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Component response rate variation 
underlies the stability of highly 
complex finite systems
A. Bradley Duthie   

The stability of a complex system generally decreases with increasing system size and interconnectivity, 
a counterintuitive result of widespread importance across the physical, life, and social sciences. Despite 
recent interest in the relationship between system properties and stability, the effect of variation in 
response rate across system components remains unconsidered. Here I vary the component response 
rates (γ) of randomly generated complex systems. I use numerical simulations to show that when 
component response rates vary, the potential for system stability increases. These results are robust to 
common network structures, including small-world and scale-free networks, and cascade food webs. 
Variation in γ is especially important for stability in highly complex systems, in which the probability 
of stability would otherwise be negligible. At such extremes of simulated system complexity, the 
largest stable complex systems would be unstable if not for variation in γ. My results therefore reveal 
a previously unconsidered aspect of system stability that is likely to be pervasive across all realistic 
complex systems.

In 1972, May1 first demonstrated that randomly assembled systems of sufficient complexity are almost inevitably 
unstable given infinitesimally small perturbations. Complexity in this case is defined by the size of the system (i.e., 
the number of potentially interacting components; S), its connectance (i.e., the probability that one component 
will interact with another; C), and the variance of interaction strengths (σ2)2. May’s finding that the probability of 
local stability falls to near zero given a sufficiently high threshold of σ SC  is broadly relevant for understanding 
the dynamics and persistence of systems such as ecological1–6, neurological7,8, biochemical9,10, and 
socio-economic11–14 networks. As such, identifying general principles that affect stability in complex systems is of 
wide-ranging importance.

Randomly assembled complex systems can be represented as large square matrices (M) with S components 
(e.g., networks of species2 or banks12). One element of such a matrix, Mij, defines how component j affects com-
ponent i in the system at a point of equilibrium2. Off-diagonal elements ( ≠i j) therefore define interactions 
between components, while diagonal elements ( =i j) define component self-regulation (e.g., carrying capacity in 
ecological communities). Traditionally, off-diagonal elements are assigned non-zero values with a probability C, 
which are sampled from a distribution with variance σ2; diagonal elements are set to −11,2,5. Local system stability 
is assessed using eigenanalysis on M, with the system being stable if the real parts of all eigenvalues (λ), and there-
fore the leading eigenvalue (λmax), are negative ( λ <R( ) 0max )1,2. In a large system (high S), eigenvalues are dis-
tributed uniformly15 within a circle centred at = −R d (−d is the mean value of diagonal elements) and =I 0, 
with a radius of σ SC 1,2,5 (Fig. 1a). Local stability of randomly assembled systems therefore becomes increasingly 
unlikely as S, C, and σ increase.

May’s1,2 stability criterion σ <SC d assumes that the expected response rates (γ) of individual components 
to perturbations of the system are identical, but this is highly unlikely in any complex system. In ecological com-
munities, for example, the rate at which population density changes following perturbation will depend on the 
generation time of organisms, which might vary by orders of magnitude among species. Species with short gen-
eration times will respond quickly (high γ) to perturbations relative to species with long generation times (low γ). 
Similarly, the speed at which individual banks respond to perturbations in financial networks, or individuals or 
institutions respond to perturbations in complex social networks, is likely to vary. The effect of such variance on 
stability has not been investigated in complex systems theory. Intuitively, variation in γ (σγ

2) might be expected to 
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decrease system stability by introducing a new source of variation into the system and thereby increasing σ. Here 
I show that, despite higher σ, realistic complex systems (in which S is high but finite) are actually more likely to be 
stable if their individual component response rates vary. My results are robust across commonly observed net-
work structures, including random1, small-world16, scale-free17, and cascade food web18,19 networks.

Results
Component response rates of random complex systems.  Complex systems (M) are built from two 
matrices, one modelling component interactions (A), and second modelling component response rates (γ). Both 
A and γ are square ×S S matrices. Rows in A define how a given component i is affected by each component j in 
the system, including itself (where =i j). Off-diagonal elements of A are independent and identically distributed 
(i.i.d.), and diagonal elements are set to = −A 1ii  as in May1. Diagonal elements of γ are positive, and off-diago-
nal elements are set to zero (i.e., γ is a diagonal matrix with positive support). The distribution of diag(γ) over S 
components thereby models the distribution of component response rates. The dynamics of the entire system M 
can be defined as follows20,

γ= .M A (1)

Equation 1 thereby serves as a null model to investigate how variation in component response rate (σγ
2) affects 

complex systems. In the absence of such variation (σ =γ 02 ), γ is set to the identity matrix (diagonal elements all 
equal 1) and =M A. Under these conditions, eigenvalues of M are distributed uniformly15 in a circle centred at 
−( 1, 0) with a radius of σ SC 1 (Fig. 1a).

