FPI) = [0.0579]

J ,JB are of full rank eig(FII) = [0.9972]
F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Yt) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0]

J ,JB are of full rank eig(FII) = [0.9668]
F (I −B(JB)−1J) is not stable

(Wt) YES NO Ditto eig(FPI) = [0]
eig(FII) = [0.9668]

Table 2: Exact and Approximate Invertibility Checks for RBC Model with One
Shock: At

Note: Check Conditions in Lemma 4.2 and Theorem 2. This is the simplified RBC model without investment
adjustment costs and variable hours (i.e. Ht = H̄ = 1 and % = 0). We consider two cases for (σc, α) = (0.3, 0.6)
and (σc, α) = (2, 0.6).
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perfectly correlated across the API and AII cases. This shows that invertibility or fun-

damentalness can allow for innovations to exactly approximate structural shocks. For

the case of non-invertibility, the further is FII from 0, the worse is the fit. Examples

(Yt, Rt), (Ct, Rt), (It, Rt), (Wt, Rt) and (Ct, RK,t) in Table 1 show the cases while the per-

fect information solution is invertible (or there is complete fundamentalness, i.e., FPI = 0)

the imperfect information counterparts are not (i.e., FII > 0 in the positive definite sense).

With the same observables, solving the system under perfect information, the steady state

solution of (27) gives PE −BB′ = 0, from which this means FPI = 0. Solving the steady

state Riccati equation (19) for our case of imperfect information, we have PA > BB′ and

it automatically follows that FII > FPI . Therefore, interestingly, we show that the simple

RBC model introduces non-fundamentalness with the same measurements under AII as

under API.

The only way to decide the overall fit of the RBC model approximating the funda-

mentals by the innovations process is to determine the maximum eigenvalue of FII . From

the fifth column of Table 1, it is not surprising to find that the fit of the innovations to

the structural shocks under AII is very poor as the maximum eigenvalues are all far from

0, when J and JB are not of full row rank or the eigenvalue condition fails. However, in

some cases, the first eigenvalue being very close to 0 (e.g. with (Yt, Rt) and (Yt, RK,t))

indicates partial fundamentalness or that one of the two shocks may be satisfactorily

identified in this model. Assuming that a simple baseline RBC model is the DGP from

which potentially VARs and SVARs are identified, this diagnostic result remarkably and

strongly underlines our Theorem 3. When there are large differences in the impulse re-

sponse functions under imperfect and perfect information, non-fundamentalness may be

quantitatively severe, indeed according to Theorem 3, the simulation appears to indicate

that this may be a major issue.

The last column of Table 1 reports the diagonal values of the (non-zero) FPI and

FII matrices. These tell us explicitly about the goodness of fit of the residuals to the

structural shocks. Any zero values reported in the diagonal matrices indicate an exact fit

for the corresponding individual shocks in the models (for example, the shock At in many

cases).36

36Appendix H carries out a further illustrative exercise on a RBC model with a news shock.
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7.2 Example 2: Invertibility and Fundamentalness Measures for SW

Model

Testing for non-fundamentalness for non-square systems as a number of structural shocks

increases can be achieved by looking at a richer model to which we now turn.

We run our simulation exercise using a version of Smets and Wouters (2007) model

(henceforth SW). This model is selected because it features a number of nominal and real

frictions in order to closely mimic the pattern of real aggregate variables, inflation and in-

terest rate. There are seven structural shocks in SW. The model has five AR(1) processes,

for the shocks on government spending, technology, preference, investment specific, mon-

etary policy, and two ARMA(1,1) processes, for price and wage markup. In this exercise,

we skip the description of the model and slightly modify the model by gradually adding

more shocks. The SW model is estimated based on seven quarterly macroeconomic time

series. When we assume that this exactly coincides with the agents’ limited information

set so in effect the number of measurements is equal to the number of shocks and EB

is non-singular (Case 1: Original SW). In the modified versions of the model, the only

changes we make are that (1) we add an inflation target shock so the number of shocks

exceeds the number of observables (Case 2: SW with 8 shocks); (2) we further add mea-

surement errors to the observations of real variables and inflation (Case 3: SW with 13

shocks). Table 3 summarises the key results from the simulation, based on Theorems 2

and 5 and the test for non-fundamentalness.

As before, the models are solved and simulated through Theorem 1 and the conversion

procedure set out in Appendix A.1. We find that the original system with the original sets

of measurements and shocks is exactly invertible according to Theorem 2, the eigenvalue

measures and indeed produces exactly the same simulated moments across the perfect and

imperfect information assumptions. As expected, when we add the additional shock in

Case 2, compared to non-invertibility of API the eigenvalues are larger for AII (FII > FPI),

introducing non-fundamentalness into the model. The overall fit for fundamentalness

under AII is much improved from the baseline results (the RBC model), but with a larger-

sized model (e.g. Case 2) the difference between API and AII is less marked. Based on

Theorem 3 again, this means that the differences between IRFs for API and AII, from the

perspective of identifying VARs, are less marked. This result clearly depends on the size
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Case 1: Original SW Case 2: SW with Inflation Obj. Case 3: SW with MEs

Measurements = Shocks (=7) 8 Shocks 13 Shocks

Theorem 2 E, EB are full row rank (=7) E, EB are rank deficient (=7) E, EB are rank deficient (=7)
Corollary 2.1 J , JB are full row rank (=7) J , JB are rank deficient (=7) J , JB are rank deficient (=7)

A(I −B(EB)−1E) is stable A(I −B(EB)−1E) is non-existent A(I −B(EB)−1E) is non-existent
F (I −B(JB)−1J) is stable F (I −B(JB)−1J) is non-existent F (I −B(JB)−1J) is non-existent

Goodness of Fit FPI = FII = 0 FPI(8×8) FII(8×8) FPI(13×13) FII(13×13)

Eigenvalues eig(FPI) = eig(FII) = 0



1.0000
0.0013

0
0
0
0
0
0





1.0000
0.0016
0.0009
0.0001

0
0
0
0





0.0971
0.0454
0.0138
0.0001
0.0019
0.0058
0.0100

1
1
1
1
1
1





0.5404
0.3627
0.2975
0.0302
0.0011
0.0044
0.8182

1
1
1
1
1
1



Diagonal values



−0.0000
0.0006
0.0000
0.0005
0.0245
0.0000
0.0001
0.9756





0.0000
0.0006
0.0000
0.0004
0.0256
0.0000
0.0001
0.9761





0.2216
0.0924
0.5199
0.1600
0.1007
0.2262
0.2585
0.9780
0.4668
0.7097
0.9053
0.8353
0.6998





0.5754
0.8850
0.5136
0.6945
0.1099
0.4552
0.7095
0.9782
0.5892
0.6749
0.6672
0.7165
0.4854


Table 3: Exact and Approximate Invertibility Checks for SW Model

Note: Order of shocks: technology, preference, government spending, investment specific, monetary policy, price
and wage markup, inflation objective and measurement errors for output growth, consumption growth, investment
growth, real wage growth and inflation. Number of measurements ≤ number of shocks. Imperfect information is
not equivalent to perfect information for Cases 2 and 3 and this is verified by the rank conditions: EB and JB are
not of full rank therefore both API and AII are not invertible. For approximate invertibility, there is no complete
fundamentalness when both FPI > 0 and FII > 0. The fit of the innovations to the structural shocks is determined
by the maximum eigenvalue of F.

of the model and the number of shocks, and via simulation, is consistent with previous

literature. For example, in the empirical exercise of Levine et al. (2012), the estimated

NK model with the minimum amount of frictions produces the most notable differences

between IRFs when assuming imperfect information for the agents.

In line with the empirical literature again, when we further add measurement errors

to the measurement equations for the 4 real variables and the inflation (Case 3), the mul-

tivariate fit for fundamentalness or approximate invertibility of SW significantly declines

for both the AII and API cases. It is very clear that, even with a medium-sized model

like SW, it is the decreasing ratio of observables to shocks that drives a bigger wedge

between API and AII, in the sense that the fundamentalness problem worsens for the per-

formance of VARs, and the difference of empirical likelihood between perfect information
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and imperfect information models increases, with fewer observations by agents.

Finally, as expected, the overall fit also depends on the ratio of observables m to shocks

k ≥ m, in other words, the fewer the observations made by the agents compared to shocks

the less well do VARs perform.

8 Conclusions

The description of invertibility as a ‘missing information’ problem on the part the econo-

metrician is stressed in the econometrics literature on the subject, for example, Lippi and

Reichlin (1994), Lutkepohl (2012) and Kilian and Lutkepohl (2017); but when they do re-

fer informally to the underlying model that generates an MA process, they assume agents

observe the shocks (our API case). The missing information of the econometrician is then

relative to the agents in the model.37

Our paper looks at the problem where this information gap is closed and both econo-

metrician and agents have the same imperfect information set. In our Theorem 2 we then

have an extra condition over and above the PMIC for E-invertibility which demonstrates

that considering the information of agents can make the invertibility problem worse. In

this sense the appropriate choice of information assumption, consistent with market struc-

ture (complete vs incomplete markets) for the agents in the model can be seen as an

important additional source of non-invertibility.

