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HIGHER PREPROJECTIVE ALGEBRAS, KOSZUL ALGEBRAS, AND

SUPERPOTENTIALS

JOSEPH GRANT AND OSAMU IYAMA

Abstract. In this article we study higher preprojective algebras, showing that various known
results for ordinary preprojective algebras generalize to the higher setting. We first show that
the quiver of the higher preprojective algebra is obtained by adding arrows to the quiver of the
original algebra, and these arrows can be read off from the last term of the bimodule resolution
of the original algebra. In the Koszul case we are able to obtain the new relations of the higher
preprojective algebra by differentiating a superpotential and we show that when our original

algebra is d-hereditary all the relations come from the superpotential.
We then construct projective resolutions of all simple modules for the higher preprojective

algebra of a d-hereditary algebra. This allows us to recover various known homological properties
of the higher preprojective algebras and to obtain a large class of almost Koszul dual pairs of
algebras. We also show that when our original algebra is Koszul there is a natural map from the
quadratic dual of the higher preprojective algebra to a graded trivial extension algebra.
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1. Introduction

The preprojective algebras of quivers are important algebras which appear in various areas of
mathematics, e.g. Cohen-Macaulay modules [Au, GL], Kleinian singularities [CB3], cluster algebras
[GLS], quantum groups [KS, Lu], quiver varieties [Na]. They were first introduced by Gelfand and
Ponomarev [GP] (see also [DR]) by explicit quivers with relations: The algebra Π of a quiver Q is
the path algebra FQ of the double quiver Q of Q modulo the ideal generated by

∑

x∈Q1
(xx∗−x∗x).

Baer, Geigle, and Lenzing gave a more conceptual construction of Π based on the representation
theory of the quiver Q [BGL]: Their algebra is the direct sum of spaces HomΛ(Λ, τ

−ℓΛ) for the
inverse Auslander-Reiten translate τ−, with an obvious multiplication. The algebras of Gelfand-
Ponomarev and Baer-Geigle-Lenzing are isomorphic, as shown in [Rin, CB2].

Preprojective algebras enjoy very nice homological properties. They enjoy a certain 2-Calabi-
Yau property [CB1]: If Q is non-Dynkin, then Π is a 2-Calabi-Yau algebra in the sense of Ginzburg.
If Q is Dynkin, then Π is a self-injective algebra and its stable category is 2-Calabi-Yau. They also
enjoy a certain Koszul property: If Q is non-Dynkin, then Π is a Koszul algebra. If Q is Dynkin,
then Π is twisted periodic of period 3 [RS], and moreover it is an almost Koszul algebra in the
sense of Brenner, Butler, and King [BBK].

Recently, an analogue of preprojective algebras was studied in cluster theory [Kel] and higher-
dimensional Auslander-Reiten theory [Iy1]. For a finite dimensional algebra Λ of global dimension

d, its preprojective algebra is defined as HomΛ(Λ, τ
−ℓ
d Λ), where τd and τ−d are higher analogues of
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the Auslander-Reiten translates. This algebra is the 0-th cohomology of the (d + 1)-Calabi-Yau
completion [Kel], which is a (d+ 1)-Calabi-Yau differential graded algebra. When Λ is a so-called
d-hereditary algebra, its higher preprojective algebras enjoys nice homological properties, including
the (d+1)-Calabi-Yau property [AO, HI, IO1, IO2, HIO]. Higher preprojective algebras also appear
in non-commutative algebraic geometry [Min, MM] and in conformal field theory [EP1, EP2].

A natural question arises: can we describe these higher preprojective algebras by quivers and
relations, generalizing the description of Gelfand and Ponomarev? This is important in practice
since having a description by a quiver and relations often makes calculations much easier to perform.
When Λ has global dimension exactly 2, the higher preprojective algebra is isomorphic to the
Jacobi algebra of a certain quiver with potential [Kel, HI], whose relations are given by taking
formal partial differentials of the potential. Quivers with potential appeared in physicists’ study
of mirror symmetry, and also played a key role in categorification of Fomin-Zelevinsky cluster
algebras [DWZ].

It is a difficult problem to give a description of the higher preprojective algebra of a general
finite-dimensional algebra in terms of a quiver and relations. Here, we impose the restriction that
Λ should be a Koszul algebra, which ensures its homological algebra is easier to understand. Then
we are able to describe the quivers of the higher preprojective algebras, and to show that the new
relations in the higher preprojective algebra come from taking higher formal partial differentials of
a superpotential (see Theorem 3.13). If we further assume that Λ is a d-hereditary algebra [HIO],
then all the relations come from higher differentials of the superpotential.

Theorem A (Corollary 4.3). If Λ ∼= FQ/(R) is Koszul and d-hereditary then

Π ∼=
FQ

(∂pW )

where the quiver Q is a quiver obtained from Q by adding new arrows, and the relations ∂pW are

obtained by differentiating a certain superpotential W with respect to length d− 1 paths of Q.

In fact, our Theorem 3.14 is much more general since Λ can be a factor algebra of the tensor algebra
TS(V ) for a separable F-algebra S. In Definitions 3.4 and 3.5, we give definitions of superpotentials
in TS(V ) and the associated higher Jacobi algebras which work in this generality, by using the 0th
Hochschild homology. Higher Jacobi algebras have been considered previously in representation
theory, notably in work of Van den Bergh [VdB], and Bocklandt, Schedler, and Wemyss [BSW]
(see also [DV, MS]). In the d-representation infinite case, which makes up half of the dichotomy
of d-hereditary algebras, we recover the description of Calabi-Yau Koszul algebras given in [BSW].
In the case where Λ is a basic Koszul d-representation-infinite algebra, this description was also
given by Thibault [Thi].

We also obtain homological information about higher preprojective algebras. Under the as-
sumption that Λ is d-hereditary, we are able to describe the projective resolutions of all simple
Π-modules using the higher Auslander-Reiten theory of Λ. In fact, we show that they are induced
from d-almost split sequences (see Theorem 4.12). As applications, we have the following results.

Theorem B (Corollaries 4.13 and 4.14 and Theorem 4.19). Let Λ be a d-hereditary algebra and
Π the (d+ 1)-preprojective algebra of Λ.

(a) If Λ is d-representation finite, then the simple Π-modules have periodic projective resolutions.
If moreover Λ is Koszul, then Π is almost Koszul.

(b) If Λ is d-representation infinite, then the simple Π-modules have projective dimension exactly
d+ 1. If moreover Λ is Koszul, then so is Π.

As a corollary, we deduce that in the d-representation infinite case Π is AS-regular of dimension
d+ 1 and Gorenstein parameter 1 with respect to the tensor grading, and in the d-representation
finite case Π is twisted periodic of period d+2. This recovers results of Minamoto and Mori [MM]
and Dugas [Dug], respectively.
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Next we consider quadratic duals. We show that, when Λ is Koszul, there is a natural map from
the quadratic dual of the preprojective algebra to a graded trivial extension algebra of the quadratic
dual of Λ. Moreover we characterize when this map is surjective (respectively, an isomorphism)
(see Theorem 5.2). In particular, we prove the following result.

Theorem C (Theorem 5.2; Corollary 5.4). Let Λ be a Koszul algebra of global dimension d.

(a) There exists a morphism φ : Π! → Trivd+1(Λ
!) of Z-graded F-algebras.

(b) If Λ is d-hereditary then φ is surjective, and in this case φ is an isomorphism if and only if
Trivd+1(Λ

!) is quadratic.

In the d = 1 case where Λ = FQ for Q any connected acyclic quiver, we show that the map is an
isomorphism whenever the underlying graph of Q is not of type A1 or A2. We finish by applying
our results to the type A d-hereditary algebras Λ(d,s) [IO1] and use Theorem B to deduce that the
type A higher preprojective algebras are almost Koszul algebras with parameters (s − 1, d + 1),
thus obtaining examples of (p, q)-Koszul algebras for all p, q ≥ 2.

Note that a similar result to Theorem C was independently obtained by Guo [Guo].

Acknowledgements: O.I. was supported by JSPS Grant-in-Aid for Scientific Research (B)
24340004, (B) 16H03923, (C) 18K03209 and (S) 15H05738. J.G. was supported first by the Japan
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Syracuse University, Isaac Newton Institute, and Czech Technical University in Prague.

2. Preliminaries

Let Λ be a finite-dimensional algebra over a field F. By default, a Λ-module will mean a
finitely generated left Λ-module, and we denote the category of such modules by Λ -mod. The
corresponding category of right modules is denoted mod-Λ. If X is a set of left or right modules,
we denote by addX the additive subcategory of modules isomorphic to summands of sums of
elements of X . We sometimes write addM for add{M}.

We denote the enveloping algebra Λ⊗FΛ
op of Λ by Λen. We will assume that F acts centrally on

all bimodules, and then we can identify the category Λen -mod of left Λen-modules with the category
Λ -mod-Λ of Λen-modules. We have a duality (−)∗ = HomF(−,F) : Λ -mod

∼
→ mod-Λ which sends

left modules to right modules and vice versa. It extends to a duality Λen -mod
∼
→ Λen -mod of

bimodules.

2.1. Tensor algebras. Let M be a Λen-module. Recall that the tensor algebra TΛ(M) of M is
the Z-graded vector space

TΛ(M) =
⊕

i≥0

M i

where M i = M ⊗Λ · · · ⊗Λ M is the tensor product of i copies of M so, in particular, M0 = Λ.
There is an obvious graded multiplication map M i×M j →M i+j which sends the pair (λ1⊗λ2⊗
. . .⊗ λi, λi+1 ⊗ . . . λi+j) of standard basis vectors to the concatenated vector λ1 ⊗ λ2 ⊗ . . .⊗ λi+j ,
and so TΛ(M) is a nonnegatively Z-graded algebra. For later use, we prepare the following basic
observations, whose proofs are left to the reader.

Lemma 2.1. Let M be a Λen-module, T := TΛ(M), and I an ideal of Λ.

(a) For a Λen-modules N , we have TT (T ⊗Λ N ⊗Λ T ) ∼= TΛ(M ⊕N).
(b) For a Λen-submodule L of M , we have TΛ(M)/(I + L) ∼= TΛ/I(M/(IM +MI + L)).
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Let Λ be a basic F-algebra with Jacobson radical J . We assume that S is a semisimple subalgebra
of Λ such that Λ = S⊕J . Then we can write Λ = TS(V )/I for an Sen-module V and an ideal I of
TS(V ). If I is a homogeneous ideal then Λ inherits a grading from TS(V ). Any such nonnegatively
Z-graded algebra Λ has a minimal Z-graded projective Λen-module resolution

· · ·
δ3→ P2

δ2→ P1
δ1→ P0 → 0,

where each projective module Pi is generated in degrees greater than or equal to i. Immediately,
we have the following property.

Lemma 2.2. For any i ≥ 0, the Z-graded Λen-module ExtiΛen(Λ,Λen) is generated in degrees
greater than or equal to −i.

We can write each projective Λen-module in the form Λ ⊗S K ⊗S Λ for some Sen-module K;
see [BK]. In particular, we write Pi = Λ ⊗S Ki ⊗S Λ for Z-graded projective Sen-modules Ki, for
0 ≤ i ≤ d, where we consider S as a Z-graded algebra concentrated in degree 0.

In general Ki
∼= TorΛi (S, S), and explicit descriptions for these spaces are known. For m ≥ 0,

TorΛ2m(S, S) ∼=
Im ∩ JIm−1J

JIm + ImJ
and TorΛ2m+1(S, S) =

JIm ∩ ImJ

Im+1 + JImJ
.

For more information and references, see the introduction to [BK]. For certain kinds of algebras
there are nicer descriptions of these spaces: see Section 2.2 and the final chapters of [BK].

As well as our vector-space duality (−)∗, we have a duality

(−)∨ := HomSen(−, Sen) : Sen -mod
∼
→ Sen -mod,

(−)∗ℓ := HomS(−, S) : S
en -mod

∼
→ Sen -mod,

(−)∗r := HomSop(−, S) : Sen -mod
∼
→ Sen -mod .

For Aen-modules X,Y, Z, we have functorial isomorphisms

Y ∗ℓ ⊗A X† ∼= (X ⊗A Y )† for † = ∗ or ∗ℓ (2.1.1)

sending f ⊗ g to (x⊗ y 7→ g(xf(y)) and

Y ∗r ⊗A X† ∼= (X ⊗A Y )† for † = ∗r or ∨ (2.1.2)

sending f ⊗ g to (x ⊗ y 7→ f(g(x)y)) for † = ∗r, and f ⊗ g to (x ⊗ y 7→
∑

i si ⊗ f(s′iy)) for
g(x) =

∑

i si ⊗ s′i for † = ∨.
Note the following simple lemma:

Lemma 2.3. Let L be a Λ⊗F S
op-module, X be a projective Sen-module, and M be a S ⊗F Λ

op-
module. Then there is an isomorphism of Λen-modules which is natural in L, X, and N :

HomΛen(L⊗S X ⊗S M,Λen) ∼= HomΛ(M,Λ)⊗S X∨ ⊗S HomΛop(L,Λ).

In particular, for any projective Sen-module X, there is a functorial isomorphism of Λen-modules

HomΛen(Λ ⊗S X ⊗S Λ,Λen) ∼= Λ⊗S X∨ ⊗S Λ.

