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Abstract—User demand for blocking advertising and tracking
online is large and growing. Existing tools, both deployed and
described in research, have proven useful, but lack either the
completeness or robustness needed for a general solution. Existing
detection approaches generally focus on only one aspect of
advertising or tracking (e.g. URL patterns, code structure),
making existing approaches susceptible to evasion.

In this work we present ADGRAPH, a novel graph-based
machine learning approach for detecting advertising and tracking
resources on the web. ADGRAPH differs from existing approaches
by building a graph representation of the HTML structure, net-
work requests, and JavaScript behavior of a webpage, and using
this unique representation to train a classifier for identifying
advertising and tracking resources. Because ADGRAPH considers
many aspects of the context a network request takes place in,
it is less susceptible to the single-factor evasion techniques that
flummox existing approaches.

We evaluate ADGRAPH on the Alexa top-10K websites, and
find that it is highly accurate, able to replicate the labels of
human-generated filter lists with 95.33% accuracy, and can even
identify many mistakes in filter lists. We implement ADGRAPH
as a modification to Chromium. ADGRAPH adds only minor
overhead to page loading and execution, and is actually faster
than stock Chromium on 42% of websites and AdBlock Plus
on 78% of websites. Overall, we conclude that ADGRAPH is
both accurate enough and performant enough for online use,
breaking comparable or fewer websites than popular filter list
based approaches.

I. INTRODUCTION

The need for content blocking on the web is large and
growing. Prior research has shown that blocking advertising
and tracking resources improves performance [26], [43], [56],
privacy [35], [42], [52], and security [44], [54], in addition to
making the browsing experience more pleasant [23]. Browser
vendors are increasingly integrating content blocking into
their browsers [41], [57], [63], and user demand for content
blocking is expected to grow in future [33], [34].

While existing content blocking tools are useful, they
are vulnerable to practical, realistic countermeasures. Current
techniques generally block unwanted content based on URL
patterns (using manually-curated filter lists which contain rules
that describe suspect URLs), or patterns in JavaScript behavior
or code structure. Such approaches fail against adversaries who
rotate domains quickly [39], proxy resources through trusted
domains (e.g. the first party, CDNs) [20], or restructure or
obfuscate JavaScript [51], among other common techniques.

As a result, researchers have proposed several alternative
approaches to content blocking. While these approaches are
interesting, they are either incomplete or susceptible to trivial
circumvention from even mildly determined attackers. Exist-
ing proposals suggest filter lists, pre-defined heuristics, and

machine learning (ML) approaches that leverage network or
code analysis for identifying unwanted web content, but fail
to consider enough context to avoid trivial evasions.

This work presents ADGRAPH, an accurate and perfor-
mant graph-based ML approach for detecting and blocking
unwanted (advertising and tracking) resources on the web. AD-
GRAPH makes blocking decisions using a novel graph repre-
sentation of a webpage’s past and present HTML structure, the
behavior and interrelationships of all executed JavaScript code
units, and the destination and cause of all network requests that
have occurred up until the considered network request. This
contextually-rich blocking approach allows ADGRAPH to both
identify unwanted resources that existing approaches miss, and
makes ADGRAPH more robust against simple evasions that
flummox existing approaches.

ADGRAPH is designed for both online (i.e. in-browser,
during page execution) and offline (i.e. for filter list construc-
tion) deployment. ADGRAPH is performant enough for online
deployment; its performance is comparable to stock Chromium
and better than Adblock Plus. ADGRAPH can also be used
offline to create or augment filter lists used by extension-based
content blocking approaches. This dual deployment strategy
can benefit users of ADGRAPH directly as well as users of
extension-based content blocking approaches.

This work makes the following contributions to the problem
of identifying and blocking advertising and tracking resources
on the web.

1) A graph-based ML approach to identify advertising
and tracking resources in websites based on the HTML
structure, JavaScript behavior, and network requests made
during execution.

2) A large scale evaluation of ADGRAPH’s ability to detect
advertising and tracking resources on popular websites.
We find that ADGRAPH is able to replicate the labels
of human-generated filter lists with 95.33% accuracy.
Further, ADGRAPH is able to outperform existing filter
lists in many cases, by correctly distinguishing ad/tracker
resources from benign resources in cases where existing
filter lists err.

3) A performant implementation of ADGRAPH as a patch
to Chromium.1 Our approach modifies the Blink and
V8 components in Chromium to instrument and attribute
document behavior in a way that exceeds existing prac-
tical approaches, without significantly affecting browser
performance. ADGRAPH loads pages faster than stock

1Since ADGRAPH is designed and implemented in Chromium, it can be
readily deployed on other Chromium based browsers (e.g. Chrome, Brave).
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Chromium on 42% of pages, and faster than AdBlock
Plus on 78% of pages.

4) A breakage analysis of ADGRAPH’s impact on popular
websites. ADGRAPH has a noticeable negative affect on
benign page functionality at rates similar to filter lists
(affecting 15.0% versus 11.4% of websites respectively)
and majorly affects page functionality less than filter lists
(breaking 5.9% versus 6.4% websites, respectively).

The rest of this paper is structured as follows. Section II
presents existing work on the problem of ad and tracker block-
ing, and discusses why existing approaches are insufficient as
comprehensive blocking solutions. Section III describes the
design and implementation of ADGRAPH. Section IV presents
an evaluation of ADGRAPH’s effectiveness as a content block-
ing solution, in terms of blocking accuracy, performance, and
effect on existing websites. Section V describes ADGRAPH’s
limitations, how ADGRAPH can be further improved, and
potential uses for ADGRAPH in offline scenarios. Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Problem Difficulty

Ad and tracker blocking is a well studied topic (e.g. [36],
[37], [45], [46], [49], [58], [64], [65]). However, existing work
is insufficient to form a comprehensive and robust blocking
solution.

Many existing approaches (e.g. [37], [45]) are vulnerable
to commonly deployed countermeasures, such as evading
domain-based blocking through domain generation algorithms
(DGA) [39], hosting tracking related code on the first-party
domain [20], spreading tracking related behavior across mul-
tiple code units, and code obfuscation [51]. Much related work
in the area is unable to reason about domains that host both
“malicious” (ads and tracking) and “benign” (functional or
user desireable) content, and end up over or under labeling
resources.

Other existing work (e.g. [36], [49]) lacks realistic eval-
uations. Sometimes this takes the form of an ambiguous
comparison to ground truth (making it challenging to ascertain
the usefulness of the technique as a deployable solution). Other
cases target advertising or tracking, but not both together. Still
other cases target only a subset of advertising or tracking
related resources (e.g. scripts or images), but fail to consider
other ways advertising or tracking can be carried out (e.g.
iframes and CSS styling rules).

Further existing work (e.g. [46], [64]) presents a strategy
for blocking resources, but lacks an evaluation of how much
benign (i.e. user desirable) functionality the approach would
break. This leaves a proposal for preventing a subset of an
application’s code from executing, without an understanding of
how it effects the functioning of the overall application (user-
serving or otherwise). These approaches may fail to separate
the wheat from the chaff; they may prevent advertising and
tracking, but at the expense of breaking desirable functionality.

The rest of this section reviews existing work on blocking
advertising and tracking content on the web. Emphasis is given

both on the contributions of each work, and why each work
is incomplete as a deployable, real-world blocking solution.

B. Existing Blocking Techniques

This subsection describes existing tracking and advertising
blocking work, categorized by the types of evasions each
approach is vulnerable to. Our goal is not to lessen the con-
tributions of existing work (which are many and significant),
but merely to highlight the kinds of practical and deployed
evasions each is vulnerable to, to further motivate the need
for a more comprehensive solution.

