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Abstract— This paper introduces the concepts of stochastic
relative degree, normal form and exact feedback linearisation
for single-input single-output nonlinear stochastic systems. The
systems are defined by stochastic differential equations in which
both the drift and the diffusion terms are nonlinear functions of
the states and the control input. First, we define new differential
operators and the concept of stochastic relative degree. Then
we introduce a suitable coordinate change and we show that the
dynamics of the transformed state has a simplified structure,
which we name normal form. Finally, we show that a condition
on the stochastic relative degree of the system is sufficient for it
to be rendered linear via a coordinate change and a nonlinear
feedback. We provide an analytical example to illustrate the
theory.

I. INTRODUCTION

The theory of normal forms is a fundamental topic in
the analysis and control of nonlinear deterministic systems.
Finding the normal form of a nonlinear system consists in
determining a suitable local change of coordinates such that
the transformed system is described by “simpler” differential
equations. The description of the system in the new form
makes it easier to draw properties of the system, as well as
to design, where possible, observers and feedback control
laws yielding exact linearisation, asymptotic stabilisation,
asymptotic output tracking and disturbance decoupling [1].
The first work explicitly addressing the convenience of
coordinate transformation to describe a nonlinear system in a
simpler way is [2], where, in particular, the coordinate change
was used to solve the static state feedback non-interacting
control problem. Further works dealing with similar topics
are [3], [4], [5]. The exact linearisation of single-input single-
output systems was firstly addressed and solved in [6], while
the extension to multi-input systems was provided in [7].
The procedure for designing the linearising transformation
can be found in [8] and [9], while the existence of global
transformations was addressed in [10].

In this paper, we seek a normal form for a class of nonlinear
stochastic dynamical systems. Stochastic systems are common
tools in the modelling of uncertain processes, as uncertainties
arising from approximate models can be represented by
stochastic differential equations [11]. Examples of applica-
tions of stochastic systems theory can be found in the optimal
stopping problem, production planning, finance, technology
diffusion and research funding [11], [12].
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While the concept of relative degree and the definition
of normal forms for control purposes for stochastic systems
has not been introduced yet, a normal form was proposed
in [13] and, subsequently, in [14]. In these works the
multiplicative ergodic theorem and Stratonovich calculus
are employed to derive a normal form theory for a class
of stochastic differential equations characterised by a pure
diffusion term. The transformation yielding the normal form
requires anticipating the noise over a short time scale. Further
applications of coordinate changes applied to stochastic
differential equations can be found, e.g., in [15], where
symmetries for stochastic differential equations are introduced,
or in [16], where a normal form allows separating between
fast and slow stochastic dynamics.

In this paper we address a general class of nonlinear
stochastic single-input single-output systems. Namely, both
the drift and the diffusion terms of the stochastic differential
equation are nonlinear functions of the state and the input,
while the output is a nonlinear function of the state. The
focus of the paper is on defining a coordinate change
for the stochastic system such that the dynamics of the
transformed system is described by stochastic differential
equations that are simpler, as well as more meaningful from
the perspective of control system design. The normal form
we introduce follows from the notion of stochastic relative
degree, for which we propose a definition. Moreover, we give
a sufficient condition for the system to be locally linearised
by employing a nonlinear state feedback. It is shown that
the measurement of the white noise is needed to perform
exact linearisation (and this is somewhat consistent with the
anticipating nature of other stochastic changes of coordinates
such as [13]). Obviously, measuring the white noise is an
unrealistic hypothesis in practical applications. Nevertheless,
in this paper we develop the mathematical theory in the ideal
case, i.e. the white noise is measurable, as a preliminary step
for a future analysis where the white noise is estimated a
posteriori. We then plan to reformulate the results on exact
feedback linearisation in future publications, adapting the
approximation procedure presented in [17], [18] and [19].

