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ABSTRACT. In this article we study higher preprojective algebras, showing that various known
results for ordinary preprojective algebras generalize to the higher setting. We first show that
the quiver of the higher preprojective algebra is obtained by adding arrows to the quiver of the
original algebra, and these arrows can be read off from the last term of the bimodule resolution
of the original algebra. In the Koszul case we are able to obtain the new relations of the higher
preprojective algebra by differentiating a superpotential and we show that when our original
algebra is d-hereditary all the relations come from the superpotential.

We then construct projective resolutions of all simple modules for the higher preprojective
algebra of a d-hereditary algebra. This allows us to recover various known homological properties
of the higher preprojective algebras and to obtain a large class of almost Koszul dual pairs of
algebras. We also show that when our original algebra is Koszul there is a natural map from the
quadratic dual of the higher preprojective algebra to a graded trivial extension algebra.
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1. INTRODUCTION

The preprojective algebras of quivers are important algebras which appear in various areas of
mathematics, e.g. Cohen-Macaulay modules [Aul[GL], Kleinian singularities [CB3], cluster algebras
[GLS], quantum groups [KS| [Lul, quiver varieties [Na]. They were first introduced by Gelfand and
Ponomarev [GP] (see also [DR]) by explicit quivers with relations: The algebra II of a quiver @ is
the path algebra FQ of the double quiver @ of @ modulo the ideal generated by Zmte (xa* —x*x).
Baer, Geigle, and Lenzing gave a more conceptual construction of IT based on the representation
theory of the quiver @ [BGI]: Their algebra is the direct sum of spaces Homa (A, 77“A) for the
inverse Auslander-Reiten translate 77, with an obvious multiplication. The algebras of Gelfand-
Ponomarev and Baer-Geigle-Lenzing are isomorphic, as shown in [Rinl [CB2].

Preprojective algebras enjoy very nice homological properties. They enjoy a certain 2-Calabi-
Yau property [CBI]: If @ is non-Dynkin, then IT is a 2-Calabi-Yau algebra in the sense of Ginzburg.
If @ is Dynkin, then II is a self-injective algebra and its stable category is 2-Calabi-Yau. They also
enjoy a certain Koszul property: If @ is non-Dynkin, then II is a Koszul algebra. If @ is Dynkin,
then II is twisted periodic of period 3 [RS], and moreover it is an almost Koszul algebra in the
sense of Brenner, Butler, and King [BBK].

Recently, an analogue of preprojective algebras was studied in cluster theory [Kel] and higher-
dimensional Auslander-Reiten theory [Iyl]. For a finite dimensional algebra A of global dimension
d, its preprojective algebra is defined as Homp (A, 7, eA), where 74 and 7, are higher analogues of
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the Auslander-Reiten translates. This algebra is the 0-th cohomology of the (d + 1)-Calabi-Yau
completion [Kell|, which is a (d + 1)-Calabi-Yau differential graded algebra. When A is a so-called
d-hereditary algebra, its higher preprojective algebras enjoys nice homological properties, including
the (d+1)-Calabi-Yau property [AOLHILTO1], TO2| [HIO]. Higher preprojective algebras also appear
in non-commutative algebraic geometry [Minl MM] and in conformal field theory [EPI] [EP2].

A natural question arises: can we describe these higher preprojective algebras by quivers and
relations, generalizing the description of Gelfand and Ponomarev? This is important in practice
since having a description by a quiver and relations often makes calculations much easier to perform.
When A has global dimension exactly 2, the higher preprojective algebra is isomorphic to the
Jacobi algebra of a certain quiver with potential [Kel, [HI], whose relations are given by taking
formal partial differentials of the potential. Quivers with potential appeared in physicists’ study
of mirror symmetry, and also played a key role in categorification of Fomin-Zelevinsky cluster
algebras [DWZ].

It is a difficult problem to give a description of the higher preprojective algebra of a general
finite-dimensional algebra in terms of a quiver and relations. Here, we impose the restriction that
A should be a Koszul algebra, which ensures its homological algebra is easier to understand. Then
we are able to describe the quivers of the higher preprojective algebras, and to show that the new
relations in the higher preprojective algebra come from taking higher formal partial differentials of
a superpotential (see Theorem B.I3)). If we further assume that A is a d-hereditary algebra [HIOI,
then all the relations come from higher differentials of the superpotential.

Theorem A (Corollary [A3). If A 2 FQ/(R) is Koszul and d-hereditary then
FQ

= om

where the quiver Q is a quiver obtained from Q by adding new arrows, and the relations W are
obtained by differentiating a certain superpotential W with respect to length d — 1 paths of Q.

In fact, our Theorem B.T4]is much more general since A can be a factor algebra of the tensor algebra
Ts(V) for a separable F-algebra S. In Definitions B4 and 35 we give definitions of superpotentials
in Tg(V) and the associated higher Jacobi algebras which work in this generality, by using the Oth
Hochschild homology. Higher Jacobi algebras have been considered previously in representation
theory, notably in work of Van den Bergh [VdB|, and Bocklandt, Schedler, and Wemyss [BSW]
(see also [DV], IMS]). In the d-representation infinite case, which makes up half of the dichotomy
of d-hereditary algebras, we recover the description of Calabi-Yau Koszul algebras given in [BSW].
In the case where A is a basic Koszul d-representation-infinite algebra, this description was also
given by Thibault [Thil.

We also obtain homological information about higher preprojective algebras. Under the as-
sumption that A is d-hereditary, we are able to describe the projective resolutions of all simple
II-modules using the higher Auslander-Reiten theory of A. In fact, we show that they are induced
from d-almost split sequences (see Theorem [£.12]). As applications, we have the following results.

Theorem B (Corollaries 13 and T4 and Theorem 19). Let A be a d-hereditary algebra and
IT the (d + 1)-preprojective algebra of A.

(a) If A is d-representation finite, then the simple II-modules have periodic projective resolutions.
If moreover A is Koszul, then II is almost Koszul.

(b) If A is d-representation infinite, then the simple II-modules have projective dimension exactly
d+ 1. If moreover A is Koszul, then so is II.

As a corollary, we deduce that in the d-representation infinite case IT is AS-regular of dimension
d 4+ 1 and Gorenstein parameter 1 with respect to the tensor grading, and in the d-representation
finite case II is twisted periodic of period d + 2. This recovers results of Minamoto and Mori [MM]
and Dugas [Dug], respectively.
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Next we consider quadratic duals. We show that, when A is Koszul, there is a natural map from
the quadratic dual of the preprojective algebra to a graded trivial extension algebra of the quadratic
dual of A. Moreover we characterize when this map is surjective (respectively, an isomorphism)
(see Theorem [52). In particular, we prove the following result.

Theorem C (Theorem 52t Corollary B.4). Let A be a Koszul algebra of global dimension d.

(a) There exists a morphism ¢ : II' — Trivgy1(A') of Z-graded F-algebras.
(b) If A is d-hereditary then ¢ is surjective, and in this case ¢ is an isomorphism if and only if
Trivgy1 (A') is quadratic.

In the d = 1 case where A = FQ for @ any connected acyclic quiver, we show that the map is an
isomorphism whenever the underlying graph of @ is not of type A; or A;. We finish by applying
our results to the type A d-hereditary algebras A(%*) [IO1] and use Theorem B to deduce that the
type A higher preprojective algebras are almost Koszul algebras with parameters (s — 1,d + 1),
thus obtaining examples of (p, ¢)-Koszul algebras for all p,q > 2.

Note that a similar result to Theorem C was independently obtained by Guo [Guo].
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24340004, (B) 16H03923, (C) 18K03209 and (S) 15H05738. J.G. was supported first by the Japan
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The authors thank them for supporting our project. They also acknowledge the hospitality of
Syracuse University, Isaac Newton Institute, and Czech Technical University in Prague.

2. PRELIMINARIES

Let A be a finite-dimensional algebra over a field F. By default, a A-module will mean a
finitely generated left A-module, and we denote the category of such modules by A-mod. The
corresponding category of right modules is denoted mod- A. If 2" is a set of left or right modules,
we denote by add 2  the additive subcategory of modules isomorphic to summands of sums of
elements of 2. We sometimes write add M for add{M}.

We denote the enveloping algebra A @ A°P of A by A°". We will assume that F acts centrally on
all bimodules, and then we can identify the category A°® -mod of left A°*-modules with the category
A -mod- A of A®®-modules. We have a duality (—)* = Homp(—,F) : A-mod = mod- A which sends
left modules to right modules and vice versa. It extends to a duality A°®-mod =+ A®®-mod of
bimodules.

2.1. Tensor algebras. Let M be a A°*-module. Recall that the tensor algebra Tx(M) of M is
the Z-graded vector space

TA(M) =P M’
i>0
where M* = M ®p --- ®a M is the tensor product of i copies of M so, in particular, M9 = A.
There is an obvious graded multiplication map M*® x M7 — M®*J which sends the pair (A\; ® Ao ®
S ® A, Aig1 ® ... A\igj) of standard basis vectors to the concatenated vector A; @ Ao ® ... ® Aiyj,
and so Ty (M) is a nonnegatively Z-graded algebra. For later use, we prepare the following basic
observations, whose proofs are left to the reader.

Lemma 2.1. Let M be a A**-module, T := Tx(M), and I an ideal of A.

(a) For a A°*™-modules N, we have Tp(T @y N @7 T) = Ta(M & N).
(b) For a A°"-submodule L of M, we have Txy(M)/(I + L) =Ty, ;(M/(IM + MI+ L)).
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Let A be a basic F-algebra with Jacobson radical J. We assume that S is a semisimple subalgebra
of A such that A = S@® J. Then we can write A = Tg(V)/I for an S**-module V and an ideal I of
Tg(V). If I is a homogeneous ideal then A inherits a grading from Tg(V'). Any such nonnegatively
Z-graded algebra A has a minimal Z-graded projective A°"-module resolution

L% p Bp %p L,

where each projective module P; is generated in degrees greater than or equal to <. Immediately,
we have the following property.

Lemma 2.2. For any i > 0, the Z-graded A“*-module Extj\cn (A, A®™) is generated in degrees
greater than or equal to —1i.

We can write each projective A°"-module in the form A ®g K ®g A for some S°"-module K;
see [BK]. In particular, we write P, = A g K; ®g A for Z-graded projective S®*-modules K;, for
0 < i < d, where we consider S as a Z-graded algebra concentrated in degree 0.

