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Abstract: Observational research suggests that micronutrients may be protective for sarcopenia,
a key health issue during ageing, potentially via effects on hormone synthesis and metabolism.
We aimed to carry out a systematic review of RCTs investigating effects of increasing dietary or
supplemental micronutrient intake on sex hormones and IGF-1 in individuals aged 45 years or older.
We searched MEDLINE, EMBASE and Cochrane databases for RCTs reporting the effects of different
micronutrients (vitamins A, C, D, or E; carotenoids; iron; copper; zinc; magnesium; selenium; and
potassium) on sex hormones or IGF-1. Of the 26 RCTs identified, nine examined effects of vitamin D,
nine of multi-nutrients, four of carotenoids, two of selenium, one of zinc, and one of vitamin E. For
IGF-1 increasing vitamin D (MD: −0.53 nmol/L, 95% CI: −1.58, 0.52), multi-nutrients (MD: 0.60 nmol/L,
95% CI −1.12 to 2.33) and carotenoids (MD −1.32 nmol/L; 95% CI −2.76 to 0.11) had no significant
effect on circulating concentrations. No significant effects on sex hormones of other micronutrients
were found, but data were very limited. All trials had significant methodological limitations making
effects of micronutrient supplementation on sex hormones unclear. Further high quality RCTs with
physiological doses of micronutrients in people with low baseline intakes or circulating concentrations,
using robust methodology, are required to assess effects of supplementation adequately.

Keywords: micronutrients; sarcopenia; sex hormones; insulin-like growth factor 1; meta-analysis;
randomized controlled trials

1. Introduction

Sarcopenia is a major problem, involving loss of skeletal muscle mass and function with age,
a process beginning at approximately 40 years in both men and women [1–3]. One mechanism for its
onset, is the age-related decline in the endocrine system, including the secretion of sex hormones and
insulin-like growth hormone-1 (IGF-1) [4]. Recent evidence suggests that certain micronutrients may
be protective for sarcopenia, and also important for hormone synthesis and metabolism, particularly
during the decrease in endogenous secretion that occurs during aging [4]. This decrease in hormone
secretion is also associated with increases in risks of falls, osteoporosis, fractures, cardiovascular disease
and all-cause mortality [5–16].
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The endocrine system decline with age [4] includes a decrease in testosterone concentrations of
0.5%–1% per year in men, and of oestrogen in women, that begins around 30 years of age [17,18]. The
decline in testosterone concentrations in men is associated with loss of muscle mass and strength [19,20],
and furthermore testosterone/dihydrotestosterone (DHT) supplementation can increase muscle
strength [21]. Similarly, oestrogen concentrations, which decline more rapidly during the menopause
in women [22], are closely linked to muscle strength [23]. Evidence from randomised controlled trials
(RCTs) suggests oestrogen replacement therapy reduces the decline in strength of post-menopausal
women [22] via a reduction in ‘FOXO3’ activation and ‘MuRF1’ protein expression [24].

The concentration of other endocrine hormones, (Dehydroepiandrosterone, DHEAS; Sex-Hormone
Binding Globulin, SHBG; and Insulin-like Growth Factor-1, IGF-1) are also associated with skeletal
muscle [25,26] and may be involved in the aetiology of sarcopenia since circulating concentrations
change with age. DHEAS [27] is converted into the active forms of testosterone and oestrogen,
and stimulates production of IGF-1 [18], declines with age and relates to loss of muscle mass and
strength [17]. SHBG transports testosterone, oestrogen, and other steroids in the blood, and increases
with age thus reducing free testosterone and oestrogen [28–30]. The age-related decline in IGF-1 [31] is
relevant due to its roles in promoting myoblast proliferation and differentiation, as well as formation
of muscle fibres during normal growth, and in response to injury [32]. Alongside improving muscle
hypertrophy and strength, IGF-1 also suppresses muscle inflammation and fibrosis, and is associated
with skeletal muscle mass and strength [32–36]. Therefore, increasing concentrations of circulating
IFG-1 and sex hormones may be potentially beneficial for preventing sarcopenia as well as certain
non-communicable diseases and conditions of aging.