The rest of the paper is organised as follows. In Section II
we recall some preliminary notions on stochastic systems and
differential operators. In Section III we define new differential
operators that are used in the remainder of the paper and
define the concept of stochastic relative degree. Moreover, we
introduce a coordinate transformation that brings the system
into a suitable normal form. In Section IV we formulate the
problem of exact linearisation via state feedback for stochastic
systems and show that a static nonlinear state feedback solves



the problem, i.e. we can locally render the system linear
and controllable under a suitable coordinate change. Finally,
Section V contains some concluding remarks.

Notation. The symbol Z denotes the set of integer numbers,
while R and C denote the fields of real and complex numbers,
respectively; by adding the subscript “< 0” (“≥ 0”, “0”) to
any symbol indicating a set of numbers, we denote that
subset of numbers with negative (non-negative, zero) real
part. The symbol ∂nx is used as a shorthand for the operator
∂n/∂xn, while α(n) indicates the n-th time derivative of
α. (∇,A,P) is a probability space given by the set ∇, the
σ-algebra A defined on ∇ and the probability measure P
on the measurable space (∇,A). A stochastic process with
state space Rn is a family {xt, t ∈ R} of Rn-valued random
variables, i.e. for every fixed t ∈ R, xt(·) is an Rn-valued
random variable and, for every fixed w ∈ ∇, x·(w) is an
Rn-valued function of time [20, Section 1.8]. For ease of
notation, we often indicate a stochastic process {xt, t ∈ R}
simply with xt (this is common in the literature, see e.g.
[20]). With a slight abuse of notation, any subscript different
from the symbol “t” indicates the corresponding component
of the vector xt, e.g. xi is the i-th component of the vector
xt.

II. PRELIMINARIES

In this section we shortly recall the theory of generalised
stochastic processes and define differential operators that will
be used in the remainder of the paper.

Let C∞0 (R) be the space of all infinitely differentiable func-
tions on R with compact support [21, Definition 1.2.1]. The
following definition characterises the notion of distribution,
or, equivalently, of generalised function.

Definition 1. [22, Definition 3.1] Let X be an open subset
of R. A distribution on X is a linear form ψ on C∞0 (R) that
is also continuous in the sense that

lim
j→∞

ψ(ϕj) = ψ(ϕ) as lim
j→∞

ϕj = ϕ in C∞0 (R).

If f is a continuous and differentiable function, then by
partial integration we get∫

R
ḟϕ dt = −

∫
R
fϕ̇ dt, ∀ϕ ∈ C∞0 (R).

By analogy, for any distribution ψ, its distributional derivative
ψ̇ is defined as the distribution that satisfies

ψ̇(ϕ) = −ψ(ϕ̇), ∀ϕ ∈ C∞0 (R),

see [21, Definition 3.1.1]. Note also that generalised functions
have derivatives of all order, which are generalised functions
as well.

Definition 2. [20, Section 3.2] A generalised stochastic
process is a random generalised function in the sense that a
random variable ψ(ϕ) is assigned to every ϕ ∈ C∞0 , where
ψ is, with probability 1, a generalised function.

We now look at the Brownian motion as a generalised
stochastic process. Therefore, its distributional derivative is

always defined [20, Section 3.2]. In particular, the generalised
stochastic process given by such a derivative has zero mean
value and covariance function given by the generalised
function δ(t− s), t, s ∈ R, i.e. the Dirac delta. Consequently,
the derivative of the generalised Brownian motion is the
generalised white noise [20, Section 3.2]. In the remainder,
with a slight abuse of notation, we refer to generalised
Brownian motion and generalised white noise omitting the
attribute “generalised” and we denote them by simply Wt

and ξt, respectively, with ξt = Ẇt. It should be emphasised
that the just mentioned time derivative is meant in the sense
of distributions, and not as the limit of the difference quotient
as the increment tends to zero, which instead applies to
differentiable functions in the classical sense.