From Theorems 3 and 4, if the imperfect information solution for agents is not asymp-

totically equivalent to that under perfect information, then the impulse response functions

of the former incorporate one or more Blaschke factors that cannot be picked up by an

a-theoretical VAR econometrician. In the language of the time series literature, the econo-

metrician is estimating a minimal spectral factorization of the data, whereas the data is

actually generated by a response to structural shocks that corresponds to a non-minimal

spectral factorization.

This paper lies within the tradition pioneered by Sims (1980) on the estimation-

identification of SVARS. A more recent approach uses “external instruments” which are

variables correlated with a particular shock of interest, but not with the other shocks.

37For instance, in Kilian and Lutkepohl (2017) they write on page 576: “The main argument in favor of
nonfundamental shocks being important in economic analysis is that the econometrician may not have all
the information that economic agents have.”
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External instruments can be used to directly estimate causal effects by direct IV regres-

sions using the method of local projections (LP) of Jorda (2005). This method does not

require invertibility. Stock and Watson (2018) compares the LP-IV approach with a more

efficient SVAR-IV approach proposes a new test for invertibility which is applied to the

study of Gertler and Karadi (2015).38 It would be of interest to re-examine this method

in the light of the information assumptions of agents in the assumed DSGE DGP.

As mentioned in Section 2.4 work in progress aims to show in the time domain how

a variation of the AII solution (16)–(17) can be implemented that will match the results

generated by Rondina and Walker (2017) for heterogeneous agents. Also our analysis can

be generalized to allow for agents with different imperfect information observables mA
t as

studied in Lubik et al. (2018). These topics will be the subject for future research.39
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Appendix

A Proofs of Theorems, Lemmas and Corollaries

A.1 Proof of Theorem 1: Transformation of System to PCL Form

A.1.1 The Problem Stated

An important feature of the RE solution procedure of the seminal paper Blanchard and

Kahn (1980) is that it provided necessary and sufficient conditions for the existence and

uniqueness of a solution for linearized model. The only general results on imperfect in-

formation solutions to rational expectations models date back to PCL, who utilize the

Blanchard-Kahn set-up, and generalize this result.

Theorem 1 states that equation (1), re-expressed here

A0Yt+1,t +A1Yt = A2Yt−1 + Ψεt (A.1)

46



with measurements

mt = LYt (A.2)

can be written in the form (2) and (3) originally used by PCL, re-stated here as

 zt+1

xt+1,t

 =

 G11 G12

G21 G22

 zt

xt

+

 H11 H12

H21 H22

 zt,t

xt,t

+

 C

0

 εt+1 (A.3)

with agents’ measurements given by

mt =
[
M1 M2

] zt

xt

+
[
M3 M4

] zt,t

xt,t

 (A.4)

To prove Theorem 1, the next section describes a completely novel algorithm for con-

verting the state space (A.1), (A.2) under imperfect information to the form (A.3), (A.4).

We assume that the system is ’proper’, by which we mean the matrix A1 is invertible; this

precludes the possibility of a system that includes equations of the form hTYt+1 = 0, but

it is fairly easy to take account of these as well.

A.1.2 An Iterative Algorithm

Although complicated, the basic stages for the conversion are fairly simple:

1. We first (Stages 1 to 3) find the singular value decomposition for the n × n matrix

A0 (which is typically of reduced rank m < n) which allows us to define a vector of

m forward-looking variables that are linear combinations of the original Yt.

2. We then introduce a novel iterative stage (Stage 4) which replaces any forward-

looking expectations that use model-consistent updating equations. This reduces the

number of equations with forward-looking expectations, while increasing the number

of backward-looking equations one-for-one. But at the same time it introduces a

dependence of the additional backward-looking equations on both state estimates

zt,t
(
≡ Etzt|IAt

)
and estimates of forward-looking variables, xt,t. This in turn implies

that both (A.3) and (A.4) in general contain such terms.

3. A simple example may help to provide intuition for this iterative stage: Suppose
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two of the equations in the system are of the form: zt = ρzt + εt, yt = zt+1,t (where

both yt and zt are scalars) i.e., we have one backward-looking (BL) equation and

one forward-looking (FL) equation. However using the first equation we can write

zt+1,t = Etzt+1 = ρzt,t, hence substituting into the second equation, yt = ρzt,t : i.e.,

we can use a model-consistent updating equation. Note, however, a crucial feature:

since under II we cannot assume that zt is directly observable, this updating equation

is expressed in terms of the filtered state estimate zt,t rather than directly in terms

of xt We thus now have two BL equations, but one of these is expressed in term of

a state estimate.

4. The iterative Stage 4 may need to be repeated a finite number of times. In the case

of perfect information this is all that is needed, apart from defining what are the

t+ 1 variables.

5. For imperfect information, we retain the same backward and forward looking vari-

ables as in the perfect information case, but the solution process is a little more

intricate.

The detailed procedure for conversion of (A.1) and (A.2) to the form in (A.3) and

(A.4) is as follows:

Stage 1: SVD and partitions of A0. Obtain the singular value decomposition for the n×n

matrix A0: A0 = U0S0V
T

0 , where U0, V0 are unitary matrices. Assuming that only the

first m values of the diagonal matrix S0 are non-zero (rank(A0) = m < n), we can rewrite

this as A0 = U1S1V
T

1 , where U1 are the first m columns of U0, S1 is the first m×m block

of S0 and V T
1 are the first m rows of V T

0 . In addition, U2 are the remaining n−m columns

of U0, and V T
2 are the remaining n−m rows of V T

0 .

Stage 2: Extract FL subsystem from (A.3) using S1 and U1. Multiply (A.3) by S−1
1 UT1 ,

which yields:

V T
1 Yt+1,t + S−1

1 UT1 A1Yt = S−1
1 UT1 A2Yt−1 + S−1

1 UT1 Ψεt (A.5)

We can now define an initial subdivision of Yt into an (initially) m-vector of forward-

looking variables xt = V T
1 Yt, and and an (n − m)-vector of backward-looking variables

st = V T
2 Yt (noting that Yt = V1xt+V2st), and use the fact that I = V V T = V1V

T
1 +V2V

T
2
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to rewrite (A.3) as:

xt+1,t + S−1
1 UT1 A1(V1xt + V2st) = S−1

1 UT1 A2(V1xt−1 + V2st−1) + S−1
1 UT1 Ψεt (A.6)

or simply:

xt+1,t + F1xt + F2st = F3xt−1 + F4st−1 + F5εt (A.7)

where F1 = S−1
1 UT1 A1V1, F2 = S−1

1 UT1 A1V2, F3 = S−1
1 UT1 A2V1, F4 = S−1

1 UT1 A2V2 and

F5 = S−1
1 UT1 Ψ. This is a set of m forward-looking equations. Note that in the iterative

Stage 4, the definition of xt will usually change further, and thus at this stage xt is not

usually equal to its final form in (A.3).

Stage 3: Extract BL subsystem from (A.3) using U2. Multiply A.3 by UT2 which yields:

UT2 A1Yt = UT2 A2Yt−1 + UT2 Ψεt (A.8)

which can be rewritten as

UT2 A1(V1xt + V2st) = UT2 A2(V1xt−1 + V2st−1) + UT2 Ψεt (A.9)

or more simply:

C1xt + C2st = C3xt−1 + C4st−1 + C5εt (A.10)

where C1 = UT2 A1V1, C2 = UT2 A1V2, C3 = UT2 A2V1, C4 = UT2 A2V2 and C5 = UT2 Ψ. This

is a set of n−m backward-looking equations.

If C2 is invertible then it is straightforward to multiply (A.3) by C−1
2 , and go straight

to Stage 5. However if C2 is not invertible we need to proceed to the next (iterative)

stage.

Stage 4: Iterative transformation of FL equations using model-consistent updating. In this

iterative stage we write (A.7) and (A.10) in the more general form:

xt+1,t + F1xt + F2st = F3xt−1 + F4st−1 + F5εt (A.11)

C1xt + C2st +G1xt,t +G2st,t = C3xt−1 + C4st−1 + C5εt (A.12)

where by comparison of (A.12) with (A.10) we have introduced two new matrices, G1
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and G2 that must be zero in the first stage of iteration. However, at the end of the first

iteration of this stage we shall increase the dimension of st, and reduce the dimension of

xt one-for-one, which will require us to re-define all the matrices in (A.11) and (A.12),

such that, from the second iteration onwards, G1 and G2 will be non-zero. The whole of

Stage 4 may then need to be iterated a finite number of times.

First find, a matrix J2 such that JT2 (C2 +G2)=0, by using the SVD of C2 +G2 (noting

that in the first iterative stage, G2 = 0) Then take forward expectations of (A.12) and

pre-multiply by JT2 to yield:

JT2 (C1 +G1)xt+1,t = JT2 C3xt,t + JT2 C4st,t (A.13)

Then reduce the number of forward-looking variables by substituting for xt+1,t from (A.11).