Proof. We include a complete proof for the convenience of the reader. Using the tensor-hom
adjunctions, for any X ∈ Sen -mod we have isomorphisms of Λen-modules

HomΛen(L⊗S X ⊗S M,Λen) ∼= HomΛen((L ⊗F M)⊗Sen X,Λen)
∼= HomSen(X,HomΛen(L⊗F M,Λen)) ∼= X∨ ⊗Sen HomΛen(L ⊗F M,Λen)
∼= X∨ ⊗Sen (HomΛ(L,Λ)⊗F HomΛop(M,Λ)) ∼= HomΛ(M,Λ)⊗S X∨ ⊗S HomΛop(L,Λ).

All our isomorphisms are natural. �
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The four duals (−)∗, (−)∗ℓ, (−)∗r and (−)∨ are isomorphic to each other (e.g. [Ric, Section
3], [BSW, Section 2.1]). In fact, since S is a symmetric F-algebra, there exists an F-linear form
t : S → F such that t(xy) = t(yx) and the map S → S∗ sending x to (y 7→ t(xy)) is an isomorphism.
This gives isomorphisms

α := t ◦ (−) : (−)∗ℓ ∼= (−)∗, β := t ◦ (−) : (−)∗r ∼= (−)∗ and γ := (t⊗ 1) ◦ (−) : (−)∨ ∼= (−)∗r

of functors.
For the later use, we now show that these isomorphisms are compatible with module structures

in the following sense: Let L =
⊕

i∈Z
Li be a Z-graded TS(V

∗ℓ)op-module, and let

L(∗) =
⊕

i∈Z

L∗
−i, L(∗ℓ) =

⊕

i∈Z

L∗ℓ
−i, L(∗r) =

⊕

i∈Z

L∗r
−i and L(∨) =

⊕

i∈Z

L∨
−i.

Then L(∗) and L(∗ℓ) are Z-graded TS(V
∗ℓ)-modules, and L(∗r) and L(∨) are Z-graded TS(V

∗r)-
modules as follows: The action of TS(V

∗ℓ)op on L is given by a morphism ai : Li ⊗S V ∗ℓ → Li+1

of Sen-modules for i ∈ Z. This corresponds to a morphism bi : Li → Li+1 ⊗S V of Sen-modules
via Hom-tensor adjunction HomSen(A ⊗S B,C) ∼= HomSen(A,HomSop(B,C)). Applying (−)† for
† = ∗, ∗ℓ, ∗r,∨, we obtain morphisms

V ∗ℓ ⊗S L†
i+1

(2.1.1)
∼= (Li+1 ⊗S V )†

b†
i−→ L†

i for † = ∗ or ∗ℓ,

V ∗r ⊗S L†
i+1

(2.1.2)
∼= (Li+1 ⊗S V )†

b†
i−→ L†

i for † = ∗r or ∨

of Sen-modules, which give the desired structures on L(∗), L(∗ℓ), L(∗r) and L(∨).

Lemma 2.4. (a) We have isomorphisms L(∗) ∼= L(∗ℓ) of Z-graded TS(V
∗ℓ)-modules, and L(∗r) ∼=

L(∨) of Z-graded TS(V
∗r)-modules.

(b) Under the isomorphism TS(V
∗r) ∼= TS(V

∗ℓ) of algebras given by α−1
V βV : V ∗r ∼= V ∗ℓ, we have

isomorphisms L(∗) ∼= L(∗ℓ) ∼= L(∗r) ∼= L(∨) of Z-graded TS(V
∗r)-modules.

Proof. The assertions follow from the following commutative diagram.

V ∗r ⊗S L∨
i+1

(2.1.2) //

1V ∗r⊗γLi+1
��

(Li+1 ⊗S V )∨

γLi+1⊗V

��

b∨i // L∨
i

γLi

��
V ∗r ⊗S L∗r

i+1

(2.1.2) //

(α−1
V

βV )⊗βLi+1 ��

(Li+1 ⊗S V )∗r

β
V ∗ℓ⊗Li+1 ��

b∗ri // L∗r
i

βLi��
V ∗ℓ ⊗S L∗

i+1

(2.1.1) // (Li+1 ⊗S V )∗
b∗i // L∗

i

V ∗ℓ ⊗S L∗ℓ
i+1

(2.1.1) //

1
V ∗ℓ⊗αLi+1

OO

(Li+1 ⊗S V )∗ℓ

αLi+1⊗V

OO

b∗ℓi // L∗ℓ
i

αLi

OO

The right squares commute since α, β, γ are morphisms of functors. The left top square commutes
since both the north-west composition and the south-west composition send f ⊗ g ∈ V ∗r ⊗S L∨

i+1

to (Li+1 ⊗S V ∋ x ⊗ v 7→
∑

i t(si)f(s
′
iv) ∈ S), where g(x) =

∑

i si ⊗ s′i. The left bottom
square also commutes since both the north-west composition and the south-west composition send
f ⊗ g ∈ V ∗ℓ ⊗S L∗ℓ

i+1 to (Li+1 ⊗S V ∋ x⊗ v 7→ t(g(xf(v))) ∈ F).
To check that the left middle square commute, fix f ⊗ g ∈ V ∗r ⊗S L∗r

i+1. The north-west
composition sends f ⊗ g to (x ⊗ v 7→ t(f(g(x)v))). The south-west composition sends f ⊗ g to
(x ⊗ v 7→ t(g(xf ′(v)))), where f ′ = α−1

V βV (f) ∈ V ∗ℓ satisfies t ◦ f = t ◦ f ′. These two elements
coincide since t(f(g(x)v))) = t(f ′(g(x)v)) = t(g(x)f ′(v)) = t(g(xf ′(v))). �

2.2. Graded algebras and Koszul algebras. In this section, we give preliminaries on Koszul
algebras, which were introduced in [Pri] and studied extensively in [BGS].

Let Λ =
⊕

i≥0 Λi be a positively Z-graded F-algebra satisfying the following conditions:

• S := Λ0 is semisimple, or equivalently, the Z-graded radical of Λ coincides with Λ>0 :=
⊕

i>0 Λi.



6 JOSEPH GRANT AND OSAMU IYAMA

• Λ is generated in degree 1, i.e., the multiplication map Λ1 ⊗F Λ1 ⊗F · · · ⊗F Λ1 → Λj is surjective
for each j.

In this case, we call the grading a radical grading.
We assume, for simplicity, that Λ is basic. Our assumptions ensure that Λ is a quotient of

the tensor algebra TS(V ) where V is the Sen-module Λ1. When Λ is finite-dimensional and F is
algebraically closed, we can identify S with the space FQ0 of vertices, and V with the space FQ1

of arrows, of the Gabriel quiver Q of Λ.
For a Z-graded Λ-module M and j ∈ Z, let M(j) denote the shifted Z-graded Λ-module where

M(j)i = Mi+j . A complex

· · · →M1 →M0 →M−1 → · · ·

of Z-graded Λ-modules is linear if each module Mi is generated in degree i and each map is
homogeneous of degree 0. The algebra Λ is Koszul if each simple module Si has a linear projective
resolution.

As the ideal of relations is generated in degree 2, all Koszul algebras are quadratic in the sense
that they can be written as a quotient of a tensor algebra:

Λ ∼= TS(V )/(R)

where V is an Sen-module, R is a subset of V ⊗S V , and (R) is the ideal in TS(V ) that it generates.
To simplify the proofs, we will sometimes assume that R is a sub-Sen-module of V ⊗S V instead
of just a subset. In particular, it is a vector subspace. This is no real restriction.

We view S as a Z-graded F-algebra concentrated in degree 0, and V as a Z-graded Sen-module
concentrated in degree 1. Then the tensor grading and the grading coming from V coincide, and
so we can safely refer to just the grading on Λ.

We record a useful lemma on quadratic algebras:

Lemma 2.5. If we have two quadratic algebras TS(V )/(R) and TS(V
′)/(R′) which are isomorphic

as Sen-modules in degrees 0, 1, and 2 then they are isomorphic algebras.

Proof. Without loss of generality assume thatR and R′ are sub-Sen-modules instead of just subsets.
Because our map is an isomorphism in degrees 1 and 2 we have V ∼= V ′ and

V ⊗S V

R
∼=

V ′ ⊗S V ′

R′

as Sen-modules and the isomorphisms commute with the canonical projection maps, so the 5-lemma
tells us that R ∼= R′ as Sen-modules and their inclusions into V ⊗S V and V ′⊗S V ′ commute with
this isomorphism. �

In the rest of this subsection, let Λ ∼= TS(V )/(R) be a quadratic algebra. We have Sen-modules
K0 = S, K1 = V , K2 = R, and

Kj = (V ⊗S Kj−1) ∩ (Kj−1 ⊗S V ) =

j−2
⋂

i=0

V i ⊗S R⊗S V j−2−i

for j ≥ 3. Here, V i denotes the i-th tensor power V ⊗S · · · ⊗S V . Note that Ki is concentrated in
degree i and that for i < 0, we set Ki = 0. We will often need to take duals of these spaces, so to
simplify the notation we let K∗

i = (Ki)
∗.

Recall [BGS, Section 2.7] that if U is a subset of V i, the right orthogonal complement of U is
U⊥ = {f ∈ (V ∗ℓ)i | f(U) = 0}, where we identify (V ∗ℓ)i with (V i)∗ℓ. The quadratic dual of a
quadratic algebra Λ = TS(V )/(R) is

Λ! = TS(V
∗ℓ)/(R⊥).

It is again quadratic. If moreover Λ is Koszul, then Λ! is also Koszul and it coincides with the

opposite ext algebra
(

⊕

i≥0 Ext
i
Λ(S, S)

)op

[BGS, Proposition 2.10.1]. In this case, Λ! has the

following description.
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Lemma 2.6 ([BGS, Section 2.8]). For a Koszul algebra Λ, we have an isomorphism of Z-graded
algebras

Λ! =
⊕

i≥0

(Λ!)i ∼=
⊕

i≥0

K∗ℓ
i ,

where the Z-graded algebra structure on
⊕

i≥0 K
∗ℓ
i is given by the duals of (ιℓi)

∗ℓ and (ιri )
∗ℓ.

Now we assume that S is a separable F-algebra i.e. S ⊗F F
′ is semisimple for all field extensions

F ⊂ F
′, or equivalently, Sen is semisimple [Wei, Theorem 9.2.11]. Let Pi = Λ⊗S Ki⊗S Λ. We have

obvious inclusions ιℓi : Ki →֒ V ⊗S Ki−1 and ιri : Ki →֒ Ki−1 ⊗S V of Sen-modules and, combined
with the multiplication for Λ, they induce maps ι̂ℓi , ι̂

r
i : Pi → Pi−1. Let δi = ι̂ℓi + (−1)i ι̂ri . One can

check that these maps give a chain complex

· · ·
δ3−→ P2

δ2−→ P1
δ1−→ P0 → 0 (2.2.1)

which is called the Koszul bimodule complex. Note that, as Ki ⊆ V i and V is concentrated in
degree 1, each Pi is generated in degree i, i.e., the resolution is linear.

The next result is an important characterization of Koszul algebras. It can be found as, for
example, [BG, Proposition A.2] and [BK, Theorem 9.2].

Theorem 2.7. Λ is Koszul if and only if the Koszul bimodule complex (2.2.1) is its minimal
projective resolution as a Λen-module.

2.3. Higher preprojective algebras. Let

τ = (−)∗ ◦ Tr : Λ -mod→ Λ -mod

denote the Auslander-Reiten translation, which is a functor from the stable category of modules
over Λ to the costable category, and

τ− = Tr ◦(−)∗ : Λ -mod→ Λ -mod

the inverse Auslander-Reiten translation. Note that if Λ is hereditary then the Auslander-Reiten
translation in fact defines an endofunctor of the module category: the usual problem that the
transpose functor Tr is only defined on maps up to addition of maps which factor through projective
modules disappears, as when Λ is hereditary there are no nonzero maps between non-projective
modules which factor through a projective module. Moreover, τ− is left adjoint to τ .

Recall [Iy1] that the d-Auslander-Reiten translation and inverse d-Auslander-Reiten translation
are defined as

τd = τΩd−1 : Λ -mod→ Λ -mod and τ−d = τ−Ω−(d−1) : Λ -mod→ Λ -mod,

where Ω : Λ -mod→ Λ -mod denotes the syzygy functor and Ω− : Λ -mod→ Λ -mod the cosyzygy
functor. If gldimΛ ≤ d then we regard τd and τ−d as the endofunctors

τd = ExtdΛ(−,Λ)
∗ : Λ -mod→ Λ -mod and τ−d = ExtdΛ(Λ

∗,−) : Λ -mod→ Λ -mod

of Λ -mod.
Generalizing the classical case, we have two distinguished classes classes of modules.

Definition 2.8 ([HIO, Definition 4.7]). We have the following two full subcategories P and I of
Λ -mod:

P := add{τ−i
d (Λ) | i ≥ 0} and I := add{τ id(Λ

∗) | i ≥ 0}.

Any module in P is called d-preprojective, and any module in I is called d-preinjective.

In the rest of this section, we assume that Λ has global dimension d. The Λen-module

E := ExtdΛ(Λ
∗,Λ)

plays a central role in this paper. We take this opportunity to record a useful lemma, which makes
the Λen-module structure of E clearer.
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Lemma 2.9. We have isomorphisms

E ∼= ExtdΛen(Λ,Λen) ∼= ExtdΛop(Λ∗,Λ)

of Λen-modules.

Proof. For each finite-dimensional Λ-module M , there is a natural isomorphism M ∼= M∗∗. Then
we use the natural isomorphism of finite-dimensional vector spaces V ∗⊗FW ∼= HomF(V,W ) to see
that we have an the isomorphism of Λen-modules

Λen ∼= Λ ⊗F Λ ∼= Λ∗∗ ⊗F Λ ∼= HomF(Λ
∗,Λ).