Micronutrients are potentially important for sex hormone synthesis and metabolism, particularly
during the age-related decline in the endocrine system. Previous research from in-vitro, in-vivo
or observational studies found that certain micronutrients including vitamin D [37–47], vitamin
E [48–50], vitamin A [51], lycopene [52], iron [53], magnesium [54–56], selenium [57–60] or
zinc [58,60–67] were associated with either androgen metabolism, testosterone concentrations or
SHBG. Associations have also been found between oestrogen and vitamins C, D, E, A, and carotenoids,
including lycopene [48,68–71]. IGF-1 has also been associated with lycopene [72–75], magnesium [55],
selenium [57] or zinc [61,62,76,77], iron/ferritin [78] and copper [79]. These studies indicate the
relevance of micronutrients to the endocrine system, although many were in individuals in young
adulthood and their effects in older age have been less studied to date.

The mechanisms for the role of micronutrients in synthesis of sex hormones and IGF-1 include
the involvement in steroidogenesis, via the involvement of prostaglandins, on the precursors of
sex hormones, for vitamins D, E, the carotenoids, zinc and selenium, as well the effects of vitamin
C [38–50,52,60,64,65,68,69,71,79–86], and effects on transporter proteins. Zinc is also an inhibitor of
two enzymes, aromatase and 5α-reductase, that are involved in testosterone metabolism [60].

Intake of micronutrients, micronutrient deficiency, as well as protein intake, may be also important
in determining the onset of sarcopenia [38,76,77,87–96]. Recent observational and animal studies
found that vitamins C, D, E, and carotenoids and the minerals magnesium, selenium, iron and zinc
are relevant to muscle mass and physical performance [76,77,88,89,92,97–99]. The mechanisms for
the action of these nutrients include involvement in collagen and carnitine synthesis, for vitamin C,
activities on skeletal muscle cell differentiation and proliferation, for vitamin D [38] and synthesis of
protein and mitochondrial function, for magnesium [38,76,77,87–97].

Further mechanisms for changes in hormones and the musculoskeletal system that occur during
aging are the associated increases in low grade circulating inflammatory cytokines and of ROS
(Reactive Oxygen Species) [93]. A number of micronutrients act as endogenous antioxidants with the
capacity to reduce ROS and circulating inflammatory cytokines. These micronutrients include vitamins
A, C, E [100,101], the carotenoids [100–105], zinc [60,106], magnesium [55] and selenium [57,60].
Therefore, improving intakes or rectifying micronutrient deficiency could potentially affect both the
onset of sarcopenia as well as sex hormone and IGF-1 metabolism, via a number of mechanisms, during
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aging. Improvements in micronutrient intake could be achieved through increased consumption of
dietary whole foods, e.g., oranges (rich in vitamin C); or via supplementation of vitamins and minerals,
e.g., single component or multivitamin tablets.

A number of micronutrients have antioxidant activity with the capacity to reduce ROS
and circulating inflammatory cytokines. These micronutrients are vitamin A [100,101], the
carotenoids [100,101], vitamin C [102,103], vitamin E [104,105], zinc [106], magnesium [55] and
selenium [57]. Therefore, rectifying micronutrient deficiency could potentially affect both the onset
of sarcopenia as well as sex hormone and IGF-1 metabolism during aging. This can typically be
achieved through increased consumption of dietary whole foods, e.g., oranges (rich in vitamin C); or
via supplementation of vitamins and minerals, e.g., single component or multivitamin tablets.

We are unaware of any previous systematic reviews that have investigated the importance of
micronutrient intakes on sex hormones and IGF-1 in middle and older aged people at risk of sarcopenia.
Therefore, given the potential role for micronutrients to influence secretion of these hormones during
aging, and the importance of these sex hormones to the aetiology of sarcopenia, we conducted
a systematic review (SR) to investigate the effects of dietary or supplemental intake of specified
micronutrients and changes in concentration of sex hormones and IGF-1. We included adults aged
45 years or older, since this is the age at which recognisable declines in muscle mass and function, sex
hormones and IGF-1 start to occur [107].

2. Materials and Methods

The systematic review was conducted in accordance with the Cochrane collaboration
guidelines and reported using the PRISMA 2009 checklist [108,109]. The protocol was registered
with the International prospective register of systematic reviews (PROSPERO), registration ID:
CRD42018098657 [110].