In addition find a matrix Q that has the same number of columns as JT2 (C1 +G1) and is

made up of rows that are orthogonal to it. Then we define the following subdivision of xt x̄t

x̂t

 =

 Q

JT2 (C1 +G1)

xt xt = M1x̄t +Q2x̂t (A.14)

where [Q1 Q2] =

 Q

JT2 (C1 +G1)

−1

From the substitution of xt+1,t into (A.13), we can

then rewrite the system in terms of a new m-vector of forward-looking variables x̄t, where

m =rank(C2 +G2) ≤ m, and n−m backward-looking variables (st, x̂t):

x̄t+1,t +QF1Q1x̄t + [QF2 QF1Q2]

 st

x̂t

 (A.15)

= QF3Q1x̄t−1 + [QF4 QF3Q2]

 st−1

x̂t−1

+QF5εt

 C1Q1

JT2 (C1 +G1)F1Q1

 x̄t +

 C2 C1Q2

JT2 (C1 +G1)F2 JT2 (C1 +G1)F1Q2

 st

x̂t

(A.16)

+

 G1Q1

JT2 C3Q1

 x̄t,t +

 G2 G1Q2

JT2 C4 JT2 C3Q2

 st,t

x̂t,t
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=

 C3Q1

JT2 (C1 +G1)F3Q1

 x̄t−1 +

 C4 C3Q2

JT2 (C1 +G1)F4 JT2 (C1 +G1)F3Q2

 st−1

x̂t−1


+

 C5

JT2 (C1 +G1)F5

 εt
The number of forward-looking states has now usually decreased from m to m ≤ m; while

the number of backward-looking states s̄t =

 st

x̂t

 has increased by the same amount.

In addition the relationship Yt = V1xt + V2st has changed to

Yt = V1Q1x̄t +
[
V2 V1Q2

]
s̄t (A.17)

Finally we redefine xt = xt, st = st. Having done so, the system in (A.15) and (A.16) is

now of the form of (A.11) and (A.12), subject to an appropriate redefinition of matrices.

Thus, from (A.16), for G1, and G2, for example, we have an iterative scheme whereby, in

the (i+ 1)th iteration,

Gi+1
1 =

 Gi1Q
i
1(

J i2
)T
Ci3Q

i
1

 ; Gi+1
2

 Gi2 Gi1Q
i
2(

J i2
)T
Ci4

(
J i2
)T
Ci3Q

i
2


where, eg Gi1 is the value of G1 in the ith iteration, and G1

1 = 0, G1
2 = 0.

Repeat this stage until C2 +G2 is of full rank.

Proof of Theorem 1 for Perfect Information. In the perfect information case, the

form (A.11), (A.12) with st = st,t, xt = xt,t is generated after a finite number of iterations

of Stage 3, where the number of iterations cannot exceed the number of variables. The

forward looking variables are now xt and the backward looking variables are st and xt−1,

and the system can be set up in Blanchard-Kahn form by defining zt+1 =

 st

xt

. The

only additional calculation is to invert C2 + G2 to obtain the equation for st, and to

substitute into (A.11).

Proof of Theorem 1 for Imperfect Information. From this point, we eschew the de-

tails of matrix manipulations, as these are much more straightforward to understand con-

ceptually compared with those above.
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Stage 5: C2 non-singular after Stage 4. First form expectations of (A.12), and invert C2+

G2 to obtain st,t in terms of xt,t, xt−1,t, st−1,t, εt,t. Then substitute this back into (A.12),

and invert C2 to yield an expression for st in terms of the above expected values and

also xt, xt−1, st−1, εt. This can be further substituted into (A.11) to yield an expression

for xt+1,t in terms of these variables and their expectations. Similarly the measurement

equations mt = LYt can now be expressed in terms of all these variables. It follows that

if we define zt+1 =


εt+1

st

xt

, then the system can now be described by (A.3). Note that,

since dim(st) +dim(xt) = n, in this final form dim(zt) = n+ rank (BB′) .

Stage 6: C2 singular after Stage 4. We again start from (A.11) and (A.12), and regard

xt as the forward looking variable and (st, xt−1) as the backward looking variables. Now

advance these equations by changing t to t+k : k = 1, 2, 3, ... and take expectations using

information at time t, implying that Etst+k = Etst+k,t+k. Because C2 + G2 is invertible,

we can rewrite these equations with just xt+k+1,t and st+k,t on the LHS. Then the usual

Blanchard-Kahn conditions for stable and unstable roots imply a saddlepath relationship

of the form

xt+k+1,t +N1st+k,t +N2xt+k,t = 0 (A.18)

where [I N1 N2] represents the eigenvectors of the unstable eigenvalues. In particular,

this holds for k = 0, so if we substitute for xt+1,t = −N1st,t − N2xt,t into (A.11), then

together with (A.12) we obtain solutions for xt, st in terms of xt,t, st,t, xt−1, st−1, εt. This

is possible, because we have assumed the system is proper i.e., A1 is invertible40, and any

manipulations of A1 in the previous stages have been simple linear transformations of it

to yield the matrices F1, F2, C1, C2. In addition, when we take expectations of (A.12)

at time t, given that C2 + G2 is invertible, we obtain an equation for st,t in terms of

xt,t, st−1,t, xt−1,t, εt,t. It therefore follows that we can write st is terms of these latter

variables as well as the variables above (excluding st,t). The same will be true of the the

measurements mt = LYt.

At this point we have expressions for xt and st, without any effect from xt+1,t, so in

principle we could solve the signal processing problem from this point onwards. However

40The algorithm can be reworked without too much much difficulty if for example some of the forward
looking equations in (A.1) are of the form S0EtYt+1 = 0.
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for consistency with the case of C2 nonsingular, we can retrieve the representation of xt+1,t

by substituting for st back into (A.11), and then the system has the same structure as

that for the case C2 nonsingular.

Finally, by defining zt+1 =


εt+1

st

xt

, the converted form (A.3) becomes


εt+1

st

xt

xt+1,t

 =


0 0 0 0

P1 G11 G12 G13

0 0 0 I

P3 G31 G32 G33




εt

st−1

xt−1

xt



+


0 0 0 0

FF4 FF3 FF2 FF1

0 0 0 0

FF8 FF7 FF6 FF5




εt,t

st−1,t

xt−1,t

xt,t

+


I

0

0

0

 εt+1 (A.19)

where G13 = −C−1
2 C1, G12 = C−1

2 C3, G11 = C−1
2 C4, P1 = C−1

2 C5, G33 = −F2G13 − F1,

G32 = −F2G12+F3, G31 = −F2G11+F4, P3 = −F2P1+F5, FF1 = −C−1
2 G1+C−1

2 G2(C2+

G2)−1(C1 +G1), FF2 = −C−1
2 G2(C2 +G2)−1C3, FF3 = −C−1

2 G2(C2 +G2)−1C4, FF4 =

−C−1
2 G2(C2 + G2)−1C5, FF5 = −F2FF1, FF6 = −F2FF2, FF7 = −F2FF3 and FF8 =

−F2FF4. The C and F matrices are the reduction system matrices in (A.15) and (A.16)

in the form of (A.11) and (A.12) (i.e., the iterative procedure that ensures invertibility to

be achieved).

The measurements mt = LYt can be written in terms of the states as mt = L(V1xt +

V2st), where V1, V2 have been updated by (A.17) through the same reduction procedure

as above. Using (A.19), we show that mt can be rewritten as

mt =
[
LV2P1 LV2G11 LV2G12 LV1 + LV2G13

]


εt

st−1

xt−1

xt
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+
[
LV2FF4 LV2FF3 LV2FF2 LV2FF1

]


εt,t

st−1,t

xt−1,t

xt,t

 (A.20)

So the observations (A.20) can now be cast into the form in (A.4)

mt =
[
M1 M2

] zt

xt

+
[
M3 M4

] zt,t

xt,t


where M1 = [LV2P1 LV2G11 LV2G12] and M2 = LV1 + LV2G13. Similarly, M3 =

[LV2FF4 LV2FF3 LV2FF2] and M4 = LV2FF1. Thus the set-up is as required, with

the vector of predetermined variables given by [ε′t s
′
t−1 x′t−1]′, and the vector of jump

variables given by xt.

This completes the proof by construction for imperfect information.

Example A.1 (Example of Stage 6 Being Needed for Imperfect Information). Suppose

that at the end of Stage 4, there is a system in scalar processes xt and st,

xt+1,t + αxt + st = βst−1 + εt xt − xt,t + st,t = γst−1 (A.21)

It is clear from examining these equations that they cannot be manipulated into BK form

directly. However, if we now advance these equations by k periods and take expectations

subject to It, one obtains two equations relating xt+k+1,t, st+k,t to xt+k,t, st+k−1,t. Since

this is true for all k ≥ 1, and provided there is exactly one unstable eigenvalue corre-

sponding to these dynamic relationships, it follows that there must be an expectational

saddlepath relationship xt+1,t = −nst,t. Substituting this into the first of the above equa-

tions allows us to solve in particular for st in terms of xt, st,t, st−1, εt; from the second

equation we can solve for st,t in terms of st−1,t, so that we can replace the second equa-

tion by an equation for st in terms of xt, st−1,t, st−1, εt. Redefining zt+1 = st, it is now

straightforward to obtain the BK form for the first equation and the new second equation.
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A.2 Proof of Lemma 3.5

Proof. Clearly Ã must be stable, and the other PMIC condition discussed after (24) is

that Ã− ÃPEẼ′(ẼPEẼ′)−1Ẽ is stable. But if this latter condition does not hold then we

have seen from (27) and the discussion following that PE is not the appropriate solution

of the Riccati equation.