In general K; = Tor?(S, S), and explicit descriptions for these spaces are known. For m > 0,

ImnJrm=1J

JImnimJ
SN and Toré\mH(S, S) =

A ~Y
T0r2m(S, S) = = W

For more information and references, see the introduction to [BK]. For certain kinds of algebras
there are nicer descriptions of these spaces: see Section and the final chapters of [BK].
As well as our vector-space duality (—)*, we have a duality

()Y := Homgen (—, S") : $°" -mod = S* -mod,
(—)* ;= Homg(—, S) : §°™-mod = S°" -mod,
(=)*" := Homgop (—, S) : S -mod = S -mod .
For A°"-modules X,Y, Z, we have functorial isomorphisms
Y@ XT 2 (X @4 V) for t = or «0 (2.1.1)
sending f ® g to (r @y — g(xf(y)) and
YT @R4 X T2 (X®4Y) for f =#rorV (2.1.2)

sending f® g to (z ®y — f(g(x)y)) for T = »r, and f® g to (z @y — Y., s @ f(s}y)) for
g(z) =3, 8 ® s, for f = V.
Note the following simple lemma:

Lemma 2.3. Let L be a A ®p S°P-module, X be a projective S™-module, and M be a S ®p A°P-
module. Then there is an isomorphism of A°®-modules which is natural in L, X, and N:

Hom pen (L Rs X ®g M, Aen) = }IOHIA(]\47 A) Xs XV ®s Hompop (L, A)
In particular, for any projective S°"-module X, there is a functorial isomorphism of A°"-modules
Hompen (A ®5 X @5 A, A™) 2 A®s5 XY @5 A.

Proof. We include a complete proof for the convenience of the reader. Using the tensor-hom
adjunctions, for any X € S°"-mod we have isomorphisms of A°"-modules
HOmAen (L ®S X ®S M, Aen) = HOmAen ((L ®]F M) ®Sen X, Aen)
= HOmSen (X, HOmAen (L [ M, Aen)) = XV X gen HOmAen (L RE M, Aen)
~ XV Q) gen (HOmA(L, A) ®r Hompop (M, A)) = HOInA(]W7 A) ®Rg XV ®s Hompop (L, A)

2

All our isomorphisms are natural. d
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The four duals (—)*, (=)*, (=)*" and (—)Y are isomorphic to each other (e.g. [Ric, Section
3], [BSW| Section 2.1]). In fact, since S is a symmetric F-algebra, there exists an F-linear form
t: S — Fsuch that t(zy) = ¢(yz) and the map S — S* sending « to (y — t(xy)) is an isomorphism.
This gives isomorphisms

ai=to (=) (<) (=), Bi=to(=): (07 = (=) andyi= (t®1)o(=): (=)
of functors.

For the later use, we now show that these isomorphisms are compatible with module structures
in the following sense: Let L = €, L; be a Z-graded Tg(V**)°P-module, and let

LY=L, t*9=pr, L' =PrL7; and LV =HLY,
i€Z i€z i€z i€z
Then L®) and L&Y are Z-graded Tg(V**)-modules, and L&*™) and L(Y) are Z-graded Tg(V*")-
modules as follows: The action of Tg(V*¢)°P on L is given by a morphism a; : L; ®¢ V** — L; 1,
of S°"-modules for ¢ € Z. This corresponds to a morphism b; : L; — L;11 ®g V of S°"-modules
via Hom-tensor adjunction Homges (4 ®g B, C) = Homgen (4, Homgos (B, C)). Applying (—)' for
T = *,%{,%r,V, we obtain morphisms

1%

(_)*’I‘

e&1D bl
V¥ ®g L;-f+1 >~ (Liy1 ®s V)T s LI for T = * or %/,

V7 es Lz‘+1 > (L1 ®sV)' = L! for 1 =#r or Vv
of S°"-modules, which give the desired structures on L) LGO G and LM,

Lemma 2.4. (a) We have isomorphisms L) = L&Y of Zi-graded Ts(V**)-modules, and L") =
LN of Z-graded Ts(V*")-modules.

(b) Under the isomorphism Tg(V*") = T5(V**) of algebras given by a;lﬁv VAT 2V we have
isomorphisms L) = L0 = [(+7) = [ (V) of 7_graded Tg(V*")-modules.

Proof. The assertions follow from the following commutative diagram.

V" ®g Ly, LN (Liy1 @5 V)Y ¥ Ly
1V*T®7Li+li 'YLi+1®V\L - lui
VT ®s Lity B2, (Liv1 ®@s V)™ . Ly
(a7 V) @61y | ﬁv*"@LHl\L ) lmi
V¥t g Ll ——— (Lis1 @ V)" ——— L}
1V*£®0¢Li+1T (lLi+1®VT y TQL,L
Vs L}, ——— (Liy1 @5 V)" ——— L

The right squares commute since «, 3,y are morphisms of functors. The left top square commutes
since both the north-west composition and the south-west composition send f ® g € V*" ®g Ly, ;
to (Lit1 ®sV 3 2 @v — > . t(si)f(sjv) € S), where g(x) = >, s; ® s;. The left bottom
square also commutes since both the north-west composition and the south-west composition send
f®geV*@s L to (Liy1 ®sV 3z@v— t(g(zf(v)) € F).

To check that the left middle square commute, fix f ® g € V*" ®g L;7,. The north-west
composition sends f ® g to (z @ v — t(f(g(x)v))). The south-west composition sends f ® g to
(z @ v = t(g(zf'(v)))), where f' = ay' By (f) € V*¢ satisfies t o f = t o f'. These two elements
coincide since t(f(g(z)v))) = t(f'(g9(x)v)) = t(g(x) [’ (v)) = t(g(z [’ (v))). 0

2.2. Graded algebras and Koszul algebras. In this section, we give preliminaries on Koszul
algebras, which were introduced in [Pri] and studied extensively in [BGS].
Let A = ;- Ai be a positively Z-graded F-algebra satisfying the following conditions:

e S := A is semisimple, or equivalently, the Z-graded radical of A coincides with A~q := @, As.
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o A is generated in degree 1, i.e., the multiplication map A1 ®r A1 ®F - - - ®r A1 — A; is surjective

for each j.

In this case, we call the grading a radical grading.

We assume, for simplicity, that A is basic. Our assumptions ensure that A is a quotient of
the tensor algebra Tg(V') where V is the S°®-module A;. When A is finite-dimensional and F is
algebraically closed, we can identify S with the space FQq of vertices, and V with the space FQ1
of arrows, of the Gabriel quiver @ of A.

For a Z-graded A-module M and j € Z, let M (j) denote the shifted Z-graded A-module where
M(j)i = Mi4;. A complex

o= My > My —>M_1 —---

of Z-graded A-modules is linear if each module M; is generated in degree ¢ and each map is
homogeneous of degree 0. The algebra A is Koszul if each simple module S; has a linear projective
resolution.

As the ideal of relations is generated in degree 2, all Koszul algebras are quadratic in the sense
that they can be written as a quotient of a tensor algebra:

A=Ts(V)/(R)
where V is an S°"-module, R is a subset of V®gV, and (R) is the ideal in Tg(V') that it generates.
To simplify the proofs, we will sometimes assume that R is a sub-5°"-module of V ®g V instead
of just a subset. In particular, it is a vector subspace. This is no real restriction.
We view S as a Z-graded F-algebra concentrated in degree 0, and V' as a Z-graded S°*-module
concentrated in degree 1. Then the tensor grading and the grading coming from V coincide, and

so we can safely refer to just the grading on A.
We record a useful lemma on quadratic algebras:

Lemma 2.5. If we have two quadratic algebras Tg(V)/(R) and Ts(V')/(R') which are isomorphic
as S -modules in degrees 0, 1, and 2 then they are isomorphic algebras.

Proof. Without loss of generality assume that R and R’ are sub-S¢"-modules instead of just subsets.
Because our map is an isomorphism in degrees 1 and 2 we have V =V’ and
VesV V' esV’
R R
as S°"-modules and the isomorphisms commute with the canonical projection maps, so the 5-lemma
tells us that R = R’ as S®"-modules and their inclusions into V ®g¢ V and V' ®g V'’ commute with
this isomorphism. O

In the rest of this subsection, let A = Tg(V)/(R) be a quadratic algebra. We have S"-modules
KOZS, K1:V, KQZR, and
j—2
Kj=VasK, )N (K 10sV)= ]V @sRos VI
i=0
for j > 3. Here, V' denotes the i-th tensor power V ®g - - ®g V. Note that K; is concentrated in
degree ¢ and that for i < 0, we set K; = 0. We will often need to take duals of these spaces, so to
simplify the notation we let K} = (K;)*.
Recall [BGS, Section 2.7] that if U is a subset of V*, the right orthogonal complement of U is
Ut ={f e (V¥ | f(U) =0}, where we identify (V**)’ with (Vi)**. The quadratic dual of a
quadratic algebra A = Tg(V)/(R) is

A =Ts(V)/(RY).
It is again quadratic. If moreover A is Koszul, then A' is also Koszul and it coincides with the
. op
opposite ext algebra (®i>0 Ext} (S, S)) [BGS| Proposition 2.10.1]. In this case, A' has the

following description.



HIGHER PREPROJECTIVE ALGEBRAS, KOSZUL ALGEBRAS, AND SUPERPOTENTIALS 7

Lemma 2.6 ([BGS| Section 2.8]). For a Koszul algebra A, we have an isomorphism of Z-graded

algebras
N =P =P,

i>0 i>0

where the Z-graded algebra structure on P, K is given by the duals of (1£)*¢ and (¢7)**.

Now we assume that S is a separable F-algebra i.e. S ®@pF’ is semisimple for all field extensions
F C ', or equivalently, S°* is semisimple [Wei, Theorem 9.2.11]. Let P, = A®g K; ®s A. We have
obvious inclusions Lf K = Vs Ki—1and (] 1 K; = K1 ®g V of S"-modules and, combined
with the multiplication for A, they induce maps if,il : P, — P;_;. Let §; = i 4+ (—1)*i7. One can
check that these maps give a chain complex

LSy p Sop Sp L (2.2.1)

which is called the Koszul bimodule complex. Note that, as K; C V' and V is concentrated in
degree 1, each P; is generated in degree ¢, i.e., the resolution is linear.

The next result is an important characterization of Koszul algebras. It can be found as, for
example, [BGl Proposition A.2] and [BK| Theorem 9.2].

Theorem 2.7. A is Koszul if and only if the Koszul bimodule complex 221) is its minimal
projective resolution as a A°™-module.

2.3. Higher preprojective algebras. Let

7= (=)*oTr: A-mod — A-mod
denote the Auslander-Reiten translation, which is a functor from the stable category of modules
over A to the costable category, and

77 =Tro(—)*: A-mod — A -mod

the inverse Auslander-Reiten translation. Note that if A is hereditary then the Auslander-Reiten
translation in fact defines an endofunctor of the module category: the usual problem that the
transpose functor Tr is only defined on maps up to addition of maps which factor through projective
modules disappears, as when A is hereditary there are no nonzero maps between non-projective
modules which factor through a projective module. Moreover, 77 is left adjoint to 7.