2.1. Search Methods

Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and EMBASE were
searched to 2nd April 2019 using the ‘Population, intervention, comparators, outcomes, study design’
(PICOS) Framework (see Table 1) without date restrictions. The search strategy can be viewed in
Supplementary Appendix A, but in brief, a MEDLINE search was developed and adapted for EMBASE
and Cochrane, and search limiters were used for RCTs as per the ‘Scottish Collegiate Network’ [111].

Table 1. PICO Framework for search strategy. See Supplementary Tables (Table S1, A–Table S5, E),
for further details.

P Humans, adults only, aged >45 years.

I Micronutrients

C -

O Sex hormones and IGF-1

S Randomised controlled trials (RCTs)

2.2. Eligibility Criteria

We included randomised controlled trials (RCTs) that assessed the effects of additional
micronutrients in adults aged at least 45 years on primary outcomes. The primary outcomes
were changes or differences in sex hormone concentrations, including: androgens (androstenediol,
androstenedione, dihydrotestosterone and testosterone), oestrogens (E2, estradiol, estriol, and estrone),
DHEAS, SHBG, and IGF-1 (see Supplementary Table S1, A). Relevant micronutrients were those
with known or potential relevance to sex hormone or IGF-1 metabolism and physiology, as well
as sarcopenia, and included any one, or combination, of vitamin A [48,69]; vitamin C [76]; vitamin
D [38–47]; vitamin E [48,50]; carotenoids [69]; or the minerals zinc [64,65], magnesium [54], selenium,
potassium [76,77], iron/ferritin [78] and copper [79].
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Where studies included groups of individuals with varying age ranges, they were included if the
mean age was greater than 45 years, or more than 75% of individuals were older than 45 years (in both
treatment arms). We included studies that used any micronutrient or hormone extraction method,
including biomarkers from blood, plasma, red blood cells, body fat, urine, hair, and nails. We excluded
studies where the age of the population was unclear, or where participants stopped, started, or changed,
hormonal medication, during a study. Where RCTs examined micronutrients in conjunction with
another intervention, e.g., exercise, the study was included only if the comparator group received
the same non-dietary intervention. Studies that included participants on active dialysis, or with
kidney or liver disease [112], were excluded as these are known to affect endogenous sex hormones
and IGF-1 [113,114]. In-vitro studies and studies that used foods as interventions without a reported
dose of an eligible nutrient were also excluded. We accepted trials of multivitamins or multi-nutrient
studies that included further compounds, other than the micronutrients previously listed. This is
because some studies may have used combined vitamins for an intervention and provided information.
Studies that fell into this category were reported separately, and were defined as two or more different
multi-nutrients in the intervention group compared to placebo. We excluded non-English language
papers that we were unable to translate within the research team.

2.3. Study Selection

Study selection was conducted in a two-phase process. Screening of titles and abstracts against
inclusion/exclusion criteria (Supplementary Table S2, B) was carried out independently by two
reviewers (RJ and one of DB, AA, RH, AW, SM, JC, WA). Potential titles and abstracts identified by any
reviewer were collected in full text and subsequently assessed against the inclusion/exclusion criteria
by at least 2 reviewers. Any disagreements were discussed, a third reviewer was not needed to clarify
consensus on eligibility.

2.4. Data Extraction

We created and tested a data extraction form for this review (Supplementary Table S3, C).
Data extracted included: publication details, aims, objectives, country, setting, design, dates,
funding, recruitment method, ethical review, participant demographics, intervention descriptions
(including: micronutrient type and extraction methods) and outcomes (method of extraction and
hormone type). Data extraction and risk of bias assessment was completed independently in duplicate
by RJ and another review team member. We were unable to contact authors on any queries regarding
data due to time constraints.

2.5. Risk of Bias (Quality Assessment)

Risk of bias assessment was based on the Cochrane Risk of Bias tool (https://handbook-5-1.cochrane.
org/chapter_8/table_8_5_a_the_cochrane_collaborations_tool_for_assessing.htm) (Supplementary
Table S4, D) [115]. Alongside the typical seven standard domains, we included three further items:
‘hormonal treatment’ bias, where participants may be taking medication(s) that influence sex hormones;
‘sponsorship’ bias, where funding by companies may have influenced the outcome of results; and
‘outcome measurement’ bias, which concerns the differences in accuracy of extraction methods. The
Journal of Clinical Endocrinology and Metabolism [116] recommends measurement of sex hormones to
be conducted using mass spectrometry, as this conveys the highest degree of accuracy, and lowest bias.
Studies that used other (less reliable) methods of hormone extraction, e.g., direct immunoassay [117] or
electro chemiluminescent assay [118], were assessed to be at high risk of outcome measurement bias.