Finally, we use the tensor-hom adjunctions to obtain

ExtdΛen (Λ,Λen) ∼= ExtdΛen(Λ,HomF(Λ
∗,Λ)) ∼= ExtdΛ(Λ⊗Λ Λ∗,Λ) ∼= ExtdΛ(Λ

∗,Λ).

The second isomorphism is shown similarly. �

Using E, one can describe the functors τd and τ−d as follows.

Proposition 2.10. If gldimΛ ≤ d then we have isomorphisms of functors

τd ∼= HomΛ(E,−) : Λ -mod→ Λ -mod and τ−d
∼= E ⊗Λ − : Λ -mod→ Λ -mod .

In particular τ−d is left adjoint to τd.

Proof. See the proof of [IO2, Lemma 2.13]. The latter assertion follows from the former one. �

Now we recall the definition of higher preprojective algebras as given in [IO1].

Definition 2.11. The higher preprojective algebra (or, more precisely, the (d + 1)-preprojective
algebra) of Λ is the tensor algebra of the Λen-module E:

Π = Πd+1(Λ) := TΛ(E).

Since this is a tensor algebra, it comes with a natural grading which we call the tensor grading,
i.e., the degree i part of Π is Ei.

The following result justifies the name of the higher preprojective algebra.

Proposition 2.12. As both a left and a right Λ-module, Π is the direct sum of all indecomposable
d-preprojective Λ-modules.

Proof. The statement is immediate from the definition of Π, Lemma 2.9, and Proposition 2.10. �

As in the global dimension 1 case, the preprojective algebra can be identified with
⊕

i≥0

HomΛ(Λ, τ
−i
d (Λ))

where the composition of f : Λ→ τ−i
d (Λ) and g : Λ→ τ−j

d (Λ) is given by

gf = τ−i
d (g) ◦ f : Λ→ τ−i−j

d (Λ).

The ith part of the tensor grading is just HomΛ(Λ, τ
−i
d (Λ)).

3. Description of higher preprojective algebras as higher Jacobi algebras

The aim of this section is to introduce higher preprojective algebras and to give some of their
basic properties, including presentations of these algebras by generators and relations.
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3.1. Preliminaries. In this subsection, let Λ be a finite dimensional F-algebra Λ with global
dimension at most d, where d is a positive integer. Moreover we assume that

Λ = TS(V )/I

for a semisimple F-algebra S. As before, let

E = ExtdΛ(Λ
∗,Λ).

We take a minimal projective resolution of the Λen-module Λ:

· · ·
δ3−→ P2

δ2−→ P1
δ1−→ P0 → 0 with Pi = Λ⊗S Ki ⊗S Λ, (3.1.1)

where Ki is a projective Sen-module. For each i ≥ 1, we define a map δ′i by the commutative
diagram

HomΛen(Pi−1,Λ
en)

Λen (δi,Λ
en) //

∼

��

HomΛen (Pi,Λ
en)

∼

��
Λ⊗S K∨

i−1 ⊗S Λ
δ′i // Λ⊗S K∨

i ⊗S Λ,

(3.1.2)

where the vertical maps are given by Lemma 2.3.

Proposition 3.1. We have isomorphisms E ∼= (Λ ⊗S K∨
d ⊗S Λ)/ Im δ′d of Λen-modules and

headE ∼= K∨
d of Sen-modules.

Proof. The former isomorphism is immediate from (3.1.2). Since the resolution (3.1.1) is minimal,
ImHomΛen(δd,Λ

en) ⊆ Jen(Λ⊗S K∨
d ⊗S Λ) holds. Thus headE ∼= head(Λ⊗S K∨

d ⊗S Λ) = K∨
d . �

Let V be the Sen-module

V := V ⊕K∨
d .

This notation is meant to be reminiscent of Q which, in the global dimension 1 case, is used to
denote the doubled quiver of the underlying quiver Q. For T := TS(V ), we have an isomorphism

TS(V ) ∼= TT (T ⊗S K∨
d ⊗S T ).

by Lemma 2.1(a). Regarding T ⊗S K∨
d ⊗S T as a subspace of TS(V ), we have the following

description of Π.

Proposition 3.2. Let Λ = T/I with T = TS(V ) and I ⊂ V ≥2.

(a) We have a surjective morphism of algebras:

TS(V ) ։ Π

which is bijective on restriction to S ⊕ V .
(b) Let L be a subspace of T⊗SK

∨
d ⊗ST whose image under the natural surjection T⊗SK

∨
d ⊗ST ։

Λ⊗S K∨
d ⊗S Λ is δ′d(K

∨
d−1). Then we have an isomorphism of algebras:

TS(V )/(I + L) ∼= Π.

Proof. We only need to prove part (b) of the proposition, from which part (a) will follow. By
Proposition 3.1, we have

E ∼= Cok δ′d = (Λ⊗S K∨
d ⊗S Λ)/Λδ′d(K

∨
d−1)Λ

∼= (T ⊗S K∨
d ⊗S T )/(I ⊗S K∨

d ⊗S T + T ⊗S K∨
d ⊗S I + TLT ).

So, applying Lemma 2.1(a) and (b), we have

TS(V )/(I + L) ∼= TT (T ⊗S K∨
d ⊗S T )/(I + TLT )

∼= TΛ((T ⊗S K∨
d ⊗S T )/(I ⊗S K∨

d ⊗S T + T ⊗S K∨
d ⊗S I + TLT )) ∼= TΛ(E) = Π

as desired. �



10 JOSEPH GRANT AND OSAMU IYAMA

Consider the case where F is algebraically closed, so we can describe Λ as FQ/I. Let {k1, . . . , kr}
be a minimal set of generators of I, each with a unique source and target s(ki) and t(ki), and let
Q be the quiver obtained by adding r arrows k∗i : t(ki) → s(ki) to Q. Then, just as V is the
arrow-space of Q, V is the arrow-space of Q, and Proposition 3.2 says that Q is the Gabriel quiver
of Π.

We can therefore calculate the Gabriel quiver Q of Π as follows. First, for each vertex i of Q,
compute the projective resolution

0→ Pi,n → · · · → Pi,0 → 0

of the simple left Λ-module Si, where some projective modules Pi,h may be zero. Then, for each
i and for each summand of the projective module Pi,n which is isomorphic to the projective cover

of Sj, add an arrow i→ j to the quiver Q. The resulting quiver is Q.

Example 3.3. Let

Q =
[

1
α
→ 2

β
→ 3

γ
→ 4

δ
→ 5

ε
→ 6

]

and Λ = FQ/(βγδ, γδε). Let Si denote the simple left Λ-module associated to the vertex i, and
P (Si) its projective cover. One can check that Λ has global dimension 3 and the only simple
module with projective dimension 3 is S6. Its projective resolution is

0→ P (S2)
·β
→ P (S3)

·γδ
→ P (S5)

·ε
→ P (S6)→ 0

where ·a denotes right multiplication by a. So the quiver Q of Π is just Q with an extra arrow
from 6 to 2, which we label (βγδε)∗.

3.2. Superpotentials and higher Jacobi algebras. To introduce our main notions of super-
potentials, we need preparations. For an F-algebra A and an Aen-module M , we write

c(M) := A⊗Aen M

for the 0th Hochschild homologyH0(A,M) of A. This can be naturally identified with the quotient
of M modulo the subgroup generated by am−ma with a ∈ A and m ∈ M . Therefore we have a
natural surjective map π : M ։ A⊗Aen M of F-modules.

For Aen-modules M1, . . . ,Mℓ, we clearly have functorial isomorphisms

c(M1⊗A · · · ⊗A Mℓ) ∼= c(M2⊗A · · · ⊗A Mℓ⊗AM1) ∼= · · · ∼= c(Mℓ⊗AM1⊗A · · · ⊗A Mℓ−1). (3.2.1)

For M,N ∈ Aen -mod, there is a functorial isomorphism

c(M ⊗A N) ∼= M ⊗Aen N (3.2.2)

given by a ⊗ (m ⊗ n) 7→ am ⊗ n = m ⊗ na, whose inverse is m ⊗ n 7→ 1 ⊗ (m ⊗ n). It gives a
functorial morphism

c(M ⊗A N)→ HomAen(M∨, N), (3.2.3)

which is an isomorphism if M is a projective Aen-module.
Setting M = Aen in (3.2.2), we have a functorial isomorphism of Aen-modules

c(Aen ⊗A N) ∼= N. (3.2.4)

For M,N ∈ Aen -mod, we have a well-defined pairing

evM ⊗1N : M∨ ⊗F c(M ⊗A N)→ N (3.2.5)

given as the composition M∨⊗F c(M ⊗A N)→ c(Aen ⊗A N)
(3.2.4)
−−−−→ N , where the first map sends

f ⊗ (1A ⊗ (m⊗ n)) to f(m)n.
Now we are ready to introduce the following, which is a central notion in this paper.

Definition 3.4. Let S be a semisimple F-algebra and U an Sen-module. A superpotential of degree
ℓ for T = TS(U) is an element of c(U ℓ) = S ⊗Sen U ℓ.
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By (3.2.1), we have a well-defined automorphism

ρ : S ⊗Sen U ℓ → S ⊗Sen U ℓ, (x1 ⊗ x2 ⊗ · · · ⊗ xℓ) 7→ (x2 ⊗ · · · ⊗ xℓ ⊗ x1).

Using ρ, we define ϕ by

ϕ :=

ℓ−1
∑

i=0

(−1)(ℓ−1)iρi : S ⊗Sen U ℓ → S ⊗Sen U ℓ.

By (3.2.5), for 0 ≤ k ≤ ℓ, we have a well-defined pairing

evUk ⊗1Uℓ−k : (Uk)∨ ⊗F c(U
ℓ)

∼
→ (Uk)∨ ⊗F c(U

k ⊗S U ℓ−k)
ev

Uk ⊗1
Uℓ−k

−−−−−−−−−→ U ℓ−k.

For f ∈ (Uk)∨ and x ∈ c(U ℓ), we simply write f · x := evUk ⊗1Uℓ−k(f ⊗ x).

Definition 3.5. Let S be a semisimple F-algebra, U an Sen-module, and T = TS(U). For a
superpotential with degree ℓ and a nonnegative integer k ≤ ℓ, the k-Jacobi ideal of T is the
two-sided ideal

Jk
S(U,W ) =

(

f · ϕ(W ) | f ∈ HomSen(Uk, Sen)
)

.

The k-Jacobi algebra is the quotient algebra

P k
S (U,W ) = TS(U)/Jk

S(U,W ).

We now explain a connection to notation used elsewhere.

Remark 3.6. Given a quiver Q, we have a semisimple algebra S = FQ0 with basis the vertices of
Q and an Sen-module U = FQ1 with basis the arrows. For each i ≥ 0, let Qi be the set of all paths
of length i on Q. Then Qi gives a basis of the Sen-module U i, and we denote by {p∨ | p ∈ Qi} the
dual basis of (U i)∨ in the obvious sense. Define

∂pW = p∨ ·W.

Then the d-Jacobi ideal is the ideal of TS(U) generated by 〈∂pW | p ∈ Qd−1〉. Note that when
d = 2, we recover the usual notion of the Jacobi algebra of a quiver with potential (Q,W ).

In the rest, we give general observations which will be used later. Let A be an F-algebra.

Lemma 3.7. For Aen-modules X,Y, Z, we have functorial morphisms

HomAen(X∨, Y ⊗A Z)← c(X ⊗A Y ⊗A Z)→ HomAen(Y ∨, Z ⊗A X).

The left (respectively, right) one is an isomorphism if X (respectively, Y ) is a projective Aen-
module.

Proof. Using (3.2.3), we have functorial morphisms c(X⊗A Y ⊗A Z)→ HomAen(X∨, Y ⊗A Z) and

c(X ⊗A Y ⊗A Z)
(3.2.1)
∼= c(Y ⊗A Z ⊗A X)→ HomAen(Y ∨, Z ⊗A X). �

As in (2.1.1), for Aen-modules X,Y, Z, we have functorial isomorphisms

Y ∨ ⊗A HomA(X,A) ∼= (X ⊗A Y )∨ and HomAop(Y,A)⊗A X∨ ∼= (X ⊗A Y )∨. (3.2.6)

The first map sends f ⊗ g to (x ⊗ y 7→
∑

i g(xsi) ⊗ s′i) where f(y) =
∑

i si ⊗ s′i, and the second
one sends f ′ ⊗ g′ to (x ⊗ y 7→

∑

j tj ⊗ f ′(t′jy)) where g′(x) =
∑

j tj ⊗ t′j . We have the following
commutative diagram.

(HomAop(Y,A)⊗A X∨)⊗F c(X ⊗A Y ⊗A Z)
1⊗evX ⊗1 //

(3.2.6)≀

��

HomAop(Y,A)⊗A (Y ⊗A Z)

evY ⊗1

��
(X ⊗A Y )∨ ⊗F c(X ⊗A Y ⊗A Z)

evX⊗Y // Z

(Y ∨ ⊗A HomA(X,A))⊗F c(X ⊗A Y ⊗A Z)
evY ⊗1⊗1 //

(3.2.6)≀

OO

(Z ⊗A X)⊗A HomA(X,A)

1⊗evX

OO

(3.2.7)
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3.3. Higher preprojective algebras of Koszul algebras. Now we go back to the setting in
Section 3.1, that is, Λ is a finite dimensional F-algebra with global dimension d > 0. Moreover we
assume that Λ is a Koszul algebra and

Λ = TS(V )/I

for a separable F-algebra S. Then the minimal Z-graded projective resolution (3.1.1) of the Λen-
module Λ is given by the Koszul bimodule complex (2.2.1). Let V = V ⊕K∨

d .