A.3 Proof of Theorem 2

Proof. Using the expressions (30)–(29) for AII, and the invertibility requirement that

Ã− ÃB̃(ẼB̃)−1Ẽ has stable eigenvalues, we calculate the latter as the matrix

 A−APAJ ′(EPAJ ′)−1E 0

−F (I − PAJ ′(JPAJ ′)−1J)(JB)−1JPAJ ′(EPAJ ′)−1E F (I −B(JB)−1J)

 (A.22)

If F (I − B(JB)−1J) has eigenvalues outside the unit circle, it immediately follows that

AII is not E-invertible. If its the eigenvalues are inside the unit circle, it follows that the

solution to (19) is PA = BB′; this is because the Convergence Condition for PA is that

F − FPAJ ′(JPAJ ′)−1J = F (I − B(JB)−1J) is a stable matrix. Furthermore it follows

that A − APAJ ′(EPAJ ′)−1E = A(I − B(EB)−1E), so that (A.22) is a stable matrix as

required for invertibility.

To show that invertibility implies that AII and API are equivalent, we note that (17)

now implies that z̃t = Bεt+(F (I−B(JB)−1J))tz̃0, which in dynamic equilibrium implies

z̃t = Bεt. This implies that zt+1,t = Azt,t−1 +ABεt, and hence that zt+1 = z̃t+1 + zt+1,t =

Azt,t−1 + ABεt + Bεt+1 = Azt + Bεt+1 as in the API case. In addition, from (18),

mt = Ezt,t−1 + Ez̃t = Ezt, also as in the API case. If F (I − B(JB)−1J) is not a stable

matrix, then PA 6= BB′, and the overall dynamics of (16)-(17) are of a higher dimension

than under API.

Proof. Writing (18) in terms of lagged state variables and shocks yields a coefficient

matrix on the latter given by EPAJ ′(JPAJ ′)−1JB, and the rank of this is ≤ rank(JB) ≤

rank(J). This immediately implies that the system is E-non-invertible.
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Proof.

mU
t =

[
UM1 UM2

] zt

xt

+
[
UM3 UM4

] Etzt

Etxt


=

[
UM2G

−1
22 G21 UM2

] zt

xt

+
[
UM3 UM4

] Etzt

Etxt


= UM2G

−1
22

Etxt+1 −
[
H21 H22

] Etzt

Etxt

+
[
UM3 UM4

] Etzt

Etxt


(A.23)

where the last expression comes from substituting from (3). Noting that Etxt+1 =

−NEtzt+1, and that Etzt+1 is dependent on Etzt and Etxt, it follows that mU
t is solely

dependent on these too. In other words, mU
t cannot be affected by current shocks εt, and

is redundant information.

A.4 Proof of Theorem 3

Proof. We first solve the steady state Riccati equation (27) corresponding to the matrices

(30)-(32). It is easy to verify that P̃E = diag(M,PA) where M = Z−PAJ ′(JPAJ ′)−1JPA

and Z satisfies

Z = AZA′ −AZE′(EZE′)−1EZA′ + PAJ ′(JPAJ ′)−1JPA (A.24)

For the innovations representation, we use the notation st = [s′1t s
′
2t]
′, rather than st =

[z′t,t−1 z̃
′
t]
′ as the notation for one-step ahead predictors of the latter will lead to confusion.

We can then show that the steady state innovations representation corresponding to (26)

is given by

Etst+1 =

 A APAJ ′(JPAJ ′)−1J

0 F − FPAJ ′(JPAJ ′)−1J

Et−1st+

 AZE′(EZE′)−1

0

 et et = mE
t −ẼEt−1st

(A.25)

or more succinctly

Ets1,t+1 = AEt−1s1,t +AZE′(EZE′)−1et et = mE
t − EEt−1s1t (A.26)
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The corresponding VARMA representation arises from defining ξt = Et−1s1t+ZE
′(EZE′)−1et

which yields

ξt+1 = Aξt + ZE′(EZE′)−1et+1 mE
t = Eξt et ∼ N(0, EZE′) (A.27)

The final step follows from comparing (A.27) with (16) and (17); clearly the dynamics

of the RE saddle-path solution explained by the innovations process et are of smaller

dimension that the dynamics yielding the impulse responses.

A.5 Proof of Corollary 3.1

Proof. From the proof of Theorem 2 we have seen that the MA roots of the VARMA

process include the eigenvalues of F (I − B(JB)−1J), while from (16)-(17), the AR roots

include the eigenvalues of F (I − PAJ ′(JPAJ ′)−1J). By Corollary 3.4, it follows that one

or more of these are reciprocals of one another. Hence the transfer function from shocks

to observables incorporates at least one Blaschke factor. It follows that IRFs of structural

shocks from the latter cannot be linear combinations of IRFs from VAR residuals, which

will only mimic the IRFs from the innovations process.

A.6 Proof of Corollary 3.2

Proof. The state space equations describing the system, (16), (17), will be unchanged,

as these depend on the measurements made by the agents. However if the informa-

tion set of the econometrician is a subset of that of the agents, this means that in the

notation of (2), we have LE = WLA for some matrix W . It then follows that the

measurement equation of the econometrician, following from (18), is given by mt =

W (Ezt,t−1 + EPD′(DPD′)−1Dz̃t). Thus the innovations process and the VARMA as

shown in the proof of Theorem 3 are changed merely by replacing E by WE, with the

Riccati matrix Z also obtained with the same replacement of E.
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A.7 Proof of Theorem 5

Proof. Both of these results follow from finding the best fit of a linear combination of

structural shocks and residuals, which can be expressed as

mina,bE(a′ε− b′e)2 s.t. a′a = 1 (A.28)

Given a, one obtains b via standard OLS techniques, and the problem reduces to min-

imizing a′FPIa s.t. a′a = 1, with solution a equal to the eigenvector of the minimum

eigenvalue of FPI .

B Example 3: Simple NK Partial Equilibrium Model

Consider a New Keynesian Phillips curve dependent on the real marginal cost mct and a

mark-up shock ε1,t assumed exogenous

πt = βπt+1,t + λmct + σ1ε1,t (B.1)

mct+1 = ρmct + σ2ε2,t+1 (B.2)

where λ = (1−θ)(1−βθ)
θ and (1 − θ) is the constant per period probability that the Calvo

contract is reset and εi,t ∼ N(0, 1). This of the Blanchard-Kahn state-space form:


ε1,t+1

mct+1

Et[πt+1]

 =


0 0 0

0 ρ 0

−1/β −λ/β 1/β



ε1,t

mct

πt

+


σ1

σ2

0



ε1,t+1

ε2,t+1

0


B.1 API Solution

Consider first the solution under Agents’ Perfect Information (API). To solve this we need

to first go back (12) below from the paper and the saddle path satisfying

xt +Nzt = 0 where
[
N I

]
(G+H) = ΛU

[
N I

]
(B.3)

where ΛU is a matrix with unstable eigenvalues. If the number of unstable eigenvalues of

(G+H) is the same as the dimension of xt, then the system will be determinate.
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To find N , consider the matrix of eigenvectors W satisfying

W (G+H) = ΛUW (B.4)

Then, as for G and H, partitioning W conformably with zt and xt, from PCL we have

N = −W−1
22 W21 (B.5)

In our example

G+H =


0 0 0

0 ρ 0

−1/β −λ/β 1/β

 (B.6)

which has eigenvalues 0, ρ both less than unity and 1
β > 1. Now write the ij element of

W as wij , i, j ∈ 1, 3. Then corresponding to the eigenvalue 1/β we have the eigenvector

[w31w32w33]


0 0 0

0 ρ 0

−1/β −λβ 1/β

 =
1

β
[w31w32w33] (B.7)

leaving w31, w32, w33 to satisfy

−w33 = w31

ρw32 −
λ

β
w33 =

1

β
w32

w33
1

β
=

1

β
w33

w.l.o.g. we can put w33 = 1. Hence w31 = −1 and w32 = λβ
βρ−1 giving N =

[
β λ

1−βρ

]
From our general solution procedure above, the following matrices are defined

A = F =

 0 0

0 ρ

 ; E = −N = −
[
β

β

1− βρ

]
; J = [β β] ; BB′ =

 σ2
1 0

0 σ2
2
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It follows that under API that

πt = βε1,t +
λ

1− βρ
mct ≡ πAPIt (B.8)

Along with (B.2) we then have a VAR(1) process in [πt mct]
′ and [ε1,t ε2,t]

′. In case of

Nimark (2008) where ε1,t = 0 this becomes

πt =
λ

1− βρ
mct (B.9)

which is (11) in Nimark (2008).