2.6. Data Synthesis and Statistical Analysis

Meta-analyses were performed only where at least two trials could be combined. We used a
random effects model in ‘Review Manager (RevMan) [Computer program] [119]. We produced the
forest plots using ‘end data’ for intervention and placebo groups. Outcomes were ‘continuous’ and

https://handbook-5-1.cochrane.org/chapter_8/table_8_5_a_the_cochrane_collaborations_tool_for_assessing.htm
https://handbook-5-1.cochrane.org/chapter_8/table_8_5_a_the_cochrane_collaborations_tool_for_assessing.htm
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data for IGF-1, testosterone, and SHBG, reported in non-standard units were converted using an
online tool (http://unitslab.com/node/230). Where meta-analysis was not possible or data could not
be converted or utilised, results were narratively reported. Some studies reported data as ‘median’
values so could not be included in a meta-analysis, but have been included in some forest plots to
help illustrate overall effects. Sensitivity analysis, using fixed-effects meta-analysis, was carried out
where at least two trials were combined. Comparison between random and fixed effects meta-analysis
allowed small study bias to be assessed [120]. We also intended to use funnel plots to assess small
study (publication) bias; but as no meta-analysis included at least 10 studies, this was not useful.

3. Results

A total of 7623 titles and abstracts were identified from the three separate databases. After the
removal of duplicates, 5444 papers remained, of which 5043 were excluded based on title and abstract
screening. The remaining 400 studies were assessed in full text, leaving a total of 26 eligible studies.
The majority of excluded studies (n = 374) were excluded due to the population age or study design.
A summary overview of the selection process is provided in Figure 1.Nutrients 2020, 10, x FOR PEER REVIEW  6 of 23 
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Figure 1. PRISMA Flowchart.

The 26 eligible RCTs examined a range of micronutrients: vitamin D (9, 35%), multi-nutrients
(9, 35%), carotenoids (4, 15%), selenium (2, 8%), vitamin E (1, 4%) and zinc (1, 4%). Briefly, a total of

http://unitslab.com/node/230
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2443 participants were examined. Interventions ranged from 4 weeks to 48 months and participants
were mostly males (~64%). Some studies (9, 35%) included individuals who either had a histological
diagnosis of prostate cancer or colon cancer, evidence of increasing prostate specific antigen (PSA),
or a family history of cancer. Other studies (8, 31%) examined individuals with metabolic syndrome
(including obesity) and/or cardiovascular disease. Different races/ethnic groups were also studied,
including: Asian, Black, Latino and White. Details of the study characteristics can be found in
Supplementary Table S5, E. An overview of the risk of bias for RCTs is shown in Figure 2. We found no
trials assessing effects of vitamins A or C, potassium, iron or copper on our outcomes.
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3.1. Risk of Bias of Included RCTs

Methods of minimising selection bias were poorly reported, with 54% (14/26) and 77% (20/26) of
RCT studies being unclear in methodology of ‘randomisation’ and ‘allocation concealment’, respectively
(Figure 2). Many studies (58%, or 15/26) minimised performance bias by blinding participants and
study personnel, and a smaller proportion (42%, or 11/26) successfully reported blinding of outcomes.
Incomplete outcome data was minimised, as was the influence of hormonal treatments on sex
hormones (mainly through comprehensive exclusion criteria). Only a small proportion of studies
(~12%) advised participants to change their dietary habits in addition to any intervention or placebo.
The majority of studies (88%, or 23/26) reported serum blood concentrations, with 12% (3/26) estimating
micronutrient intake from dietary assessment questionnaires. Although extraction using serum
analysis for micronutrients may pick up coagulants and other trace elements, there appears to be a
non-significant variation between plasma and serum values. It is unclear whether the coagulants or
trace elements would influence supplemented or non-supplemented cohorts differently. It is worth
noting, Olmedilla-Alonso et al. [121] found retinol, gamma- and alpha-tocopherol serum values were
positively biased (mean difference of less than: 0.05, 0.01 and 0.7 mol/L, respectively) when compared
to plasma values [121]. However, this is unlikely to influence our results as we only identified one trial
with vitamin E within our systematic review. Only 8% (2/26) of studies measured sex hormones using
the gold standard recommendation of mass spectrometry [122].