Note that many blocking approaches discussed here are
vulnerable to multiple evasions. In these cases, we discuss
only one category of evasion the work is vulnerable to. Table I
summarily compares the strengths and weaknesses of existing
approaches.

Domain Based Blocking. Many existing content blocking
approaches attempt to prevent advertising and tracking by
identifying suspect domains (eTLD+1), and blocking all re-
quests to resources on such domains. These approaches are
insufficient for several reasons. First, determined advertising
and tracking services can use DGA to serve their content from
quickly changing domains that are unpredictable to the client,
but known to the adversary. Such evasions trivially circumvent
approaches that depend primarily, or only, on domain blocking
strategies [39]. Similarly, in many cases, domain-focused
approaches are easily circumvented by proxying the malicious
resource through the first-party domain [20]. A comprehensive
blocking solution should be able to account for both of these
evasion strategies.

AdBlock Plus [1], uBlock Origin [30], Ghostery [15], and
Disconnect [8] are all popular and deployed solutions that
depend solely or partially on the domain of the request, and
are thus vulnerable to the above discussed approaches. These
approaches use filter lists, which describe hosts, paths, or both
of advertising and tracking resources.

Gugelmann et al. [45] developed a ML-based approach for
augmenting filter lists, by using existing filter lists as ground
truth, and training a classifier based on the HTTP and domain-
request behavior of additional network requests. Bhagavatula
et al. [37] developed a ML-based approach for generating
future domain-and-path based filter lists, using the rules in
existing filter lists as ground truth. These approaches may be
useful in identifying additional suspect content, but are easily
circumvented by an attacker willing to take any of the domain
hiding or rotating measures discussed earlier.

Yu et al. [65] described a method for detecting tracking
related domains by looking for third-parties that receive similar
unique tokens across a significant number of first-parties. This
approach hinges on an attacker using the same receiving do-
main over a large number of hosting domains. Apple’s Safari
browser includes a similar technique called Intelligent Track-
ing Protection [63], that identifies tracking related domains by
looking for third-party contexts that access state without user
interaction. Privacy Badger [25] also identifies tracking related
domains by looking for third-party domains that track users
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Approach Ad/Tracker Domain/URL 1st,3rd Party DGA Code Structure Cross JS Collaboration Breakage
Blocking Blocking Blocking Susceptibility Susceptibility Susceptibility Analysis

Bau et al. [36] Tracker Domain 3rd party Yes - - No (-)
Yu et al. [65] Tracker Domain 3rd party Yes No No Yes (25%)

Wu et al. [64] Tracker Domain 3rd party Yes No Yes No (-)
Shuba et al. [58] Ads URL 1st,3rd party Yes No No No (-)

Kaizer and Gupta [49] Tracker Domain 3rd party Yes Yes Yes No (-)
Ikram et al. [46] Tracker URL 1st,3rd party No Yes Yes No (-)

Gugelmann et al. [45] Ads,Tracker Domain 3rd party Yes No Yes No (-)
Bhagavatula et al. [37] Ads URL 1st,3rd party Yes No No No (-)

TABLE I: Comparison of the related work, including the practical evasions and countermeasures each is vulnerable to. Ad/Tracker Blocking
column represents blocking of ads, trackers, or both. Domain/URL Detection column represents blocking at domain or URL level. 1st,3rd
Party Blocking column, represents blocking of third-party requests, first-party requests, or both. In DGA Susceptibility, Code Structure
Susceptibility, and Cross JS Collaboration Susceptibility columns, Yes and No represent that the approach’s susceptibility to specified
countermeasure. The Breakage Analysis column represents whether the breakage analysis was performed by the approach and their results.

(e.g., by setting identifying cookies) on three or more sites.
These techniques do not attempt to block advertising, and also
require that the attacker use consistent domains. Bau et al. [36]
proposed building a graph of resource-hosting domains and
training a ML classifier based on commonalities of third-party
hosted code, again relying on hosting domains being distinct,
consistent, and long lasting.

JavaScript Code Unit Classification. Other blocking ap-
proaches attempt to identify undesirable code based on the
structure or behavior of JavaScript code units. Such approaches
take as input a single code unit (and sometimes the resulting
behavior of that code unit), and train ML classifiers for
identifying undesirable code.

Blocking approaches that rely solely on JavaScript behavior
or structure are vulnerable to several easy to deploy counter-
measures. Most trivially, these approaches do not consider the
interaction between code units. An attacker can easily avoid
detection by spreading the malicious behavior across multiple
code units, having each code unit execute a small enough
amount of suspicious behavior to avoid being classified as
malicious, and then using a final code unit to combine the
quasi-identifiers into a single exfiltrated value. Examples of
such work includes the approaches given by Wu et al. [64]
and Kaiser et al. [49], both of whom propose ML classifiers
that take as input the DOM properties accessed by JavaScript
(among other things) to determined whether a code unit is
tracking related.

Other approaches attempt to identify tracking-related
JavaScript based on the static features of the code, such
as names of cookie values, or similar sub-sections in the
code. Such approaches are vulnerable to many obfuscation
techniques, including using JavaScript’s dynamic nature to
break identifying strings and labels up across a code base,
using dynamic interpretation facilities in the language (e.g.
eval, new Function) to confuse static detection, or sim-
ply using different parameters for popular JavaScript post-
processing tools (e.g. JSMin [22], Browserify [5], Webpack
[32], RequireJS [27]). Ikram et al. [46] proposed one such
vulnerable technique, by training a ML classifier to identify
static features in JavaScript code labeled by existing filters

lists as being tracking related, and using the resulting model
to predict whether future JavaScript code is malicious.

Evaluation Issues. Much related work lacks a compre-
hensive and realistic evaluation. Examples include ambigu-
ous or unstated sources of ground truth comparison (e.g.
[36]), unrealistic metrics for what constitutes tracking or non-
tracking JavaScript code (e.g. [46] makes the odd assumption
that JavaScript code that tracks mouse or keyboard behavior
is automatically benign, despite the most popular tracking
libraries including the ability to track such functionality [16]),
or the decision to (implicitly or explicitly) whitelist all first-
party resources (e.g. [36], [65], [64], [49], [45]).

More significantly, much related work proposes resource
blocking strategies, but without an evaluation of how their
blocking strategy would affect the usability of the web. To
name some examples, [36], [64], [58], [49], [46], [45], and
[37], all propose strategies for automatically blocking web
resources in pages, without determining whether that blocking
would harm or break the user-serving goals of websites ( [65]
is an laudable exception, presenting an indirect measure of
site breakage by way of how often users disabled their tool
when browsing). Work that presents how much bad website
behavior an approach avoids, without also presenting how
much beneficial behavior the approach breaks, is ignoring one
half of the ledger, making it difficult to evaluate each work as
a practical, deployable solution.

C. JavaScript Attribution

We next present existing work on a related problem of
attributing DOM modifications to responsible JavaScript code
units. JavaScript attribution is a necessary part of the broader
problem of blocking ads and trackers, as its necessary to
trace DOM modifications and network requests back to their
originating JavaScript code units. Without attribution, it is
difficult-to-impossible to understand which party (or element)
is responsible for which undesired activity.

While there have been several efforts to build systems to
attribute DOM modifications to JavaScript code units, both in
peer-reviewed literature and in deployed software, all existing
approaches suffer from completeness and correctness issues.
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Below we present existing JavaScript attribution approaches
and discuss why they are lacking.

JavaScript Stack Walking. The most common JavaScript
attribution technique is to interpose on the prototype chain of
the methods being observed, throw an exception, and walk
the resulting stack object to determine what code unit called
the modified (i.e. interposed on) method. This technique is
used, for example, by Privacy Badger [25]. The technique has
the benefit of not requiring any browser modifications, and of
being able to run “online” (e.g. the attribution information
is available during execution, allowing for runtime policy
decisions).