Figure 1.  Eigenvalue distributions of random complex systems. Each panel shows the real (x-axis) and 
imaginary (y-axis) parts of =S 400 eigenvalues from random ×S S matrices. (a) A system represented by a 
matrix A, in which all elements are sampled from a normal distribution with µ = 0 and σ = S1/A . Points are 
uniformly distributed within the blue circle centred at the origin with a radius of σ =S 1A . (b) The same 
system as in a after including variation in the response rates of S components, represented by the diagonal 
matrix γ, such that γ=M A. Elements of γ are randomly sampled from a uniform distribution from =min 0 
to =max 2. Eigenvalues of M are then distributed non-uniformly within the red circle centred at the origin 
with a radius of σ σ+ ≈ .γ S(1 ) 1 15A

2 2 . (c) A different random system A constructed from the same parameters 
as in a, except with diagonal element values of −1. (d) The same system c after including variation in component 
response rates, sampled from U(0, 2) as in b.
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Effect of σγ
2 on M (co)variation.  The value of λR( )max , and therefore system stability, can be estimated from 

five properties of M21. These properties include (1) system size (S), (2) mean self-regulation of components (d), (3) 
mean interaction strength between components (µ), (4) the variance of between component interaction strengths 
(hereafter σM

2 , to distinguish from σA
2 and σγ

2), and (5) the correlation of interaction strengths between compo-
nents, Mij and Mji (ρ)22. Positive σγ

2 does not change S, nor does it necessarily change E d[ ] or µE[ ]. What σγ
2 does 

change is the total variation in component interaction strengths (σM
2 ), and ρ. Introducing variation in γ increases 

the total variation in the system. Variation in the off-diagonal elements of M is described by the joint variation of 
two random variables,

σ σ σ σ γ σ= + + .γ γE E A[ ] [ ] (2)M A A i ij
2 2 2 2 2 2 2

Given γ =E[ ] 1i  and =E A[ ] 0ij , Eq. 2 can be simplified,

σ σ σ= + .γ(1 )M A
2 2 2

The increase in σM
2  caused by σγ

2 can be visualised from the eigenvalue spectra of A versus γ=M A (Fig. 1). 
Given =d 0 and =C 1, the distribution of eigenvalues of A and M lie within a circle of a radius σ SA  and σ SM , 
respectively (Fig. 1a vs. 1b). If ≠d 0, positive σγ

2 changes the distribution of eigenvalues23–25, potentially affecting 
stability (Fig. 1c vs. 1d).

Given σ =γ 02 , λR( )max  increases linearly with ρ such that26,

λ σ ρ≈ + .R SC( ) (1 )max M

If ρ < 0, such as when M models a predator-prey system in which Mij and Mji have opposing signs, stability 
increases2. If diagonal elements of γ vary independently, the magnitude of ρ is decreased because σγ

2 increases the 
variance of Mij without affecting the expected covariance between Mij and Mji (Fig. 2).

Numerical simulations of random systems with and without σγ
2.  I used numerical simulations and 

eigenanalysis to test how variation in γ affects stability in random matrices with known properties, comparing the 
stability of A versus γ=M A. Values of γ  were sampled from a uniform distribution where γ ∼ (0, 2) and 
σ =γ 1/32  (see Supplementary Information for other γ  distributions, which gave similar results). In all simula-
tions, diagonal elements were standardised to ensure that −d between individual A and m pairs were identical 

Figure 2.  Complex system correlation versus stability with and without variation in component response rates. 
Each point represents 10000 replicate numerical simulations of a random complex system γ=M A with a fixed 
correlation between off-diagonal elements Aij and Aji (ρ, x-axis). Where real parts of eigenvalues of M are 
negative (y-axis), M is stable (black dotted line). Blue circles show systems in the absence of variation in 
component response rates (σ =γ 02 ). Red squares show systems in which σ =γ 1/32 . Arrows show the range of 
real parts of leading eigenvalues observed. Because γ decreases the magnitude of ρ, purple lines are included to 
link replicate simulations before (blue circles) and after (red squares) including γ. The range of ρ values in which 
γ decreases the mean real part of the leading eigenvalue is indicated with grey shading. In all simulations, 
system size and connectance were set to =S 25 and =C 1, respectively. Off-diagonal elements of A were 
randomly sampled from ∼ .A (0,0 4 )ij