3.2. Vitamin D

Nine studies assessed effects of vitamin D on relevant outcomes [116,123–130] but no studies
assessed effects on androstenediol, androstenedione, dihydrotestosterone, estriol, or DHEAS. Vitamin D
doses varied from 100 IU [130], through 1000 IU [125], 4000 IU [129], 20,000 IU [128] up to 40,000 IU [123],
and one was unclear [126]. Baseline vitamin D status was low in some trials [128,129], normal in
some [127] and unknown in others [123,124]. Study duration ranged from 6 weeks [130] through
1 year [116,123,125], up to 36 months [129].

3.2.1. Effects of Vitamin D on IGF-1

Four studies [123–125,131] assessed the effects of vitamin D supplementation on IGF-1 over 4 weeks
to 12 months. We presented the Kamycheva trial [123] as two groups, severely obese (study participants
with >35 kg/m2) and non-severely obese (other participants), as results were presented this way in
the paper. Meta-analysis demonstrated no significant effects of the intervention (mean difference:
−0.53 nmol/L, 95% CI: −1.58, 0.52, 3 RCTs, I2 0%, Figure 3). One trial [124] could not be included in
the meta-analysis because it was not possible to convert the units of IGF-1 used (µg/10E06 platelets)
to nmol/L. This was a 4-week RCT that confirmed a statistically non-significant mean difference
of 0.007 µg/10E06 platelets, p = 0.413 between intervention and placebo post intervention. The
four included trials randomised 447 participants (mean age: 55.2, 59% males, including dropouts)
from Norway [123], USA [124,125] and Austria [131]. Studies used a variety of vitamin D dosages:
400 IU [124] 1000 IU [125], 2800 IU [131] and 40,000 IU [123].

Major sources of bias within these studies included randomisation procedures (sequence generation
and allocation concealment) and blinding (Figure 3). Only one trial was at low risk of attrition bias,
and no studies used ‘mass spectrometry’ to measure sex hormone concentrations, so all were at high
risk of outcome assessment bias.

The lack of effect of increasing vitamin D on IGF-1 was confirmed in the set of trials which
supplemented with vitamin D and other compounds (two or more micronutrients) (Figure 3).
Combining all the trials increasing vitamin D (individually or as part of a broader intervention)
suggests little or no effect on IGF-1 (MD: −0.27 nmol/L, 95% CI −1.20 to 0.67, I2 0%). This did not differ
in sensitivity analysis using fixed-effects meta-analysis (MD: −0.27 nmol/L, 95% CI −1.20 to 0.67, I2
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0%). The difference in effect size between fixed- and random-effects meta-analysis suggests that there
may be some small study bias present.

The effect of differing baseline vitamin D status, doses and study duration were assessed
in sub-grouping. There were no differences between subgroups in any analysis (p ≥ 0.85 for all
subgroupings, not shown).Nutrients 2020, 10, x FOR PEER REVIEW  9 of 23 
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3.2.2. Effects of Vitamin D on Testosterone

Five trials reported effects of vitamin D on testosterone. They included 754 participants (54% male)
from China [126], The Netherlands [127], Austria [128], Germany [129] and USA [116]. All included
women were post-menopausal. Only two studies could be combined in meta-analysis, suggesting no
effect of vitamin D on free testosterone (MD 0.00, 95% CI −0.00 to 0.00, I2 0%, Figure 4). The effect
did not differ in sensitivity analysis using fixed-effects meta-analysis, suggesting a lack of small study
bias, although with only two trials this is difficult to assess. The other trials (shown in Figure 4 though
not combined in meta-analysis) reported data as medians and interquartile ranges [127,128]. One
study did not specify which type of testosterone was measured and did not provide enough data to be
included [126].
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The two trials that could be combined appeared to have adequate randomisation and blinding,
though only one had adequate allocation concealment. Neither was at a low risk of outcome
measurement bias.