Definition 3.8. We define a superpotential W of degree d+ 1 for TS(V ) as the image of 1F ∈ F

under the composition

F
coevKd−−−−−→ c(Kd ⊗S K∨

d ) ⊂ c(V d ⊗S K∨
d ) ⊂ c(V

d
⊗S V ) = c(V

d+1
),

where coevKd
: F→ EndSen(Kd) ∼= Kd ⊗Sen K∨

d
∼= c(Kd ⊗S K∨

d ) is the coevaluation map. We call
W the superpotential associated to Λ, or the associated superpotential.

By Lemma 3.7, we have isomorphisms HomSen(Ki, V ⊗S Ki−1) ∼= HomSen(K∨
i−1,K

∨
i ⊗S V ) and

HomSen(Ki,Ki−1 ⊗S V ) ∼= HomSen(K∨
i−1, V ⊗S K∨

i ). Thus the inclusions ιℓi : Ki → V ⊗S Ki−1

and ιri : Ki → Ki−1 ⊗S V give rise to

θℓi : K
∨
i−1 → K∨

i ⊗S V and θri : K∨
i−1 → V ⊗S K∨

i . (3.3.1)

We will need the following observations.

Lemma 3.9. The following assertions hold.

(a) The map (V
d−1

)∨ ։ K∨
d−1

θr
d−→ V ⊗S K∨

d →֒ V
2
coincides with − ·W : (V

d−1
)∨ → V

2
.

(b) The map (V
d−1

)∨ ։ K∨
d−1

θℓ
d−→ K∨

d ⊗S V →֒ V
2
coincides with − · ρ(W ) : (V

d−1
)∨ → V

2
.

Proof. (a) By definition, W belongs to the subspace c(Kd−1⊗SV ⊗SK
∨
d ) of c(V

d+1
), and coincides

with ιrd under the isomorphism HomSen(Kd,Kd−1⊗S V ) ∼= c(Kd−1⊗S V ⊗SK
∨
d ) in Lemma 3.7. By

definition, θrd is the image ofW under the isomorphism c(Kd−1⊗SV ⊗SK
∨
d )
∼= HomSen(K∨

d−1, V ⊗S

K∨
d ) in Lemma 3.7. Thus θrd coincides with

K∨
d−1

1⊗W
−−−→ K∨

d−1 ⊗F c(Kd−1 ⊗S V ⊗S K∨
d )

evKd−1
⊗1⊗1

−−−−−−−−−→ V ⊗S K∨
d .

On the other hand, since W belongs to c(Kd−1⊗S V ⊗SK
∨
d ), the map −·W factors through K∨

d−1.
Thus the assertion follows.

(b) Although the argument is mostly the same as (a), we record the details.

By definition, W belongs to the subspace c(V ⊗SKd−1⊗SK
∨
d ) of c(V

d+1
), and coincides with ιℓd

under the isomorphism HomSen(Kd, V ⊗S Kd−1) ∼= c(V ⊗S Kd−1⊗S K∨
d ) in Lemma 3.7. By defini-

tion, θℓd is the image of W under the isomorphism c(V ⊗SKd−1⊗SK
∨
d )
∼= HomSen(K∨

d−1,K
∨
d ⊗S V )

in Lemma 3.7. Thus θℓd coincides with

K∨
d−1

1⊗W
−−−→ K∨

d−1⊗Fc(V ⊗SKd−1⊗SK
∨
d )

1⊗ρ
−−→ K∨

d−1⊗Fc(Kd−1⊗SK
∨
d ⊗SV )

evKd−1
⊗1⊗1

−−−−−−−−−→ V ⊗SK
∨
d ,

which equals K∨
d−1

1⊗ρ(W )
−−−−−→ K∨

d−1 ⊗F c(Kd−1 ⊗S K∨
d ⊗S V )

evKd−1
⊗1⊗1

−−−−−−−−−→ V ⊗S K∨
d .

On the other hand, since ρ(W ) belongs to c(Kd−1 ⊗S K∨
d ⊗S V ), the map − · ρ(W ) factors

through K∨
d−1. Thus the assertion follows. �

On the other hand, θℓi and θri induce morphisms θ̂ℓi and θ̂ri : Λ⊗S K∨
i−1⊗S Λ→ Λ⊗S K∨

i−1⊗S Λ
of Λen-modules. Let

δ′i = θ̂ℓi + (−1)iθ̂ri : Λ⊗S K∨
i−1 ⊗S Λ→ Λ⊗S K∨

i ⊗S Λ. (3.3.2)

This gives an explicit construction of δ′i in (3.1.2) by the following observation.
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Lemma 3.10. If Λ is Koszul then we have a commutative diagram

HomΛen(Λ ⊗S Ki−1 ⊗S Λ,Λen)
Λen (δi,Λ

en) //

∼

��

HomΛen(Λ ⊗S Ki ⊗S Λ,Λen)

∼

��
Λ⊗S K∨

i−1 ⊗S Λ
δ′i // Λ⊗S K∨

i ⊗S Λ.

To prove this, we prepare the following observation.

Lemma 3.11. For Sen-modules X and Y , we have the following commutative diagram.

c(Y ⊗S V ⊗S X∨)

HomSen(X,Y ⊗S V )

HomSen(Y ∨, V ⊗S X∨)

HomΛen (Λ⊗S X ⊗S Λ,Λ⊗S Y ⊗S Λ)

HomΛen (Λ⊗S Y ∨ ⊗S Λ,Λ⊗S X∨ ⊗S Λ)

HomΛen((Λ ⊗S Y ⊗S Λ)∨Λ , (Λ ⊗S X ⊗S Λ)∨Λ),

Lem. 3.7
��

Lem. 3.7 //

ˆ(−)
��

ˆ(−)
��

(−)∨Λ

∼
//

Lem. 2.3∼
��

where we write (−)∨Λ = HomΛen(−,Λen).

Proof. Fix y ⊗ v ⊗ f ∈ c(Y ⊗S V ⊗S X∨), and let a ∈ HomΛen(Λ ⊗S X ⊗S Λ,Λ ⊗S Y ⊗S Λ) and
b ∈ HomΛen(Λ ⊗S Y ∨ ⊗S Λ,Λ ⊗S X∨ ⊗S Λ) be the corresponding maps. Let a′ and b′ be the
maps in HomΛen((Λ ⊗S Y ⊗S Λ)∨Λ , (Λ ⊗S X ⊗S Λ)∨Λ) correponding to a and b respectively. To
prove a′ = b′, it suffices to show that a′(1 ⊗ g ⊗ 1) = b′(1 ⊗ g ⊗ 1) holds for all g ∈ Y ∨, where
1⊗ g ⊗ 1 ∈ (Λ⊗S Y ⊗S Λ)∨Λ is the natural extension of g.

Since a(1 ⊗ x ⊗ 1) = (1 ⊗ y ⊗ v)f(x) = (1 ⊗ y ⊗ 1)((v ⊗ 1)f(x)) holds for all x ∈ X , we have
(a′(1⊗g⊗1))(1⊗x⊗1) = g(y)(v⊗1)f(x). On the other hand, since b(1⊗g⊗1) = g(y)(v⊗f⊗1) =
(g(y)(v ⊗ 1))(1⊗ f ⊗ 1) holds for all g ∈ Y ∨, we have (b′(1⊗ g ⊗ 1))(1⊗ x⊗ 1) = g(y)(v⊗ 1)f(x).
Thus a′ = b′ holds. �

Proof of Lemma 3.10. Since δi = ι̂ℓi + (−1)iι̂ri , it suffices to show that the following diagram com-
mutes for s ∈ {ℓ, r}.

HomΛen(Λ ⊗S Ki−1 ⊗S Λ,Λen)
Λen (ι̂si ,Λ

en) //

∼

��

HomΛen(Λ ⊗S Ki ⊗S Λ,Λen)

∼

��
Λ⊗S K∨

i−1 ⊗S Λ
θ̂s
i // Λ⊗S K∨

i ⊗S Λ.

We just show the s = r version; s = ℓ is the dual. We apply Lemma 3.11 to X := Ki and
Y := Ki−1. Since ιri ∈ HomSen(Ki,Ki−1 ⊗S V ) corresponds to θri ∈ HomSen(K∨

i−1, V ⊗S K∨
i ),

the map Λen (ι̂ri ,Λ
en) coincides with θ̂ri up to the isomorphisms in Lemma 2.3. This gives the

commutativity of the above diagram. �

Since Λ is Koszul, we can regard δ′d(K
∨
d−1) ⊂ V ⊗S K∨

d ⊗S S + S ⊗S K∨
d ⊗S V as a subspace of

T ⊗S K∨
d ⊗S T ⊂ TS(V ) naturally. Now we show the following assertion.

Proposition 3.12. If Λ = TS(V )/(R) is a finite-dimensional Koszul algebra with R ⊂ V 2, then
we have an isomorphism of algebras:

Π ∼= TS(V )/(R+ δ′d(K
∨
d−1)).

In particular, Π is quadratic.

Proof. The first assertion is immediate from Proposition 3.2(b). The second assertion is immediate

from the first one since both R and δ′d(K
∨
d−1) are contained in V

2
. �
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Now we are ready to prove the following.

Theorem 3.13. If Λ = TS(V )/(R) is a finite-dimensional Koszul algebra, then we have an iso-
morphism of algebras:

Π ∼= P d
S(V ,W )/(R).

Proof. The left-hand side is TS(V )/(R+ δ′d(K
∨
d−1)) by Proposition 3.12, and the right-hand side is

TS(V )/(R+(V
d−1

)∨ ·ϕ(W )) by definition. It suffices to prove R+δ′d(K
∨
d−1) = R+(V

d−1
)∨ ·ϕ(W ).

As Kd =
⋂d

i=2 V
i−2 ⊗S R⊗S V d−i, for each 2 ≤ i ≤ d we have

W ∈ c(Kd ⊗S K∨
d ) ⊂ c(V i−2 ⊗S R⊗S V d−i ⊗S K∨

d )

and hence ρi(W ) ∈ c(V d−i ⊗S K∨
d ⊗S V i−2 ⊗S R). Therefore (V

d−1
)∨ · ρi(W ) ⊂ R holds. In

particular,

R + (V
d−1

)∨ · ϕ(W ) = R+ (V
d−1

)∨ · (W + (−1)dρ(W ))
Lem. 3.9

= R+ (θrd + (−1)dθℓd)(K
∨
d−1)

= R+ δ′d(K
∨
d−1)

holds as desried. �

The extension condition in the following theorem is a special case of the following property
of [IO2, Section 3]. Given a d-cluster tilting subcategory U of Db(Λ), we say that U has the
vosnex property (“vanishing of small negative extensions”) if HomDb(Λ)(U [j],U ) = 0 for j ∈

{1, 2, . . . , d − 2}. In this case, since Λ,Λ∗[−d] ∈ U , we have Extd−j
Λen (Λ,Λen) ∼= Extd−j

Λ (Λ∗,Λ) ∼=
HomDb(Λ)(Λ

∗[j − d],Λ) = 0 for j ∈ {1, 2, . . . , d− 2}.

Theorem 3.14. Suppose Λ is a finite-dimensional Koszul algebra of global dimension d. If
ExtiΛen(Λ,Λen) = 0 for 2 ≤ i ≤ d− 1, then we have an isomorphism of algebras:

Π ∼= P d
S(V ,W ).

Proof. By Theorem 3.13, it suffices to prove (V
d−1

)∨ · ϕ(W ) ⊇ R. In fact, for each 2 ≤ i ≤ d, we
prove by downwords induction

(V
d−i+1

)∨ · ϕ(W ) ⊇ Ki. (3.3.3)

First we prove (3.3.3) for i = d. Consider the decomposition V
∨

= V ∨ ⊕ Kd. Since W =
coevKd

(1F), we have Kd · ρ
d(W ) = Kd and Kd · ρ

i(W ) = 0 for each 0 ≤ i ≤ d − 1. Thus

V
∨
· ϕ(W ) ⊇ Kd · ϕ(W ) = Kd holds.
Next, for each 3 ≤ i ≤ d, we prove

HomSop(V, S) ·Ki +Ki · HomS(V, S) = Ki−1, (3.3.4)

where · are the maps HomSop(V, S) ⊗S V i → V i−1 and V i ⊗S HomS(V, S) → V i−1 given by
the evaluations. We use the Koszul resolution together with Lemma 3.10. These tell us that
Exti−1

Λen (Λ,Λen) is the (i − 1)st homology of the complex

0← Λ⊗S K∨
d ⊗S Λ← Λ⊗S K∨

d−1 ⊗S Λ← · · · ← Λ⊗S K∨
1 ⊗S Λ← Λ⊗S K∨

0 ⊗S Λ← 0

where the differentials are induced by the maps

δ′i = θℓi + (−1)iθri : K∨
i−1 → (K∨

i ⊗S V )⊕ (V ⊗S K∨
i ) ⊂ Λ⊗S K∨

i ⊗S Λ.

This is injective since its kernel is Exti−1
Λen (Λ,Λen)1−i = 0 by our assumption. Applying (−)∨, we

have a surjective map

(HomSop(V, S)⊗S Ki)⊕ (Ki ⊗S HomS(V, S))
(3.2.6)
∼= (K∨

i ⊗S V )∨ ⊕ (V ⊗S K∨
i )

∨ (δ′i)
∨

−−−→ Ki−1.