Consider the nonlinear single-input, single-output stochastic
system expressed in the shorthand integral notation

dxt = (f(xt) + g(xt)u)dt+ (l(xt) +m(xt)u)dWt,

yt = h(xt),
(1)

with xt ∈ Rn, u ∈ R, yt ∈ R and f : Rn → Rn, g :
Rn → Rn, l : Rn → Rn, m : Rn → Rn, h : Rn → R
smooth functions, i.e. they admit continuous partial derivatives
of any order. We assume that, for a fixed initial condition
xt=0, the solution of (1) is unique. Note that, in the light of
the previous discussion, system (1) can be rewritten in the
following differential notation

ẋt = f(xt) + g(xt)u+ (l(xt) +m(xt)u)ξt, yt = h(xt).
(2)

Note that when ξt is (generalised) white noise, as in this
case, then the differential equation (2) is equivalent to the
integral equation (1) if the latter is interpreted in Itô’s
sense [20, Section 10.3]. Given the equivalence of the two
representations in the framework of generalised stochastic
processes, in the remainder of the paper equations (1) and
(2) are used interchangeably, as convenient, to refer to the
same nonlinear stochastic system.

Recall that the derivative of h along the vector field f ,
which is called Lie derivative and is indicated with the symbol
Lf h, is defined as

Lf h(x) = ∂x[h] f(x) =

n∑
i=1

∂h

∂xi
fi(x).

We indicate the derivative of h first along the vector field
f and then along the vector field g as Lg Lf h(x) =
∂x[Lf h] g(x). We use the recursive relation Lkf h(x) =

∂x[Lk−1
f h] f(x), with L0

f h(x) = h(x), to indicate the k-th
differentiation of h along f .

III. COORDINATE TRANSFORMATION AND NORMAL FORM

In this section we introduce the concept of stochastic rela-
tive degree and show that a suitable coordinate transformation
brings the system into a simpler form, which is convenient
for analysis and stabilisation.

We first introduce three new operators. The first one, which
indicates the second derivative of h along the vector fields f



and g, is defined as

gGfh(x)=g(x)>∂2
x[h] f(x) =

n∑
j=1

gj(x)

n∑
i=1

∂2h

∂xj∂xi
fi(x).

Similarly to the Lie derivative, we use the notation
bGa

gGfh(x) = b(x)>∂2
x[ gGfh] a(x), and gGkfh(x) =

g(x)>∂2
x[ gGk−1

f h] f(x), to indicate the reiterated operations.
The operator lSfh is employed to define the stochastic Lie
derivative of h along the drift vector field f and diffusion
vector field l as

lSfh(ξt, x) = Lf h(x) + Ll h(x)ξt +
1

2
lGlh(x).

Similarly to the deterministic Lie derivative, if lSfh(ξt, x) =
lSfh(x) is a deterministic expression, i.e. the white
noise does not appear explicitly, we use the nota-
tion lS2

fh(ξt, x) = lSf
lSfh(ξt, x) and, iteratively, if

lSk−1
f h(ξt, x) = lSk−1

f h(x) is deterministic, lSkfh(ξt, x) =
lSf

lSk−1
f h(ξt, x), with lS0

fh(x) = h(x) by definition.
Finally, we define the third operator

m
g Alh(ξt, x) = Lg h(x) + Lm h(x)ξt + mGlh(x).

By using Itô’s formula, it is easy to see that the first
derivative of the output of system (2) is given by

y
(1)
t = lSfh(ξt, xt) + m

g Alh(ξt, xt)u+
1

2
mGmh(xt)u

2.

(3)
We now define the concept of stochastic relative degree

and then point out the rationale of such a definition.

Definition 3. (Stochastic Relative Degree) Assume that there
exists r̄ such that

Ll lSkfh(ξt, x) = 0, ∀ k ∈ {0, ..., r̄ − 2}, (4)

and for all x in a neighbourhood of x̄. System (2) is said to
have stochastic relative degree r at a point x̄ if r̄ = r and

1) Lg lSkfh(ξt, x) + mGl
lSkfh(ξt, x) = 0 and

Lm lSkfh(ξt, x) = 0 and mGm
lSkfh(ξt, x) = 0 for all

x in a neighborhood of x̄ and all k ∈ {0, ..., r − 2}.
2) Lg lSr−1

f h(ξt, x̄) + mGl
lSr−1
f h(ξt, x̄) 6= 0 or

Lm lSr−1
f h(ξt, x̄) 6= 0 or mGm

lSr−1
f h(ξt, x̄) 6= 0.