2N , and diagonal elements were set to −1. Elements of γ were sampled, 
γ ∼ U(0,2).
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(also note that γ =E[ ] 1i ). First I focus on the effect of γ across values of ρ, then for increasing system sizes (S) in 
random and structured networks. By increasing S, the objective is to determine the effect of γ as system complex-
ity increases toward the boundary at which stability is realistic for a finite system.

Simulation of random M across ρ.  Numerical simulations revealed that σγ
2 results in a nonlinear relation-

ship between ρ and λR( )max , which can sometimes increase the stability of the system. Figure 2 shows a compar-
ison of λR( )max  across ρ values for A (σ =γ 02 ) versus M (σ =γ 1/32 ) given =S 25, =C 1, and σ = .0 4A . For 

ρ− . ≤ ≤ .0 4 0 7 (shaded region of Fig. 2), expected λR( )max  was lower in M than A. For ρ ≥ − .0 1, the lower 
bound of the range of λR( )max  values also decreased given σγ

2, resulting in negative λR( )max  in M for ρ = − .0 1 
and ρ = 0. Hence, across a wide range of system correlations, variation in the response rate of system components 
had a stabilising effect.

The stabilising effect of σγ
2 across ρ increased with increasing S. Figure 3 shows numerical simulations of M 

across increasing S given =C 1 and σ = .0 2A  (σA has been lowered here to better illustrate the effect of S; note that 
now given =S 25, σ= SC1 A ). For relatively small systems ( ≤S 25), σγ

2 never decreased the expected λR( )max . 
But as S increased, the curvilinear relationship between ρ and λR( )max  decreased expected λR( )max  for M given 
low magnitudes of ρ. In turn, as S increased, and systems became more complex, σγ

2 increased the proportion of 
numerical simulations that were observed to be stable (see below).

Figure 3.  System correlation versus stability across different system sizes. In each panel, 10000 random 
complex systems γ=M A are simulated for each correlation ρ = − . − . … . .{ 0 90, 0 85, , 0 85, 0 90} between off-
diagonal elements Aij and Aji. Lines show the expected real part of the leading eigenvalues of M (red squares; 
σ =γ 1/32 ) versus A (blue circles; σ =γ 02 ) across ρ, where negative values (below the dotted black line) indicate 
system stability. Differences between lines thereby show the effect of component response rate variation (γ) on 
system stability across system correlations and sizes (S). For all simulations, system connectance was =C 1. Off-
diagonal elements of A were randomly sampled from ∼ .N( )A 0, 0 2ij

2 , and diagonal elements were set to −1. 
Elements of γ were sampled such that γ ∼ U(0, 2), so σ =γ 1/32 .
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Simulation of random M across S.  To investigate the effect of σγ
2 on stability across systems of increasing 

complexity, I simulated random γ=M A matrices at σ = .0 4A  and =C 1 across = …S {2, 3, , 49, 50}. One mil-
lion M were simulated for each S, and the stability of A vesus M was assessed given γ ∼ (0, 2) (σ =γ 1/32 ). For all 

>S 10, I found that the number of stable random systems was higher in M  than A (Fig.  4; see 
Supplementary Information for full table of results), and that the difference between the probabilities of observing 
a stable system increased with an increase in S. In other words, the potential for σγ

2 to affect stability increased 
with increasing system complexity and was most relevant for systems on the cusp of being too complex to be 
realistically stable. For the highest values of S, nearly all systems that were stable given varying γ would not have 
been stable given γ = 1.

I also simulated 100000 M for three types of random networks that are typically interpreted as modelling three 
types of interspecific ecological interactions2,27. These interaction types are competitive, mutualist, and 
predator-prey, as modelled by off-diagonal elements that are constrained to be negative, positive, or paired such 
that if >A 0ij  then <A 0ji , respectively2 (but are otherwise identical to the purely random A). As S increased, a 
higher number of stable M relative to A was observed for competitor and predator-prey, but not mutualist, sys-
tems. A higher number of stable systems was observed whenever >S 12 and >S 40 for competitive and 
predator-prey systems, respectively (note that ρ < 0 for predator-prey systems, making stability more likely over-
all). The stability of mutualist systems was never affected by σγ

2.
The effect of σγ

2 on stability did not change qualitatively across values of C, σA, or for different distributions of 
γ (see Supporting Information).