Recall [IyI] that the d-Auslander-Reiten translation and inverse d-Auslander-Reiten translation
are defined as

74 =709 A-mod — A-mod and T, = Q@1 A mod — A-mod,

where  : A-mod — A-mod denotes the syzygy functor and Q= : A-mod — A-mod the cosyzygy
functor. If gldim A < d then we regard 74 and 7, as the endofunctors

74 = Exth(—,A)* : A-mod — A-mod and 7, = Ext}(A*, —): A-mod — A-mod

of A-mod.
Generalizing the classical case, we have two distinguished classes classes of modules.

Definition 2.8 ([HIO| Definition 4.7]). We have the following two full subcategories & and .# of
A -mod:
2 :=add{7;"(A) | i > 0} and & :=add{ri(A*) |i>0}.
Any module in & is called d-preprojective, and any module in .# is called d-preinjective.
In the rest of this section, we assume that A has global dimension d. The A®"-module
E := Extd(A*, A)

plays a central role in this paper. We take this opportunity to record a useful lemma, which makes
the A°"-module structure of F clearer.
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Lemma 2.9. We have isomorphisms
E = Extle (A, A®") 2 Ext4o, (A, A)
of A°™*-modules.

Proof. For each finite-dimensional A-module M, there is a natural isomorphism M = M**. Then
we use the natural isomorphism of finite-dimensional vector spaces V* @p W = Homy(V, W) to see
that we have an the isomorphism of A®*-modules

A2 A@p A2 A ®Qp A = Homp(A", A).
Finally, we use the tensor-hom adjunctions to obtain
Extd e, (A, A") = Exté.. (A, Homp(A*, A)) = Extd (A @5 A*, A) = Extd (A", A).
The second isomorphism is shown similarly. O
Using E, one can describe the functors 74 and 7, as follows.
Proposition 2.10. If gldim A < d then we have isomorphisms of functors
74 = Homp (E, =) : A-mod — A-mod and 7, = E®j —: A-mod — A-mod.
In particular 7, is left adjoint to 4.
Proof. See the proof of [I02, Lemma 2.13]. The latter assertion follows from the former one. [
Now we recall the definition of higher preprojective algebras as given in [[OT].

Definition 2.11. The higher preprojective algebra (or, more precisely, the (d + 1)-preprojective
algebra) of A is the tensor algebra of the A°®-module E:

I = g1 (A) := Ta(E).

Since this is a tensor algebra, it comes with a natural grading which we call the tensor grading,
i.e., the degree ¢ part of II is E".

The following result justifies the name of the higher preprojective algebra.

Proposition 2.12. As both a left and a right A-module, I1 is the direct sum of all indecomposable
d-preprojective A-modules.

Proof. The statement is immediate from the definition of II, Lemma 2.9 and Proposition 22101 O

As in the global dimension 1 case, the preprojective algebra can be identified with

@D Homa (A, 7, (A))

i>0
where the composition of f: A — 7;%(A) and g : A — T;j (A) is given by
gf =75 (9)e [+ A= 7 (A).

The ith part of the tensor grading is just Homya (A, 7; *(A)).

3. DESCRIPTION OF HIGHER PREPROJECTIVE ALGEBRAS AS HIGHER JACOBI ALGEBRAS

The aim of this section is to introduce higher preprojective algebras and to give some of their
basic properties, including presentations of these algebras by generators and relations.
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3.1. Preliminaries. In this subsection, let A be a finite dimensional F-algebra A with global
dimension at most d, where d is a positive integer. Moreover we assume that

A=Ts(V)/I
for a semisimple F-algebra S. As before, let
E = Ext} (A%, A).
We take a minimal projective resolution of the A°®-module A:
Py 2 p P 0 with P=A®g K; @5 A, (3.1.1)

where K; is a projective S®-module. For each i > 1, we define a map ¢, by the commutative
diagram

en (8;,A°"
Homen (Pr_1, A®) 22027 o en (B, AD) (3.1.2)

FooL
A®SK¢\/_1®SA ........................... >A®SKZ'V®SA,
where the vertical maps are given by Lemma

Proposition 3.1. We have isomorphisms E = (A ®g K] ®g A)/Imd); of A°™-modules and
head E = K] of S°"-modules.

Proof. The former isomorphism is immediate from (B.I2]). Since the resolution [BI.I]) is minimal,
Im Hompen (64, A") C J"(A ®g K] ®s A) holds. Thus head F = head(A ®s K ®sA) = K. O

Let V be the S*-module
V=VaokK).

This notation is meant to be reminiscent of @ which, in the global dimension 1 case, is used to
denote the doubled quiver of the underlying quiver ). For T := Tg(V'), we have an isomorphism

Ts(V) 2 Tr(T ®s Ky ®@sT).
by Lemma EIl(a). Regarding T ®g K ®s T as a subspace of Tg(V), we have the following
description of II.
Proposition 3.2. Let A =T/I with T = Tg(V) and I C V=2,

(a) We have a surjective morphism of algebras:

Ts(V) - 11

which is bijective on restriction to S & V.
(b) Let L be a subspace of T®s K ®sT whose image under the natural surjection T®sK) @sT —»
A®s K ®@g A is 04,(K)_,). Then we have an isomorphism of algebras:

Ts(V)/(I+ L) =11
Proof. We only need to prove part (b) of the proposition, from which part (a) will follow. By
Proposition B, we have
E =~ Cokd)=(A®s K] ®sA)/ASH(K)_{)A
> (T®s Kc\l/ ®sT)/(I®s Kc\l/ RsT+T Rg Kc\l/ ®s I+ TLT).
So, applying Lemma 2T(a) and (b), we have
Ts(V)/(I + L) = Tr(T ®s KY ®sT)/(I + TLT)
2TaA(Tws Ky @sT)/(I®s K s T+T ®s Ky @s1+TLT))=Ty(E)=1I

as desired. g
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Consider the case where F is algebraically closed, so we can describe A as FQ/I. Let {k1,...,k,}
be a minimal set of generators of I, each with a unique source and target s(k;) and ¢(k;), and let
@ be the quiver obtained by adding r arrows k} : t(k;) — s(k;) to Q. Then, just as V is the
arrow-space of Q, V is the arrow-space of Q, and Proposition (.2 says that Q is the Gabriel quiver
of TI.

We can therefore calculate the Gabriel quiver @ of II as follows. First, for each vertex i of Q,
compute the projective resolution

O0—=PFPn,—-—PFo—0

of the simple left A-module S;, where some projective modules P; 5, may be zero. Then, for each
1 and for each summand of the projective module P; ,, which is isomorphic to the projective cover
of S, add an arrow i — j to the quiver Q. The resulting quiver is Q.

Example 3.3. Let

0=1%22%32%45%55%¢
and A = FQ/(Bv9,vde). Let S; denote the simple left A-module associated to the vertex 4, and
P(S;) its projective cover. One can check that A has global dimension 3 and the only simple
module with projective dimension 3 is Sg. Its projective resolution is
0 = P(S5) 3 P(S5) 22 P(S5) 5 P(Ss) = 0
where -a denotes right multiplication by a. So the quiver Q of II is just @ with an extra arrow

from 6 to 2, which we label (Svyde)*.

3.2. Superpotentials and higher Jacobi algebras. To introduce our main notions of super-
potentials, we need preparations. For an F-algebra A and an A°*-module M, we write

c(M):=ARpen M
for the Oth Hochschild homology Hy(A, M) of A. This can be naturally identified with the quotient
of M modulo the subgroup generated by am — ma with a € A and m € M. Therefore we have a

natural surjective map 7 : M —» A ® gen M of F-modules.
For A°"-modules My, ..., M;, we clearly have functorial isomorphisms

(M1 @4 @aMy) Ze(Ma®p--- Q4AMy@aM) 2 Ze(My@aMi®@a--®4aMp—1). (3.2.1)
For M, N € A°®-mod, there is a functorial isomorphism

given by a ® (m ® n) — am @ n = m ® na, whose inverse is m®n — 1 ® (m®n). It gives a
functorial morphism
(M @4 N) — Homgea (MY, N), (3.2.3)

which is an isomorphism if M is a projective A®"-module.
Setting M = A®" in ([B.2.2]), we have a functorial isomorphism of A°"-modules

(A" ®4 N) = N. (3.2.4)

For M, N € A°®-mod, we have a well-defined pairing
evyy @y : MY @pc(M @4 N) = N (3.2.5)
given as the composition MY @ c(M ®4 N) — c¢(A® @4 N) —— N, where the first map sends

f®(1a® (m®n)) to f(m)n.
Now we are ready to introduce the following, which is a central notion in this paper.

Definition 3.4. Let S be a semisimple F-algebra and U an S°"-module. A superpotential of degree
¢ for T = Tg(U) is an element of ¢(U*) = S ®gen U.
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By (321), we have a well-defined automorphism
p:SQsen Ul 5 S Qgen U, (21 @22Q - @xp) = (22 Q-+ Qx4 ® T1).
Using p, we define ¢ by
-1
Q= Z(—l)(efl)ipi S Qgen UY = S ®@gen U*.
i=0
By BZ3), for 0 < k < ¢, we have a well-defined pairing

evyk @lyi—k
_—

evyr @lye—k : (Uk)v QF C(UZ) = (Uk)v QF C(Uk s Ueik) Utk
For f € (UF)V and z € ¢(U*), we simply write f -z := evyr @1yex(f @ ).
Definition 3.5. Let S be a semisimple F-algebra, U an S®*-module, and T = Tg(U). For a
superpotential with degree ¢ and a nonnegative integer k¥ < ¢, the k-Jacobi ideal of T is the
two-sided ideal

JEU,W) = (f-@(W) | f € Homges (U*, S)) .
The k-Jacobi algebra is the quotient algebra

P§(U,W) = Ts(U)/JE(UW).

We now explain a connection to notation used elsewhere.

Remark 3.6. Given a quiver ), we have a semisimple algebra S = FQ( with basis the vertices of
Q@ and an S°"-module U = F@Q; with basis the arrows. For each i > 0, let @); be the set of all paths
of length i on Q. Then Q; gives a basis of the S®*-module U?, and we denote by {p¥ | p € Q;} the
dual basis of (U?)Y in the obvious sense. Define

oW =p" - W.

Then the d-Jacobi ideal is the ideal of Tg(U) generated by (0,W | p € Qq—1). Note that when
d = 2, we recover the usual notion of the Jacobi algebra of a quiver with potential (Q, W).

In the rest, we give general observations which will be used later. Let A be an F-algebra.

Lemma 3.7. For A°™-modules X,Y, Z, we have functorial morphisms
HOInAcn(XV,Y RAZ)—c(XRaY R®RaZ)— HOInAcn(YV,Z@A X).
The left (respectively, right) one is an isomorphism if X (respectively, Y ) is a projective A®™-

module.