Unfortunately, stack walking suffers from correctness and
completeness issues. First, there are many cases where calling
code can mask its identity from the stack, making attribution
impossible. Examples include eval’ed code and functions the
JavaScript runtime decides to inline for performance purposes.
Malicious code can be structured to take advantage of these
shortcomings to evade detection [40].

Second, stack walking requires that code be able to modify
the prototype objects in the environment, which further re-
quires that the attributing (stack walking) code run before any
other code on the page. If untrusted code can gain references
to unmodified data structures (e.g. those not interposed on
by the attributing code), then the untrusted code can again
avoid detection. Browsers do not currently provide any fool-
proof way of allowing trusted code to restrict untrusted code
from accessing unmodified DOM structures. For example,
untrusted code can gain access to unmodified DOM structures
by injecting subdocuments and extracting references to from
the subdocument, before the attributing code can run in the
subdocument.

AdTracker. Recent versions of Chromium include a
JavaScript attribution system called AdTracker [17], which
attributes DOM modifications made in the Blink rendering
system to JavaScript code execution in V8, the browser’s
JavaScript engine. AdTracker is used by Chromium to detect
when third party code modifies the DOM in a way that
violates Google’s ad policy [57], such as when JavaScript
code creates large overlay elements across the page. The code
allows the browser to determine which code unit on the page
is responsible for the violating changes, instead of holding the
hosting page responsible.

AdTracker achieves correctness but lacks completeness. In
other words, the cases where AdTracker can correctly do
attribution are well defined, but there are certain scenarios
where AdTracker is not able to maintain attribution. At a high
level, AdTracker can do attribution in macrotasks, but not in
microtasks. Macrotasks are a subset of cases where V8 is
invoked by Blink or when one function invokes another within
V8. Microtasks can be thought of as an inlining optimization
used by V8 to save stack frames, and is used in cases like
callback functions in native JavaScript APIs (e.g. callback
functions to Promises). Effectively, AdTracker trades com-

pleteness for performance,2 which means that a trivial code
transformation can circumvent AdTracker.

JSGraph. JSGraph [53] is designed for offline JavaScript
attribution. At a high level, JSGraph instruments locations
where control is exchanged between Blink and V8, noting
which script unit contains the function being called, and
treating all subsequent JavaScript functionality as resulting
from that script unit. At the next point of transfer from Blink
to V8, a new script unit is identified, and following changes
are attributed to the new script.

JSGraph writes to a log file, which makes it potentially
useful for certain types of offline forensic analysis, but not
useful for online content blocking. More significantly, JSGraph
suffers from correctness and completeness issues. First, like
AdTracker, JSGraph does not provide attribution for function-
ality optimized into microtasks. Second, JSGraph’s attribution
provides incorrect results (e.g. unable to link eval’ed created
script in a callback to its parent script) in the face of other V8
optimizations, such as deferred parsing, where V8 compiles
different sections of a single script unit at different times.
Third, JSGraph mixes all frames and subframes loaded in a
page together, causing confusion as to which script is making
which changes (the script unit identifier used by JSGraph is
re-used between frames, so different scripts in different frames
can have the same identifier in the same log file).

III. ADGRAPH DESIGN

In this section we present the design and implementation
of ADGRAPH, an in-browser ML-based approach to block ad
and tracking related content on the web. We first describe
a novel graph representation of the execution of a website
that tracks changes in the HTML structure, behavior and
interaction between JavaScript code, and network requests
of the page over time. This graph representation allows for
tracing the provenance of any DOM change to the responsible
party (e.g. JavaScript code, the parser, a network request).
Second, we discuss the Chromium instrumentation needed
to construct our graph representation. Third, we describe the
features ADGRAPH extracts from our graph representation to
distinguish between ad/tracker and benign resources. Finally,
we explain the supervised ML classifier and how ADGRAPH
enforces its classification decisions at runtime. Figure 1 gives
an architectural overview of ADGRAPH.

A. Graph Representation

Webpages are parsed and represented as DOM trees in
modern browsers. The DOM tree captures relationships among
HTML elements (e.g. parent-child, sibling-sibling). In AD-
GRAPH, we enrich this existing tree-representation with ad-
ditional information about the execution and communication
of the page, such as edges to capture JavaScript’s interactions
with HTML elements, or which code unit triggered a given
network request. These edge additions transform the DOM

2These shortcomings are known to the Chromium developers, and are an
intentional tradeoff to maximize performance.
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Fig. 1: ADGRAPH: Our proposed approach for ad and tracking blocking. We instrument Chromium to extract information from HTML
structure, network, and JavaScript behavior of a webpage execution as a graph representation. We then extract distinguishing structural and
content features from the graph and train a ML model to detect ads and trackers.

tree to a graph. ADGRAPH uses this graph representation to
capture the execution of a webpage.

ADGRAPH’S graph representation of page execution tracks
changes in the website’s HTML structure, network requests,
and JavaScript behavior. The unique graph structure brings
several benefits. First, because the graph contains information
about the cause and content of every network request and
DOM modification during the page’s life cycle, the graph
allows for tracing the provenance of any change or behavior
back to either the responsible JavaScript code unit, or, in
the case of initial HTML text, the browser’s HTML parser.
Second, the graph representation allows for extraction of
context-rich features, which are used by ADGRAPH to iden-
tify advertising and tracking related network requests. For
example, the graph allows for quick determinations of the
source script sending an AJAX request, the position, depth, and
location of an image request, and whether a subdocument was
injected in a page from JavaScript code, among many others.
The contextual information captured by these features in
ADGRAPH far exceeds what is available to existing blocking
tools, as discussed in Section II.

Next, we explain how ADGRAPH represents information
during a page load as nodes and edges in a graph.

Nodes. ADGRAPH depicts all elements in a website as one
of four types of node: parser, HTML, network, or script.

The parser node is a single, special case node that AD-
GRAPH uses to attribute document changes and network
requests to the HTML parser, instead of script execution. Each
graph contains exactly one parser node.

HTML nodes represent HTML elements in the page, and
map directly onto the kinds of tags and markup that exist
in websites. Examples of HTML nodes include image tags,
anchor tags, and paragraph tags. HTML nodes are annotated
to store information about the tag type and the tags HTML
attributes (e.g. src for image tags, class and id for all tags,
and value for input tags). HTML text nodes are represented
as a special case HTML node, one without a tag type.

Network nodes represent remote resources, and are anno-
tated with the type of resource being requested. Requests for
sub-documents (i.e. iframes), images, XMLHTTPRequest
fetches, and others are captured by network nodes.

Script nodes represent each compiled and executed body of
JavaScript code in the document. In most cases, these can be
thought of as a special type of HTML node, since most scripts
in the page are tied to script tags (whether inline or remotely
fetched). ADGRAPH represents script as its own node type
though to also capture the other sources of script execution in
a page (e.g. javascript: URIs).

Edges. ADGRAPH uses edges to represent the relationship
between any two nodes in the graph. All edges in ADGRAPH
are directed. Depending on the execution of pages, the graph
may contain cycles. All edges in ADGRAPH are of one of
three types, structural, modification, and network.

Structural edges describe the relationship between two
HTML elements on a page (e.g. two HTML nodes). Mirroring
the DOM API, edges are inserted to describe parent-child node
relationships, and the order of sibling nodes.

Modification edges depict the creation, insertion, removal,
deletion, and attribute modification of each HTML node. Each
modification edge notes the type of event (e.g. node creation,
node modification, etc) and any additional information about
the event (e.g. the attributes that were modified, their new
values, etc). Each modification edge leaves a script or parser
node, and points to the HTML element being modified.