B.2 Agents’ Imperfect Information

We consider agents’ information sets

1. Perfect Information (API) : [ε1,t mct πt]
′

2. Imperfect Information (AII): πt

3. Imperfect Information (AII): πt−1

Case (1), API solution is above. Next consider Case (2) where agents have AII with πt

observed. Following our API solution in the main text we arrive at

mct = ρmct−1 + ε2,t

m̃ct ≡ mct −mct,t−1 =
ρ

σ2
1 + p

(σ2
1m̃ct−1 − pε1,t−1) + ε2,t (B.10)

πt = β

(
1 +

βρp

(1− βρ)(σ2
1 + p)

)
ε1,t +

λ

1− βρ
mct

− βρσ2
1

(1− βρ)(σ2
1 + p)

m̃ct (B.11)

where from the main text the agents’ steady-state Ricatti equation is given by

PA = FPAF ′ − FPAJ ′(JPAJ ′)−1JPAF ′ +BB′ = QAPA(QA)′ +BB′ (B.12)
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This has a solution

PA =

 σ2
1 0

0 p

 where p =
ρ2pσ2

1

σ2
1 + p

+ σ2
2

noting that N −G−1
22 G21 =

[
0 βλρ

1−βρ

]
, This is an VARMA(1,1) process in [πt mct m̃ct]

′

and [ε1,t ε2,t]
′.

Figure 4 shows the impulse response function following a negative marginal cost shock

ε2,t. The greater is σ2
1, the greater is the difference between AII and API.
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Figure 4: Inflation Dynamics under Perfect (PI) and Imperfect Information (II)

To obtain the innovations representation, we first solve for Z in (A.24); it is easy to

verify that Z is given by

Z = PEJ ′(JPEJ ′)−1JPE =
1

σ2
1 + p

 σ2
1

p

 [σ2
1 p
]

(B.13)

The innovations process that provides the VARMA for πt, corresponding to (A.27) is then

s̃1,t =

 0 0

0 ρ

 s̃1,t−1 +
1

βσ2
1 + β

1−βρp

 σ2
1

p

 ε̂t
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πt =

[
β

λ

1− βρ

]
s̃1,t

from which it is readily seen that the system is back to a VAR(1) process as under PI.

This illustrates Theorem 3 of our paper: even though II adds more persistence than under

PI, the innovations process dynamics has the same dimensions in each case.

B.3 Nimark (2008)

Now consider the Nimark (2008) AII information case (3) and with only one shock ε2,t.

A fundamental difference is that he does not start with (B.1), which he argues in the NK

standard model only under PI, but rather a forward-looking Phillips Curve with higher

order expectations (6) derived from a model with idiosyncratic shocks. Does his solution

in the limit as the latter dominate the aggregate component tend to our solution which is

an II solution of (B.1)?

In the Nimark example the information set is mA
t = πt−1 and ε1,t = 0. Then consistent

with these information assumptions, the NK Phillips curve becomes

πt,t = βπt+1,t + λmct,t (B.14)

where we recall that λ ≡ (1−θ)(1−βθ
θ .

Augmenting the state vector the state-space form is now:


mct+1

πt

Et[πt+1]

 =


ρ 0 0

0 0 1

0 0 0



mct

πt−1

πt

+


0 0 0

0 0 0

−λ
β 0 1

β



mct,t

πt−1,t

πt,t

+


σ1

0

0



ε2,t+1

0

0


(B.15)

giving eigenvalues 0, ρ and 1
β > 1. The eigenvector associated with the eigenvalue outside

the unit circle

[w31w32w33]


ρ 0 0

0 0 1

−λ/β 0 1/β

 =
1

β
[w31w32w33] (B.16)

gives, w.l.o.g. [w31w32w33] = [ λ
ρβ−1 0 1] and N = [ λ

ρβ−1 0]. The agent’s perfect information
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solution is therefore

πAPIt =
λ

1− ρβ
mct (B.17)

For AII we need the matrices

F ≡ G11 −G12G
−1
22 G21 J ≡M1 −M2G

−1
22 G21 (B.18)

A = G11 +H11 − (G12 +H12)N E = M1 +M3 − (M2 +M4)N (B.19)

capturing intrinsic dynamics in the system. For our example these are

F =

 ρ 0

λ 0

 E = J = [0 1] A =

 ρ 0

λ
1−βρ 0

 (B.20)

Turning to the Riccati equation (B.12) it is easy to show a solution is

PA =

 1
1−ρ2 0

0 1

 QA =

 ρ 0

0 0

 PAJ ′(JPAJ ′)−1J =

 0 0

0 1

 APAJ ′(JPAJ ′)−1J = 0

(B.21)

It follows that zt,t−1 = 0, and the second element of z̃t = 0. Hence

πt = −Nzt,t−1 −G−1
22 G21z̃t − (N −G−1

22 G21)PAJ ′(JPAJ ′)−1Jz̃t

= 0 (B.22)

where z̃′t = [m̃ct, π̃t−1]′.

Evidently this is different from Nimark’s purported solution

πAIIt = πAPIt + λ(θ − ((1− βρ))−1)m̃ct (B.23)

That the latter is an error is evident from his derived expression for inflation (his equation

(6)), which is dependent only on expectations. Since in the limit of infinite variance

idiosyncratic shocks, inflation cannot be driven by any shocks at all, it follows that any

expectations based on observations of lagged inflation must be 0, and hence inflation is

0.41

41The solution in Nimark’s equation (13) is exactly the solution of (B.15) when its final equation is
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To elaborate, Nimark’s representation of the solution is given by the hierarchy of higher

order expectations:

πt = (1− θ)(1− βθ)
∞∑
k=0

(1− θ)kmc(k)
t|t + βθ

∞∑
k=0

(1− θ)kπ(k)
t+1|t (B.24)

where

x
(k)
t|s ≡

∫
E [x

(k−1)
t|s |Is(j)]dj (B.25)

and It(j) is the Calvo price-setting firm’s information at time t. When the only observation

at time t is πt−1, then there is a solution πt = 0. This solution is completely consistent

with πt+1,t = mct,t = 0.

One can very easily check the case when ρ = 0. Nimark’s solution in his equation

(13) then asserts that πt is proportional (in our notation) to ε2,t i.e. πt = γε2,t. In that

case observation at time t of πt−1 yields information on ε2,t−1, but this sheds no light on

mct = ε2,t so that the best estimate of this at time t is therefore 0. Likewise, the best

estimate of πt+1 = γε2,t+1 at time t is 0, which implies by Nimark’s equation (6) that

πt = 0.

C Extending the Sims Solution to the Imperfect Informa-

tion Case

Sims (2002) sets up the model in the form

Γ0yt = Γ1yt−1 + Ψεt + Πηt (C.1)

where yt includes and forward-looking expectations, and ηt satisfy Etηt+1 = 0; Γ0 is in

general singular. He then computes a QZ decomposition for Γ0,Γ1 such that the unstable

part of the system is given by Z2yt, which satisfies

Λ22Z2yt = Ω22Z2yt−1 +Q2(Ψεt + Πηt) (C.2)

where Λ22 is in general singular. Z2yt−1 is solved forwards in time; perfect information

dependent on mct instead of mct,t.
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then implies

Et−1Z2yt−1 = EtZ2yt−1(= Z2yt−1) (C.3)

which in turn implies that

Q2(Ψεt + Πηt) = 0 and Z2yt−1 = 0 (C.4)

Thus Z2yt = 0 represents the saddlepath relationship. Furthermore, assuming that the

terms in ηt in the rest of the system defined by the QZ decomposition are linearly dependent

on Q2Π, it is then easy to solve for the remaining transformed states of the system as a

vector autoregression in εt.

For the imperfect information case, (C.3) no longer holds. If we assume that ηt is

known at time t, it follows that Et−1Z2yt−1 = 0, but

EtZ2yt−1 = −Ω−1
22 Q2(ΨEtεt + Πηt) (C.5)

It therefore follows that the remaining states Z1yt will be dependent on Z1yt−1, εt and

in addition EtZ2yt−1 and Q2ΨEtεt, so that the overall solution will be as complicated as

that derived by PCL. In particular, one has to define the updating equation for EtZ2yt−1

in terms of Et−1Z2yt−1 and the observations at time t, and solve for this in dynamic

equilibrium.

D Equivalence of Various State Space Models

We show that all of the state-space models that are used in the statistics, control theory

and econometrics literature can be represented by that used in the main text.