This is a restriction of (e e′) : (HomSop(V, S)⊗S V i)⊕ (V i ⊗S HomS(V, S))→ V i−1. Thus (3.3.4)
holds.
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Now assume (3.3.3) holds. Applying the upper part of (3.2.7) to (X,Y, Z) = (V
d−i+1

, V , V
i−1

)

and the lower one to (X,Y, Z) = (V , V
d−i+1

, V
i−1

) respectively, we obtain

(V
d−i+2

)∨ · ϕ(W )
(3.2.7)
= HomSop(V , S) · ((V

d−i+1
)∨ · ϕ(W ))

(3.3.3)

⊇ HomSop(V , S) ·Ki,

(V
d−i+2

)∨ · ϕ(W )
(3.2.7)
= ((V

d−i+1
)∨ · ϕ(W )) ·HomS(V , S)

(3.3.3)

⊇ Ki · HomS(V , S).

Thus (V
d−i+2

)∨ ·ϕ(W ) ⊇ HomSop(V, S) ·Ki+Ki ·HomS(V, S)
(3.3.4)
= Ki−1 holds, which completes

the induction. �

Note that the condition of Theorem 3.14 is vacuous when d = 2, so this result agrees with
Keller’s description of 3-preprojective algebras (see [Kel, Theorem 6.10] and [HI, Section 2.2]).

We will see in Corollary 4.3 that this theorem is particularly applicable to d-hereditary algebras.

Example 3.15. (a) Consider the quiver

Q = [ 1
α // 2

β // 3
γ // 4 ]

and the algebra Λ = FQ/(αβ, βγ). One can check that Λ is 3-representation finite (and so is
3-hereditary) and Koszul. We have K3 = 〈αβγ〉 so the quiver Q of Π = Π(Λ) is

Q = [ 1
α // 2

β // 3
γ // 4

η

gg ]

where η = (αβγ)∗. The superpotential W is represented by αβγη and the space of relations of Π

is given by V
−2
·W = 〈αβ, βγ, γη, ηα〉.

(b) Next consider the quiver

Q = [ 1
α // 2

β // 3
γ // 4

δ // 5
ε // 6 ]

and the algebra Λ = FQ/(R) with R = 〈αβ, βγ, δε〉. One can check that Λ has global dimension
3 and is Koszul, but it does not satisfy the condition of Theorem 3.14 as Ext2Λ(Λ

∗e6,Λe4) 6= 0.
Again, we have K3 = 〈αβγ〉 so the quiver Q of Π(Λ) is

Q = [ 1
α // 2

β // 3
γ // 4

η

gg
δ // 5

ε // 6 ]

where η =(αβγ)∗. The superpotentialW is represented by αβγη and the 3-Jacobi ideal is generated

by V
−2
·W = 〈αβ, βγ, γη, ηα〉. We see that this doesn’t include δε, and so to obtain the whole

space of relations of Π we need to consider R+ V
−2
·W .

Remark 3.16. It is worth pointing out that higher preprojective algebras are sometimes higher
Jacobi algebras even in the non-Koszul case. For example, consider the following example of a
4-RF algebra due to Vaso [Vas, Example 5.3]. We take the quiver

Q = [ 1
α // 2

β // 3
γ // 4

δ // 5
ε // 6

ζ // 7
η // 8

θ // 9 ]

and the algebra Λ = FQ/(radFQ)4 = FQ/(αβγδ, βγδε, γδεζ, δεζη, εζηθ). We know from Proposi-
tion 3.2 that the quiver for Π is

Q = [ 1
α // 2

β // 3
γ // 4

δ // 5
ε // 6

ζ // 7
η // 8

θ // 9

ι

ll ]

where ι = (αβγδεζηθ)∗, and one can check that Π is in fact a 6-Jacobi algebra: we obtain its
relations by differentiating the superpotential represented by W = αβγδεζηθι with respect to
paths of length 5.
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We do not know an example of a non-Koszul algebra which satisfies the ext-vanishing condition
of Theorem 3.14 but is not a higher Jacobi algebra.

3.4. Z
2-graded higher preprojective algebras. In this subsection, we consider gradings on

higher preprojective algebras, which will be used in Section 4.3. Let Λ be a positively Z-graded
algebra

Λ =
⊕

i∈Z

Λi

with radical grading (see Section 2.2). The enveloping algebra Λen of Λ has a Z-grading given by

(Λen)i =
⊕

i=j+k

Λj ⊗F Λk.

Using the Z-grading on Λ, we define a new Z-grading on the higher preprojective algebra Π.
For i > 0 and finitely generated Z-graded Λ-modules M and N , let extiΛ(M,N) denote the

Z-graded ith ext space (our notation follows [BGS, Section 2.1]). Then we have an equality

ExtiΛ(M,N) =
⊕

j∈Z

extiΛ(M,N(j)).

Hence ExtiΛ(M,N) has a Z-grading whose degree j part is extiΛ(M,N(j)).

Now we define the Z-grading on the Λen-module E = ExtdΛ(Λ
∗,Λ) by

E =
⊕

j∈Z

extdΛ(Λ
∗,Λ(j)). (3.4.1)

Then, as in Lemma 2.9, we can show that there are isomorphisms

E ∼=
⊕

j∈Z

extdΛen (Λ,Λen(j)) ∼=
⊕

j∈Z

extdΛop(Λ∗,Λ(j))

of Z-graded Λen-modules. Let Λ -modZ denote the category of finitely generated Z-graded left
Λ-modules. We lift the functors τd and τ−d to Z-graded Λ-modules as follows.

τd := HomΛ(E,−) : Λ -modZ → Λ -modZ and τ−d := E ⊗Λ − : Λ -modZ → Λ -modZ .

Definition 3.17. (a) The Z
2-graded (d + 1)-preprojective algebra of a Z-graded algebra Λ =

⊕

i∈Z
Λi is the tensor algebra of the Z-graded Λen-module E:

Π(Λ) = TΛ(E).

The first part of the Z2-grading is the tensor grading (Definition 2.11). The second part of the
Z
2-grading is called the Λ-grading, which is a natural grading on Ei for any i ≥ 0 given by the

Z-grading on E in (3.4.1).
(b) We consider a single Z-grading on Π, called the (d+ 1)-total grading, by defining

Πℓ :=
⊕

(d+1)i+j=ℓ

Πi,j

where Πi,j = (Ei)j denotes the jth graded component of Ei.

Later we will use the following observation.

Proposition 3.18. If Λ is Koszul, then E(−d) is generated in degree 0. Therefore the (d+1)-total
grading of Π gives a radical grading.

Proof. If Λ is Koszul, then Pd is generated in degree d by Theorem 2.7, and the latter assertion
follows. �

4. Resolutions of simple modules over higher preprojective algebras

The aim of this section is to construct projective resolutions of simple modules for preprojective
algebras of d-hereditary algebras.
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4.1. Preliminaries on d-hereditary algebras. Let Λ be a finite dimensional F-algebra with
gl.dim Λ ≤ d, and Db(Λ) the derived category of finitely generated left Λ-modules with bounded
homology. Then we have the following result on formality.

Lemma 4.1. [Iy2, Lemma 5.2] If X ∈ Db(Λ) satisfies Hi(X) = 0 for any i /∈ dZ, then X ∼=
⊕

i∈dZ H
i(X)[−i].

Let ν denote the Nakayama functor

ν := Λ∗ ⊗L

Λ − : Db(Λ)
∼
→ Db(Λ)

of Λ and let ν− denote its quasi-inverse, defined using the internal hom,

ν− := RHomΛ(Λ
∗,−) : Db(Λ)

∼
→ Db(Λ).

Let νd denote the shifted Nakayama functor νd = ν ◦ [−d]. Then we have

τd = H0(νd−) : modΛ→ modΛ and τ−d = H0(ν−1
d −) : modΛ→ modΛ. (4.1.1)

Definition 4.2. [HIO, Definition 3.2] A finite dimensional algebra Λ with gldimΛ = d is d-

hereditary if Hi(νjd(Λ)) = 0 for all i, j ∈ Z such that i /∈ dZ.

One of the important properties of d-hereditary algebras Λ follows from Lemma 4.1: for any
j ∈ Z and an indecomposable projective Λ-module P , there exists i ∈ Z such that

νjd(P ) ∼= Hdi(νjd(P ))[−di]. (4.1.2)

Note that in [HIO], the weaker condition gldimΛ ≤ d instead of gldimΛ = d was imposed. The
only difference between the two definitions is whether we allow Λ to be semisimple, which is a case
we are not interested in. Therefore we always assume gldimΛ = d.

The following result is an immediate consequence of Theorem 3.14.

Corollary 4.3. Let Λ = TS(V )/(R) be a Koszul d-hereditary algebra and (V ,W ) the associated
superpotential. Then we have Π ∼= P d

S(V ,W ).

Proof. The assertion is immediate from Theorem 3.14 since

Extd−i
Λen (Λ,Λ

en) ∼= HomDb(Λ)(Λ
∗,Λ[d− i]) ∼= HomDb(Λ)(Λ[i], ν

−1
d (Λ)) ∼= Hi(ν−1

d (Λ)) = 0

holds for any 0 < i < d. �

Definition 4.4. [IO2, HIO] We say that a finite-dimensional F-algebra Λ with gldimΛ = d is:

• d-representation finite (or d-RF ) if there exists an d-cluster tilting Λ-module M , that is,

addM =
{

X ∈ Λ -mod | ExtiΛ(X,M) = 0 for all 0 < i < d
}

=
{

Y ∈ Λ -mod | ExtiΛ(M,Y ) = 0 for all 0 < i < d
}

.

• d-representation infinite (or d-RI ) if ν−i
d (Λ) is concentrated in degree 0 for any i ≥ 0.

Then we have a dichotomy theorem:

Theorem 4.5. [HIO, Theorem 3.4] Every ring-indecomposable finite-dimensional F-algebra is d-
hereditary if and only if it is either d-RF or d-RI.

In the study of d-hereditary algebras, the subcategory

U := add{νid(Λ) | i ∈ Z}

of Db(Λ) plays an important role.
We give a few properties of U and the categories P and I of d-preprojective Λ-modules and

d-preinjective Λ-modules (Definition 2.8). By the following result, any d-RF algebra has a unique
d-cluster tilting module up to additive equivalence, which is given by Π. For a full subcategory X

and Y of an additive category C , we denote by X ∨ Y the full subcategory add(X ∪ Y ) of C .
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Proposition 4.6. (a) [Iy2, Theorem 1.6] If Λ is d-RF, then Π is a d-cluster tilting Λ-module,
P = I = addΠ, and U = add{Π[di] | i ∈ Z}.

(b) [HIO, Proposition 4.10(d)] If Λ is d-RI, then P = add{ν−i
d (Λ) | i ≥ 0}, I = add{νid(DΛ) |

i ≥ 0}, and U = I [−d] ∨P. Moreover, HomΛ(I ,P) = 0 and P ∩I = 0.

In the final part of our preparations for this section, we recall the generalization of almost split
sequences, or Auslander-Reiten sequences, to d-hereditary algebras.

Definition 4.7 ([Iy1]). Let C be a Krull-Schmidt F-linear category with Jacobson radical radC

and let

Y
fd
−→ Cd−1

fd−1
−−−→ Cd−2

fd−2
−−−→ · · ·

f2
−→ C1

f1
−→ C0

f0
−→ X (4.1.3)

be a complex in C where X and Y are indecomposable and each fi belongs to radC . Then we
say the sequence (4.1.3) is d-almost split in C if both of the following sequences are exact for all
objects M in C :

0→ HomC (M,Y )
fd∗−−→ HomC (M,Cd−1)

fd−1∗−−−−→ · · ·
f1∗−−→ HomC (M,C0)

f0∗−−→ radC (M,X)→ 0;

0→ HomC (X,M)
f0

∗

−−→ HomC (C0,M)
f1

∗

−−→ · · ·
fd−1

∗

−−−−→ HomC (Cd−1,M)
fd

∗

−−→ radC (Y,M)→ 0.

More generally, we say the sequence (4.1.3) is weak d-almost split in C if the above sequences are
exact except at HomC (M,Y ) and HomC (X,M) respectively.

Example 4.8. Let Q = [1→ 2] and Λ = FQ. Then the short exact sequence corresponding to
the non-split extension of one simple module by the other is 1-almost split in Λ -mod but is only
weak 1-almost split in Db(Λ).

It was shown in [HIO] (respectively, [Iy1]) that the category P ∨I has d-almost split sequences
when Λ is d-RI (respectively, d-RF). Also it was shown in [IY, IO2] that d-cluster tilting sub-
categories of triangulated categories have certain analogue of d-almost split sequences called AR
(d+2)-angles. From these results, one can deduce the following results on d-almost split sequences
in the category U , which play a key role in this section.

Theorem 4.9. Let Λ be a d-hereditary algebra.

(a) If Λ is d-RI, then any indecomposable object X (respectively, Y ) in U has a d-almost split
sequence in U

Y
fd
−→ Cd−1

fd−1
−−−→ Cd−2

fd−2
−−−→ · · ·

f2
−→ C1

f1
−→ C0

f0
−→ X.

Moreover, we have Y ∼= νd(X) (respectively, X ∼= ν−1
d (Y )).

(b) If Λ is d-RF, then any indecomposable object X (respectively, Y ) in U has a weak d-almost
split sequence in U

Y
fd
−→ Cd−1

fd−1
−−−→ Cd−2

fd−2
−−−→ · · ·

f2
−→ C1

f1
−→ C0

f0
−→ X.