Network edges depict the browser making a request for a
remote resource (captured in the graph as a network node).
Network edges leave the script or HTML node responsible
for the request being made, and point to the network node
being requested. Network edges are annotated with the URL
being requested.

Composition Examples. These four node types and three
edge types together depict changes to DOM state in a website.
For example, ADGRAPH represents an HTML tag <img
src="/example.png"> as an HTML node depicting the
img tag, a network node depicting the image, and a network
edge, leaving the former and pointing to the latter, annotated
with the “/example.png” URL. As another example, a
script modifying the value of a form element would be
represented as a script node depicting the relevant JavaScript
code, an HTML node describing the form element being
modified, and a modification edge describing a modification
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event, and the new value for the “value” attribute.

B. Graph Construction

ADGRAPH’s graph representation of page execution re-
quires low level modifications to the browser’s fetching, pars-
ing, and JavaScript layers. We implement ADGRAPH as a
modification to the Chromium web browser.3 The Chromium
browser consists of many sub-projects, or modules. The
Blink [6] module is responsible for performing network re-
quests, parsing HTML, responding to most kinds of user
events, and rendering pages. The V8 [7] module is responsible
for parsing and executing JavaScript. Next, we provide a high
level overview of the types and scope of our modifications in
Chromium for constructing ADGRAPH’s graph representation.

Blink Instrumentation. We instrument Blink to capture
anytime a network request is about to be sent, anytime a new
HTML node is being created, deleted or otherwise modified
(and noting whether the change was due to the parser or
JavaScript execution), and anytime control was about to be
passed to V8. We further modify each page’s execution envi-
ronment to bind the graph representation of the page to each
page’s document object. This choice allows us to easily dis-
tinguish scripts executing in different frames/sub-documents,
a problem that has frustrated prior work (see discussion of
JSGraph in Section II-C). Finally, we add instrumentation to
allow us to map between V8’s identifers for script units, and
the sources of script in the executing site (e.g. script tags,
eval’ed scripts, script executed by extensions).4

V8 Instrumentation. We also modify V8 to add instru-
mentation points to allow us to track anytime a script is
compiled, and anytime control changes between script units.
We accomplish this by associating every function and global
scope to the script they are compiled from. We then can note
every time a new scope is entered, and attribute any document
modifications or network requests to that script, until the scope
is exited.

V8 contains several optimizations that make this general
approach insufficient. First, V8 sometimes defers parsing of
subsections of JavaScript code. A partial list of such cases
includes eval’ed code, code compiled with the Function
constructor, and anonymous functions provided as callbacks
for some built in functions (e.g. setTimeout). To handle
these cases, ADGRAPH not only maps functions to script units
but also sub-scripts to scripts.

Second, V8 implements microtasks that make attribution
difficult. Microtasks allow for some memory savings (much of
the type information and vtable look-up overhead is skipped)
and reduce some book-keeping overhead. Tracking attribution
of DOM changes in microtasks is difficult because, at this
level, V8 no longer tracks functions as C++ objects, but as

3The source code of our Chromium implementation is available at:
https://uiowa-irl.github.io/AdGraph/.

4The architectural independence between the V8 and Blink projects made
this an unexpectedly difficult problem to solve, with many unanticipated
corner cases that were not discovered until we subjected ADGRAPH to
extensive automatic and manual testing.

compiled bytecode, requiring a different approach to determin-
ing which script unit “owned” any given execution. ADGRAPH
solves this problem through additional instrumentation, and
some runtime stack scanning, yielding completeness at the cost
of a minor performance overhead.

JavaScript Attribution Example. ADGRAPH is able to
attribute DOM modifications and network events to script
units in cases where existing techniques fail. We give a
representative example in code snippet 1.

This code uses eval to parse and execute a string as
JavaScript code. The resulting code uses a Promise in a
setTimeout callback. This Promise callback is optimized
in V8 as a microtask, which evades the attribution techniques
used in current work (e.g. PrivacyBadger / stack walking,
AdTracker, JSGraph, discussed in Section II-C). Existing tools
would not be able to recognize that this code unit was
responsible for the image fetched in the Promise callback.

ADGRAPH, though, is able to correctly attribute the image
request to this code unit. Figure 2 shows how this execution
pattern would be stored in ADGRAPH. Specifically, the edge
between nodes 2 and 4 records the attribution of the eval call
to the responsible JavaScript code unit, and the edge between
nodes 7 and 9 in record that the image request is a result of
code executed in the microtask. Existing approaches would
either miss the edge between 2 and 4, or 7 or 9.

HTML nodes Network nodes Script nodes

21 72 4 9

Edges created by scriptsEdges created by HTML parser

parent 
HTML

HTML 
script

script script 
(eval)

HTML 
Image

network 
request

eval attribution 
to parent script

image attribution with 
microtask executed script

Fig. 2: ADGRAPH’s representation of example code snippet 1. Node
numbers correspond to line numbers in code snippet 1. This exam-
ple highlights connections and attributions not possible in existing
techniques.

1 <html>
2 <script>
3 ...
4 eval("setTimeout(function xyz() {
5 const p = Promise.resolve('A');
6 p.then(function abc(_) {
7 var img = document.createElement('img');
8 img.setAttribute('id','ad_image');
9 img.src = 'adnetwork.com/ad.png';

10 }) }, 5) ");
11 ...
12 </script>
13 </html>

Code 1: A microtask in an eval created script loading an ad.

C. Feature Extraction

Next, we present the features that ADGRAPH extracts from
the graph to distinguish ads and trackers from functional
resources. These features are designed based on our domain
knowledge and expert intuition. Specifically, we manually
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analyze a large number of websites and try to design fea-
tures that would distinguish ad/tracking related resources from
functional (or benign) resources.

The extracted features broadly fall into two categories:
“structural” (features that consider the relationship between
nodes and edges in the graph) and “content” (features that
depend on the values and attributes of nodes in isolation from
their connections). In total we extract 64 structural and content
features. Table II gives a summary and representative examples
of features from each category. Below we provide a high-level
description of structural and content features. More detailed
analysis of features and their robustness is presented in Section
IV-D.

Structural Features

Graph size (# of nodes, # of edges, and nodes/edge ratio)
Degree (in, out, in+out, and average degree connectivity)
Number of siblings (node and parents)
Modifications by scripts (node and parents)
Parent’s attributes
Parent degree (in, out, in+out, and average degree connectivity)
Sibling’s attributes
Ascendant’s attributes
Descendant of a script
Ascendant’s script properties
Parent is an eval script

Content Features

Request type (e.g. iframe, image)
Ad keywords in request (e.g. banner, sponsor)
Ad or screen dimensions in URL
Valid query string parameters
Length of URL
Domain party
Sub-domain check
Base domain in query string
Semi-colon in query string

TABLE II: Summarized feature set used by ADGRAPH.

Structural Features. Structural features target the relation-
ship between elements in a page (e.g. the relationship between
a network request and the responsible script unit, or a HTML
nodes’ parents, siblings and cousin HTML nodes). Examples
of structural features include whether a node’s parents have
ad-related values for the class attribute, the tag names of
the node’s siblings, or how deeply nested in the document’s
structure a given node is.

Structural features also consider the interaction between
JavaScript code, and the resource being requested. These
features rely on ADGRAPH’s instrumentation of Blink and
V8. Examples of JavaScript features include whether the node
initiating a network request was inserted by JavaScript code,
the number of scripts that have “touched” the node issuing the
request, and, in the case of requests that are not directly related
to HTML elements (e.g. AJAX), whether the JavaScript code
initiating the request was inlined in the document or fetched
from a third-party.