Proof. Using [3.2.3)), we have functorial morphisms ¢(X ®4Y ® 4 Z) — Homgen (XV,Y ®4 Z) and

E=D
C(X@AY®AZ) = c(Y®AZ®AX)—>H0mAen(YV,Z®AX). O
As in (ZTT), for A*™-modules X,Y, Z, we have functorial isomorphisms
YV XA HOIIlA(XV7 A) = (X XA Y)v and HOInAop(Y, A) XA XV (X XA Y)V. (326)

The first map sends f @ g to (z @y — Y, g(xs;) ® s;) where f(y) = >, s; ® s;, and the second
one sends f' ® g’ to (z @y = > . t; @ f'(tjy)) where ¢'(z) = >_.t; ®t;. We have the following
commutative diagram.

) 1Revy ®1
—_ s

(HOHlep(KA) Ra XV) ®]FC(X RaY Qa2 HOHlep(KA) Ra (Y®A Z) (327)

Zlm leVY ®1
(XR4Y)VQpc(X ®@4Y ®4Z) ey Z
ZTM) T1®8VX

evy ®1®1
- s

(Yv XA HOInA(X,A)) RE C(X RAY @4 Z) (Z Ra X) XA HOInA(X,A)
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3.3. Higher preprojective algebras of Koszul algebras. Now we go back to the setting in
Section [B.1] that is, A is a finite dimensional F-algebra with global dimension d > 0. Moreover we
assume that A is a Koszul algebra and

A=Ts(V)/I

for a separable F-algebra S. Then the minimal Z-graded projective resolution (FII]) of the A°"-
module A is given by the Koszul bimodule complex ZZI). Let V =V & K.

Definition 3.8. We define a superpotential W of degree d + 1 for Tg(V) as the image of 1y € F
under the composition

F 2y o(Kg2s5KY) Cc(Vies KY) C C(Vd ®sV) = c(vdﬂ),
where coevg, : F — Endgen (Kg) & Kq ®gen K = ¢(K4®g KJ) is the coevaluation map. We call
W the superpotential associated to A, or the associated superpotential.

By Lemma[3.7] we have isomorphisms Homgen (K;, V ®g K;_1) = Homgen (K, 1, K} ®5 V) and
Homgen (K;, K;—1 ®5 V) = Homgen (K |,V ®5 K). Thus the inclusions i : K; — V ®5 K;_1
and ¢} : K; = K;—1 ®g V give rise to

0 KY | - K ®sV and 07 : KY | -V ®s K, (3.3.1)
We will need the following observations.

Lemma 3.9. The following assertions hold.

d—1 2

Vo=V
(b) The map (Vd 1)\/ - K | N K)®sV < V" coincides with — -p(W) (Vd 1)\/ SV

(a) The map (V 1)\/ - K | a, ®s K] — V2 coincides with — - W %

Proof. (a) By definition, W belongs to the subspace ¢(Kq—1®s5V ®gK}) of C(Vd+1>, and coincides
with ¢/, under the isomorphism Homgen (Kq, K4—1®gV) = ¢(Kq—1®5V ®g K) in Lemmal[37 By
definition, 67 is the image of W under the isomorphism ¢(Kq—1®sV®sK)) = Homgen (K} |,V ®g
K) in Lemma [37 Thus 67 coincides with

VK, | @

1W 1®1
e L VesKY.

Ky | —> K] ®rc(Ki1®s5V @5 KJ))
On the other hand, since W belongs to ¢(Kq—1®sV ®s K ), the map —- W factors through K ;.
Thus the assertion follows.

(b) Although the argument is mostly the same as (a), we record the details.

By definition, W belongs to the subspace ¢(V ®g Kq4—1®g K] of c(vdﬂ), and coincides with Lfl
under the isomorphism Homgen (Kg, V ®g Kq—1) = ¢(V ®g Kq4-1®g K) in Lemma 37 By defini-
tion, 04 is the image of W under the isomorphism ¢(V ®g K4—1®s K)) = Homgen (K |, K} ®@5V)
in Lemma B Thus 64 coincides with

1®p eVKy_; ®1®1

Ky 2 KY  0pc(VosKa 105KY) ~2 KY \@pc(Kq 105K ®5V) VesKy,

1®p(W) evig, , ®l®l

which equals K ; Ky | ®@pc(Ki—1®s K ®@gV) Ves K.
On the other hand, since p(W) belongs to ¢(Kq—1 ®s K ®g V), the map — - p(W) factors
through K/ ;. Thus the assertion follows. O

On the other hand, 6/ and 07 induce morphisms 6 and 07 : A®g K | @A = A®gK)Y | @5 A
of A°"-modules. Let
8 =0+ (-1)0] : A®s K, ®s A —» A®s K} ®s A. (3.3.2)

This gives an explicit construction of ¢ in (BI2) by the following observation.
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Lemma 3.10. If A is Koszul then we have a commutative diagram

en (§;,A°"
Homae (A @5 Ki_1 ®g A, A®) 2N Home (A @s K; ®g A, AD)

| 5

A®s KY | ®s A A®gs KY ®@gA.

To prove this, we prepare the following observation.

Lemma 3.11. For S"-modules X and Y, we have the following commutative diagram.

Y @5V @5 XV) fo B Homgen (Y, V @5 XV)
rem B =
Homgen (X, Y Qg V) Hompen (A @5 YV @5 A, A ®s XY ®5 A)
- | [
\

Hompen (A ®5 X ®s A,ARsY ®g A) % Hompen (A ®sY ®g A)VA, (A®s X ®g A)VA>,
where we write (—)V* = Hompen (—, A™).

Proof. Fix y@v® f € ¢(Y @5V ®s XV), and let a € Hompen (A ®5 X @5 A, A ®sY ®g A) and
b € Hompen (A ®5 YV ®5 A, A ®5 XV ®g A) be the corresponding maps. Let a’ and ¥ be the
maps in Hompen (A ®5Y @5 A)V4, (A @5 X ®g A)V2) correponding to a and b respectively. To
prove a’ = ¥, it suffices to show that ¢/ (1® g® 1) = b (1 ® g ® 1) holds for all g € YV, where
1Rg®1e (A®sY ®s A)V* is the natural extension of g.

Since a(l®@2z®1)=1@yev)f(x) =(1®y®1)((v®1)f(x)) holds for all z € X, we have
(d(1®g®1))(1®z®1) = g(y)(vel) f(x). On the other hand, since b(1Qg®1) = g(y)(vQ f®1) =
(9(y)(v®1))(1® f@1) holds for all g € YV, we have (' (1®g®1))(1®z®1) =g(y)(vel)f(z).
Thus o’ = b holds. O

Proof of Lemma[310. Since §; = i¥ + (—1)%7, it suffices to show that the following diagram com-
mutes for s € {{,r}.

nen (85,A°")

HomAen(A ®s K;—1 ®g A,Aen) HomAen(A ®Rs K; ®g A,Aen)

| 5

A®s K | ®s A : A®s K @5 A.

We just show the s = r version; s = /£ is the dual. We apply Lemma BI1] to X := K; and
Y := K,_1. Since i/ € Homgen(K;, K;—1 ®g V) corresponds to 0 € Homgen (K" |,V ®g K,
the map aen (i7, A°") coincides with 67 up to the isomorphisms in Lemma 23l This gives the
commutativity of the above diagram. g

Since A is Koszul, we can regard §,(K)_ ;) CV®sK) ®sS+S®gK) ®sV as a subspace of

T®s K] ®sT C Tg(V) naturally. Now we show the following assertion.

Proposition 3.12. If A = Ts(V)/(R) is a finite-dimensional Koszul algebra with R C V2, then
we have an isomorphism of algebras:

12 Ts(V)/(R+ 65(Ky_1))-
In particular, 11 is quadratic.

Proof. The first assertion is immediate from PropositionB.2(b). The second assertion is immediate
—2
from the first one since both R and /(K _;) are contained in V™. O
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Now we are ready to prove the following.

Theorem 3.13. If A = Tg(V)/(R) is a finite-dimensional Koszul algebra, then we have an iso-
morphism of algebras:
=PIV, W)/(R).
Proof. The left-hand side is Ts(V)/(R+6,(K}_,)) by Proposition 312 and the right-hand side is
Ts(V)/(R+ (V" )V -o(W)) by definition. Tt suffices to prove R+3,(KY_,) = R+ (V" V- o(W).
As K, = ﬂ?ﬁ Vi—2 g R ®g V4t for each 2 < i < d we have

WeceKg®sKY)Ce(Vi? s Ros Vi iws KY)

and hence p'(W) € c¢(V4¥ i ®s K ®s V"2 ®g R). Therefore (Vd_l)v - p(W) C R holds. In
particular,
—d—1 —d—1 Lem. -
R+ (V7 ) oW) = R+(V7 )Y (W (=1)"p(W)) =R+ (0 + (-1)100) (K )
= R+d5(Kq_1)
holds as desried. O

The extension condition in the following theorem is a special case of the following property
of [IO2, Section 3]. Given a d-cluster tilting subcategory % of DP(A), we say that % has the
vosnex property (“vanishing of small negative extensions”) if Homps ) (% [j], %) = 0 for j €
{1,2,...,d — 2}. In this case, since A, A*[—d] € %, we have Ext‘/i\;j(A,Ae“) = Extji\_j(A*,A) =
Hompppy (A*[j —d],A) =0 for j € {1,2,...,d —2}.

Theorem 3.14. Suppose A is a finite-dimensional Koszul algebra of global dimension d. If
Extien (A, A™) =0 for 2 < i < d—1, then we have an isomorphism of algebras:

M= PV, W).

Proof. By Theorem B.I3] it suffices to prove (V _1)V - (W) 2 R. In fact, for each 2 < i < d, we
prove by downwords induction

Y L o(W) 2 K (3.3.3)

First we prove [B3.3]) for i = d. Consider the decomposition V' = VY@K, Since W =

coevy,(1r), we have K4 - p(W) = K4 and K, - p*(W) = 0 for each 0 < i < d — 1. Thus
V' (W) 2 Kq- (W) = Ky holds.
Next, for each 3 < i < d, we prove

HOmSop (V, S) . Kz + Kz . HOmS(‘/, S) = Kifl, (334)

where - are the maps Homgor (V,S) ®5 V¢ — Vi~ and V' @5 Homg(V,S) — Vi~! given by
the evaluations. We use the Koszul resolution together with Lemma BI0 These tell us that
Ext’ot (A, A®) is the (i — 1)st homology of the complex

0+ ARs K] @sA+ AR5 Ky 1 @sA¢ -+ AR5 K @5 A+ AR5 Ky @5 A+ 0
where the differentials are induced by the maps

8 =0+ (-1)07 : Ky — (K @s V)@ (Ves K)) C Aos K ®s A.