3.2.3. Effects of Vitamin D on Oestradiol

Two trials assessed effects of vitamin D on oestradiol, but could not be combined in meta-analysis.
Individually, neither found a statistically significant effect of supplementation [116,126].

3.2.4. Effects of Vitamin D on SHBG

Three studies reported effects of vitamin D on SHBG, randomising 445 participants
(51% male) [116,128,129]. Meta-analysis of two RCTs suggested a small though non-statistically
significant increase in SHBG with vitamin D (MD 4.18 nmol/L, 95% CI −1.28 to 9.64, I2 0%, Figure 5),
but data from the third trial contradicted this finding. Two of the three trials were at low risk of
selection bias, and all were well blinded, and one used a low risk method of outcome assessment
(Figure 5).
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Figure 5. Forest plot showing effects of increasing vitamin D on SHBG (nmol/L). Vit D, vitamin D. Please
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3.3. Multi-Nutrients

Nine studies assessed effects of multi-nutrients (defined as two or more different micronutrients
in the intervention group) on relevant outcomes, but no studies assessed effects on androstenediol,
androstenedione, E2, estradiol, estriol, estrone, or DHEAS. Those studies that also included vitamin D
within the multi-nutrient interventions are also covered in Section 3.2.

3.3.1. Effects of Multi-Nutrient Supplements on IGF-1

Seven of the nine studies identified as multi-nutrient interventions [130,132–137] reported on
IGF-1, suggesting little or no effect (MD: 0.60 nmol/L, 95% CI −1.12 to 2.33, I2 0%, 519 participants,
Figure 6). Effects did not differ in fixed-effects meta-analysis (MD: 0.60 nmol/L, 95% CI −1.12 to 2.33),
suggesting that small study bias is not an issue here.

The Jensen et al. study [137] analysed data using a ‘per-protocol’ method which introduced
potential bias [138], since the 20% of study participants withdrew. All seven studies measured
micronutrient concentrations from blood samples, but none used mass-spectrometry to measure sex
hormone concentrations, and many were unclear on selection bias and blinding.

3.3.2. Effects of Multi-Nutrients on Testosterone

Two trials carried out in the Netherlands reported effects of multi-nutrient interventions on
testosterone in men with rising levels of prostate-specific antigen (117 males, mean age: 72), and
reported opposing findings (Figure 6). We were unable to meta-analyse these findings as Kranse did
not provide any measure of variance. However, Hoenjet, 2005 [139] suggested no effect on testosterone



Nutrients 2020, 12, 1457 10 of 21

concentrations (p = 0.28), while Kranse, 2005 [140] (cross-over trial) suggested significant reductions in
testosterone but reported different numbers in different places in their paper, so the effect size was
unclear (p = 0.02). Both trials were at unclear risk of selection bias and low risk of blinding problems.
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(nmol/L). Multi, multi-nutrient. Please refer to Supplementary Table S5, E to find detailed information
on the studies and the reference number.

3.3.3. Effects of Multi-Nutrients on Dihydrotestosterone and SHBG

The same two trials (Kranse, 2005; and Hoenjet, 2005) also assessed the effect of multi-nutrient
supplementation on Dihydroteststerone and SHBG (Figure 6), but again Kranse provided no measure
of variance and two different effect sizes, so could not be pooled. Multi-nutrient supplementation in
Kranse, 2005, reportedly significantly decreased Dihydrotestosterone, but the effect size was unclear
(p = 0.005), whereas, in Hoenjet 2005, non-significant findings were reported (MD: 0.1 nmol/L, 95% CI
−0.1 to 0.2, p = 0.72). After supplementation with multi-nutrients, both studies reported non-significant
decreases in SHBG.

3.4. Carotenoids

Four trials assessed the effects of carotenoids on relevant outcomes, but none assessed the effects
on androgens (androstenediol, androstenedione, dihydrotestosterone or testosterone), oestrogens
(E2, estradiol, estriol, or estrone), DHEAS or SHBG.