Content Features. Content features relate to values attached
to individual nodes in the graph (and not the connections
between nodes in the graph). The most significant value

considered is the URL of the resource being requested. These
content features are similar to what most existing content
blocking tools use. ADGRAPH’s specific set of features though
is unique. Examples of ADGRAPH’s content features include
whether the origin of the resource being requested is first-
or-third party, the number of path segments in the URL
being requested, and whether the URL contains any ad-related
keywords.

D. Classification

ADGRAPH uses random forest [38], a well-known ensemble
supervised ML classification algorithm. Random forest com-
bines decisions from multiple decision trees, each constructed
using a different bootstrap sample of the data, by choosing
the mode of the predicted class distribution. Each node for
a decision tree is split using the best among the subset of
features selected at random. This feature selection mechanism
provides robustness against over-fitting issues. We configure
random forest as an ensemble of 100 decision trees with each
decision tree trained using int(logM + 1) features, where M
is the total number of features.

ADGRAPH’s random forest model classifies network re-
quests based on the provenance (creation and modification
history) of a node and the context around it. These classi-
fication decisions are made before network request are sent,
so that ADGRAPH can prevent network communication with
ad and tracking related parties. A single node may initiate
many network requests (either due to it being a script node, or
being modified by script to reference multiple resources). As
a result, any node may be responsible for an arbitrary number
of network requests. ADGRAPH classifies three categories of
network requests:

1) Requests initiated by the webpage’s HTML (e.g. the
image referenced by an <img> tag’s src attribute).

2) Requests initiated by a node’s attribute change (e.g. a new
background image being downloaded due to a new CSS
style rule applying because of a mouse hover).

3) Requests initiated directly by JavaScript code (e.g. AJAX
requests, image objects not inserted into the DOM).

IV. ADGRAPH EVALUATION

In this section we evaluate the accuracy, usability, and
performance of ADGRAPH when applied to live, real-world,
popular websites.

A. Accuracy

We first evaluate how accurately ADGRAPH is able to
distinguish advertising and tracking content from benign web
resources.

Ground Truth. To evaluate ADGRAPH’s accuracy, we first
need to gather a ground truth to label a large number of
ad/tracking related network requests. We generate a trusted
set of ground truth labels by combining popular crowdsourced
filter lists that target advertising and/or tracking, and applying
them to popular websites. Table III lists the 8 popular filter lists
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we combine to form our ground truth. These lists collectively
contain more than a hundred thousand crowdsourced rules for
determining whether a URL serves advertising and/or tracking
content.

List # Rules Citation

EasyList 72,660 [9]
EasyPrivacy 15,507 [10]
Anti-Adblock Killer 1,964 [2]
Warning Removal List 378 [31]
Blockzilla 1,155 [3]
Fanboy Annoyances List 38,675 [12]
Peter Lowe’s List 2,962 [24]
Squid Blacklist 4,485 [29]

TABLE III: Crowd sourced filter lists used as ground truth for
identifying ad and tracking resources. Rule counts are as of Nov.
12, 2018.

Advertising resources include audio-visual promotional con-
tent on a website. Tracking resources collect unique identifiers
(e.g., cookies) and sensitive information (e.g., browsing his-
tory) about users. In practice, there is no clear division between
ad and tracking resources. Many resources on the web not only
serve advertising images and videos but also track the users
who view it. It is also noteworthy that EasyList (to block ads)
and EasyPrivacy (to block trackers) have a significant overlap.
Because of this overlap, we do not attempt to distinguish
between advertising and tracking resources.

Note that while these crowdsourced filter lists suffer from
well-known shortcomings [62], we treat them as “trusted”
for three reasons. First, they are reasonably accurate for top-
ranked websites even though they suffer on low-ranked web-
sites [42], [54]. Second, a more accurate alternative, building
a web-scale, manually generated, expert set of labels would
require labor and resources far beyond what is feasible for a
research project. Third, we use several filter lists together to
maximize their coverage and reduce false negatives.

We visit the homepages of the Alexa top-10K websites with
our instrumented Chromium browser. We expect that the top-
10K websites is a diverse and large enough set to contain
most common browsing behaviors. We limit our sample of
websites to the 10K most popular sites to avoid biasing
our sample; previous work has found that popular filter lists
work reasonably well for popular sites [42], [54]. Applying
crowdsourced filter lists to unpopular sites (sites that, almost
by definition, the curators of filter lists are less likely to visit)
risks skewing our data set to include a large number of false
negatives (i.e. advertising and tracking resources that filter list
authors have not encountered).

We apply filter lists to websites in the following manner. We
visit the homepage of each site with our instrumented version
of Chromium and wait for each page to finish loading (or
120 seconds, whichever occurs first). Next we record every
URL of every resource fetched when loading and rendering
each page. We then label each fetched resource URL as AD
and NON-AD, based on the whether they are identified as ad
or tracking related by any of a set of filter lists. Our final

labeled dataset consists of 540,341 URLs, fetched from 8,998
successfully crawled domains.5

Results. We use the random forest model to classify each
fetched URL. We then compare each predicted label with the
label derived from our ground truth data set, the set of filter
lists described above. We then evaluate how accurately our
model can reproduce the filter list labels through a stratified
10-fold cross validation, and report the average accuracy.
ADGRAPH classifies AD and NON-AD with a high degree of
accuracy, achieving 95.33% accuracy, with 89.1% precision,
and 86.6% recall.

As Table IV shows, ADGRAPH classifies web resources
with a high degree of accuracy. We note that ADGRAPH is
more accurate in classifying visual resources such as im-
ages (98.95% accuracy) and CSS (96.32% accuracy) than
invisible resources like JavaScript (90.52% accuracy) and
AJAX requests (93.55% accuracy). This suggests an interesting
possibility, that ADGRAPH’s labels are correct, and filter lists
miss-classify invisible resources due to their reliance on human
crowdsourced feedback. We investigate this possibility, and
more broadly the causes of disagreements between ADGRAPH
and filter lists in the next subsection.

B. Disagreements Between ADGRAPH and Filter Lists

We now manually analyze the cases where ADGRAPH
disagrees with filter lists to determine which labeling is
incorrect, ADGRAPH’s or filter lists’. Overall, we find that
ADGRAPH is able to identify many advertising and tracking
resources missed by filter lists. We also find that ADGRAPH
correctly identifies many resources as benign which filter
lists incorrectly block. These findings imply that ADGRAPH’s
actual accuracy is higher than 95.33%.

Methodology. To understand why ADGRAPH disagrees with
existing filter lists, we perform a manual analysis of a sample
of network requests where ADGRAPH identifies a resource
as ad/tracking related but filter lists identify as benign (i.e.
false positives) and where filter lists identify a resource as
ad/tracking related but ADGRAPH identifies as benign (i.e.
false negatives). We select these “false positives” and “false
negatives” from the most frequent advertising and tracking
related resource types: JavaScript code units and images. We
manually analyze all of the 282 distinct images and a random
sample of 100 script URLs that ADGRAPH classifies as AD but
filter lists label as NON-AD and a random sample 300 images
and 100 script URLs that ADGRAPH classifies as NON-AD
but filter lists label as AD. The goal of our manual analysis is
to assign each JavaScript unit or image to one of the following
labels:

1) True Positive: ADGRAPH’s classification is correct and
the filter lists are incorrect; the resource is related to
advertising or tracking.