Moreover, we have Y ∼= νd(X) (respectively, X ∼= ν−1
d (Y )), Ker(fd∗) = socHomU (−, Y ) and

Ker(f0
∗) = socHomU (X,−).

Proof. In both cases, we only show the assertion for X since the assertion for Y is the dual.
(a) Let X ∈ U be an indecomposable object. If X is a projective Λ-module then ν−i

d (X) is

not projective, as otherwise X ∼= νdν
−
d (X) would be concentrated in degree d which contradicts

our assumption that Λ is d-RI. Since νd : U → U is an equivalence, it preserves d-almost split
sequences in U . Thus we can assume that X is a non-projective object in P.

It was shown in [HIO, Theorem 4.25] that there exists an exact sequence

0→ Y
fd
−→ Cd−1

fd−1
−−−→ Cd−2

fd−2
−−−→ · · ·

f2
−→ C1

f1
−→ C0

f0
−→ X → 0 (4.1.4)
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in modΛ which has terms in P, Y = νd(X), and gives a d-almost split sequence in P ∨I . Thus,
since Proposition 4.6(b) implies Y /∈ I , which implies radΛ(Y,I ) = HomΛ(Y,I ), the following
sequences are exact:

0→ HomΛ(P, Y )
fd∗−−→ HomΛ(P, Cd−1)

fd−1∗−−−−→ · · ·
f1∗−−→ HomΛ(P, C0)

f0∗−−→ radΛ(P, X)→ 0;

0→ HomΛ(X,I )
f0

∗

−−→ HomΛ(C0,I )
f1

∗

−−→ · · ·
fd−1

∗

−−−−→ HomΛ(Cd−1,I )
fd

∗

−−→ HomΛ(Y,I )→ 0.

Using Serre duality, we have HomΛ(P,I ) = HomU (ν−1
d (I )[−d],P)∗. As Λ is d-RI, we have

I ⊆ ν−1
d (I ) by Proposition 4.6(b). Therefore, the latter exact sequence gives an exact sequence

0→ HomU (I [−d], Y )
fd∗−−→ HomU (I [−d], Cd−1)

fd−1∗−−−−→ · · ·
f1∗−−→ HomU (I [−d], C0)
f0∗−−→ HomU (I [−d], X)→ 0.

Since U = I [−d] ∨P by [HIO, Proposition 4.10(c)], the above exact sequences gives an exact
sequence

0→ HomU (U , Y )
fd∗−−→ HomU (U , Cd−1)

fd−1∗−−−−→ · · ·
f1∗−−→ HomU (U , C0)

f0∗−−→ radU (U , X)→ 0.

Dually, the following sequence is exact.

0→ HomU (X,U )
f0

∗

−−→ HomU (C0,U )
f1

∗

−−→ · · ·
fd−1

∗

−−−−→ HomU (Cd−1,U )
fd

∗

−−→ radU (Y,U )→ 0.

Thus the sequence (4.1.4) is a d-almost split sequence in U .
(b) By [Iy2, Theorem 1.23], U is a d-cluster tilting subcategory of Db(Λ). By [IY, Theorem

3.10], there exist triangles

Xi+1
hi+1
−−−→ Ci

gi
−→ Xi → Xi+1[1]

in Db(Λ) for 0 ≤ i ≤ d− 1 satisfying the following conditions:

• X0 = X , Xd = νd(X), and Ci ∈ U for any 0 ≤ i ≤ d− 1;

• HomU (U , C0)
g0∗−−→ radU (U , X) → 0 and HomU (Cd−1,U )

hd
∗

−−→ radU (νd(X),U ) → 0 are
exact.

Let fd := hd, fi := gihi−1 and f0 := g0. Then we have a complex

νd(X)
fd
−→ Cd−1

fd−1
−−−→ Cd−2

fd−2
−−−→ · · ·

f2
−→ C1

f1
−→ C0

f0
−→ X.

Moreover, as Λ is d-RF, ν(U ) = U by [IO2, Theorem 3.1(1)⇒(3)] and hence U [d] = U . So, by
[IO2, Lemma 4.3], we have an exact sequence

· · · → HomU (U , C0[−d])
f0[−d]∗−−−−−→ HomU (U , X [−d])→

HomU (U , νd(X))
fd∗−−→ HomU (U , Cd−1)

fd−1∗−−−−→ · · ·
f1∗−−→ HomU (U , C0)

f0∗−−→ radU (U , X)→ 0.

Thus Cok(f0∗ : HomU (−, C0) → HomU (−, X)) is a simple U -module, and hence Ker(fd∗) =
Cok(f0[−d]∗) is a simple U -module since [d] : U → U is an autoequivalence. Because X [−d] ∈ U

is indecomposable, HomU (X [−d],−) is an indecomposable projective functor and thus it has a
simple top. Hence the U -module HomU (−, νd(X)) ∼= HomU (X [−d],−)∗ has a simple socle.
Therefore Ker(fd∗) = socHomU (U , νd(X)).

Dually, we have an exact sequence

HomU (X,U )
f0

∗

−−→ HomU (C0,U )
f1

∗

−−→ · · ·
fd−1

∗

−−−−→ HomU (Cd−1,U )
fd

∗

−−→ radU (Y,U )→ 0

such that Ker(f0
∗) = socHomU (X,U ). Thus the assertions hold. �
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4.2. Resolutions of simple modules over higher preprojective algebras. For the rest of
this section, Λ is a d-hereditary algebra and Π is its higher preprojective algebra. We will assume
that Λ is basic and ring-indecomposable. We regard Π as a Z-graded algebra with the tensor
grading. Then we have an isomorphism

Π ∼=
⊕

i∈Z

HomDb(Λ)(Λ, ν
−i
d (Λ))

of Z-graded algebras. We denote by projZ-Π the category of finitely generated Z-graded Π-modules.
We start with the following easy observation.

Lemma 4.10. Let C be an additive category and G a group acting on C . Assume that M ∈ C is
an object satisfying C = add{gM | g ∈ G}. Define a G-graded ring by Γ :=

⊕

g∈G HomC (M, gM).
Then there are equivalences of additive categories

⊕

g∈G

HomC (M, g−) : C → projG- Γ and
⊕

g∈G

HomC (−, gM) : C → Γ -projG .

Applying Lemma 4.10 to the category U and the group {ν−i
d | i ∈ Z} ∼= Z, we have the following

description of the category U .

Proposition 4.11. (a) There are equivalences of additive categories

G :=
⊕

i∈Z
HomDb(Λ)(Λ, ν

−i
d (−)) : U → projZ-Π,

H :=
⊕

i∈Z
HomDb(Λ)(−, ν

−i
d (Λ)) : U → Π -projZ .

In particular, there are equivalences of additive categories

G∗ : modZ-Π→ mod-U and H∗ : Π -modZ → U -mod .

(b) The following diagram commutes up to natural isomorphism.

U
G // projZ-Π

HomΠop (−,Π)
��

U
H

// Π -projZ .

HomΠ(−,Π)

OO

Now we are ready to state the main result of this subsection. It asserts that minimal projective
resolutions of Z-graded simple modules over the higher preprojective algebra Π of a d-hereditary
algebra Λ are induced from d-almost split sequences in U .

Theorem 4.12. Let X be an indecomposable object in U , and

Y
fd
−→ Cd−1

fd−1
−−−→ Cd−2

fd−2
−−−→ · · ·

f2
−→ C1

f1
−→ C0

f0
−→ X

a d-almost split sequence in U .

(a) There exist exact sequences

GY
Gfd
−−→ GCd−1

Gfd−1
−−−−→ · · ·

Gf2
−−→ GC1

Gf1
−−→ GC0

Gf0
−−→ GX → T → 0

HX
Hf0
−−−→ HC0

Hf1
−−−→ HC1

Hf2
−−−→ · · ·

Hfd−1
−−−−→ HCd−1

Hfd
−−−→ HY → U → 0

in modZ- Π and Π -modZ, where T and U are simple.
(b) If Λ is d-RI, then Gfd and Hf0 are monomorphisms.
(c) If Λ is d-RF, then KerGfd = socGY and KerHf0 = socHX. Moreover these are simple.

Proof. (a) By Theorem 4.9(a), we have an exact sequence
⊕

i∈Z

HomU (νid(Λ), Y )
fd∗
−−→

⊕

i∈Z

HomU (νid(Λ), Cd−1)
fd−1∗
−−−−→ · · ·

f1∗
−−→

⊕

i∈Z

HomU (νid(Λ), C0)

f0∗
−−→

⊕

i∈Z

radU (νid(Λ), X)→ 0.
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This gives the first sequence. Dually, we obtain the second sequence. It follows from Proposition
4.11(a) that T and U are simple.

(b)(c) These follow from Theorem 4.9(a)(b). It follows from Proposition 4.11(a) that KerGfd
and KerHf0 are simple if Λ is d-RF. �

We say that an algebra is twisted-periodic if, for some i ≥ 1, Ωi
Aen(A) ∼= Aσ for some σ ∈ Aut(A),

i.e., the projective resolution of the identity bimodule is periodic up to a twist by some algebra
automorphism.

As an application of our results, we have the following result for d-RF case. The selfinjectivity
was first proved in [IO2], and the twisted-periodicity was first proved by Dugas [Dug].

Corollary 4.13. Let Λ be a d-RF algebra and Π its (d+ 1)-preprojective algebra.

(a) Π is self-injective.
(b) Π is twisted-periodic of period d+ 2.

Proof. (a) It follows from Theorem 4.12 that ExtiΠ(T,Π) = 0 holds for any Z-graded simple Π-
modules and 0 < i < d+ 1. Thus Ext1Π(−,Π) = 0 holds on modΠ, and therefore Π is injective as
a Π-module.

(b) Since Λ is a factor algebra of Π by the ideal
⊕

i>0 Πi contained in the radical, each simple
Π-module S is realized as the top of GP , where P is an indecomposable projective Λ-module.
Thus, by Theorem 4.12(c), the sum S =

⊕

Si of the simple Π-modules is periodic of period d+2.
This implies the assertion by [GSS, Theorem 1.4]. �

As another application our results, we have the following result for d-RI case.

Corollary 4.14. Let Λ be a d-RI algebra and Π its (d+ 1)-preprojective algebra.

(a) modZ-Π has global dimension d+ 1, and any Z-graded simple right Π-module T satisfies

ExtiΠop(T,Π) ∼=

{

T ∗(1) if i = d+ 1;

0 otherwise.

(b) Π -modZ has global dimension d+ 1, and any Z-graded simple left Π-module U satisfies

ExtiΠ(U,Π)
∼=

{

U∗(1) if i = d+ 1;

0 otherwise.

Proof. It follows from Theorem 4.12 that any Z-graded simple Πop-module T has projective di-
mension d + 1 and satisfies the equalities of extension groups. For any X ∈ Π -modZ, we take
a minimal Z-graded projective resolution · · · → P1 → P0 → X → 0 of X . Then T ⊗Π Pd+2 =

TorΠd+2(T,X) = 0 holds for any Z-graded simple Πop-module T since T has projective dimension

d+ 1. Thus Pd+2 = 0 holds, and Π -modZ has global dimension d+ 1. Dually, modZ-Π has global
dimension d+ 1. �

The previous result says that Π, with the tensor grading, is AS-regular of dimension d+ 1 and
Gorenstein parameter 1 [AS, MM]. This can also be deduced less directly as a consequence of
results of Minamoto-Mori [MM, Theorem 4.2] and Keller [Kel].

4.3. Koszul properties of higher preprojective algebras. Let Λ be a d-hereditary F-algebra.
In this section, we further assume that Λ is a Z-graded algebra Λ =

⊕

i∈Z
Λi. We denote by Λ -modZ

the category of Z-graded Λ-modules and degree 0 maps, and by Db(Λ -modZ) the bounded derived
category of Λ -modZ. As in the ungraded case, we define an autoequivalence

νd = Λ∗[−d]⊗L

Λ − : Db(Λ -modZ)→ Db(Λ -modZ)

and a full subcategory

U
Z := add{ν−i

d (Λ)(j) | i, j ∈ Z} ⊆ Db(Λ -modZ).

We have the following graded version of Theorem 4.9.
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Theorem 4.15. Let Λ be a Z-graded d-hereditary algebra.

(a) If Λ is d-RI, then any indecomposable object X (respectively, Y ) in U Z has a d-almost split
sequence in U Z

Y
fd
−→ Cd−1

fd−1
−−−→ Cd−2

fd−2
−−−→ · · ·

f2
−→ C1

f1
−→ C0

f0
−→ X.

Moreover, we have Y ∼= νd(X) (respectively, X ∼= ν−1
d (Y )).

(b) If Λ is d-RF, then any indecomposable object X (respectively, Y ) in U Z has a weak d-almost
split sequence in U Z

Y
fd
−→ Cd−1

fd−1
−−−→ Cd−2

fd−2
−−−→ · · ·

f2
−→ C1

f1
−→ C0

f0
−→ X.

Moreover, we have Y ∼= νd(X) (respectively, X ∼= ν−1
d (Y )), Ker(fd∗) = socHomU (−, Y ) and

Ker(f0
∗) = socHomU (X,−).

Proof. The proof is very similar to Theorem 4.9. �

Let Π be the Z
2-graded (d+1)-preprojective algebra. Recall from Definition 3.17 that the first

entry of the Z
2-grading is the tensor grading, and the second one is the Λ-grading.