Effects of Carotenoids on IGF-1

Four studies [52,80–82] examined the effects of lycopene, all using ‘Lyco-O-Mato’ (containing
~15 mg lycopene, plus 1.5 mg phytoene, 1.4 mg phytofluene, 0.4 mg beta-carotene, and 5 mg alpha
tocopherol). Meta-analysis of 278 randomised participants (mean age: 63.0, 75% male) showed a
non-significant decrease in IGF-1 as a result of the added carotenoids (MD −1.32 nmol/L; 95% CI −2.76
to 0.11, I2 0%, Figure 6). None of the trials were at low risk of selection bias, but two were at low risk
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from issues around blinding (performance and detection bias), and none used mass-spectrometry to
measure hormone concentrations (Figure 7).
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Trials of carotenoids as part of multi-nutrient supplementation (Figure 7), confirmed a small
non-significant decrease in IGF-1 (MD:−0.39, 95% CI−2.90 to 0.11, I2 0%). These trials also demonstrated
significant sources of bias (see earlier).

Overall effects of carotenoids (in either individual or multi-nutrient studies) suggested no
important effect of carotenoids on IGF-1 (MD: −1.09, 95% CI −2.34 to 0.16, I2 0%), which did not
differ in sensitivity analysis using fixed effects meta-analysis (MD: −1.09, 95% CI −2.34 to 0.16). This
suggested minimal small study bias.

3.5. Selenium

Two studies assessed effects of selenium on testosterone, but no studies assessed effects on
oestrogens (E2, estradiol, estriol, or estrone), DHEAS, SHBG, IGF-1 or androgens other than testosterone.

Effects of Selenium on Testosterone

Two studies in the Czech Republic examined the effects of 240 µg of selenium (as selenomethionine)
on testosterone. Both intervention and placebo also received 570 mg of silymarin, an extract of milk
thistle [141,142]. Both suggested no significant effects on testosterone.

3.6. Vitamin E

One study assessed the effects of Vitamin E on DHEAS, but no studies assessed the effects
on androgens (androstenediol, androstenedione, dihydrotestosterone and testosterone), oestrogens
(E2, estradiol, estriol, and estrone), SHBG, or IGF-1.

Effects of Vitamin E on DHEAS

Amsterdam 2005 [143] found that 200 mg vitamin E (as dl-alpha-tocopheryl acetate) over 15 months
lead to a significant decrease in DHEAS in the supplemented group (p < 0.02) but not the placebo group
(p > 0.05). The authors concluded there was no overall significant benefit to vitamin E supplementation.
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3.7. Zinc

One study assessed effects of zinc on IGF-1, but no studies assessed effects on androgens
(androstenediol, androstenedione, dihydrotestosterone and testosterone), oestrogens (E2, estradiol,
estriol, and estrone), DHEA or SHBG.

Effects of Zinc on IGF-1

A Swiss trial by Rodondi, 2009 [61] (n = 69, mean age 85, 86% female) reported that supplementation
of 30 mg/day of zinc (alongside 15 g whey protein + 5 g amino acids) increased serum IGF-1 over
a week compared to protein alone (+48.2% vs. +22.4%, respectively; p < 0.027), but there was no
statistically significant difference between groups at 4 weeks (+29.2% vs. +45.8%; p > 0.05).

4. Discussion

We found 26 trials assessing effects of micronutrient supplementation, but no trials assessing effects
of vitamins A or C, potassium, iron, or copper, on our outcomes. Data from nine trials suggested that
supplementation with vitamin D had little or no effect on IGF-1, with or without other micronutrient
compounds. Vitamin D also failed to significantly alter testosterone or oestradiol, and the effects on
SHBG and other outcomes were unclear. The multinutrient trials did not suggest statistically significant
increases in IGF-1, and the effects on testosterone, dihydrotestosterone and SHBG were unclear. Data
were very limited for effects of other micronutrients. Four trials suggested that carotenoids slightly
reduce IGF-1 and this was reinforced with the inclusion of other micronutrients (though none of
the relationships were statistically significant). Selenium appears to have little effect on testosterone
(2 trials), vitamin E had no effect on DHEAS, and zinc had little or no effect on IGF-1 (a single trial each).