Before discussing the implications of the definition just
given, we provide two lemmas and a standing assumption
which are useful in clarifying the meaning of Definition 3.

Lemma 1. Let x ∈ U ⊂ Rn and k ∈ {0, ..., r −
2}. Then m

g Al
lSkfh(ξt, x) = 0 for all ξt ∈ R if

and only if Lg lSkfh(ξt, x) + mGl
lSkfh(ξt, x) = 0 and

Lm lSkfh(ξt, x) = 0.

Lemma 2. Let x̄ ∈ Rn. Then m
g Al

lSr−1
f h(ξt, x̄) 6= 0 almost

surely if and only if Lg lSr−1
f h(ξt, x̄)+mGl

lSr−1
f h(ξt, x̄) 6=

0 or Lm lSr−1
f h(ξt, x̄) 6= 0.

To understand the meaning of the stochastic relative degree
let xt=t̄ = x̄ be the state of system (2) at time t̄ and assume,

for instance, that system (2) has stochastic relative degree
r > 2 at x̄. Then, by assumption (4), Lemma 1 and
Definition 3, expression (3) simplifies to

y
(1)
t = lSfh(ξt, xt) = lSfh(xt) = Lf h(x) +

1

2
lGlh(x),

which does not depend on the white noise or on the control
input. Now, computing the second derivative and using
assumption (4), Lemma 1 and Definition 3 yields

y
(2)
t =lS2

fh(ξt,xt)+
m
g Al

lSfh(ξt,xt)u+
1

2
mGm

lSfh(xt)u
2

= lS2
fh(xt) = Lf lSfh(xt) +

1

2
lGl

lSfh(xt),

which, again, does not directly depend on the white noise or
on the control input. Iterating this procedure yields that, for
all k < r and t in a neighbourhood of t̄,

y
(k)
t = lSkfh(ξt, xt) = lSkfh(xt),

where y
(k)
t is a deterministic function, i.e. ξt does not

explicitly appears in y
(k)
t . In the remainder we will omit

the dependency of the operators S and A on the white
noise ξt whenever this does not appear explicitly because of
assumption (4). Finally,

y
(r)
t=t̄ = lSrfh(ξt, x̄) + m

g Al
lSr−1
f h(ξt, x̄)u(t̄)+

1

2
mGm

lSr−1
f h(x̄)u(t̄)2, (5)

where by Lemma 2 u(t̄) explicitly appears in the expression
of y(r)

t̄ . Then, analogously to the deterministic case, the
stochastic relative degree is equal to the order of the derivative
of the output at time t̄ in which the input u(t̄) explicitly
appears. Two observations are in order: first, while the white
noise does not appear in all the derivatives up to order r − 1
because of (4), it may or may not appear in the r-th derivative;
second, differently from the deterministic case, the control u
appears linearly and quadratically in (5).
Remark 1. If Ll lSkfh(x) 6= 0 for a k < r − 1, the
differentiation of yt up to the r-th time would require us
to introduce successive derivatives of the white noise. We
exclude this possibility with the standing assumption (4).
The reasons for avoiding this are twofold. The first one is
of theoretical nature, as at this stage we are not able to
provide a complete theory on the stochastic differential dξt
(and successive ones) appearing by applying iteratively Itô’s
lemma. The second is of numerical nature, as at this stage
we are not able to implement the derivative(s) of the white
noise.
Remark 2. There might be points where a stochastic relative
degree cannot be defined, in analogy with deterministic
systems (see, e.g., [1, Section 4.1]). Nevertheless, the set
of points where a stochastic relative degree can be defined is
open and dense in Rn.