Simulation of structured M across S.  To investigate how σγ
2 affects the stability of commonly observed 

network structures, I simulated one million γ=M A for small-world16, scale-free17, and cascade food web18,19 
networks. In all of these networks, rules determining the presence or absence of an interaction between compo-
nents i and j constrain the overall structure of the network. In small-world networks, interactions between com-
ponents are constrained so that the expected degree of separation between any two components increases in 
proportion to Slog( )16. In scale-free networks, the distribution of the number of components with which a focal 
component interacts follows a power law; a few components have many interactions while most components have 
few interactions17. In cascade food webs, species are ranked and interactions are constrained such that a species i 
can only feed on j if the rank of >i j.

Network structure did not strongly modulate the effect that σγ
2 had on stability. For comparable magnitudes of 

complexity, structured networks still had a higher number of stable M than A. For random networks, σγ
2 increased 

stability given >S 10 (σ = .0 4A  and =C 1), and therefore complexity σ .⪆SC 1 26A . This threshold of complex-
ity, above which more M than A were stable, was comparable for small-world networks, and slightly lower for 
scale-free networks (note that algorithms for generating small-world and scale-free networks necessarily led to 
varying C; see methods). Varying γ increased stability in cascade food webs for >S 27, and therefore at a rela-
tively low complexity magnitudes compared to random predator-prey networks ( >S 40). Overall, network struc-
ture did not greatly change the effect that σγ

2 had on increasing the upper bound of complexity within which 
stability might reasonably be observed.

Figure 4.  Stability of large complex systems with and without variation in component response rate (γ). The log 
number of systems that are stable across different system sizes ( = …S {2, 3, , 49, 50}) given =C 1, and the 
proportion of systems for which variation in γ is critical for system stability. For each S, 1 million complex 
systems are randomly generated. Stability of each complex system is tested given variation in γ by randomly 
sampling γ ∼ U(0, 2). Stability given σ >γ 02  is then compared to stability in an otherwise identical system in 
which γ = UE[ (0, 2)]i  for all components. Blue and red bars show the number of stable systems in the absence 
and presence of σγ

2, respectively. The black line shows the proportion of systems that are stable when σ >γ 02 , but 
would be unstable if σ =γ 02  (i.e., the conditional probability that A is unstable given that M is stable).
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System feasibility given σγ
2.  For complex systems in which individual system components represent the 

density of some tangible quantity, it is relevant to consider the feasibility of the system. Feasibility assumes that 
values of all components are positive at equilibrium6,28,29. This is of particular interest for ecological communities 
because population density (n) cannot take negative values, meaning that ecological systems need to be feasible 
for stability to be biologically realistic28. While my results are intended to be general to all complex systems, and 
not restricted to species networks, I have also performed a feasibility analysis on all matrices tested for stability. I 
emphasise that γ is not interpreted as population density in this analysis, but instead as a fundamental property 
of species life history such as expected generation time. Feasibility was unaffected by σγ

2 and instead occurred with 
a fixed probability of 1/2S, consistent with a recent proof by Serván et al.30 (see Supplementary Information). 
Hence, for pure interacting species networks, variation in component response rate (i.e., species generation time) 
does not affect stability at biologically realistic species densities.

Targeted manipulation of γ.  To further investigate the potential of σγ
2 to be stabilising, I used a genetic 

algorithm. Genetic algorithms are heuristic tools that mimic evolution by natural selection, and are useful when 
the space of potential solutions (in this case, possible combinations of γ values leading to stability in a complex 
system) is too large to search exhaustively31. Generations of selection on γ  value combinations to minimise 

λR( )max  demonstrated the potential for σγ
2 to increase system stability. Across = …S {2, 3, , 39, 40}, sets of γ 

values were found that resulted in stable systems with probabilities that were up to four orders of magnitude 
higher than when γ = 1 (see Supplementary Information), meaning that stability could often be achieved by 
manipulating S γ  values rather than ×S S M elements (i.e., by manipulating component response rates rather 
than interactions between components).