The usual model used in the statistics literature, Model 1, includes measurement error

η1t

st+1 = A1st +B1ε1,t+1 mt = C1vt +D1η1t (D.1)

In the control theory literature, with possible correlation between ε2t and measurement

error η2t, Model 2 is given by

wt+1 = A2wt +B2ε2t mt = C2wt +D2η2t (D.2)
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In Fernandez-Villaverde et al. (2007) and much of the econometrics literature, Model 3 is

given by

xt+1 = A3xt +B3ε3,t+1 (i.e., xt = A3xt−1 +B3ε3,t) mt = C3xt−1 +D3ε3t (D.3)

For Model 1, add η1t to the state space, so that it can be rewritten as

 η1,t+1

vt+1

 =

 0 0

0 A1

 η1,t

vt

+

 I 0

0 B1

 η1,t+1

ε1,t+1

 mt =
[
D1 C1

] η1,t

vt


(D.4)

For Model 2, if D2 = 0, then the statistical properties of wt are identical whether we

date the shock as ε2t or ε2,t+1; thus Model 2 is equivalent to the main text model when

D2 = 0. Otherwise, include ε2t and η2t into the state space


ε2,t+1

η2,t+1

wt+1

 =


0 0 0

0 0 0

B2 0 A2



ε2,t

η2,t

wt

+


0 I

I 0

0 0


 η2,t+1

ε2,t+1

 mt =
[

0 D2 C2

]
ε2,t

η2,t

wt


(D.5)

Model 3 can be written in the form of the main text model by appending both ε3t and

xt−1 to the state space


ε3,t+1

xt

xt+1

 =


0 0 0

0 0 I

0 0 A3




ε3,t

xt−1

xt

+


I

0

B3

 ε3,t+1 mt =
[
D3 C3 0

]
ε3,t

xt−1

wt


(D.6)

E Recoverability

A recent innovation in the economics literature by Chahrour and Jurado (2017) is the

notion of recoverability, which they point out is a generalization of much earlier work by

Kolmogorov (see Shiryayev (1992)), and which relates to situations for which the shocks

are non-fundamental, so that the system of dynamic equations is non-invertible. We shall

be calling on this notion subsequently because when the imperfect information solution
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differs from that of the perfect information solution, then the former will be characterized

by non-invertibility (or non-fundamentalness of the shocks). The main point that they

make is that if the VARMA is known, then it is possible (under mild conditions) to recover

the values of all the shocks to have affected the VARMA process using the data, assuming

observations over all time, as opposed to data only up to time t as available to economic

agents in the model. In particular what this means is that for a finite set of data, one

can obtain an accurate estimate of shocks that have taken place around the middle of the

dataset.

To be more specific, suppose that the VARMA process is fully invertible, then the

residuals as calculated above will converge to the true values of the shocks, so that the

estimate of a shock at time t will be calculated using all past values of the observations.

We illustrate with an example.

E.1 Example 4: Fundamental and non-Fundamental MA Processes

For example, if measurements {mE
t : t ≥ −∞} are generated by the MA(1) process

mE
t = εt − αεt−1 = (1− αL)εt, −1 < α < 1, εt ∼ N(0, σ2) (E.1)

where L is the lag operator, then the root of (1− αL) lies outside the unit circle and the

process is fundamental.42 Then εt =
∑∞

s=0 α
smE

t−s. For a finite number of observations

starting at t = 0, truncating this sum at s = t will achieve a very close approximation

(with probability 1) for values of t that are large enough to ensure that the variance of

the untruncated terms, which equals α2tσ2/(1−α2) is below a certain threshold. However

if α > 1, then the above representation is non-fundamental and cannot converge. If

instead we write the lag operator representation of εt as εt = mE
t /(1 − αL) as εt =

−α−1L−1mE
t /(1− α−1L−1), then we can rewrite the representation of the shocks as

εt = −
∞∑
s=1

α−smE
t+s (E.2)

42An MA process mE
t = Φ(L)εt is a fundamental representation if the roots of Φ(L) lie outside the

complex unit circle (see, for example, Lippi and Reichlin (1994) and Kilian and Lutkepohl (2017)).
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Thus recovering the shocks requires summing over future values of the observations.

Clearly for a finite sample of length T one cannot obtain an accurate approximation

to the most recent shock εT , but one can obtain a good approximation to the earliest

shocks provided that T is large enough.

One can readily extend this to the MA(2) case mE
t = (1− αL)(1− βL)εt when −1 <

β < α < 1. Then the process is fundamental and we have

εt =
1

α− β

(
α

1− αL
− β

1− βL

)
mE
t =

1

α− β

( ∞∑
s=0

αs+1mE
t−s −

∞∑
s=0

βs+1mE
t−s

)
(E.3)

When however −1 < α < 1 < β, we can rewrite the expression for the shock as

εt =
1

β − α

(
− α

1− αL
+

L−1

1− β−1L−1

)
mE
t =

1

β − α

( ∞∑
s=0

αs+1mE
t−s −

∞∑
s=1

β−s+1mE
t+s

)
(E.4)

so that recovering the shocks requires summing over both past and future values of the

observations. For finite samples the approximating values of shocks at the beginning and

end of the sample will be a poor fit to the true values.

Similarly when −1 < β < 1 < α, we have

εt =
1

α− β

(
−
∞∑
s=0

βs+1mE
t−s −

∞∑
s=1

α−s+1mE
t+s

)
(E.5)

Finally when −1 < β < α < 1, we can rewrite the expression for the shock as

εt =
1

α− β

(
− L−1

1− α−1L−1
− L−1

1− β−1L−1

)
mE
t =

1

α− β

(
−
∞∑
s=0

α−s+1mE
t+s −

∞∑
s=1

β−s+1mE
t+s

)
(E.6)

so that recovering the shocks requires summing over only future values of the observations.

Again for finite samples the approximating values of shocks at the beginning and end of

the sample will be a poor fit to the true values.

E.2 Blaschke Factors and Spectral Factorization

If a square non-invertible system of n stationary measurements and n shocks in each period

is estimated, then although the parameters of the system can be consistently estimated

using maximum likelihood, the innovations process (i.e., the residuals) will nevertheless
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correspond to those of the statistically equivalent invertible system. They cannot there-

fore be matched to a linear transformation of the structural shocks, and the same will

automatically hold true when a VAR approximation to the system is estimated, since by

definition the latter is invertible. The literature, summarized by Kilian and Lutkepohl

(2017) suggests using Blaschke factors on the lag operator representation of the VAR in

order to ‘flip’ roots of the MA process from invertible to non-invertible.

To see how this works first consider the general MA process mE
t = Φ(L)εt assumed to

be fundamental and write

mE
t = Φ(L)εt = Φ(L)B(L)B(L)−1εt ≡ Φ(L)∗ε∗t (E.7)

where ε∗t = B(L)−1εt and Φ(L)∗ = Φ(L)B(L). Then Lippi and Reichlin (1994) show that

Φ∗ has roots inside the complex unit circle (so that mE
t = Φ(L)∗ε∗t is non-fundamental) if

B(L) is chosen to be a ‘Blaschke matrix’ which has two properties (i) all roots inside the

complex unit circle and (ii) B(L)−1 = B∗(L−1) where the asterik denotes the conjugate

transpose. Then corresponding to our MA(2) fundamental example Φ(L) = (1− αL)(1−

βL) above with −1 < α, β < 1 we have three non-fundamental representations Φ(L)B(L)

corresponding to the Blaschke factors:

−1 < α < 1 < β : B(L) =
L− α
1− αL

(E.8)

−1 < β < 1 < α : B(L) =
L− β
1− βL

(E.9)

−1 < α, β < 1 : B(L) =

(
L− α
1− αL

)(
L− β
1− βL

)
(E.10)

For the four possible combinations of α and β one MA(2) representation will be fundamen-

tal and the other three non-fundamental. Only the fundamental one will be captured by

the data VAR estimation. If the econometrician is estimating α, β she will be confronted

with three non-fundamental and one fundamental processes with identical statistical prop-

erties (i.e., the same first and second moments). It therefore follows that one can only use

recoverability to obtain the structural shock unambiguously if the four cases (E.3)–(E.6)

can be separated by the econometrician by prior information on the location of α and β.
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E.3 A Test of Fundamentalness

Lippi and Reichlin (1994), Fernandez-Villaverde et al. (2007), Kilian and Lutkepohl (2017)

and others, have pointed out that non-invertibility is a missing information problem aris-

ing from econometricians not using the appropriate measurements. Choosing the right

measurements may then alleviate the problem. Closely related to this idea and also to

recoverability is a recent paper by Canova and Sahneh (2017), that shows how to test the

residuals of a VAR model for fundamentalness. Suppose that a VARMA process mE
t in

shocks εt is estimated in the VAR form Φ(L)mE
t = ut, where ut are the residuals; then a

linear transformation is applied to ut in order to attempt to recover an approximation et

to the structural shocks εt. However in principle there is no way that one can determine

whether et is a linear transformation of the structural shocks εt using the VAR alone.

But suppose that there is an additional measurement mE
2t available to the econometri-

cian of the form mE
2t = Θ1(L)εt + Θ2(L)ε2t, which is dependent on the same shocks εt as

the main variables mE
t , and some additional shocks ε2t. If there is no invertibility problem

for mE
t estimated as a VAR, then mE

2t can be rewritten (as t→∞) as

mE
2t = Θ1(L)et + Θ2(L)ε2t (E.11)

If there is an invertibility problem then (E.11) no longer applies, because at least one

element of εt depends on future values of et via one or more Blaschke factors43. Thus

conducting a standard Granger causality test of whether mE
2t depends on future values of

the recorded residuals et is sufficient to deduce whether the latter are fundamental or not.