We are now interested in finding a diffeomorphism Φ :
Rn → Rn that locally (i.e. in a neighbourhood Ū of x̄ ∈ U ⊂
Rn) transforms system (2) in such a way that its dynamics
is somewhat “simpler”.



Remark 3. Since the Jacobian of a diffeomorphism Φ is
invertible by definition, the dynamics of a deterministic
system in the transformed state is always well-defined. In
fact, recall that, if ẋ = f(x, u) and z = Φ(x), then
ż = (∂x[Φ] f(x, u))x=Φ−1(z) = f̃(z, u) and f̃ is non-zero
for any non-zero f . For stochastic systems, the same holds
almost surely. To see this, suppose ẋt = f(xt, u) + l(xt, u)ξt
and let zt = Φ(xt). Then, applying Itô’s lemma,

żt = (∂x[Φ](f(xt, u) + l(xt, u)ξt))xt=Φ−1(zt)
+

1

2

[
lGlΦ1(xt) . . . lGlΦn(xt)

]>
xt=Φ−1(zt)

.

Then, the case l ≡ 0 is equivalent to the deterministic case.
If l 6= 0, then the first term on the right-hand side is non-zero
and, given the randomness induced by the white noise, almost
surely different from the second term. Therefore, a change
of coordinates, defined by a diffeomorphism, is sufficient
to ensure that the dynamics of the system, expressed in the
transformed state applying the Itô chain rule, is well-defined
almost surely.

We now make the following assumption on the stochastic
Lie derivatives of yt = h(xt) along the drift vector f and
the diffusion vector l.

Assumption 1. Let r be the stochastic relative degree of
system (2) at x̄. Then the row vectors

∂x[h]x=x̄, ∂x[ lSfh]x=x̄, ... , ∂x[ lSr−1
f h]x=x̄,

are linearly independent.

Observe that if Assumption 1 holds, then necessarily r ≤ n.

Remark 4. For deterministic nonlinear systems Assumption 1,
i.e. the linear independence of the gradients of the first r −
1 successive derivatives of the output at x̄, is a fact that
can be proved, see e.g, [1, Lemma 4.1.1]. The proof of the
stochastic counterpart is a topic under investigation at this
stage. Nevertheless, making this assumption is sufficient to
develop the theory presented in the remainder of the paper.
At present, no counter-example has been found for which
this property is not satisfied.

Proposition 1. Suppose that system (2) has stochastic relative
degree r at x̄ and let Assumption 1 hold. Set

φ1(x)=h(x), φ2(x)= lSfh(x), . . . , φr(x)= lSr−1
f h(x).

If r < n, then there exist smooth functions
φr+1(x), ..., φn(x), with φj ∈ R for all j ∈ {r + 1, .., n},
such that the Jacobian of the mapping

Φ(x) =
[
φ1(x) φ2(x) . . . φn(x)

]>
is invertible at x̄ almost surely, thus defining a coordinate
transformation in a neighbourhood of x̄. Then the state-space
representation of system (2) in the transformed state zt =

Φ(xt) is

żi = zi+1, i = 1, ..., r − 1

żr = c(ξt, zt) + b(ξt, zt)u+ a(zt)u
2,

żj = pj(ξt, zt) + qj(ξt, zt)u+ sj(zt)u
2, j = r + 1, ..., n,

where

c(ξt, zt) = lSrfh(ξt,Φ
−1(zt)),

b(ξt, zt) = m
g Al

lSr−1
f h(ξt,Φ

−1(zt)),

a(zt) =
1

2
mGm

lSr−1
f h(Φ−1(zt)),

pj(ξt, zt) = lSfφj(ξt,Φ−1(zt)),

qj(ξt, zt) = m
g Alφj(ξt,Φ−1(zt)),

sj(zt) =
1

2
mGmφj(Φ−1(zt)),

with the output yt = z1. According to the definitions of the
operators S and A given in Section III, the dependency of
c, b, pj and qj on the white noise ξt is linear.