On the other hand, we consider the action of Z2 on U Z given by (i, j) 7→ ν−j
d (j). The following

description of the category U
Z follows directly from Lemma 4.10 and the definition.

Proposition 4.16. (a) There are equivalences of additive categories

GZ =
⊕

i,j∈Z
HomDb(Λ -modZ)(Λ, ν

−i
d (−)(j)) : U

Z ∼= projZ
2

- Π,

HZ =
⊕

i,j∈Z
HomDb(Λ -modZ)(−, ν

−i
d (Λ)(j)) : U Z ∼= Π -projZ

2

.

(b) The following diagram commutes up to natural isomorphism.

U
GZ

// projZ
2

- Π

HomΠop (−,Π)
��

U
HZ

// Π -projZ
2

.

HomΠ(−,Π)

OO

(c) We have the following commutative diagrams.

U Z GZ

//

ν−1
d

��

projZ
2

-Π

(1,0)
��

U Z GZ

// projZ
2

-Π

U Z HZ

//

νd
��

Π -projZ
2

(1,0)
��

U Z HZ

// Π -projZ
2

Immediately, we have the following Z-graded version of Theorem 4.12.

Theorem 4.17. Let Λ be a Z-graded d-hereditary algebra. For an indecomposable object X in
U

Z, we consider a d-almost split sequence in U
Z:

Y
fd
−→ Cd−1

fd−1
−−−→ Cd−2

fd−2
−−−→ · · ·

f2
−→ C1

f1
−→ C0

f0
−→ X.

(a) There exist exact sequences

GZY
GZfd
−−−→ GZCd−1

GZfd−1
−−−−−→ · · ·

GZf2
−−−→ GZC1

GZf1
−−−→ GZC0

GZf0
−−−→ GZX → S → 0

HZX
HZf0
−−−→ HZC0

HZf1
−−−→ HZC1

HZf2
−−−→ · · ·

HZfd−1
−−−−−→ HZCd−1

HZfd
−−−→ HZY → T → 0

in modZ
2

-Π and Π -modZ
2

, where S and T are simple.
(b) If Λ is d-RI, then GZfd and HZf0 are monomorphisms.
(c) If Λ is d-RF, then KerGZfd = socGZY and KerHZf0 = socHZX hold. Moreover these are

simple.
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Proof. The assertions follow from Theorem 4.15 by a similar argument to the proof of Theorem
4.12. �

In the rest of this section, we further assume that Λ =
⊕

i≥0 Λi = TS(V )/I is a Koszul algebra
and S = Λ0 is a semisimple F-algebra.

We now recall the theory of almost Koszul duality due to Brenner, Butler, and King [BBK].
Let S be a semisimple finite-dimensional F-algebra and A =

⊕

i≥0 Ai a nonnegatively Z-graded
S-algebra with A0 = S.

Definition 4.18. The Z-graded algebra A is almost Koszul, or (p, q)-Koszul, if there exist integers
p, q ≥ 1 such that Ai = 0 for all i > p and there is an exact sequence

0→ S′ → Pq → · · · → P0 → S → 0

of Z-graded A-modules with projective A-modules Pi generated in degree i and a semisimple A-
module S′ concentrated in degree p+ q.

Note that it does not matter whether we consider left or right A-modules [BBK, Proposition 3.4].

Theorem 4.19. Let Λ be a Koszul d-hereditary algebra, and Π its (d + 1)-preprojective algebra
with the (d+ 1)-total grading given in Definition 3.17.

(a) If Λ is d-RI, then Π is Koszul.
(b) If Λ is d-RF, then Π is almost Koszul. It is (p, d+ 1)-Koszul, where p = max{i ≥ 0 | Πi 6= 0}

with respect to the total grading.

Proof. Let modZ-Π be the category of Z-graded Λ-modules with respect to the (d+1)-total grading
on Π. Let S be a Z-graded simple Π-module S concentrated in degree 0. Consider the functor

F : modZ
2

- Π→ modZ-Π given by
⊕

(i,j)∈Z2 Xi,j 7→
⊕

ℓ∈Z
Xℓ, where Xℓ =

⊕

(d+1)i+j=ℓ Xi,j . Let

G′ = F ◦ GZ and H ′ = F ◦ HZ. Then Theorem 4.17(a) gives the first d + 1 terms of minimal
Z-graded projective resolution

G′Y
G′fd
−−−→ G′Cd−1

G′fd−1
−−−−→ · · ·

G′f2
−−−→ G′C1

G′f1
−−−→ G′C0

G′f0
−−−→ G′X → S → 0 (4.3.1)

and the exact sequence

H ′X
H′f0
−−−→ H ′C0

H′f1
−−−→ H ′C1

H′f2
−−−→ · · ·

H′fd−1
−−−−−→ H ′Cd−1

H′fd
−−−→ H ′Y → T → 0. (4.3.2)

To prove both assertions, we only have to show that G′Ci is generated in degree i+ 1. Since Λ is
Koszul, by Proposition 3.18(c), the (d+1)-total grading and the radical grading on Π agree. Since
G′X is generated in degree 0 and (4.3.1) is minimal, G′Ci is generated in degrees at least i+ 1.

By Proposition 4.16(c), we haveGZY = GZνd(X) = (GZX)(−1, 0) and henceG′Y = (G′X)(−d−
1). Thus G′Y is generated in degree d+1, and hence H ′Y is generated in degree −d− 1 by Propo-
sition 4.16(b). Since (4.3.2) is minimal, H ′Ci is generated in degrees at least −i − 1 and hence
G′Ci is generated in degrees at most i+ 1. Thus the assertion follows. �

5. Quadratic duals of higher preprojective algebras

The aim of this section is to compare the quadratic duals of the higher preprojective algebras
and certain twisted trivial extension algebras of the quadratic duals for Koszul algebras.

5.1. Graded trivial extension algebras. For any finite dimensional F-algebra Γ, there is a well-
known way to construct a new algebra called the trivial extension algebra. We describe a graded
version of this, which can be seen as an extension of Γ by a twist of the dual bimodule Γ∗.

Definition 5.1. Let Γ be a non-negatively Z-graded finite-dimensional algebra and n ∈ Z. The
graded (d + 1)-trivial extension algebra of Γ, denoted Trivd+1(Γ), is the Z-graded vector space
Γ⊕ Γ∗(−d− 1) with multiplication given by

(a, f) · (b, g) = (ab, ag + (−1)difb)

when b ∈ Γi is a homogeneous element of degree i.
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We have used the fact that Γ, and hence Γ∗, has a natural structure of a Γen-module.
One can interpret Z-graded d-trivial extensions in the following way. First, let σ : Γ → Γ be

the algebra automorphism defined by σ(a) = (−1)ia for a ∈ Γi. Then Trivd+1(Γ) is the trivial
extension of Γ by the twisted bimodule σdΓ∗. Note that another multiplication rule (a, f) · (b, g) =
(ab, (−1)diag + fb)) with a ∈ Γi used in [Gra] gives an isomorphic Z-graded algebra.

In the rest of this section, we assume that

Λ = TS(V )/(R)

is a Koszul algebra with a separable F-algebra S, and Γ is its quadratic dual Γ = Λ!. Recall that
we have Sen-modules Ki with K0 = S, K1 = V and K2 = R and maps ιℓi : Ki →֒ V ⊗S Ki−1 and
ιri : Ki →֒ Ki−1 ⊗S V . By Lemma 2.6, we have an isomorphism of Z-graded algebras

Λ! =
⊕

i≥0

(Λ!)i ∼=
⊕

i≥0

K∗ℓ
i

where the algebra structure on
⊕

i≥0 K
∗ℓ
i is given by (ιℓi)

∗ℓ : K∗ℓ
i−1 ⊗S V ∗ℓ → K∗ℓ

i and (ιri )
∗ℓ :

V ∗ℓ ⊗S K∗ℓ
i−1 → K∗ℓ

i . Since (Λ!)i = ExtiΛ(S, S), the global dimension d of Λ is the maximal i such

that (Λ!)i 6= 0, and we have

Trivd+1(Λ
!)i = K∗ℓ

i ⊕K∗ℓ∗
d+1−i

where Ki = 0 for i < 0 or i > n, and Trivd+1(Λ
!) is concentrated in degrees 0 to d+ 1.

Recall from Proposition 3.12 that, if Λ is a Koszul algebra, then its higher preprojective algebra
Π is quadratic. We are now able to state the following result for the quadratic dual Π! of Π.

Theorem 5.2. Let Λ be a finite dimensional Koszul F-algebra of global dimension d such that
S = Λ0 is a semisimple F-algebra, and let Π be its higher preprojective algebra with radical grading.

(a) There exists a morphism φ : Π! → Trivd+1(Λ
!) of Z-graded F-algebras, which is an isomorphism

in degrees 0 and 1 and is injective in degree 2.
(b) φ is surjective if and only if (Λ!)d = socΛ!en(Λ!). In this case φ is an isomorphism in degrees

0, 1 and 2.
(c) φ is an isomorphism if and only if (Λ!)d = socΛ!en(Λ!) holds and Trivd+1(Λ

!) is quadratic.

To prove this, we need the following technical observation. Consider the Z-graded Λ!en-module

L :=
⊕

i∈Z

K∨∗ℓ
d+1−i

whose structure is given by (θℓi )
∗ℓ : V ∗ℓ ⊗S K∨∗ℓ

i−1 → K∨∗ℓ
i and (θri )

∗ℓ : K∨∗ℓ
i−1 ⊗S V ∗ℓ → K∨∗ℓ

i

obtained from (3.3.1).

Lemma 5.3. We have an isomorphism Λ!∗ ∼= L of Z-graded Λ!en-modules.

Proof. Applying Lemma 2.4 and its dual to the Z-graded Λ!en-module
⊕

i∈Z
K∗ℓ

i , we obtain iso-

morphisms of Z-graded Λ!en-modules Λ!∗ =
⊕

i∈Z
K∗ℓ∗

i
∼=

⊕

i∈Z
K∗ℓ∗r

i
∼=

⊕

i∈Z
Ki. Similarly we

obtain isomorphisms of Z-graded Λ!en-modules L =
⊕

i∈Z
K∨∗ℓ

i
∼=

⊕

i∈Z
K∨∨

i
∼=

⊕

i∈Z
Ki. Thus

the assertion follows. �

We are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Twisting the right action of Λ! on L as f · a := (−1)difa for f ∈ L and
a ∈ (Λ!)i, we obtain an Λ!en-module L′. Thanks to Lemma 5.3, we can regard Trivd+1(Λ

!) as
Trivd+1(Λ

!) = Λ! ⊕ L′ =
⊕

i∈Z
(K∗ℓ

i ⊕K∨∗ℓ
d+1−i).

(a) By Proposition 3.2, Π is a quotient of TS(V ), so Π! is a quotient of TS(V
∗ℓ
). Since

TS(V
∗ℓ
)0 = S = Trivd+1(Λ

!)0 and TS(V
∗ℓ
)1 = V

∗ℓ
= V ∗ℓ ⊕K∨∗ℓ

d = Trivd+1(Λ
!)1,

we have a morphism φ′ : TS(V
∗ℓ
)→ Trivd+1(Λ

!) of F-algebras
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By Proposition 3.12, Π is a quadratic algebra whose the degree 2 part is

Π2 =
V ⊗S V

R
⊕

(V ⊗S K∨
d )⊕ (K∨

d ⊗S V )

δ′d(K
∨
d−1)

⊕K∨
d ⊗S K∨

d

where Λ = TS(V )/(R). Therefore Π! is also a quadratic algebra whose the degree 2 part is

(Π!)2 =
V ∗ℓ ⊗S V ∗ℓ

R⊥
⊕

(K∨∗ℓ
d ⊗S V ∗ℓ)⊕ (V ∗ℓ ⊗S K∨∗ℓ

d )

δ′d(K
∨
d−1)

⊥
⊕

K∨∗ℓ
d ⊗S K∨∗ℓ

d

K∨∗ℓ
d ⊗S K∨∗ℓ

d

.

On the other hand, we have

Trivd+1(Λ
!)2 = (Λ! ⊕ L′)2 =

V ∗ℓ ⊗S V ∗ℓ

R⊥
⊕K∨∗ℓ

d−1.

Now we compare (Π!)2 with Trivd+1(Λ
!)2. To prove that φ′ induces the desired morphism φ : Π! →

Trivd+1(Λ
!), it suffices to show that the following sequence is exact.

0→ δ′d(K
∨
d−1)

⊥ → (V ∗ℓ ⊗S K∨∗ℓ
d )⊕ (K∨∗ℓ

d ⊗S V ∗ℓ)
φ′

−→ K∨∗ℓ
d−1 (5.1.1)

By our definition of the Λ!en-module structure on L′, the morphism φ′ in (5.1.1) is (θℓd+(−1)dθrd)
∗ℓ.

Since θℓd + (−1)dθrd : K∨
d−1 → (K∨

d ⊗S V )⊕ (V ⊗S K∨
d ) is the restriction of δ′d, the sequence (5.1.1)

is exact. In fact, for a morphism γ : X → Y of Sen-modules, the sequence 0→ γ(X)⊥ → Y ∗ℓ γ∗ℓ

−−→
X∗ℓ is clearly exact. This completes the proof.