5The success rate of about 90% in our crawl is in line with those of previous
studies [42], [54].
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Resource # Resources Blocked by Filter Lists Blocked by ADGRAPH Precision Recall FPR FNR Accuracy

Image 201,785 11,584 10,228 93.09% 88.29% 0.39% 11.71% 98.95%
Script 167,533 67,959 60,030 88.32% 88.33% 7.97% 11.67% 90.52%
CSS 124,207 9,255 5,834 83.61% 63.03% 0.99% 36.97% 96.32%
AJAX 24,365 8,305 7,442 91.31% 89.60% 4.40% 10.40% 93.55%
iFrame 20,091 7,745 7,244 92.31% 93.53% 4.88% 6.47% 94.50%
Video 2,360 23 14 93.33% 60.86% 0.04% 39.14% 99.57%

Total 540,341 104,871 90,792 89.1% 86.6% 2.56% 13.4% 95.33%

TABLE IV: Number of resources, broken out by type, encountered during our crawl, and incidence of ad and tracking content, as determined
by popular filter lists and ADGRAPH.

2) False Positive: The label by filter lists is correct and
ADGRAPH’s classification is incorrect; the resource is not
related to advertising or tracking.

3) True Negative: ADGRAPH’s classification is correct and
the filter lists are incorrect; the resource is not related to
advertising or tracking.

4) False Negative: The label by filter lists is correct and
ADGRAPH’s classification is incorrect; the resource is
related to advertising or tracking.

5) Mixed: The resource is dual purpose (i.e. both ad/tracker
and benign). This label is only used for script resources.

6) Undecidable: It was not possible to determine whether
the resource is an ad/tracker.

We decide whether an image was advertising or tracking
related through the following three steps. First, we label all
tracking pixels (1×1 sized images used to initiate a cookie or
similar state-laden communication) as “true positive” if AD-
GRAPH classified it as AD and “false negative” if ADGRAPH
classified it as NON-AD. Second, we consider the content of
each image and look for text indicating advertising, such as
the word “sponsored", prices, or mentions of marketers. If the
image has such text, we consider the image as an advertise-
ment and label it “true positive” if ADGRAPH classified it as
AD and “false negative” if ADGRAPH classified it as NON-
AD. If the case is ambiguous, such as an image of a product
that could either be advertising or a third-party discussion of
the product, we use the “undecidable” label. Third, we label
all remaining cases as “false positive” if ADGRAPH classified
them as AD and “true negative” if ADGRAPH classified them
as NON-AD.

Deciding the labels for the sampled script resources is
more challenging. Determining the purpose of a JavaScript
file requires inspecting and understanding large amounts of
code, most of which has no documentation, and which is
in many cases minified or obfuscated. We label a script as
“true positive” (advertising or tracking related) if most of
the script performs any of the following functionality: cookie
transmission, passive device fingerprinting, communication
with known ad or tracking services, sending beacons, or
modifying DOM elements whose attributes are highly in-
dicative of an ad (e.g. creating an image carousel with the
id “ad-carousel”); and ADGRAPH classified it as AD and
“false negative” if ADGRAPH classified it as NON-AD. If
the script primarily includes functionality distinct from the

above (e.g. form validation, non-ad-related DOM modification,
first-party AJAX server communication), we label it as “false
positive” if ADGRAPH classified it as AD and “true negative”
if ADGRAPH classified it as NON-AD. If the script contains
significant amounts of both categories of functionality, we
label the script as “mixed”. In cases where the functionality
is not discernable, we use the “undecidable” label.

False Positive Analysis. Table V presents the results of
our disagreement analysis for false positives. In cases where
ADGRAPH identifies a resource as suspect, and filter lists label
it as benign, ADGRAPH’s determination is correct 11.0%–
33.0% of the time for JavaScript and 46.8% of the time for
images.

ADGRAPH is often able to detect advertising and track-
ing resources that are missed by filter lists. For example,
ADGRAPH blocks a 1x1 pixel on cbs.com that includes a
tracking identifier in its query string. In another example,
ADGRAPH blocks a script (js1) on nikkan-gendai.com that
performs browser fingerprinting. Filter lists likely missed these
resources because they are often slow to catch up when
websites introduce changes [47].

There are however several false positives that are actual
mistakes by ADGRAPH. For example, ADGRAPH blocks a
third-party dual purpose script (avcplayer.js), a video player
library that also serves ads, on inquirer.net. Interestingly,
ADGRAPH detects many such dual-purposed scripts that are
beyond the ability of binary-label filter lists.

These results demonstrate that ADGRAPH is able to identify
many edge case resources (e.g. mixed-use) that can be used to
refine future versions of ADGRAPH. As discussed in Section
V-B, ADGRAPH can be extended to handle such mistakes by
implementing more fine-grained blocking.

Image Script
# % # %

True Positive 132 46.8% 11 11.0%
False Positive 129 45.7% 63 63.0%
Mixed 0 0% 22 22.0%
Undecidable 21 7.4% 4 4.0%

TABLE V: Results of manual analysis of a sample of cases where
ADGRAPH classifies a resource as AD and filter lists label it as NON-
AD.

False Negative Analysis. Table VI presents the results of
our disagreement analysis for false negatives. In cases where
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ADGRAPH identifies a resource as benign, and filter lists label
it as suspect, ADGRAPH’s determination is correct 22%–32%
of the time for JavaScript and 27.7% of the time for images.

Again, ADGRAPH is often able to identify benign content
that is incorrectly over-blocked by filter lists. For example,
ADGRAPH does not block histats.com when visited as a first-
party in our crawl, but this domain is blanketly blocked by
the Blockzilla filter list even when visited as a first-party. In
another example, ADGRAPH does not block a social media
icon facebook-gray.svg (served on postimees.ee as a first-party
resource) and a privacy-preserving analytics script piwik.js
(served on futbol24.com as a first-party resource). It can be
argued that many of these resources are neither ads nor pose a
tracking threat [11], [50]. Filter lists over-block in such cases
because of the inclusion of overly broad rules (e.g. blocking
entire domains, or any URL containing a given string).

There are however several false negatives that are actual
mistakes by ADGRAPH. For example, ADGRAPH misses
fingerprint2.min.js served by a CDN cloudflare.com on
index.hr. ADGRAPH likely made this mistake because a popu-
lar third-party CDN, which is typically used to serve functional
content, is used to serve a fingerprinting script. As discussed
in Section V-B, ADGRAPH can be extended to handle such
mistakes by extracting new features from JavaScript APIs.

Image Script
# % # %

True Negative 83 27.7% 22 22%
False Negative 180 60.0% 55 55%
Mixed 0 0% 10 10%
Undecidable 37 12.3% 13 13%

TABLE VI: Results of manual analysis of a sample of cases where
ADGRAPH classifies a resource as NON-AD and filter lists label it
as AD.

C. Site Breakage

Content blocking tools carry the risk of breaking benign
site functionality. Content blockers prevent resources that the
website expects to be in place from being retrieved, which
can have the carry over effect of harming desireable site
functionality, especially when tools mistakenly block benign
resources [19]. Thus assessing the usefulness of a content
blocking approach must also include an evaluation of how
many sites are “broken” by the intervention.

Next we evaluate how often, and to what degree, ADGRAPH
breaks benign (i.e. user desired) website functionality. We do
so by having two human reviewers visit a sample of popular
websites using ADGRAPH, and having them independently
record their assessment of whether the site worked correctly.
We find that ADGRAPH only affects benign functionality on
a small number of sites, and at a rate equal to or less than
popular filter lists.

Methodology. We estimate how many sites ADGRAPH breaks
by having two evaluators use ADGRAPH on a sample of
popular websites and independently record their determination
of how ADGRAPH impacts the site’s functionality. Because

of the time consuming nature of the task, we select a smaller
sample of sites for this breakage evaluation than we use for
the accuracy evaluation.

Our evaluators use ADGRAPH on two sets of websites: first
the Alexa top-10 websites, and second on a random sample of
100 websites from the Alexa top-1K list, resulting in a total
of 110 sites for breakage evaluation.