Note that it might be possible to find smooth functions
φr+1, ..., φn such that the dynamics of the last n − r
transformed coordinates is independent of the input u, i.e.
qj(·, zt) ≡ 0, sj(·, zt) ≡ 0, for all j ∈ {r + 1, ..., n}, in a
neighbourhood of Φ(x̄). This observation motivates the next
definition.

Definition 4. (Stochastic Normal Form) Let xt be the unique
solution of (2) and zt = Φ(xt) be a local diffeomorphism in
a subset U of Rn such that

żi = zi+1, i = 1, ..., r − 1,

żr = c(ξt, zt) + b(ξt, zt)u+ a(zt)u
2,

żj = pj(ξt, zt), j = r + 1, ..., n,

yt = z1.
(6)

System (6) is said to be the stochastic normal form of
system (2).

Obviously, if the stochastic relative degree at x̄ is equal to
the order of the system, then the system admits a stochastic
normal form in a neighbourhood U of x̄.

Remark 5. While for deterministic systems it can be proved
(see, e.g., [1, Proposition 4.1.3]) that functions φr+1, ..., φn
always exist such that a normal form exists when r < n,
in the stochastic case the validity of an analogous result is
currently under investigation.

Example 1. Consider the nonlinear stochastic system

ẋt=

sin(x3)2(x2
1 − x2

2 + x3)
cos(x3)2(x2

1 − x2
2 + x3)

f3(x)

+
 cos(x2)

− cos(x2)
−2 cos(x2)(x1 + x2)

u+

µ

 x1x3

−x1x3

−2x1x3(x1 + x2)

ξt +

 x3

−x3

−2x3(x1 + x2)

uξt,



with µ ∈ R and

f3(x) = xβ1 + (1− β)x2+

− 2(x1 sin(x3)2 − x2 cos(x3)2)(x2
1 − x2

2 + x3),

β ∈ Z>0. We study the system in a neighbourhood U ⊆
(−π/2, π/2)3 of x̄ = 0. Let the output be yt = h(xt) =
x1 +x2. Set z1 = h(xt), then it is straightforward to compute
its derivative

ż1 = y
(1)
t = ẋ1 + ẋ2 = x2

1 − x2
2 + x3.

Since neither ξt nor u appears explicitly in the previous
expression, we conclude that assumption (4) is satisfied so
far and the stochastic relative degree of the system, if defined,
is larger than 1 at x̄ = 0. Setting z2 = ż1, we proceed
to compute the second derivative of the output. Using Itô’s
lemma we have

dz2 =
[
2x1 −2x2 1

]
dxt +

1

2
dx>t

1 0 0
0 −1 0
0 0 0

 dxt,
which yields

ż2 = y
(2)
t = xβ1 + (1− β)x2.

The standing assumption (4) is still satisfied. Moreover, the
stochastic relative degree of the system, if defined, is 3 at
x̄ = 0, hence we set z3 = ż2. Using Itô’s lemma on z3 we
obtain

dz3 =
[
βxβ−1

1 1− β 0
]
dxt+

1

2
dx>t

β(β − 1)xβ−2
1 0 0

0 0 0
0 0 0

 dxt.
Setting

c̃(ξt, xt) = βxβ−1
1 (sin(x3)2(x2

1 − x2
2 + x3) + x1x3)+

(1− β)(cos(x3)2(x2
1 − x2

2 + x3))+

µx1x3(βxβ−1
1 − (1− β))ξt+

1
2β(β − 1)xβ−2(µx1x3)2,

b̃(ξt, xt) = (βxβ−1
1 − (1− β))(cos(x2) + x3ξt)+

β(β − 1)xβ−2x1x
2
3,

ã(xt) = 1
2β(β − 1)xβ−2x2

3,

we finally get

ż3 = y
(3)
t = c̃(ξt, xt) + b̃(ξt, xt)u+ ã(xt)u

2.