F An Implication for Estimation

The innovations representation is closely connected to the use of the Kalman filter in

the estimation of linear models. Suppose that the system is given by (20). Then the

43Suppose for example that yt = (1 − α−1L)εt, where α < 1, so that it is non-invertible. After this
is estimated as a finite VAR, it can then be approximately written as yt = (1 − αL)et. It follows that

εt = (1−αL)

(1−α−1L)
et = −αL−1(1−αL)

(1−αL−1)
et, so that it is dependent on future values of e.
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loglikelihood, lnL, for the system is given by

2lnL = −Trln(2π)−
T∑
t=1

[ln det(cov(et)) + e′t(cov(et))
−1et] (F.12)

where the innovations process et ≡ mE
t −Et−1m

E
t , T is the number of time periods and r

is the dimension of mE
t .

We use time varying version of (A.26) and (A.24) in order to evaluate the loglikelihood

(F.12) for any given set of parameters, and define v̄t = s̄1t:

v̄t+1 = Av̄t +AZtE
′(EZtE

′)−1et et ≡ mE
t − Ev̄t

Zt+1 = AZtA
′ −AZtE′(EZtE′)−1EZtA

′ + PAJ ′(JPAJ ′)−1JPA (F.13)

Initial values are v̄1 = 0, with Z1 satisfying Z1 = AZ1A
′+PAJ ′(JPAJ ′)−1JPA. We note

that it is inappropriate for the matrix PA in (F.13) to be time-varying. This is because

there is no guarantee that the matrix F has all its eigenvalues stable, which would mean

that the conventional initial value, which assumes that the system is in a stochastic steady

state, cannot be obtained. Instead we make the assumption that the overall system is in

stochastic steady state, and the time-varying Riccati equation is only relevant for the

innovations process et.

Recall what is meant by over-identification, or the singularity problem in estimation:

if the number of observables exceeds the number of shocks, then the likelihood function

will be singular44. We then obtain a further result:

Theorem 6. If rank(J) < the number of observables, then the RE saddle-path solution

under imperfect information is singular.

Proof of Theorem 6. If J is of full row rank, then it is easy to see that in general

PAJ ′(JPAJ ′)−1JPA will have the same rank as J . If J is not of full row rank, then

rank(PAJ ′(JPAJ ′)−1JPA) ≤rank(J) i.e., the ‘effective’ number of shocks is less than the

number of observables. In such a case, we can solve for PA by writing J = UJ1, where

J1 has a smaller number of rows than J , and is of full row rank, and U ′U = I. Then

44In the simplest case, for two regression equations that depend on the same single shock, the covariance
matrix of the shocks cannot, as is required, be inverted.
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an appropriate likelihood function is obtained by changing the observables from mE
t to

U ′mE
t . An alternative of course is to incorporate measurement error into the system, but

then this would make the system non-square.

Note that these results are only relevant when the measurements satisfy invertibility

if agents were to have perfect information. If any of the measurements are lagged, then

Theorem 6 does not apply.

G The RBC Model

We first consider the standard RBC model with a non-zero growth steady state. Then

consider a simplified special case suitable for an analytical solution.

G.1 The Full Model

For the household:

Utility : Ut = U(Ct, Lt) (G.14)

Euler Consumption : UC,t = βRtEt [UC,t+1] (G.15)

Labour Supply :
UH,t
UC,t

= −
UL,t
UC,t

= −Wt (G.16)

Leisure and Hours : Lt ≡ 1−Ht (G.17)

where Ct is real consumption, Lt is leisure, Rt is the gross real interest rate set in period

t to pay out interest in period t+ 1, Ht are hours worked and Wt is the real wage.

The Euler consumption equation, (G.15), where UC,t ≡ ∂Ut
∂Ct

is the marginal utility

of consumption and Et[·] denotes rational expectations based on the agents’ information

set, describes the optimal consumption-savings decisions of the household. It equates

the marginal utility from consuming one unit of income in period t with the discounted

marginal utility from consuming the gross income acquired, Rt, by saving the income. For

later use define Λt,t+1 ≡ β
UC,t+1

UC,t
is the real stochastic discount factor over the interval

[t, t + 1]. (G.16) equates the real wage with the marginal rate of substitution between

consumption and leisure.
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Output and the firm behaviour is summarized by:

Output : Yt = F (At, Ht,Kt) (G.18)

Labour Demand : FH,t = Wt (G.19)

Capital Demand : 0 = Et [Λt+1(FK,t+1 −Rt + 1− δ)] (G.20)

Stochastic Discount Factor : Λt = β
UC,t+1

UC,t
(G.21)

(G.18) is a production function where Kt is beginning-of-period t capital stock. Equation

(G.19), where FH,t ≡ ∂Ft
∂Ht

, equates the marginal product of labour with the real wage.

(G.20), where FK,t ≡ ∂Ft
∂Kt

, equates the marginal product of capital with the cost of capital.

The model is completed with an output equilibrium, law of motion for capital and a

balanced budget constraint with fixed lump-sum taxes.

Yt = Ct +Gt + It (G.22)

It = Kt+1 − (1− δ)Kt (G.23)

Gt = Tt (G.24)

We now generalize the model by adding the Smets and Wouters (2007) form of invest-

ment adjustment costs to the RBC model. The law of motion for capital becomes

Kt+1 = (1− δ)Kt + (1− S(Xt))It ; S′, S′′ ≥ 0 ; S(1) = S′(1) = 0

Xt ≡
It
It−1

We introduce capital producing firms that at time t convert It of output into (1−S(Xt))It

of new capital sold at a real price Qt and then maximize with respect to {It} expected

discounted profits. The first-order condition for the capital producers is

Qt(1− S(Xt)−XtS
′(Xt)) + Et

[
Λt,t+1Qt+1S

′(Xt+1)X2
t+1

]
= 1

Demand for capital by the wholesale firm owned by households is now given by

1 = RtEt[Λt,t+1]
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=
Et
[
Λt,t+1[(1− α) Yt+1

Kt+1
+ (1− δ)Qt+1]

]
Qt

≡ Et[Λt,t+1RK,t+1] (G.25)

In (G.25) the right-hand-side is the discounted gross return to holding a unit of capital

in from t to t + 1. The left-hand-side is the discounted gross return from holding bonds,

the opportunity cost of capital. Note that without investment costs, S = 0, Qt = 1 (G.25)

reduces to the standard Euler equation. We complete this set-up with the functional

form for investment adjustment, S(X) = φX(Xt − 1)2, which completes the RBC model

augmented with capital producers and monetary policy.

We now specify functional forms for production and utility and AR(1) processes for

exogenous variables At and Gt. For production we assume a Cobb-Douglas function. The

consumers’ utility function is non-separable and consistent with a balanced growth path

when the inter-temporal elasticity of substitution, 1/σ is not unitary. These functional

forms, the associated marginal utilities and marginal products, and exogenous processes

are given by

F (At, Ht,Kt) = (AtHt)
αK1−α

t (G.26)

FH(At, Ht,Kt) =
αYt
Ht

(G.27)

FK(At, Ht,Kt) =
(1− α)Yt

Kt
(G.28)

logAt − log Āt = ρA(logAt−1 − log Āt−1) + εA,t (G.29)

logGt − log Ḡt = ρG(logGt−1 − log Ḡt−1) + εG,t (G.30)

Ut =
(C

(1−%)
t L%t )

1−σ − 1

1− σ
(G.31)

UC,t = (1− %)C
(1−%)(1−σ)−1
t (1−Ht)

%(1−σ) (G.32)

UH,t = −%C(1−%)(1−σ)
t (1−Ht)

%(1−σ)−1 (G.33)

(G.14) – (G.33) describe an equilibrium in Ut, Ct, Wt, Yt, Lt, Ht, Kt, It, Rt, Tt, given At

and Gt where for the latter we assume AR(1) processes about steady states Ā, Ḡ driven

by zero mean iid shocks εA,t and εG,t.

Figures 5 and 6 show the deterministic IRFs in response to unanticipated shocks At

and Gt.
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Figure 5: Model 1 Impulse Responses to a Technology Shock, At. Observables Yt, Rt
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Figure 6: Model 1 Impulse Responses to a Government Spending Shock, Gt. Observables
Yt, Rt
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Information Set E-Invertibility A-Invertibility? Notes Eigenvalues of FPI and FPI
under API?