This is injective since its kernel is Extyet (A, A°");_; = 0 by our assumption. Applying (—)V, we
have a surjective map

fewas) v
(Homgor (V, 8) ®5 K;) @ (K; ©s Homg(V,S)) = (KY @5 V) @ (Vos kY)Y %05 K, .

This is a restriction of (e €’) : (Homgen (V,S) ®s V) & (V! ®s Homg(V, S)) — V=t Thus (3.3.4)
holds.
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Now assume ([3.3.3) holds. Applying the upper part of B21) to (X,Y,Z) = (Vd_iH,V, Vi_l)
and the lower one to (X,Y, Z) = (V, Vd_H_l,Vl_l) respectively, we obtain
s _ s s _
T2 o) B2 Homgen (V, 5) - (VY (W) 5 Homges (V, S) - K,
—d—i —d—i — B33 _
VY o) BED (Y L o(W) - Homg (V,8) D K; - Homs(V, S).
Thus (Vd_H_Q)v -(W) 2 Homgoer (V, 5) - K; + K; - Homg(V,S) "= K;_1 holds, which completes
the induction. O

Note that the condition of Theorem [BI4 is vacuous when d = 2, so this result agrees with
Keller’s description of 3-preprojective algebras (see [Kel, Theorem 6.10] and [HI, Section 2.2]).
We will see in Corollary [A3] that this theorem is particularly applicable to d-hereditary algebras.

Example 3.15. (a) Consider the quiver

Q=[1-22"3 4]

and the algebra A = FQ/(af, 7). One can check that A is 3-representation finite (and so is
3-hereditary) and Koszul. We have K3 = (a37) so the quiver @ of II = II(A) is

7=z a

n
where 17 = (af7)*. The superpotential W is represented by afvyn and the space of relations of 11
is given by V- W = (aB, By, 71, na).
(b) Next consider the quiver
B

Q=[122"53"1 4 %5 5¢]

and the algebra A = FQ/(R) with R = (af3, 57,de). One can check that A has global dimension
3 and is Koszul, but it does not satisfy the condition of Theorem (.14 as Ext} (A*eg, Aey) # 0.
Again, we have K3 = (af7) so the quiver Q of TI(A) is

B

Q=1122"53"54"2%5"%¢]
n
where 7 =(af87)*. The superpotential W is represented by aSyn and the 3-Jacobi ideal is generated
by VW = (af, By,vyn,na). We see that this doesn’t include de, and so to obtain the whole
space of relations of IT we need to consider R + VW,
Remark 3.16. It is worth pointing out that higher preprojective algebras are sometimes higher

Jacobi algebras even in the non-Koszul case. For example, consider the following example of a
4-RF algebra due to Vaso [Vas, Example 5.3]. We take the quiver

B ¢

Q=[1%2"53"254%5 565728 09]
and the algebra A = FQ/(radFQ)* = FQ/(aBv6, Byde,v6eC, 6e(n,e(nbd). We know from Proposi-
tion that the quiver for II is

Qo1 b0 T s )
where + = (afvde¢nf)*, and one can check that II is in fact a 6-Jacobi algebra: we obtain its
relations by differentiating the superpotential represented by W = «afvyde(nf. with respect to
paths of length 5.



16 JOSEPH GRANT AND OSAMU IYAMA

We do not know an example of a non-Koszul algebra which satisfies the ext-vanishing condition
of Theorem [3.14] but is not a higher Jacobi algebra.

3.4. Z?-graded higher preprojective algebras. In this subsection, we consider gradings on
higher preprojective algebras, which will be used in Section Let A be a positively Z-graded

algebra
A= EB A;
i€z
with radical grading (see Section 2:2). The enveloping algebra A" of A has a Z-grading given by
(A°"); = @ A; ®F Ay
i=j+k
Using the Z-grading on A, we define a new Z-grading on the higher preprojective algebra II.

For i > 0 and finitely generated Z-graded A-modules M and N, let exti (M, N) denote the
Z-graded ith ext space (our notation follows [BGS| Section 2.1]). Then we have an equality

Ext) (M, N) = @ extiy (M, N(4)).
JEZ
Hence Ext’y (M, N) has a Z-grading whose degree j part is ext’ (M, N(5)).
Now we define the Z-grading on the A°"-module E = Extji\(A*, A) by
E = @) ext{ (A", A(j)). (3.4.1)
JEZ
Then, as in Lemma [2.9] we can show that there are isomorphisms
E = @) extfen (A, A7 (7)) = @D extion (A%, A())
JEZ JEZ
of Z-graded A®®-modules. Let A-mod? denote the category of finitely generated Z-graded left
A-modules. We lift the functors 74 and 7, to Z-graded A-modules as follows.

74 := Homyp (E, —) : A-mod? — A-mod? and T, = E®y—: A -mod? — A -mod?.
Definition 3.17. (a) The Z2-graded (d + 1)-preprojective algebra of a Z-graded algebra A =
P,z Ai is the tensor algebra of the Z-graded A®*-module E:
II(A) = TA(E).

The first part of the Z2-grading is the tensor grading (Definition 2-TT)). The second part of the
Z2-grading is called the A-grading, which is a natural grading on E* for any i > 0 given by the

Z-grading on E in (34T).
(b) We consider a single Z-grading on II, called the (d + 1)-total grading, by defining

Hz = @ Hi,j
(d+1)itj=¢
where II; ; = (E'); denotes the jth graded component of E*.

Later we will use the following observation.

Proposition 3.18. If A is Koszul, then E(—d) is generated in degree 0. Therefore the (d+1)-total
grading of 11 gives a radical grading.

Proof. If A is Koszul, then P, is generated in degree d by Theorem [Z7] and the latter assertion
follows. g

4. RESOLUTIONS OF SIMPLE MODULES OVER HIGHER PREPROJECTIVE ALGEBRAS

The aim of this section is to construct projective resolutions of simple modules for preprojective
algebras of d-hereditary algebras.
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4.1. Preliminaries on d-hereditary algebras. Let A be a finite dimensional F-algebra with
gl.dim A < d, and DP(A) the derived category of finitely generated left A-modules with bounded
homology. Then we have the following result on formality.

Lemma 4.1. [[y2, Lemma 5.2] If X € DP(A) satisfies HY(X) = 0 for any i ¢ dZ, then X =
Dicaz H'(X)[~].
Let v denote the Nakayama functor
v:=A*@% - : DP(A) 5 D"(A)
of A and let v~ denote its quasi-inverse, defined using the internal hom,
v~ := RHomy (A*, =) : DP(A) 5 DP(A).

Let v4 denote the shifted Nakayama functor v4 = v o [—d]. Then we have

74 = H%v4—) :mod A — mod A and 7; = H(v;'—): mod A — mod A. (4.1.1)

Definition 4.2. [HIO, Definition 3.2] A finite dimensional algebra A with gldimA = d is d-
hereditary if H'(v}(A)) = 0 for all i, j € Z such that i ¢ dZ.

One of the important properties of d-hereditary algebras A follows from Lemma [} for any
j € Z and an indecomposable projective A-module P, there exists i € Z such that

v (P) = HY (V) (P))[—di]. (4.1.2)

Note that in [HIO], the weaker condition gldim A < d instead of gldim A = d was imposed. The
only difference between the two definitions is whether we allow A to be semisimple, which is a case
we are not interested in. Therefore we always assume gldim A = d.

The following result is an immediate consequence of Theorem [B.14

Corollary 4.3. Let A = Ts(V)/(R) be a Koszul d-hereditary algebra and (V,W) the associated
superpotential. Then we have 11 =2 Pg(V, W).

Proof. The assertion is immediate from Theorem [B.14] since
Extfer (A, A°™) = Hompp o) (A%, Ald — i]) = Hompw ) (A[i], v '(A)) =2 H (v, '(A) =0
holds for any 0 < i < d. O
Definition 4.4. [IO2| [HIO] We say that a finite-dimensional F-algebra A with gldim A = d is:
o d-representation finite (or d-RF) if there exists an d-cluster tilting A-module M, that is,
addM = {X € A-mod | Exty(X,M)=0forall0<i<d}
= {Y € A-mod | Exti(M,Y)=0forall0<i<d}.
e d-representation infinite (or d-RI) if v;*(A) is concentrated in degree 0 for any i > 0.
Then we have a dichotomy theorem:

Theorem 4.5. [HIOL Theorem 3.4] Every ring-indecomposable finite-dimensional F-algebra is d-
hereditary if and only if it is either d-RF or d-RI.

In the study of d-hereditary algebras, the subcategory
U = add{vi(A) | i€ Z}

of DP(A) plays an important role.

We give a few properties of % and the categories &2 and .# of d-preprojective A-modules and
d-preinjective A-modules (Definition [Z8). By the following result, any d-RF algebra has a unique
d-cluster tilting module up to additive equivalence, which is given by II. For a full subcategory 2
and % of an additive category €, we denote by 2"V & the full subcategory add(Z U %) of €.



18 JOSEPH GRANT AND OSAMU IYAMA

Proposition 4.6. (a) [Iy2l Theorem 1.6] If A is d-RF, then II is a d-cluster tilting A-module,
P =7 =addll, and % = add{11[di] | i € Z}.

(b) [HIO| Proposition 4.10(d)] If A is d-RI, then & = add{v;*(A) | i > 0}, & = add{vi(DA) |
i >0}, and % = F|—d| vV &. Moreover, Homp (I, #) =0 and N . = 0.

In the final part of our preparations for this section, we recall the generalization of almost split
sequences, or Auslander-Reiten sequences, to d-hereditary algebras.

Definition 4.7 ([Iyl]). Let % be a Krull-Schmidt F-linear category with Jacobson radical rady
and let

y I o, L2

Caon 22 L 00 Iy o oy x (4.1.3)

be a complex in € where X and Y are indecomposable and each f; belongs to rady. Then we
say the sequence ([LI13) is d-almost split in € if both of the following sequences are exact for all
objects M in ¢:

fa—1,
RA LI

0 — Homg (M, Y) 2% Home (M, Cy_1) o D Home (M, Co) 225 rade (M, X) — 0;

0 — Home (X, M) 225 Home (Co, M) L5 - 270 Home (Cy_y, M) 25 rad (Y, M) — 0.
More generally, we say the sequence [@I3)) is weak d-almost split in € if the above sequences are
exact except at Home (M, Y) and Home (X, M) respectively.

Example 4.8. Let @ = [1 — 2] and A = FQ. Then the short exact sequence corresponding to
the non-split extension of one simple module by the other is 1-almost split in A -mod but is only
weak 1-almost split in DP(A).

It was shown in [HIO] (respectively, [Iy1]) that the category &V .# has d-almost split sequences
when A is d-RI (respectively, d-RF). Also it was shown in [[Y], IO2] that d-cluster tilting sub-
categories of triangulated categories have certain analogue of d-almost split sequences called AR
(d+2)-angles. From these results, one can deduce the following results on d-almost split sequences
in the category %, which play a key role in this section.