Discussion
I have shown that the stability of complex systems might often be contigent upon variation in the response rates 
of their individual components, meaning that factors such as rate of trait evolution (in biological networks), 
transaction speed (in economic networks), or communication speed (in social networks) need to be considered 
when investigating the stability of complex systems. Variation in component response rate is more likely to be 
critical for stability in systems that are especially complex, and it can ultimately increase the probability that sys-
tem stability is observed above that predicted by May’s1 classically derived σ SC  criterion. The logic outlined here 
is general, and potentially applies to any complex system in which individual system components can vary in their 
reaction rates to system perturbation.

It is important to recognise that variation in component response rate is not stabilising per se; that is, adding 
variation in component response rates to a particular system does not increase the probability that the system will 
be stable. Rather, highly complex systems that are observed to be stable are more likely to have varying compo-
nent response rates, and for this variation to be critical to their stability (Fig. 4). This is caused by the shift to a 
non-uniform distribution of eigenvalues that occurs by introducing variation in γ (Fig. 1), which can sometimes 
cause all of the real components of the eigenvalues of the system matrix to become negative, but might also 
increase the real components of eigenvalues.

My focus here is distinct from Gibbs et al.24, who applied the same mathematical framework to investigate how 
a diagonal matrix X (equivalent to γ in my model) affects the stability of a community matrix M given an interac-
tion matrix A within a generalised Lotka-Volterra model, where =M XA. Gibbs et al.24 analytically demon-
strated that the effect of X on system stability decreases exponentially as system size becomes arbitrarily large 
( → ∞S ) for a given magnitude of complexity σ SC . My numerical results do not contradict this prediction 
because I did not scale σ = S1/ , but instead fixed σ and increased S to thereby increase total system complexity 
(see Supplemental Information for results simulated across σ and C). Overall, I show that component response 
rate variation increases the upper bound of complexity at which stability can be realistically observed, meaning 
that highly complex systems are more likely than not to vary in their component response rates, and for this var-
iation to be critical for system stability.

Interestingly, while complex systems were more likely to be stable given variation in component response rate, 
they were not more likely to be feasible, meaning that stability was not increased when component values were 
also restricted to being positive at equilibrium. Feasibility is important to consider, particularly for the study of 
ecological networks of species6,25,28,30 because population densities cannot realistically be negative. My results 
therefore suggest that variation in the rate of population responses to perturbation (e.g., due to differences in 
generation time among species) is unlikely to be critical to the stability of purely multi-species interaction net-
works (see also Supplementary Information). Nevertheless, ecological interactions do not exist in isolation in 
empirical systems20, but instead interact with evolutionary, abiotic, or social-economic systems. The relevance of 
component response rate for complex system stability should therefore not be ignored in the broader context of 
ecological communities.

The potential importance of component response rate variation was most evident from the results of simula-
tions in which the genetic algorithm was used in attempt to maximise the probability of system stability. The 
probability that some combination of component response rates could be found to stabilise the system was shown 
to be up to four orders of magnitude higher than the background probabilities of stability in the absence of any 
component response rate variation. Instead of manipulating the ×S S interactions between system components, 
it might therefore be possible to manipulate only the S response rates of individual system components to achieve 
stability. Hence, managing the response rates of system components in a targeted way could potentially facilitate 
the stabilisation of complex systems through a reduction in dimensionality.

https://doi.org/10.1038/s41598-020-64401-w
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A general mathematical framework encompassing shifts in eigenvalue distributions caused by a diagonal 
matrix γ has been investigated23 and recently applied to questions concerning species density and feasibility24,25, 
but γ has not been interpreted as rates of response of individual system components to perturbation. My model 
focuses on component response rates for systems of a finite size, in which complexity is high but not yet high 
enough to make the probability of stability unrealistically low for actual empirical systems. For this upper range 
of system size, randomly assembled complex systems are more likely to be stable if their component response 
rates vary (e.g., < <S10 30 for parameter values in Fig. 4). Variation in component response rate might there-
fore be critical for maintaining stability in many highly complex empirical systems. These results are broadly 
applicable for understanding the stability of complex networks across the physical, life, and social sciences.