(b) Since φ is an isomorphism in degrees 0 and 1 by (a), we have that φ is surjective if and only
if Trivd+1(Λ

!) is generated in degrees 0 and 1 as an algebra. We know that the algebras Π! and
Trivd+1(Λ

!) are generated by V ∗ℓ ⊕K∨∗ℓ
d and V ∗ℓ ⊕ headΛ!en L′ respectively. So φ is surjective if

and only if φ gives a surjection V ∗ℓ ⊕K∨∗ℓ
d → V ∗ℓ ⊕ headΛ!en L′ if and only if L′

1 = headΛ!en L′ if
and only if (Λ!∗)1 = headΛ!en(Λ!∗). Applying (−)∗, this is equivalent to (Λ!)d = socΛ!en(Λ!).

The latter assertion is immediate from (a).
(c) The ‘only if’ part is clear from part (b) and the fact that Π! is quadratic. The ‘if’ part

follows from Lemma 2.5 because both algebras are quadratic and φ is an isomorphism in degrees
0, 1, and 2. �

We have the following nice property of φ.

Theorem 5.4. If Λ is Koszul and d-hereditary, then the natural morphism φ : Π!
։ Trivd+1(Λ

!)
is surjective.

To prove this, we need the following.

Lemma 5.5. Let Λ be a Koszul algebra and i ≥ 0. If ExtiΛen(Λ,Λen)−i = 0, then (socΛ!en(Λ!))i = 0.

Proof. Recall that ExtiΛen(Λ,Λen) is the cohomology of the complex

Λ⊗S K∨
i−1 ⊗S Λ

δ′i−→ Λ⊗S K∨
i ⊗S Λ

δ′i+1
−−−→ Λ ⊗S K∨

i+1 ⊗S Λ.

Taking the degree −i part, ExtiΛen(Λ,Λen)−i is the kernel of the morphism

δ′i+1 = θℓi+1 + (−1)i+1θri+1 : K∨
i → (K∨

i+1 ⊗S V )⊕ (V ⊗S K∨
i+1) ⊂ Λ⊗S K∨

i+1 ⊗S Λ.

By adjunctions, f ∈ K∨
i is in the kernel if and only if V ∗r · f = 0 = f · V ∗ℓ.

On the other hand, we have (Λ!)i = K∗ℓ
i and (socΛ!en(Λ!))i = {f ∈ K∗ℓ

i | V
∗ℓ · f = 0 = f · V ∗ℓ}.

By Lemma 2.4 and its dual, the isomorphism K∗ℓ
i
∼= K∨

i induces an isomorphism

(socΛ!en(Λ!))i ∼= {f ∈ K∨
i | V

∗r · f = 0 = f · V ∗ℓ} = ExtiΛen(Λ,Λen)−i.

Thus the assertion follows. �

Now we are ready to prove Theorem 5.4.

Proof. Suppose φ is not surjective, so socΛ!en(Λ!) 6= (Λ!)d holds by Theorem 5.2(b). By Lemma

5.5, we have ExtiΛen(Λ,Λen) 6= 0, a contradiction to our assumption that Λ is d-hereditary. �
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Now we look at the case d = 1.

Example 5.6. Let Q be a connected quiver and Λ = FQ. Assume that Λ is 1-hereditary, that is,
Q is not of type A1 by our convention.

Then Π! is given by the double quiver Q with the following relations, where we denote by (−)∗

the canonical involution of Q: For any arrows α and β in Q, αβ = 0 if β 6= α∗, and αα∗ = ±ββ∗

if α and β start at the same vertex.
This implies that, if Q is not of type A2, then (Π!)i is non-zero if and only if i = 0, 1 or 2.

If Q is of type A2, then Π! is the path algebra of [ 1 // 2oo ] and hence infinite dimensional, while
Triv2(Λ

!) is the factor algebra of Π! by the ideal generated by paths of length 3.

For other cases in d = 1, we have the following.

Theorem 5.7. Let Q be a connected acyclic quiver which is not of type A1 and Λ := FQ its path
algebra. Then the natural morphism φ : Π! → Triv2(Λ

!) is an isomorphism if and only if Q is not
of type A2.

Proof. By Example 5.6, we only have to show the ‘if’ part. Clearly Λ! is the factor algebra of
FQop by the ideal generated by all paths of length 2. Thus (Λ!)i is non-zero only when i = 0 or
1, and (Λ!)1 = socΛ!en(Λ!) holds since Q is not of type A1. By Theorem 5.2(b), we have that φ is
surjective morphism which is an isomorphism in degrees 0, 1 and 2. On the other hand, Triv2(Λ

!)i
is non-zero only when i = 0, 1, or 2, while (Π!)i is non-zero only when i = 0, 1, or 2 by Example
5.6. Thus the assertion follows. �

As an application of Theorem 5.7, we recover a well-known result, which is mentioned in Section
5.1 of [BBK] and in the introduction of [HK]:

Corollary 5.8. Let Q be a connected quiver which is not of type A1 or A2 and has bipartite
orientation, and Λ := FQ its path algebra. Then

Π! ∼= Triv(Λ).

Proof. This is a consequence of Theorem 5.7 because, when Q has bipartite orientation, we have
Λ! ∼= Λop and Triv(Λop) ∼= Triv(Λ). Moreover, as Q is bipartite, the algebra automorphism σ
is inner: it is induced by a change of sign at either the sources or the sinks. Thus Triv2(Λ) ∼=
Triv(Λ). �

Example 5.9. Note that our map φ is not necessarily injective nor surjective. Let Λ be the Koszul
algebra given by taking the quotient of the path algebra of the quiver

1
α
→ 2

β
→ 3

γ
→ 4

by the ideal (αβ). Then Π! is infinite dimensional and Triv3(Λ
!) is 16-dimensional. The kernel

of φ is the infinite-dimensional space (Π!)≥4 and the cokernel is 2-dimensional, generated by γ ∈
K1 ⊆ Triv3(Λ

!)2 and e4 ∈ K0 ⊆ Triv3(Λ
!)3.

5.2. Type A examples. We finish this article by applying our theory to higher type A d-
representation finite algebras [Iy2, IO1].

Let 1 ≤ d < ∞ and 2 ≤ s < ∞. Let Q
(d,s)

denote the quiver whose vertices are d + 1-tuples
x = (x1, . . . , xd+1) of nonnegative integers that sum to s− 1, and whose arrows are

αx,i : x→ x+ fi

for 1 ≤ i ≤ d+ 1 whenever xi ≥ 1, where

fi = (0, . . . , 0,
i
−1,

i+1
+1, 0, . . . , 0) and fd+1 = (1, . . . , 0, . . . , 0,−1).
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Let Q(d,s) be the quiver obtained by removing all arrows of the form αx,d+1 from Q
(d,s)

. For

example, the quivers Q
(2,5)

and Q(2,5) are the following.

Q
(2,5) 040

130 031

220 121 022

310 211 112 013

400 301 202 103 004

EE☞☞☞☞ ��✷
✷✷
✷

oo
FF☞☞☞☞ ��✷

✷✷
✷ FF☞☞☞☞ ��✷

✷✷
✷

oo
EE☛☛☛☛ ��✷

✷✷
✷

oo
EE☛☛☛☛ ��✷

✷✷
✷ EE☞☞☞☞ ��✸

✸✸
✸

oo
FF☞☞☞☞ ��✷

✷✷
✷

oo
FF☞☞☞☞ ��✷

✷✷
✷

oo
FF☞☞☞☞ ��✷

✷✷
✷ EE☞☞☞☞ ��✷

✷✷
✷

oo oo oo oo

Q(2,5) 040

130 031

220 121 022

310 211 112 013

400 301 202 103 004

EE☞☞☞☞ ��✷
✷✷
✷

FF☞☞☞☞ ��✷
✷✷
✷ FF☞☞☞☞ ��✷

✷✷
✷

EE☛☛☛☛ ��✷
✷✷
✷ EE☛☛☛☛ ��✷

✷✷
✷ EE☞☞☞☞ ��✸

✸✸
✸

FF☞☞☞☞ ��✷
✷✷
✷ FF☞☞☞☞ ��✷

✷✷
✷ FF☞☞☞☞ ��✷

✷✷
✷ EE☞☞☞☞ ��✷

✷✷
✷

Let I(d,s) denote the ideal of FQ(d,s) generated by elements:

αx,iαx+fi,j = αx,jαx+fj ,i if xi, xj ≥ 1;

αx,iαx+fi,i+1 = 0 if xi ≥ 1 and xi+1 = 0,

where x ∈ Q
(d,s)
0 and 1 ≤ i < j ≤ d.

For a field F, let
Λ(d,s) = FQ(d,s)/I(d,s).

Then Λ(d,s) is d-RF [Iy2, Theorems 1.18, 6.12]. Also, as I(d,s) is a homogeneous ideal with respect
to the path length grading on FQ(d,s), Λ(d,s) inherits this grading.

The following notation will be useful: for a vertex x in Q(d,s), let ex denote the idempotent of
Λ corresponding to the vertex x, and let

αi =
∑

αx,i.

Then the relations in Λ(d,s) can be rewritten as:

ex(αiαj − αjαi) = 0 for all vertices x and all i 6= j.

We have a natural morphism φ : Π! → Trivd+1(Λ
!). We know by Theorem 5.2 and Corollary 5.4

that φ is always surjective. If s ≥ 3, then it is shown in [Gra, Section 3] that φ is an isomorphism.
We will make use of the following result:

Proposition 5.10 ([Gra, Proposition 3.4]). Λ is a Koszul algebra.

Lemma 5.11. The space Kd has an Sen-module basis {kx | x ∈ Q0, x1 6= 0}, where

kx = ex
∑

σ∈Sd

(sgnσ)ασ(1)ασ(2) · · ·ασ(d).

Proof. Fix 0 ≤ r ≤ d − 2. First we show that kx ∈ V rRV d−r−2. For any vertex y and any i 6= j
we have ey(αiαj − αjαi) ∈ R. Thus, for any indices i1, . . . , id−2 such that {i, j, i1, . . . , id−2} =
{1, 2, . . . , d} we have exαi1 . . . αir (αiαj−αjαi)αr+1 . . . αd−2 ∈ V rRV d−r−2. Summing over all such
sets {i1, . . . , id−2}, with sign, we get that kx ∈ V rRV d−r−2. But this did not depend on r, so we

have kx ∈ Kd =
⋂d−2

r=0 V
rRV d−r−2.

Conversely, consider an element k ∈ Kd. Without loss of generality, k = exk for some vertex x.
No summand of k can be of the form pαiαiq with p ∈ V r and q ∈ V d−r−2, or else k /∈ V rRV d−r−2.
So we must have

k = ex
∑

σ∈Sd

λσασ(1)ασ(2) · · ·ασ(d)

for some scalars λσ ∈ F. But this can only be in RV d−2 if λσ + λ(12)σ = 0. Similarly, we have
λσ + λ(i,i+1)σ = 0 for all 1 ≤ i < d. Thus sgnσ = sgn τ implies λσ = λτ , and sgnσ = −sgn τ
implies λσ = −λτ . So k is a scalar multiple of kx. �
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Let I
(d,s)

denote the ideal of FQ
(d,s)

generated by elements:

αx,iαx+fi,j = αx,jαx+fj ,i if xi, xj ≥ 1;

αx,iαx+fi,i+1 = 0 if xi ≥ 1 and xi+1 = 0 (where d+ 2 := 1),

where x ∈ Q
(d,s)

0 and 1 ≤ i < j ≤ d + 1. As an application of our results in this paper, we give
the following description of the higher preprojective algebra of Λ, which recovers the quiver with
relations in [IO1, Definition 5.1, Proposition 5.48].

Theorem 5.12. Let Π = Π(Λ). The quiver Q of Π is Q
(d,s)

, and we have an isomorphism

Π ∼= FQ
(d,s)

/I
(d,s)

.

Proof. The former statement follows from Proposition 3.2. We prove the latter one. From Lemma
5.11 we obtain the superpotential

W =
∑

σ∈Sd

(sgnσ)ασ(1)ασ(2) · · ·ασ(d)αd+1

for Q. By differentiating this superpotential with respect to all paths of length d− 1 in Q, we have
the isomorphism. �

We now apply Theorem 4.19 to obtain a large family of pairs of almost Koszul algebras. This
statement generalizes [BBK, Corollary 4.3] for type A quivers. It appears to be the first construc-
tion of (p, q)-Koszul algebras for all p, q ≥ 2.

Proposition 5.13. If s ≥ 3 and n ≥ 1, then Π and Π! are an almost Koszul pair: Π is (s−1, d+1)-
Koszul and Π! is (d+ 1, s− 1)-Koszul.

Proof. Theorem 4.19 tells us that Π is (p, d+1)-Koszul if Π is concentrated in degrees 0 to p, and
[BBK, Proposition 3.11] tells us that the quadratic dual of a (p, q)-Koszul ring with p, q ≥ 2 is a
(q, p)-Koszul ring. So we just need to show that Π is concentrated in degrees 0 to s− 1.

We again use Mart́ınez-Villa’s result that all projective modules for a Z-graded self-injective
algebra have the same Loewy length [MV, Theorem 3.3]. Thus we only need to show that there is
a projective Π-module concentrated in degrees 0 to s − 1. Consider the left projective Π-module
Πe(s−1,0,...,0) associated to the vertex x = (s − 1, 0, . . . , 0). First we claim that all paths starting

at x are of the form exα
d
1. To see this, note that the arrows in Q ensure that every path not of

this form starting at x must begin exα
m
1 α2 for some m ≥ 1. But then the commutation relations

in Π show that exα
m
1 α2 = exα1α2α

m−1
1 . But exα1α2 = 0. Next we note that exα

d
1 is nonzero for

0 ≤ d ≤ s− 1 and is zero for d ≥ s. So Πe(s−1,0,...,0) is nonzero precisely in degrees 0 to s− 1. �
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