Despite our systematic search including a large range of relevant micronutrients and hormones,
we only identified studies that investigated effects of vitamin D, multi-nutrients, the carotenoids,
selenium, vitamin E, and zinc, on sex hormones and IGF-1. To the best of our knowledge, this is the
first systematic review examining the relationship between this range of micronutrients, sex hormones
and IGF-1 in people of middle and older age. We conducted the review using established Cochrane
methodology [115].

Despite the biochemical, physiological and mechanistic roles of micronutrients for hormone
synthesis in older age our review found a paucity of trials and little direct evidence of significant effects
of micronutrient supplementation [38–50,52,60,64,65,68,69,71,79–86]. Since the age-related decline in
sex-hormones and IGF-1 not only increases the risk of sarcopenia, but also a number of conditions of
aging, including falls, osteoporosis, fractures, cardiovascular disease and all-cause mortality, this is
unfortunate [5–16].

Limitations of the Available Data

Whilst we identified 26 RCTs of adults aged at least 45 years that met our eligibility criteria,
when grouped by micronutrient and sex-hormone, the number of studies in each category was small
(between one and nine studies per nutrient), and many had methodological limitations. A number of the
studies had small sample sizes or lack of control for dietary or lifestyle determinants in the intervention
and control groups [52,80,82] and one study [137,138] also analysed data using a ‘per-protocol’ method
which may have introduced bias elements of bias [138].

For multi-nutrient interventions the composition of the nutrients varied substantially [130,132–136]
with some containing more than 20 different micronutrients [132,137], making it difficult to attribute
benefit to any specific micronutrient. A number of studies also included additional protein making it
difficult to isolate any specific effects of micronutrients from those of protein [61,132,137,144,145]. The
baseline nutritional status of participants was not taken into account in a number of studies despite
baseline status or deficiency being likely to determine the response to interventions. Some studies
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also included dietary advice to increase sources of calcium, which may have affected the results of
the intervention.

Whilst we found no significant effect of the supplementation of micronutrients on circulating
sex hormones and IGF-1, the scale of effects for the few studies that included IGF-1 ranged between
mean differences for vitamin D of −0.53 nmol/L (95% CI: −1.58, 0.52), for multi-nutrients of 0.60 nmol/L
(95% CI −1.12 to 2.33) and carotenoids of −1.32 nmol/L (95% CI −2.76 to 0.11). This compares with the
difference for IGF-1 between age groups 50–54 years to 70–74 years of −3.4 nmol/L [146,147]. Although
the effect sizes found with micronutrients and IGF-1 in our analysis were non-significant, and smaller
than with age, these differences may have potential importance if found to be significant in future
well-designed trials.

5. Recommendations for Future Studies

Although our systematic review demonstrated no conclusive effects of the supplementation of
micronutrients on sex hormones in middle- and older-aged people, we recommend that larger RCTs
are conducted specifically targeting the micronutrients where we found little or no existing research
(magnesium, zinc, vitamin A, E, iron, copper, and potassium). Future RCTs should be of sufficient
size and include baseline and follow-up measures of dietary intake (such as with food frequency
questionnaires), as well as using blood concentrations of the relevant micronutrients. This would
clarify whether micronutrient supplementation is only beneficial to depleted individuals or whether it
can provide additional benefit to those with adequate micronutrient status. Direct measurements of
micronutrient status have advantages as they are independent of potential reporting bias, are integrated
measurements of intake and other physiological and lifestyle influences on status, such as smoking
habit, and can be used to determine whether supplementation results in improved micronutrient
status [148–150]. Furthermore, dosages of micronutrients should be designed to rectify any pre-existing
micronutrient deficiency. Additionally, extraction of hormones should be performed using mass
spectrometry, and SHBG should be measured to account for changes to free oestrogen and testosterone
that may occur during the intervention. Other known lifestyle factors that affect circulating sex
hormones and IGF-1, such as smoking habit and BMI should also be recorded [146,147]. An optimal
follow-up time has yet to be elucidated but we would recommend a minimum of 6 months, and that
endocrine and nutritional measurements be taken at 3 month intervals until the study is complete.

6. Conclusions

Effects of micronutrient supplementation on sex hormones and IGF-1 are unclear. Further high
quality RCTs with physiological doses of micronutrients in people with low baseline intakes or
circulating concentrations, using robust methodology, are required to assess effects adequately.
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