Automatic site breakage assessment is challenging due to
the complexity of modern web applications [55], [65]. Unfor-
tunately, manual inspection for site breakage assessment is not
only time-consuming but also likely to lose completeness as
the functionalities of a website are often triggered by certain
events that may be hard to manually cover exhaustively. As
a tradeoff, we adopt the approach from [59], which is a
manual analysis but focuses on the user’s perspective. In other
words, we intentionally ignore the breakages that only affect
the website owner as they do not have any impact on user
experience.

For each website, our evaluators independently perform the
following steps.

1) Open the website with stock Chromium, as a control,
and perform as many actions as possible within two
minutes. We instruct our evaluators to exercise the kinds
of behaviors that would be common on each site. For
example, in a news site this might be browsing through an
article; on a e-commerce site this might include searching
for a product and proceeding to checkout etc.

2) Open the website with ADGRAPH, repeat the actions
performed above, and assign a breakage level of

(a) no breakage if there is no perceptible difference
between ADGRAPH and stock Chromium;

(b) minor breakage if the browsing experience is altered,
but objective of the visit can still be completed; or

(c) major breakage if objective of the visit cannot be
completed.

3) Open the website with Adblock Plus6, repeat the actions,
and assign a breakage level as above.

To account for the subjective nature of this analysis, we
have each evaluator visit the same sites, at similar times,
and determine their “breakage” scores independently. Our
evaluators give the same score 87.7% of the time, supporting
the significance of their analysis.

Tool No breakage Major Minor Crash
# % # % # % # %

ADGRAPH 93.5 85.0% 6.5 5.9% 7.5 6.8% 2.5 2.3%
Filter lists 97.5 88.6% 7 6.4% 4 3.6% 1.5 1.4%

TABLE VII: Breakdown of breakage analysis results (# columns are
the average of two independent scores.)

Results. Table VII reports the site breakage assessments
as the average of two reviewers. The evaluation shows that

6Adblock Plus is configured with the same 8 filter lists that are used to
train ADGRAPH.
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ADGRAPH and filter lists are comparable in terms of site
breakage. ADGRAPH and filter lists do not cause any breakage
on 85.0% and 88.6% of the sites, respectively. The major
breakage rate (5.9%) is also on par with the filter lists (6.4%).
We also note that ADGRAPH’s breakage is much lower than
other commonly used privacy oriented browsers (e.g. 16.3%
for Tor Browser [59]).

D. Feature Analysis
Next, we discuss the intuitions behind some of the features

used in ADGRAPH, and evaluate their ability to distinguish
ad/tracking content from benign content. We describe some
of the features that are most useful (in terms of information
gain [48]) in ADGRAPH’s predictions.

Structural Features. Two of the structural features that
provided the highest information gain are a node’s average
degree connectivity and its parents’ attributes.

We expect AD nodes to have lower average degree con-
nectivity, since the interaction of these nodes is confined to
only ad/tracking content, and thus appear in less connected
cliques. Conversely, we expect that NON-AD nodes appear
alongside, and interact with, functional content more, and thus
have higher average degree connectivity. Our results in Figure
3(a) support this intuition. AD nodes do indeed have have
lower average degree connectivity than NON-AD nodes.

We also expect the parents of AD nodes to have different
attributes than NON-AD nodes. This intuition came from
the expectation that AD nodes are more likely to follow
common practices and standards, such as those proposed by
the Interactive Advertising Bureau (IAB) [21]. For example,
IAB’s LEAN standard [18] requires ad related scripts to load
asynchronously (indicated by the presence of the async
attribute on a script node). We capture this intuition in a feature
by considering the attributes of each network requests’ parent
nodes (in our graph representation, the parent of a network
request might be the script element that initiates the network
request). Our results in Figure 3(b) support this intuition. The
parents of AD nodes with script tag name were 3 times
more likely to have the async attribute than NON-AD nodes.

We note that some structural features are more robust to ob-
fuscation than others. For example, to flummox the classifier,
it would be more challenging for an adversary to manipulate
a node’s average degree connectivity (which depends on all
of the node’s neighbors) than it would be to manipulate the
attributes of a parent node.

Content Features. Two of the content features that provided
the highest information gain are a node’s domain party and
its URL length.

We expect AD nodes to be more likely to come from
third-party domains than NON-AD nodes. We capture this
intuition in a boolean feature, recording whether the domain
of a network request differs from domain of the first party
document. Figure 4(a) shows this intuition to be correct. More
than 90% of the ads came from third-party domains.

We also expect AD nodes to include a large number of query
parameters in their URLs. We capture this intuition by using a
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Fig. 3: Conditional distributions for structural features.

request’s URL length as a numeric feature. Figure 4(b) shows
this intuition to be correct. AD node URLs were on average
longer than NON-AD node URLs.

We again note that some content features are more robust
to obfuscation than others. For example, to flummox the
classifier, it would be more challenging for an adversary to
switch ads/trackers from third-party to first-party that it would
be to manipulate the length of a URL.
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Fig. 4: Conditional distributions for content features.

Ablation Analysis. Next, we separately evaluate structural
and content features in terms of their contribution to AD-
GRAPH’s accuracy. To this end, we train additional classifiers
separately, one using only structural features, the other using
only content features. While structural features and content
features have comparable accuracy they provide complemen-
tary information, which when used together improve AD-
GRAPH’s accuracy. For example, excluding structural features
results in a decrease of 6.6% in precision, 8.7% in recall, and
2.7% in accuracy.

We also expect structural features to be more robust
than content features. Structural features consider neighboring
graph structure of a node while content features only consider
a node in isolation. To manipulate the structural features, an
adversary would need to change the target node, its neigh-
bors, and subsequently their neighbors. Manipulating content
features would only require changing the target node.

Thus, we conclude that the graph-based representation of
ADGRAPH, as captured by structural features, contributes to
its accuracy and robustness.
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E. Tradeoffs in Browser Instrumentation

Recall from Section III-B that ADGRAPH modifies
Chromium to attribute DOM modifications to JavaScript code
units. This is different from most existing content blocking
tools that operate at the extension layer. ADGRAPH’s browser
instrumentation is a trade off; it gains attribution accuracy at
the cost of ease of distribution. This raises the question of
whether ADGRAPH can instead be implemented as a browser
extension on any web browser.

We investigate this question by implementing ADGRAPH
as a browser extension, using the best possible attribution
option available at the extension layer (JavaScript stack walk-
ing, discussed in Section II-C). We test the accuracy of the
best possible extension implementation of ADGRAPH by re-
crawling the Alexa-10k with a modified version of ADGRAPH,
using the same methodology described in Section IV-A. This
modified version of ADGRAPH uses JavaScript stack walking
to attribute DOM modifications to script units, instead of
the Blink and V8 modifications. We then train and test ML
classifier on the graphs constructed using JavaScript stack
walking.

We compare the accuracy of this best-possible-extension
implementation to our in-browser implementation of AD-
GRAPH. We find that implementing ADGRAPH as a browser
extension significantly reduces classification accuracy. Imple-
menting ADGRAPH as a browser extension degrades precision
by 1.5%, recall by 16%, and accuracy by 2.3%. Thus, the
mistakes JavaScript stack walking makes in attribution lead to
more errors in classification. We conclude that costs of imple-
menting ADGRAPH’s as a set of browser modifications (i.e.
difficulty in distribution) is more than offset by the benefits
(i.e. increased classification accuracy), and that ADGRAPH is
best implemented as Blink and V8 modifications.

F. Performance

We evaluate ADGRAPH’s performance as compared to stock
Chromium and Adblock Plus. ADGRAPH performs faster in
most cases than the most popular blocking tool, Adblock Plus,
and in many cases results in faster performance than stock
Chromium. This is the result of both careful engineering in
ADGRAPH’s implementation, and ADGRAPH’s instrumenta-
tion overhead (often) being more than offset by the network
and rendering savings gained by having to fetch and render
less page content (i.e. the content blocked by ADGRAPH).