RBC Case 1: σc = 0.3 and α = 0.6

(Ct, It), (Ct, Rt), (Ct, RK,t) E, EB, J ,JB are of full rank
(It, Rt), (It, Ht), (It, RK,t) YES YES A(I −B(EB)−1E) is stable eig(FPI) ≡ eig(FII) = [0, 0]

(Ht, Rt), (Wt, Rt), (Ct, RK,t) F (I −B(JB)−1J) is stable

(Yt, Ct), (Ct, Ht) E, EB are of full rank
(Yt, Ht), (Ct,Wt) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0]
(Yt, It), (Ht,Wt) J ,JB are of full rank eig(FII) > 0
(Yt,Wt), (Yt, Rt) F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Yt, RK,t), (Ht, RK,t) NO NO A(I −B(EB)−1E) is not stable eig(FPI) > 0

(Wt, RK,t) J ,JB are of full rank eig(FII) > 0
F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Rt, RK,t) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0]

J ,JB are rank deficient eig(FII) > 0

RBC Case 2: σc = 2 and α = 0.6

(Ct, It), (Ht, Rt) E, EB, J ,JB are of full rank
(It, Rt), (It,Wt) YES YES A(I −B(EB)−1E) is stable eig(FPI) ≡ eig(FII) = [0, 0]

(It, RK,t) F (I −B(JB)−1J) is stable

(Yt, Ct), (Ct, Ht), (It, Ht) E, EB are of full rank
(Yt, Ht), (Ct,Wt), (Ct, Rt) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0]
(Yt, It), (Ht,Wt), (Wt, Rt) J ,JB are of full rank eig(FII) > 0

(Yt,Wt), (Yt, Rt) F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Yt, RK,t), (Ct, RK,t) NO NO A(I −B(EB)−1E) is not stable eig(FPI) > 0
(Ht, RK,t), (Wt, RK,t) J ,JB are of full rank eig(FII) > 0

F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Rt, RK,t) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0]

J ,JB are rank deficient eig(FII) > 0

Table 4: Exact and Approximate Invertibility Checks for Full RBC Model

Note: Check Conditions in Lemma 4.2 and Theorem 2. This is the full RBC model with investment adjustment
costs and variable hours. We consider two cases for (σc, α) = (0.3, 0.6) and (σc, α) = (2, 0.6).
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G.2 A Special Case in Linearized Form

The analytical example in Section 5, taken from Campbell (1994), is a linearized form

of a special case of the full RBC model for which hours Ht are constant and normalized

at unity, Gt = 0 leaving only one technology shock process and there are no investment

adjustment costs so St(Xt) = S′t(Xt) = 0 and Qt = 1.

Then defining lower case variables xt ≡ log(Xt/X) ≈ Xt−X
X where X is the zero-growth

steady state of Xt and linearising (G.25), (G.18), (G.15) and (G.25) we have

kt+1 = (1− δ)kt−1 +
Y

K
yt −

C

K
ct (G.34)

yt = αat + (1− α)kt (G.35)

ct+1 = ct + σrt (G.36)

rt = EtrKt+1 =
α(1− α)

1 + r

(
A

K

)α
Et(at+1 − kt+1) (G.37)

where the steady state ratios are given by Y
K = 1−α

r+δ , C
K = r+αδ

1−α and A
K = r+δ

1−α where the

steady state net real interest rate r = R− 1. Combining (G.34) – (G.37) gives

kt+1 = λ1kt + λ2at + (1− λ1 − λ2)ct (G.38)

ct+1 = ct + κEt(at+1 − kt+1) (G.39)

where λ1 = 1 + r, λ2 = α(r+δ)
1−α and κ ≡ σα(1−α)

1+r

(
A
K

)α
= σα(1−α)

1+r

(
r+δ
1−α

)α
.

In the example at = εa,t so (G.39) gives (36).

H Example 5: Fundamentalness Measures for RBC with

News

We run our final exercise using a standard version of news shocks with one-period ahead

shocks to At and Gt as in Blanchard et al. (2013) and Forni et al. (2017). The structural

shocks of our full RBC model now follows

At = At−1 + εa,t−1 (H.1)

Gt = Gt−1 + εg,t−1 (H.2)
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The effects of anticipated changes in productivity and government policy are delayed with

respect to the time at which agents get information about them.

As is standard, the news shocks are assumed to be observable by the agents under per-

fect information containing the past values of the innovations εa,t−1 and εg,t−1. They must

also observe At and Gt with perfectly anticipated changes in the fundamentals to occur

at future dates. Economic data, by reflecting the rational forward-looking behaviour of

agents, can be used by the econometrician to estimate the shocks’ volatilities. On the other

hand, the agents and econometrician have the identical information sets under imperfect

information and there is no longer information that provides inference on the news until

the future period when it directly affects its fundamental. This clearly suggests structural

non-fundamentalness with respect to agents’ imperfect information set. In addition, when

we add additional shocks to the PI system this also introduces non-fundamentalness into

the model. This result will depend on the size of the model in general, and the horizon of

anticipation periods in particular which introduces multiple latent state variables in model

solutions.

The implications of our model embedded with news information have strong conse-

quences for invertibility and empirical analysis (e.g., the validity of VAR methods). In

other words, with our invertibility conditions and fundamentalness testing presented and

discussed so far, we expect to find that the RBC’s fundamentalness no longer holds under

perfect information, where agents observe current shocks, and under imperfect informa-

tion the structural shocks are non-fundamental too with respect to agents’ information set,

which, in this example, is assumed to be consistent with the combinations of observables

in Table 5 when the system was found to be perfectly invertible.

Combinations of observables Perfect information Imperfect information
(where m = k)

(Yt, Ct), (Yt, Ht), (Yt, It) EB is rank deficient (=1) JB is rank deficient (=1)
(Yt,Wt), (Ct, Ht), (Ct,Wt) A(I −B(EB)−1E) is non-existent F (I −B(JB)−1J) is non-existent
(It, Ht), (It,Wt), (Ht,Wt) eig(FPI) = [0, 1] eig(FPI) = [1, 1]

Table 5: Nonfundamentalness Measures for RBC Model with One-period An-
ticipated News Shocks
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I A Note on the Forni et al. (2017) Model

This sets out the simple model in Section 2 of their paper. It illustrates that when there

is no saddlepath involved, as there is in Theorem 4, then the size of the state space does

not increase under imperfect information.

potential output : y∗t = y∗t−1 + εt−1︸︷︷︸
news shock

; εt ∼ Ni.i.d(0, σ2
ε) (I.1)

signal : st = εt + vt︸︷︷︸
noise shock

; vt ∼ Ni.i.d(0, σ2
v) (I.2)

εt, vt uncorrelated : Hence σ2
s = σ2

ε + σ2
v (I.3)

consumption : ct = lim
j→∞

E[y∗t+j |It] (I.4)

actual ouput in equilibrium : yt = ct (I.5)

information set : It = {y∗t−k, st−k, k ≥ 0} (I.6)

Then from (I.1) and (I.4) we have

ct = E[y∗t+j |It] = E[y∗t+1|It] = y∗t + E[εt|It] (I.7)

From (I.2) the OLS projection of εt on st is given by

E[εt|It] =
σ2
ε

σ2
s

st ≡ γst = γ(εt + vt) (I.8)

Hence we have

∆ct = ∆y∗t + γ∆(εt + vt) = γεt + (1− γ)εt−1 + γ(vt − vt−1) (I.9)

The state-space form of the RE solution is then


∆y∗t

∆ct

st

 =


L 0

γ + (1− γ) γ(1− L)

1 1


 εt

vt

 (I.10)

In the absence of noise, vt = σ2
v = 0, γ = 1 and agents observe the shock and we have

79



PI. Then

∆ct = εt (I.11)

and after a shock consumption jumps immediately to its new long-run level. But with II

consumption jumps to ct = γεt in the first period and reaches ct+1 = ct+(1−γ)εt = ct−1+εt

The spectrum of the two process ∆a, s is given by

E

 Lεt

εt + νt

 [L−1εt εt + νt]

 =

 σ2
ε Lσ2

ε

L−1σ2
ε σ2

ε + σ2
ν


It is easy to show that an alternative spectral factorization of this joint process is

 1 Lσ
2
ε
σ2
s

0 1

 σ2
u 0

0 σ2
s

 1 0

L−1 σ
2
ε
σ2
s

1


where σ2

u = σ2
εσ

2
ν/(σ

2
ε + σ2

ν)

This automatically yields equation (7) of Forni et al. Now Blaschke factors are defined

as (L− a)/(1− aL). In this particular case a = 0 so the Blaschke factor is merely L. So

apply this just for the shock ut i.e., change ut to Lūt. It now follows that εt, νt are just

simple linear transformations of ūt, st because (9), when expressed in terms of the latter,

requires a change of L−1 to 1.

J Dynare Implementation

Levine et al. (2019) describes the working and use of the Imperfect Information (Partial

Information)45 software that solves, simulates and estimates DSGE rational expectations

(RE) models in Dynare under imperfect information. The software is a MATLAB based

code and is now integrated into Dynare unstable version 4.6 (Link to the Unstable Ver-

sions). The solution techniques adopted are based on the work by Pearlman et al. (1986).

45Different terminologies are found in the literature. Most DSGE models are solved on the assumption
that agents have perfect information of the current state as an endowment. This is the default option in
Dynare. Under imperfect information this assumption is relaxed. The use of perfect/imperfect information
corresponds to the standard use in dynamic game theory when describing the information of the history
of play. See footnote 7.
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In particular, the software:

1. Transforms Dynare’s linearized model solutions into the Blanchard-Kahn form which

is solved to yield a reduced-form system. See Theorem 1 of paper.

2. Provides the conditions for invertibility under which imperfect information is equiv-

alent to perfect information. See Theorem 2 of paper.

3. Implements multivariate measures of goodness of fit of the innovation residuals to

the fundamental shocks, and provides information as to how well VAR residuals

correspond to the fundamentals in DSGE models. See Theorem 5 of paper.

4. Simulates the model and uses the resulting reduced-form solution to obtain theoret-

ical moments and IRFs

5. Evaluates the reduced-form system via the Kalman filter to obtain the likelihood

function for estimation purposes and results from an identified DSGE-VAR. See

Appendix F of paper.
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