Theorem 4.9. Let A be a d-hereditary algebra.

(a) If A is d-RI, then any indecomposable object X (respectively, Y ) in % has a d-almost split
sequence i U
YIS o o, B B e o Iy x
Moreover, we have Y = vq(X) (respectively, X = v (Y)).
(b) If A is d-RF, then any indecomposable object X (respectively, Y ) in % has a weak d-almost
split sequence in U
Y o IR Lo FE L NI R AN NELNS |
Moreover, we have Y = v4(X) (respectively, X = v, (Y)), Ker(f4s) = soc Homy (—,Y) and
Ker(fo*) = socHomg (X, —).

Proof. In both cases, we only show the assertion for X since the assertion for Y is the dual.

(a) Let X € % be an indecomposable object. If X is a projective A-module then u;i(X) is
not projective, as otherwise X = vgv; (X) would be concentrated in degree d which contradicts
our assumption that A is d-RI. Since vy :  — % is an equivalence, it preserves d-almost split
sequences in %/. Thus we can assume that X is a non-projective object in Z2.

It was shown in [HIOL Theorem 4.25] that there exists an exact sequence

fa—1

0y 4o, Cuy 122 o 20 By oy Py x 0 (4.1.4)
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in mod A which has terms in &, Y = 14(X), and gives a d-almost split sequence in £V .#. Thus,
since Proposition [.6[(b) implies Y ¢ .#, which implies rada(Y,.#) = Homy (Y, .#), the following
sequences are exact:

fax

0 — Homp (22,Y) == Homp (&2, Cy_1) fd;> f1.

-+ = Homp (£, Cy) Joo, radp (£, X) — 0;

0 — Homu (X, .9) ELIN Homy (Cy, .#) ELNNE SN Homy (Cy-1,-#) ELN Homy (Y, .#) — 0.

Using Serre duality, we have Homy (2, .#) = Homy (v, ' (#)[—d], 2)*. As A is d-RI, we have
# C v (#) by Proposition EB(b). Therefore, the latter exact sequence gives an exact sequence

0 = Homy (£[—d),Y) 22 Homy (£[-d], Ca_r) 2= - L% Homy (#]-d], Co)
fou
RAA

Homgy, (£[—d], X) — 0.
Since % = F[—d] v & by [HIO| Proposition 4.10(c)], the above exact sequences gives an exact

sequence

0 — Homy (%, Y) 2255 Homay (%, Ca_r) 225 - L% Homg, (%, Co) L2 vady (%, X) — 0.

Dually, the following sequence is exact.

0 = Homy (X, %) 25 Homa, (Co, %) 255 - L8 Homg, (Cur, %) 225 rady (Y, %) — .

Thus the sequence [I4) is a d-almost split sequence in % .
(b) By [ly2, Theorem 1.23], % is a d-cluster tilting subcategory of DP(A). By [IY], Theorem
3.10], there exist triangles
XiJrl Etl} CVZ i) Xz — Xerl[l]
in DP(A) for 0 < i < d — 1 satisfying the following conditions:
e Xo=X, Xg=v4(X),and C; € % for any 0 <i <d—1;

o Homey (%,Co) 2% rady (%,X) — 0 and Homy (Cy_y, %) 2 rady (va(X), %) — 0 are
exact.

Let fq:= hg, fi := g;h;—1 and fy := go. Then we have a complex

fa—1

l/d(X) f—d> Cd,1 Cd,Q fa—> f—2> Cl f—1> CO ﬂ) X.

Moreover, as A is d-RF, v(%) = % by [[02, Theorem 3.1(1)=(3)] and hence Z[d] = % . So, by
[IO2, Lemma 4.3], we have an exact sequence

fo[—d]

-+ = Homg, (% , Co[—d)) —— Homgy, (% , X[—d]) —

Homa (%, va(X)) 225 Homa (%, Ca1) 225 - L% Homg, (7, Co) 225 rady, (%, X) — 0.
Thus Cok(fo. : Homg (—,Cy) — Homg (—, X)) is a simple %-module, and hence Ker(fq.) =
Cok(fo[—d].) is a simple % -module since [d] : Z — % is an autoequivalence. Because X[—d] € %
is indecomposable, Homg, (X[—d], —) is an indecomposable projective functor and thus it has a
simple top. Hence the % -module Homy (—,vq(X)) = Homg (X[—d],—)* has a simple socle.
Therefore Ker(fq.) = soc Homg, (% ,va(X)).

Dually, we have an exact sequence

Homey, (X, %) ELIN Homyy, (Co, %) ELN %Hom%(cd_l,%) RN radey (Y, %) — 0

such that Ker(fo*) = soc Home (X, % ). Thus the assertions hold. O
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4.2. Resolutions of simple modules over higher preprojective algebras. For the rest of
this section, A is a d-hereditary algebra and II is its higher preprojective algebra. We will assume
that A is basic and ring-indecomposable. We regard II as a Z-graded algebra with the tensor
grading. Then we have an isomorphism

I = @Home(A) (A, v (N)
icZ
of Z-graded algebras. We denote by proj%- II the category of finitely generated Z-graded IT-modules.
We start with the following easy observation.

Lemma 4.10. Let € be an additive category and G a group acting on €. Assume that M € € is
an object satisfying € = add{gM | g € G}. Define a G-graded ring by " := @ .o Home (M, gM).
Then there are equivalences of additive categories

@ Home (M, g—) : € — proj®-T and @ Home (—, gM) : € — T'-proj© .

9€eG e

geG

Applying Lemma [LT0 to the category % and the group {I/d_i | i € Z} = 7Z, we have the following
description of the category % .

Proposition 4.11. (a) There are equivalences of additive categories
G := @,z Homps ) (A, Vd_i(—)) : U — projt-TI,
H =@, Hompoay (—, v (A) : % — I -proj”.
In particular, there are equivalences of additive categories
G, : mod? T — mod-% and H, : 1-mod? — % -mod.

(b) The following diagram commutes up to natural isomorphism.

v proj%-11
H Homp (—,II) /N/Homnop(*,n)
v II-projZ.

Now we are ready to state the main result of this subsection. It asserts that minimal projective
resolutions of Z-graded simple modules over the higher preprojective algebra II of a d-hereditary
algebra A are induced from d-almost split sequences in % .

Theorem 4.12. Let X be an indecomposable object in %, and

v o, o, e B e o Iy x
a d-almost split sequence in % .
(a) There exist exact sequences
Gfa— 2 1
av Gl qoyy Sl LGB gy S aoy S0 ax 5T 0
ax 2 geg 2 goy 22 e oy M gy U0

in mod?-1I and I1-mod?, where T and U are simple.
(b) If A is d-RI, then Gfq and H fo are monomorphisms.
(¢) If A is d-RF, then Ker G fy = soc GY and Ker H fo = soc HX . Moreover these are simple.
Proof. (a) By Theorem L9(a), we have an exact sequence
@Hom% (V4(A),Y) ELLN @Hom% (Vi(A),Cy_1) ﬂ) R EN @ Homgy, (v5(A), Co)
i€z i€z i€z
ELEN @ radz (V4(A), X) — 0.
i€z



HIGHER PREPROJECTIVE ALGEBRAS, KOSZUL ALGEBRAS, AND SUPERPOTENTIALS 21

This gives the first sequence. Dually, we obtain the second sequence. It follows from Proposition
[AI1a) that T and U are simple.

(b)(c) These follow from Theorem [L9(a)(b). It follows from Proposition LTT(a) that Ker G f4
and Ker H fy are simple if A is d-RF. U

We say that an algebra is twisted-periodic if, for some i > 1, Q%Y. (A) = A, for some o € Aut(A),
i.e., the projective resolution of the identity bimodule is periodic up to a twist by some algebra
automorphism.

As an application of our results, we have the following result for d-RF case. The selfinjectivity
was first proved in [[02], and the twisted-periodicity was first proved by Dugas [Dug].

Corollary 4.13. Let A be a d-RF algebra and 11 its (d + 1)-preprojective algebra.
(a) II 4s self-injective.
(b) II is twisted-periodic of period d + 2.
Proof. (a) Tt follows from Theorem that Exti(7T,1I) = 0 holds for any Z-graded simple II-
modules and 0 < i < d + 1. Thus Extj;(—,II) = 0 holds on modII, and therefore II is injective as
a IT-module.

(b) Since A is a factor algebra of II by the ideal @, ,II; contained in the radical, each simple
II-module S is realized as the top of GP, where P is an indecomposable projective A-module.

Thus, by Theorem [£12)(c), the sum S = @ S; of the simple II-modules is periodic of period d + 2.
This implies the assertion by |[GSS, Theorem 1.4]. O

As another application our results, we have the following result for d-RI case.

Corollary 4.14. Let A be a d-RI algebra and 11 its (d + 1)-preprojective algebra.
(a) mod?-1I has global dimension d + 1, and any Z-graded simple right TI-module T satisfies

T*(1) ifi=d+1;

Extiiop (T, 11) 2
tor ) {0 otherwise.

(b) II-mod? has global dimension d+ 1, and any Z-graded simple left II-module U satisfies
U (1) i=d+1;

0 otherwise.

Extl; (U, TI) = {

Proof. 1t follows from Theorem that any Z-graded simple II°P-module T' has projective di-
mension d + 1 and satisfies the equalities of extension groups. For any X € II-mod?, we take
a minimal Z-graded projective resolution --- — P, — Py — X — 0 of X. Then T ®q Pit2 =
TorgJr2 (T, X) = 0 holds for any Z-graded simple II°P-module T since T has projective dimension
d+ 1. Thus Py = 0 holds, and IT-mod” has global dimension d + 1. Dually, mod”-1II has global
dimension d + 1. g

The previous result says that I, with the tensor grading, is AS-regular of dimension d 4+ 1 and
Gorenstein parameter 1 [AS| [MM]. This can also be deduced less directly as a consequence of
results of Minamoto-Mori [MM| Theorem 4.2] and Keller [Kel].

4.3. Koszul properties of higher preprojective algebras. Let A be a d-hereditary F-algebra.
In this section, we further assume that A is a Z-graded algebra A = P, , A;. We denote by A -mod?
the category of Z-graded A-modules and degree 0 maps, and by DP(A -mod?) the bounded derived
category of A-mod?. As in the ungraded case, we define an autoequivalence

vqg = N [—d] @% — : DP(A-mod?) — DP(A-mod?)
and a full subcategory
U = add{v; (A)(4) | i,j € Z} C DP(A-mod?).
We have the following graded version of Theorem (.91
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Theorem 4.15. Let A be a Z-graded d-hereditary algebra.