To measure whether ADGRAPH is a practical blocking
solution, we compare the performance of ADGRAPH, stock
Chromium, and Chromium with Adblock Plus installed (using
Adblock Plus’s default configuration) on the Alexa 1K. Our
simulated network uses a 10 Mbps downlink with a latency
of 100ms. We visit the landing page of each website 10
times and record the average page load time (measured as
the difference between the DOM’s navigationStart and
loadEventEnd events). Figure 5 presents ADGRAPH’s page
load time compared to stock Chromium, and Chromium with
Adblock Plus.6

Resource Type ADGRAPH faster Chromium faster

Image 24.59% 14.92%
Script 20.82% 17.96%
CSS 6.47% 0.79%
AJAX 48.03% 36.14%
iFrame 37.66% 30.47%
Video 7.14% 6.20%

TABLE VIII: Comparison of average percentage of resources AD-
GRAPH blocks on sites where ADGRAPH outperforms Chromium,
and vise versa. For all resource types, ADGRAPH performs faster
when more resources are blocked.
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ADGRAPH performs faster than Chromium on 42% of
websites. ADGRAPH is often faster than stock Chromium
because it needs to fetch and render fewer resources than stock
Chromium (i.e. the network requests blocked by ADGRAPH).
Table VIII shows that ADGRAPH outperforms Chromium on
sites where it blocks more ad/tracking content, as compared
to sites where it blocks less. Put differently, the more content
ADGRAPH blocks, the more it is able to make up for the
instrumentation and classification overhead with network and
rendering savings.

ADGRAPH performs faster than Adblock Plus on 78% of
websites. ADGRAPH is faster than Adblock Plus for two
reasons. First, Adblock Plus implements element hiding rules
(i.e. rules describing elements that are still fetched, but hidden
when rendering), which carries with it an enforcement and
display-reflow overhead ADGRAPH does not share. Second,
ADGRAPH’s blocking logic is implemented in-browser which
leads to performance improvement over Adblock Plus’s im-
plementation at the extension layer.

Overall, we conclude that ADGRAPH is performant enough
to be a practical online content blocking solution. Future
implementation refinements, and the exploration of cheaper
features, could further improve ADGRAPH’s performance.

V. DISCUSSIONS

A. Offline Application of ADGRAPH

ADGRAPH is designed and implemented to be used as
an online, in-browser blocking tool. This is different than
most blocking tools, which operate as extensions on main-
stream browsers (e.g. Chrome, Firefox). Since ADGRAPH
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requires browser instrumentation, it cannot be directly used
by extension-based blockers that rely on offline manually
curated filter lists. ADGRAPH can benefit existing blocking
tools through the creation and maintenance of filter lists in
several ways.

First, the accuracy of filter lists suffers because of they
are manual generated and rely on informal crowdsourced
feedback. As discussed in Section IV-B, filter list maintainers
can analyze disagreements between ADGRAPH and filter lists
to identify and fix potential inaccuracies in filter lists

Second, ADGRAPH can support the generation of filter lists
targeting under-served languages or region on the web. Filter
lists are inherently skewed towards popular websites and lan-
guages because of their larger and more active blocking user
base [42], [54]. Filter list maintainers receive much less feed-
back to fix inaccuracies on less popular websites. This makes
the creation and maintenance of filter lists for underserved
regions (geographically and linguistically) difficult, since these
sites have less visitors. Language/region specific filter lists are
updated much less frequently than general (and mostly English
targeting) filter lists like EasyList. Many languages and regions
(most notably Africa) do not have dedicated filter lists at all.
ADGRAPH can assist in automatically generating filter lists
for smaller or underserved regions.

Third, the manual nature of filter list maintenance has
lead to increasing number of outdated and stale rules. Filter
list rules can quickly get outdated because most websites
frequently update and are highly dynamic. Prior research found
that filter lists can take months to update in response to such
changes [47]. Even when filter lists are updated, new rules are
typically added (rather than editing old rules) which leads to
accumulation of stale rules over time. Prior research reported
that only 200 rules account for 90% blocking activity for
EasyList [62]. In other words, the number of rare-to-never
used rules in EasyList is increasing over time which has
performance implications. ADGRAPH can by used by filter
list maintainers to periodically audit filter lists for identifying
outdated and stale rules.

B. ADGRAPH Limitations And Future Improvements

Ground Truth. ADGRAPH relies on filter lists as ground
truth to train a ML classifier for detecting ads/trackers. As we
showed in Sections IV-B, filter lists suffer from inaccuracies
due to both false negatives and false positives. ADGRAPH can
address these inaccuracies in ground truth by gathering valu-
able user feedback when it is deployed at scale. ADGRAPH
can retrain its ML classifier periodically on improved ground
truth as user feedback is received.

Features. The features used by ADGRAPH are manually
designed, based on our domain knowledge and expert intuition,
with the goal of achieving decent accuracy. Note that the
feature set is by no means “complete” and there is room for ad-
ditional feature engineering to further improve accuracy. New
features can be systematically discovered by incorporating user
feedback, which may reveal new characteristics of ads/trackers

over time that are not currently covered by ADGRAPH. New
features may require addition of new instrumentation points
such as JavaScript APIs or new feature modalities altogether,
such as image based perceptual information [28], [60], [61].

Classification Granularity. ADGRAPH is currently designed
to make binary decisions to either block or allow network
requests. However, as discussed in Section IV-B, ADGRAPH
is also able to detect cases when a single JavaScript is used
for both ad/tracking and functional content. The cases where
JavaScript code serves dual-purpose are challenging because
blocking the request may break page functionality, while
allowing the request will allow ads/trackers on the page. AD-
GRAPH’s context rich classification approach can be adapted
to more than two labels for handling such dual-purpose scripts.
Specifically, ADGRAPH can be trained at a more granular
level to distinguish between ads/trackers, functional, and dual-
purpose resources. ADGRAPH can respond to such dual-
purpose resources with different remediations than outright
allowing/blocking, such as giving those scripts a reduce set
of DOM capabilities (e.g. reading/writing cookies [14], [63],
access to certain APIs [4], [13]), or blocking network requests
issued from such scripts.

VI. CONCLUSION

In this paper we proposed ADGRAPH, a graph-based ML
approach to ad and tracker blocking. We designed ADGRAPH
to leverage fine-grained interactions between network requests,
DOM elements, and JavaScript code execution to construct a
graph representation that is used to trace relationships between
ads/trackers and the rest of the page content. To implement
ADGRAPH, we instrumented Chromium’s rendering engine
(Blink) and JavaScript execution engine (V8) to efficiently
gather complete HTML, HTTP, and JavaScript information
during page load. We leveraged this rich context by extracting
distinguishing features to train a ML classifier for in-browser
ad and tracker blocking at runtime.

We showed that ADGRAPH not only blocks ads/trackers
with 95.33% accuracy but uncovers many ad/tracker and
functional resources that are missed and over-blocked by filter
lists, respectively. We also showed that ADGRAPH’s breakage
is on par with filter lists. In addition to high accuracy and
comparable breakage, we showed that ADGRAPH loads pages
much faster as compared to existing content blocking tools.

We designed ADGRAPH to be used both online (for in-
browser blocking) and offline (filter list curation). Since the
vast majority of extension-based blocking tools currently rely
on manually curated filer lists, ADGRAPH’s offline use case
will aid filter list monitoring and maintenance. Overall, we
believe that ADGRAPH significantly advances the state-of-the-
art in ad and tracker blocking.
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