It is easily checked that, for all β ∈ Z>0, b̃ is non-zero
at x̄ = 0, therefore the relative degree of the system at the
origin is 3. Observe that the function

zt = Φ(xt) =

 x1 + x2

x2
1 − x2

2 + x3

xβ1 + (1− β)x2


has Jacobian

∂xΦ(xt) =

 1 1 0
2x1 −2x2 1

βxβ−1
1 1− β 0

 ,

which is nonsingular at x̄ = 0, hence it is a local diffeo-
morphism in U , for all β ∈ Z>0. Substituting xt = Φ−1(zt)
in the expression of ż3, the system expressed in the new
coordinates is given by

ż1 = z2,

ż2 = z3,

ż3 = c(ξt, zt) + b(ξt, zt)u+ a(zt)u
2,

yt = z1,

with c(ξt, zt) = c̃(ξt,Φ
−1(zt)), b(ξt, zt) = b̃(ξt,Φ

−1(zt))
and a(zt) = ã(Φ−1(zt)). The system is in stochastic normal
form, since the relative degree coincides with the order of
the system.

IV. EXACT LINEARISATION VIA STATE FEEDBACK

In this section we give a sufficient condition for the
feedback linearisation of stochastic nonlinear systems of the
form (2) when the state xt, as well as the white noise ξt,
are available for measure. This last assumption is clearly
unrealistic, as far as practical applications are concerned.
Nevertheless, we hereby develop the theory in an ideal
framework where the noise is available for feedback; the
obtained results will be preliminary to forthcoming works
where the noise will be approximated a posteriori via a
procedure similar to the one proposed in [17] and [18]. In
the remainder of the section we show how the change of
coordinates yielding the normal form (6) can be employed
to design a static feedback control law which renders the
transformed system linear around a set point x̄.

First, we formulate the problem we aim to solve.

Problem 1. (State-Space Exact Linearisation Problem) Con-
sider the nonlinear stochastic system without output

ẋt = f(xt) + g(xt)u+ (l(xt) +m(xt)u)ξt. (7)

Given a point x̄, the state-space exact linearisation problem
consists in finding a neighbourhood U of x̄, a feedback law
ut = k(ξt, xt, v), with v ∈ R, defined on U and a stochastic
coordinates transformation zt = Φ(xt) defined on U such
that the closed-loop system

ẋt=f(xt)+g(xt)k(ξt, xt, v)+(l(xt)+m(xt)k(ξt, xt, v))ξt,

in the coordinates zt = Φ(xt), is linear, deterministic and
controllable. �

In other words, the transformed state-space model that
we seek in U has the form ż = Az + Bv with the matrix[
B AB . . . An−1B

]
with rank n. The solution to this

problem is provided by the next proposition.

Proposition 2. If there exists a real valued function h(xt)
such that system (7) with the output yt = h(xt) has stochastic
relative degree n at x̄, then Problem 1 is solvable. In addition,
if mGm

lSn−1
f h(x) ≡ 0, then the control law

ut = k̃(ξt, zt, v) =
1

b(ξt, zt)
(−c(ξt, zt) + v) (8)



is well-defined almost surely in a neighborhood of x̄ and
solves Problem 1.

Remark 6. In general b and c are depend on ξt, thus implying
that the state feedback also requires the knowledge of the
exact value of the white noise for all t. Clearly, the feedback
linearising control (8) can be implemented in real applications
only when the noise does not appear directly in the expression
of żn. Alternatively, approximations could be provided by a-
posteriori estimations of the white noise, adapting the results
presented in [17], [18].

V. CONCLUSION AND FURTHER RESEARCH DIRECTIONS

In this paper we have introduced the concept of stochastic
relative degree and we have used this to define a normal
form for nonlinear stochastic systems and to solve the exact
feedback linearisation problem. We have pointed out that the
computation of the linearising control requires, in general, the
knowledge of the white noise. This, however, is unrealistic.