(a) If A is d-RI, then any indecomposable object X (respectively, Y ) in %% has a d-almost split
sequence in U

oI L= Ny M L= NI ENVG N LN NELNS S

Moreover, we have Y = v4(X) (respectively, X = v (Y)).
(b) If A is d-RF, then any indecomposable object X (respectively, Y ) in %” has a weak d-almost
split sequence in U*

oI L= Ny M L= NI ENVG N LN NELNS S

Moreover, we have Y = v4(X) (respectively, X = v, (Y)), Ker(f4.) = soc Homy (—,Y) and
Ker(fo*) = socHomg (X, —).

Proof. The proof is very similar to Theorem O

Let IT be the Z2-graded (d + 1)-preprojective algebra. Recall from Definition B.I7 that the first
entry of the Z2-grading is the tensor grading, and the second one is the A-grading.

On the other hand, we consider the action of Z? on %7 given by (i,7) I/l;j (7). The following
description of the category %7 follows directly from Lemma and the definition.

Proposition 4.16. (a) There are equivalences of additive categories
G% = @i,jez Hompp (A -moaz) (A, Vd_’(—)(j)) s YT = projt -1,
o* = @i,jez Home(A-modZ)(*a V;Z(A)(])) %" = -proj”.

(b) The following diagram commutes up to natural isomorphism.

Z

4 pronZ— II
H Homp (—,II) /N/Homnop(f,l—l)
4 I —pron2 .

HZ

(¢) We have the following commutative diagrams.

£" I B " M -proj®
proj proj
—1
Ya \L(LO) l’/d l(l,O)
l z 2 HZ 2
wr projZ -1 wr II-proj”

Immediately, we have the following Z-graded version of Theorem
Theorem 4.17. Let A be a Z-graded d-hereditary algebra. For an indecomposable object X in
U", we consider a d-almost split sequence in U*:

YIS o o, e B e oy Iy x

(a) There exist exact sequences

G%fq-1 G f, exFit

qty £ qroy, GZC, GZC, S gt 55 0

H"fq_1

Z Z Z Z
urx 2l gro, 20y gro, 22 H2C, , 2o gry o1 0

in mod?” - 11 and H—modZZ, where S and T are simple.

(b) If A is d-RI, then G”f; and H” fy are monomorphisms.

(c) If A is d-RF, then Ker G* f; = soc GZY and Ker HZ fo = soc H“X hold. Moreover these are
simple.
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Proof. The assertions follow from Theorem [4.15 by a similar argument to the proof of Theorem
4. 12 O

In the rest of this section, we further assume that A = @,.,A; = Ts(V)/I is a Koszul algebra
and S = Ay is a semisimple F-algebra.

We now recall the theory of almost Koszul duality due to Brenner, Butler, and King [BBK].
Let S be a semisimple finite-dimensional F-algebra and A = @, A; a nonnegatively Z-graded
S-algebra with Ag = S. B

Definition 4.18. The Z-graded algebra A is almost Koszul, or (p, q)-Koszul, if there exist integers
p,q > 1 such that A; =0 for all ¢ > p and there is an exact sequence

08 =P, —--—>P—5—0

of Z-graded A-modules with projective A-modules P; generated in degree i and a semisimple A-
module S’ concentrated in degree p + g.

Note that it does not matter whether we consider left or right A-modules [BBKI, Proposition 3.4].

Theorem 4.19. Let A be a Koszul d-hereditary algebra, and I its (d + 1)-preprojective algebra

with the (d + 1)-total grading given in Definition [3-17

(a) If A is d-RI, then 11 is Koszul.

(b) If A is d-RF, then II is almost Koszul. It is (p,d + 1)-Koszul, where p = max{i > 0 | II; # 0}
with respect to the total grading.

Proof. Let mod”-1II be the category of Z-graded A-modules with respect to the (d+1)-total grading
on II. Let S be a Z-graded simple II-module S concentrated in degree 0. Consider the functor
F : mod% -1 — mod%-11 given by ®(i,j)eZZ Xij— ®€€Z Xy, where X, = ®(d+1)i+j:€ X ;. Let
G' = FoG? and H' = F o H?. Then Theorem EI7(a) gives the first d + 1 terms of minimal
Z-graded projective resolution

’ G/ _1 ! ’ ’
ay G qroy Sl Gl e G e S iy g g (4.3.1)
and the exact sequence
H'x 20y oy 0y groy By M oy M gy o1 0. (4.3.2)

To prove both assertions, we only have to show that G’C; is generated in degree ¢ + 1. Since A is
Koszul, by Proposition[BI8(c), the (d+ 1)-total grading and the radical grading on II agree. Since
G'X is generated in degree 0 and ([@3.1]) is minimal, G'C; is generated in degrees at least i + 1.
By PropositionI6|(c), we have GZY = GZv4(X) = (GZX)(—1,0) and hence G'Y = (G'X)(—d—
1). Thus G'Y is generated in degree d+ 1, and hence H'Y is generated in degree —d — 1 by Propo-
sition EI0b). Since [@3.2) is minimal, H'C; is generated in degrees at least —i — 1 and hence
G'C; is generated in degrees at most 7 + 1. Thus the assertion follows. O

5. QUADRATIC DUALS OF HIGHER PREPROJECTIVE ALGEBRAS

The aim of this section is to compare the quadratic duals of the higher preprojective algebras
and certain twisted trivial extension algebras of the quadratic duals for Koszul algebras.

5.1. Graded trivial extension algebras. For any finite dimensional F-algebra I, there is a well-
known way to construct a new algebra called the trivial extension algebra. We describe a graded
version of this, which can be seen as an extension of I' by a twist of the dual bimodule I'*.

Definition 5.1. Let I' be a non-negatively Z-graded finite-dimensional algebra and n € Z. The
graded (d + 1)-trivial extension algebra of T', denoted Trivgyq(T'), is the Z-graded vector space
@& TI'*(—d — 1) with multiplication given by

(aa f) : (bag) = (aba ag + (_1)dlfb)

when b € T'; is a homogeneous element of degree 3.
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We have used the fact that I', and hence I'*, has a natural structure of a I'*"-module.

One can interpret Z-graded d-trivial extensions in the following way. First, let ¢ : I' — I be
the algebra automorphism defined by o(a) = (—1)%a for a € I';. Then Trivgy1(T) is the trivial
extension of I' by the twisted bimodule ,«I'*. Note that another multiplication rule (a, f)- (b, g) =
(ab, (—1)%ag + fb)) with a € T; used in [Gra] gives an isomorphic Z-graded algebra.

In the rest of this section, we assume that

A=Ts(V)/(R)
is a Koszul algebra with a separable F-algebra S, and T is its quadratic dual I' = A'. Recall that
we have S°"-modules K; with Ko = 5, K; =V and K2 = R and maps Lf K, -V ®s K;_1 and
o Ky — K;—1 ®g V. By Lemma [2.6] we have an isomorphism of Z-graded algebras

N = @)= P
i>0 i>0
where the algebra structure on ;- K} is given by (16)* : K}, @5 V* — K* and (1)* -
V¥ @ K, — K. Since (A'); = Ext} (S, ), the global dimension d of A is the maximal i such
that (A'); # 0, and we have
Trivas (A); = K o K3t

where K; =0 for i < 0 or i > n, and Trivgy;(A') is concentrated in degrees 0 to d + 1.

Recall from PropositionB.I21that, if A is a Koszul algebra, then its higher preprojective algebra
II is quadratic. We are now able to state the following result for the quadratic dual II' of TI.

Theorem 5.2. Let A be a finite dimensional Koszul F-algebra of global dimension d such that

S = Ay is a semisimple F-algebra, and let I1 be its higher preprojective algebra with radical grading.

(a) There exists a morphism ¢ : II' — Trivgy1(A') of Z-graded F-algebras, which is an isomorphism
in degrees O and 1 and is injective in degree 2.

(b) ¢ is surjective if and only if (A')q = socyen(A'). In this case ¢ is an isomorphism in degrees
0, 1 and 2.

(c) & is an isomorphism if and only if (A')q = socpwen (A') holds and Trivaiq(A') is quadratic.

To prove this, we need the following technical observation. Consider the Z-graded A'*®-module
L:= @ Kl}/ﬁ—i
i€Z
whose structure is given by (0¢)* : V* ®¢ K/*f — KY/*¢ and (07)* : K)*] @5 V*' — KY**
obtained from (3.3.1)).

Lemma 5.3. We have an isomorphism A = L of Z-graded A'*™-modules.

Proof. Applying Lemma [Z4] and its dual to the Z-graded A'*®-module Dicz K}, we obtain iso-
morphisms of Z-graded A'*™-modules A" = @, ., K;* = @,., K;*" = @,., K;. Similarly we
obtain isomorphisms of Z-graded A'*®-modules L = @, , K;** = @,., KV = @,;, Ki. Thus

the assertion follows. O
We are ready to prove Theorem

Proof of Theorem [5.2. Twisting the right action of A' on L as f-a := (—1)%fa for f € L and
a € (A');, we obtain an A'*"-module L’. Thanks to Lemma 5.3, we can regard Trivg,i(A') as
Trivg1 (M) =A@ L = @iez(Kﬂ & Kdvﬁﬂ)
(a) By Proposition 32} IT is a quotient of Ts(V), so IT' is a quotient of TS(V*Z). Since
Ts(V Yo = 8 = Trivar1 (Ao and Ts(V™)y =V = V4@ KV = Trivas (A1,

we have a morphism ¢’ : TS(VM) — Trivgyr (A') of F-algebras
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By Proposition B.I2] II is a quadratic algebra whose the degree 2 part is
VesV (VesK))® (K] ®sV)

11,
R (K1)

oK) ®sK)

where A = T5(V)/(R). Therefore IT' is also a quadratic algebra whose the degree 2 part is
Ve ®g Ve (Kdv*e ®s V*e) o) (V*l ®g K(Y*é) KC\I/*Z ®g KdV*e

= RL @ 5 (KY_ )™ Ky @ Ky

On the other hand, we have

(IT')2
. Vv Qg VH
Trivgi1 (A2 = (A'@ L), = Tj

Now we compare (IT')5 with Trivgy1(A')s. To prove that ¢ induces the desired morphism ¢ : II' —
Trivgeq(AY), it suffices to show that the following sequence is exact.

O K.

0= S4(KY )* = (V¥ @s Ky @ (Ky* o5 V) 2 Ky (5.1.1)
By our definition of the A'*"-module structure on L, the morphism ¢’ in (5LT)) is (64 + (—1)967)**.
Since 04+ (=1)40,: KY | — (K ®s V)@ (V ®g K})) is the restriction of &/}, the sequence (E.I1])
*£
is exact. In fact, for a morphism v : X — Y of S®-modules, the sequence 0 — v(X)+ — Y*¢ 1
X* is clearly exact. This completes the proof.