Methods
Component response rate (γ) variation.  In a synthesis of eco-evolutionary feedbacks on community 
stability, Patel et al.20 model a system that includes a vector of potentially changing species densities (n) and a 
vector of potentially evolving traits (x). For any species i or trait j, change in species density (ni) or trait value (xj) 
with time (t) is a function of the vectors n and x,

dn
dt

n f n x( , ),i
i i=

= .
dx
dt

g n x( , )j
j

In the above, fi and gj are functions that define the effects of all species densities and trait values on the density 
of a species i and the value of trait j, respectively. Patel et al.20 were interested in stability when the evolution of 
traits was relatively slow or fast in comparison with the change in species densities, and this is modulated in the 
above by the scalar . The value of  thereby determines the timescale separation between ecology and evolution, 
with high  modelling relatively fast evolution and low  modelling relatively slow evolution20.

I use the same principle that Patel et al.20 use to modulate the relative rate of evolution to modulate rates of 
component responses for S components. Following May1,32, the value of a component i at time t (v t( )i ) is affected 
by the value of j ( ( )v tj ) and j’s marginal effect on i (aij), and by i’s response rate (γi),

dv t
dt

a v t( ) ( )i
i

j

S

ij j
1

∑γ= .
=

In matrix notation32,

γ= .
d t

dt
tv Av( ) ( )

In the above, γ is a diagonal matrix in which elements correspond to individual component response rates. 
Therefore, γ=M A defines the change in values of system components and can be analysed using the techniques 
of May1,23,32. In these analyses, row means of A are expected to be identical, but variation around this expectation 
will naturally arise due to random sampling of A off-diagonal elements and finite S. In simulations, the total var-
iation in M row means that is attributable to A is small relative to that attributable to γ, especially at high S. 
Variation in γ specifically isolates the effects of differing component response rates, hence causing differences in 
expected M row means.

Construction of random and structured networks.  I used the R programming language for all 
numerical simulations and analyses33. Purely random networks were generated by sampling off-diagonal ele-
ments from an i.i.d. N∼ .A (0, 0 4 )ij

2  with a probability C (unsampled elements were set to zero). Diagonal 
elements Aii were set to −1. Elements of γ were simulated i.i.d. from a distribution with positive support (typ-
ically γ ∼ (0, 2) ). Random A matrices with correlated elements Aij and Aji were built using Cholesky decom-
position. Competitor networks in which off-diagonal elements ≤A 0ij  were constructed by first building a 
random A, then flipping the sign of any elements in which >A 0ij . Similarly, mutualist networks were con-
structed by building a random A, then flipping the sign of elements where <A 0ij . Predator-prey networks 
were constructed by first building a random A, then flipping the sign of either Aij or Aji if × >A A 0ij ji .

Small-world networks were constructed using the method of Watts and Strogatz16. First, a regular network16 
was created such that components were arranged in a circle. Each component was initially set to interact with its 
k/2 closest neighbouring components on each side, where k was an even natural number (e.g., for =k 2 the regu-
lar network forms a ring in which each component interacts with its two adjacent neighbours; see 
Supplemental Material for examples). Each interaction between a focal component and its neighbour was then 
removed and replaced with with a probability of β. In replacement, a new component was randomly selected to 
interact with the focal component; selection was done with equal probability among all but the focal component. 
The resulting small-world network was represented by a square ×S S binary matrix B in which 1s represented 
interactions between components and 0s represented the absence of an interaction. A new random matrix J was 
then generated with elements Jij sampled i.i.d. from N .(0, 0 4 )2 . To build the interaction matrix A, I used 

https://doi.org/10.1038/s41598-020-64401-w
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element-wise multiplication = A J B, then set = −diag A( ) 1. I set =k S/12 and simulated small-world net-
works across all combinations of =S {24, 48, 72, 96, 120, 144, 168} and β = . . .{0, 0 01, 0 1, 0 25, 1}.

Scale-free networks were constructed using the method of Albert and Barabási17. First, a saturated network 
(all components interact with each other) of size ≤m S was created. New components were then added sequen-
tially to the network; each newly added component was set to interact with m randomly selected existing compo-
nents. When the system size reached S, the distribution of the number of total interactions that components had 
followed a power-law tail17. The resulting network was represented by an ×S S binary matrix G, where 1s and 0s 
represent the presence and absence of an interaction, respectively. As with small-world networks, a random 
matrix J was generated, and = A J G. Diagonal elements were set to −1. I simulated scale-free networks across 
all combinations of =S {24, 48, 72, 96, 120} and = …m {2, 3, , 11, 12}.