This paper is a first step towards the study and solution
of several control problems for stochastic nonlinear system.
Future work includes, e.g., the study of the zero dynamics and
of the problem of output tracking. On a different note, in order
to develop a practically sound theory, it is essential to design
state feedbacks which do not require perfect knowledge of
the white noise. For instance, the works [17], [18] and [19]
can be used as a reference to build an a-posteriori estimate
of the noise affecting the system, which can then be used to
design approximate feedback linearising controllers. These
topics are currently under investigation and will appear in
forthcoming works.

REFERENCES

[1] A. Isidori, Nonlinear Control Systems, ser. Communications and Control
Engineering. Springer-Verlag London, 1995.

[2] A. Isidori, A. Krener, C. Gori-Giorgi, and S. Monaco, “Nonlinear
decoupling via feedback: A differential geometric approach,” IEEE
Transactions on Automatic Control, vol. 26, no. 2, pp. 331–345, April
1981.

[3] M. Zeitz, “Controllability canonical (phase-variable) form for non-
linear time-variable systems,” International Journal of Control, vol. 37,
no. 6, pp. 1449–1457, 1983.

[4] D. Bestle and M. Zeitz, “Canonical form observer design for non-linear
time-variable systems,” International Journal of Control, vol. 38, no. 2,
pp. 419–431, 1983.

[5] A. J. Krener, “Normal forms for linear and nonlinear systems,”
Contemporary Mathematics, vol. 68, pp. 157–189, 1987.

[6] R. Brockett, “Feedback invariants for nonlinear systems,” IFAC
Proceedings Volumes, vol. 11, no. 1, pp. 1115–1120, 1978.

[7] B. Jakubczyk and W. Respondek, “On linearization of control systems,”
Bulletin de l’Académie Polonaise des Sciences. Serie des sciences
mathematiques, vol. 28, pp. 517–522, 1980.

[8] R. Su, “On the linear equivalents of nonlinear systems,” Systems &
Control Letters, vol. 2, no. 1, pp. 48–52, 1982.

[9] L. Hunt, , and G. Meyer, “Global transformations of nonlinear systems,”
IEEE Transactions on Automatic Control, vol. 28, no. 1, pp. 24–31,
January 1983.

[10] W. Dayawansa, W. Boothby, and D. Elliott, “Global state and feedback
equivalence of nonlinear systems,” Systems & Control Letters, vol. 6,
no. 4, pp. 229–234, 1985.

[11] B. Øksendal, Stochastic Differential Equations (Sixth Edition).
Springer-Verlag, 2003.

[12] J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems
and HJB Equations, ser. Stochastic Modelling and Applied Probability.
Springer New York, 1999.

[13] L. Arnold and P. Imkeller, “Normal forms for stochastic differential
equations,” Probability Theory and Related Fields, vol. 110, no. 4, pp.
559–588, May 1998.

[14] L. Arnold, Random Dynamical Systems, ser. Springer Monographs in
Mathematics. Springer-Verlag Berlin Heidelberg, 2003.

[15] G. Gaeta and N. Rodrı́guez Quintero, “Lie-point symmetries and
stochastic differential equations,” Journal of Physics A: Mathematical
and General, vol. 32, no. 48, pp. 8485–8505, 1999.

[16] A. Roberts, “Normal form transforms separate slow and fast modes in
stochastic dynamical systems,” Physica A: Statistical Mechanics and
its Applications, vol. 387, no. 1, pp. 12–38, 2008.

[17] A. Mellone and G. Scarciotti, “ε-Approximate Output Regulation of
Linear Stochastic Systems: a Hybrid Approach,” in 2019 European
Control Conference (ECC), June 2019, pp. 287–292.

[18] ——, “Error-Feedback Output Regulation of Linear Stochastic Sys-
tems: a Hybrid Nonlinear Approach,” in Joint Conference 8th IFAC
Symposium on Mechatronic Systems (MECHATRONICS 2019), and
11th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2019),
September 2019, pp. 907–912.

[19] ——, “Output Regulation of Linear Stochastic Systems,” IEEE
Transactions on Automatic Control, under review, 2020.

[20] L. Arnold, Stochastic Differential Equations, ser. A Wiley-Interscience
publication. Wiley, 1974.
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