(b) Since ¢ is an isomorphism in degrees 0 and 1 by (a), we have that ¢ is surjective if and only
if Trivgs1(A') is generated in degrees 0 and 1 as an algebra. We know that the algebras IT' and
Trivgy1(A') are generated by V** @ KY*¢ and V** @ headpwen L’ respectively. So ¢ is surjective if
and only if ¢ gives a surjection V** @ KY** — V* @ headpwen L' if and only if L} = headpien L' if
and only if (A™); = head s (A™*). Applying (—)*, this is equivalent to (A')q = socren (A').

The latter assertion is immediate from (a).

(c) The ‘only if’ part is clear from part (b) and the fact that IT' is quadratic. The ‘if’ part

follows from Lemma because both algebras are quadratic and ¢ is an isomorphism in degrees
0, 1, and 2. |

We have the following nice property of ¢.

Theorem 5.4. If A is Koszul and d-hereditary, then the natural morphism ¢ : II' — Trivgy;(A')
18 surjective.

To prove this, we need the following.
Lemma 5.5. Let A be a Koszul algebra and i > 0. If Exthe. (A, A®®)_; = 0, then (socaten(A')); = 0.
Proof. Recall that Ext’..(A, A°") is the cohomology of the complex

v 5 v 8i v
A®SK1;1 ®s A _>A®5Ki Rg A —)A@SKZ-JA ®Rs A.
Taking the degree —i part, Exthe. (A, A®®)_; is the kernel of the morphism
Oy = 001 + (1)L KY = (K @5 V) @ (V ©s Ky ) CA®s Ky ©s A

By adjunctions, f € K}’ is in the kernel if and only if V*" - f =0= f - 17488
On the other hand, we have (A'); = K and (socpien(A')); = {f € K | V- f=0=f-V*}.
By Lemma 24 and its dual, the isomorphism K;* 22 K induces an isomorphism

(sochen (A))s 2 {f € KY | V' f = 0= f-V*} = Exthon (A, A*)_,.
Thus the assertion follows. O

Now we are ready to prove Theorem [(.41

Proof. Suppose ¢ is not surjective, so socyen (AY) # (AY4 holds by Theorem £.2(b). By Lemma
B35 we have Extien (A, A°") # 0, a contradiction to our assumption that A is d-hereditary. a
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Now we look at the case d = 1.

Example 5.6. Let @ be a connected quiver and A = FQ. Assume that A is 1-hereditary, that is,
Q is not of type Ay by our convention.

Then IT' is given by the double quiver Q with the following relations, where we denote by (=)*
the canonical involution of Q: For any arrows a and 8 in Q, o8 = 0 if 8 # a*, and aa* = £53*
if & and B start at the same vertex.

This implies that, if Q is not of type A, then (II'); is non-zero if and only if i = 0, 1 or 2.

If Q is of type A, then IT' is the path algebra of [ 1 == 2 ] and hence infinite dimensional, while
Trive(A') is the factor algebra of II' by the ideal generated by paths of length 3.

For other cases in d = 1, we have the following.

Theorem 5.7. Let Q be a connected acyclic quiver which is not of type A1 and A := FQ its path
algebra. Then the natural morphism ¢ : II' — Trive(A') is an isomorphism if and only if Q is not

of type As.

Proof. By Example 5.6} we only have to show the ‘if’ part. Clearly A' is the factor algebra of
FQ°P by the ideal generated by all paths of length 2. Thus (A'); is non-zero only when i = 0 or
1, and (A'); = soc yien (A') holds since Q is not of type A;. By Theorem BE.2(b), we have that ¢ is
surjective morphism which is an isomorphism in degrees 0, 1 and 2. On the other hand, Trivy(A');
is non-zero only when i = 0, 1, or 2, while (IT'); is non-zero only when i = 0, 1, or 2 by Example
Thus the assertion follows. O

As an application of Theorem (5.7 we recover a well-known result, which is mentioned in Section
5.1 of [BBK] and in the introduction of [HK]:

Corollary 5.8. Let QQ be a connected quiver which is not of type A1 or Ay and has bipartite
orientation, and A := FQ its path algebra. Then

' = Triv(A).

Proof. This is a consequence of Theorem [5.7] because, when @ has bipartite orientation, we have
A' =2 A°P and Triv(A°P) = Triv(A). Moreover, as @ is bipartite, the algebra automorphism o
is inner: it is induced by a change of sign at either the sources or the sinks. Thus Trivg(A) &
Triv(A). O

Example 5.9. Note that our map ¢ is not necessarily injective nor surjective. Let A be the Koszul
algebra given by taking the quotient of the path algebra of the quiver

1%98 3%y

by the ideal (o). Then II' is infinite dimensional and Trivz(A') is 16-dimensional. The kernel
of ¢ is the infinite-dimensional space (H!)24 and the cokernel is 2-dimensional, generated by v €
K1 Q TI‘ng(A!)Q and e4 € KO Q TI‘ng(A!)g.

5.2. Type A examples. We finish this article by applying our theory to higher type A d-
representation finite algebras [Iy2] [OT].

Let 1 <d < oocand 2 < s < oo. Let @(d’s) denote the quiver whose vertices are d + 1-tuples
x = (x1,...,24+1) of nonnegative integers that sum to s — 1, and whose arrows are

Oz T =T+ f;

for 1 <i < d+ 1 whenever z; > 1, where

%

i+1
fi=(0,...,0,-1,41,0,...,0) and fq+1 =(1,...,0,...,0,—1).
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)

Let Q(%*) be the quiver obtained by removing all arrows of the form oy 441 from Q(d’s . For

example, the quivers @(2’5) and Q> are the following.

o 040 Q25 040
o o
220/<—\i21/1<—\(*)22 220/1 \21/1 \(*)22
310/1<—\§11/1<—\112/<—\013 310/ \511/ \112/ \(()13
400/1<—\§01/<—\502/<—\103/<—\004 400/ \?301/ \502/ \103/ \004

Let I(4%) denote the ideal of FQ(%*) generated by elements:
Qg iQpyf;j = Qg jQoy f; i if x5 > 1,
Qg i Oyt f i+1 = 0 if ZT; > 1 and Tit1 = O,

where z € Q" and 1 <i < j < d.

For a field F, let

A(dv's) = FQ(dvs)/I(dﬂs)_

Then A(®*) is d-RF [Iy2, Theorems 1.18, 6.12]. Also, as I(@9) is a homogeneous ideal with respect
to the path length grading on FQ(®#), A(%5) inherits this grading.

The following notation will be useful: for a vertex x in Q(®*), let e, denote the idempotent of
A corresponding to the vertex z, and let

Q; = Z Qg e

Then the relations in A(%%) can be rewritten as:
ex(aia; — ajoy) = 0 for all vertices = and all ¢ # j.

We have a natural morphism ¢ : IT' — Trivg 1 (A'). We know by Theorem 5.2l and Corollary 5.4
that ¢ is always surjective. If s > 3, then it is shown in [Gral Section 3] that ¢ is an isomorphism.
We will make use of the following result:

Proposition 5.10 ([Gral Proposition 3.4]). A is a Koszul algebra.
Lemma 5.11. The space K4 has an S°"-module basis {k, | x € Qo,x1 # 0}, where

km = €z Z (Sgn U)aa(l)aa(g) < 'ao(d)-

g€Sy
Proof. Fix 0 < r < d — 2. First we show that k, € V"RV?~ "2, For any vertex y and any i # j
we have e, (a;a; — aja;) € R. Thus, for any indices 41,...,iq—2 such that {i,7,i1,...,94—2} =
{1,2,...,d} we have ega;, ..., (0 — )0yt ... g—2 € VT RV4~7=2 Summing over all such

sets {i1,...,iq_2}, with sign, we get that k, € V"RVY="=2, But this did not depend on r, so we
have k, € Kq=('_o V" RVI"2,

Conversely, consider an element k € K;. Without loss of generality, k = e,k for some vertex x.
No summand of k can be of the form pa;a;q withp € V" and g € V472 orelse k ¢ V" RVI"2,
So we must have

k=e, Z Ao Qo (1) Qg (2) *** Ag(d)
oc€Sy
for some scalars A\, € F. But this can only be in RV?2 if \, + A2)e = 0. Similarly, we have
Ao + Agiit1)e = 0 for all 1 <4 < d. Thus sgno = sgnr implies A\, = A7, and sgno = —sgn7
implies A\, = —A,. So k is a scalar multiple of k. O
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Let T(d’s) denote the ideal of F@(d’s) generated by elements:
Qg Oz fyj = Olg Ol f i if x5, 2; > 1;
Oy Ol f; i4+1 = 0 if z; > 1 and Tit1 =0 (Where d+2:= 1),

where x € @éd’s) and 1 <i < j <d+1. As an application of our results in this paper, we give
the following description of the higher preprojective algebra of A, which recovers the quiver with
relations in [IO1] Definition 5.1, Proposition 5.48].

Theorem 5.12. Let I1 = TI(A). The quiver Q of Il is @(d’s), and we have an isomorphism

H o~ F@(dvs)/T(dv'S)
Proof. The former statement follows from PropositionB.21 We prove the latter one. From Lemma
[5.IT we obtain the superpotential

W= Z (SEN0) g (1) Ao (2) * * * Cor(d) Xd 1

oc€Sy

for Q. By differentiating this superpotential with respect to all paths of length d — 1 in @, we have
the isomorphism. O

We now apply Theorem [4.19] to obtain a large family of pairs of almost Koszul algebras. This
statement generalizes [BBK| Corollary 4.3] for type A quivers. It appears to be the first construc-
tion of (p, ¢)-Koszul algebras for all p,q > 2.

Proposition 5.13. Ifs > 3 andn > 1, then Il and IT' are an almost Koszul pair: 1 is (s—1,d+1)-
Koszul and T1' is (d 4 1,5 — 1)-Koszul.

Proof. Theorem tells us that IT is (p,d + 1)-Koszul if I is concentrated in degrees 0 to p, and
[BBK| Proposition 3.11] tells us that the quadratic dual of a (p, ¢)-Koszul ring with p,q > 2 is a
(¢, p)-Koszul ring. So we just need to show that II is concentrated in degrees 0 to s — 1.

We again use Martinez-Villa’s result that all projective modules for a Z-graded self-injective
algebra have the same Loewy length [MV] Theorem 3.3]. Thus we only need to show that there is
a projective II-module concentrated in degrees 0 to s — 1. Consider the left projective II-module

He(s—1,0,...,0) associated to the vertex z = (s — 1,0,...,0). First we claim that all paths starting

at z are of the form e,af. To see this, note that the arrows in Q ensure that every path not of

this form starting at  must begin eya* s for some m > 1. But then the commutation relations
in IT show that e,a"ay = ezalaga;"_l. But e,a1as = 0. Next we note that eza‘f is nonzero for
0 <d<s—1and is zero for d > s. So Ile(s_1,...0) is nonzero precisely in degrees 0 to s —1. [J
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