Cascade food webs were constructed following Solow and Beet18. First, a random matrix A was generated with 
off-diagonal elements sampled i.i.d. so that N∼ .A (0,0 4 )ij

2 . Each component in the system was ranked from 1 to 
S. If component i had a higher rank than component j and <A 0ij , then Aij was multiplied by −1. If i had a lower 
rank than j and <A 0ji , then Aji was multiplied by −1. In practice, this resulted in a matrix A with negative and 
positive values in the lower and upper triangles, respectively. Diagonal elements of A were set to −1 and =C 1. I 
simulated cascade food webs for = …S {2, 3, , 59, 60}.

System feasibility.  Dougoud et al.28 identify the following feasibility criteria for ecological systems charac-
terised by S interacting species with varying densities in a generalised Lotka-Volterra model,

⁎ CSn I J r( ( ) ) 1θ= − + .δ− −

In the above, n* is the vector of species densities at equilibrium. Feasibility is satisfied if all elements in n* are 
positive. The matrix I is the identity matrix, and the value θ is the strength of intraspecific competition (diagonal 
elements). Diagonal values are set to −1, so θ = −1. The variable δ is a normalisation parameter that modulates 
the strength of interactions (σ) for J. Implicitly, here δ = 0 underlying strong interactions. Hence, =δ−CS( ) 1, so 
in the above, a diagonal matrix of −1s (θI) is added to J, which has a diagonal of all zeros and an off-diagonal 
affecting species interactions (i.e., the expression δ−CS( )  relates to May’s1 stability criterion28 by <σ

δ− SC 1
CS( )

, 

and hence for my purposes =δ−CS( ) 1). Given θ= +A I J, the above criteria is therefore reduced to the below 
(see also Serván et al.30),

= − .−⁎n A r1

To check the feasibility criteria for γ=M A, I therefore evaluated − −M r1  (r elements were sampled i.i.d. from 
r (0, 0 4 )2N∼ . ). Feasibility is satisfied if all of the elements of the resulting vector are positive.

Genetic algorithm.  Ideally, to investigate the potential of σγ
2 for increasing the proportion of stable complex 

systems, the search space of all possible diag(γ) vectors would be evaluated for each unique γ=M A. This is 
technically impossible because γi can take any real value between 0–2, but even rounding γi to reasonable values 
would result in a search space too large to practically explore. Under these conditions, genetic algorithms are 
highly useful tools for finding practical solutions by mimicking the process of biological evolution31. In this case, 
the practical solution is finding vectors of diag(γ) that decrease the most positive real eigenvalue of M. The genetic 
algorithm used achieves this by initialising a large population of 1000 different potential diag(γ) vectors and 
allowing this population to evolve through a process of mutation, crossover (swaping γi values between vectors), 
selection, and reproduction until either a diag(γ) vector is found where all λ <R( ) 0 or some “giving up” critiera 
is met.

For each = …S {2, 3, , 39, 40}, the genetic algorithm was run for 100000 random γ=M A (σ = .0 4A , =C 1). 
The genetic algorithm was initialised with a population of 1000 different diag(γ) vectors with elements sampled 
i.i.d. from γ ∼ U(0,2). Eigenanalysis was performed on the M resulting from each γ, and the 20 diag(γ) vectors 
resulting in M with the lowest λR( )max  each produced 50 clonal offspring with subsequent random mutation and 
crossover between the resulting new generation of 1000 diag(γ) vectors. Mutation of each γi in a diag(γ) vector 
occurred with a probability of 0.2, resulting in a mutation effect of size (0, 0 02 )2.N  being added to generate the 
newly mutated γi (any γi values that mutated below zero were multiplied by −1, and any values that mutated above 
2 were set to 2). Crossover occurred between two sets of 100 diag(γ) vectors paired in each generation; vectors 
were randomly sampled with replacement among but not within sets. Vector pairs selected for crossover swapped 
all elements between and including two γi randomly selected with replacement (this allowed for reversal of vector 
element positions during crossover; e.g., γ γ γ γ γ γ γ γ→{ , , , } { , , , }4 5 6 7 7 6 5 4 ). The genetic algorithm terminated if a 
stable M was found, 20 generations occurred, or if the mean γ fitness increase between generations was less than 
0.01 (where fitness was defined as R λ= −γW ( )max  for M).

Data availability
All code and data are accessible on GitHub.
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