
Draft version April 16, 2020
Typeset using LATEX twocolumn style in AASTeX62

speculator: Emulating stellar population synthesis for fast and accurate galaxy spectra and photometry

Justin Alsing,1 Hiranya Peiris,2, 1 Joel Leja,3, ∗ ChangHoon Hahn,4, 5 Rita Tojeiro,6 Daniel Mortlock,7, 1

Boris Leistedt,8, † Benjamin D. Johnson,3 and Charlie Conroy3

1Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
2Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK

3Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA 02138, USA
4Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley CA 94720, USA

5Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720, USA
6School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK

7Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
8Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY

ABSTRACT

We present speculator – a fast, accurate, and flexible framework for emulating stellar population

synthesis (SPS) models for predicting galaxy spectra and photometry. For emulating spectra, we

use principal component analysis to construct a set of basis functions, and neural networks to learn

the basis coefficients as a function of the SPS model parameters. For photometry, we parameterize

the magnitudes (for the filters of interest) as a function of SPS parameters by a neural network. The

resulting emulators are able to predict spectra and photometry under both simple and complicated SPS

model parameterizations to percent-level accuracy, giving a factor of 103–104 speed up over direct SPS

computation. They have readily-computable derivatives, making them amenable to gradient-based

inference and optimization methods. The emulators are also straightforward to call from a GPU,

giving an additional order-of-magnitude speed-up. Rapid SPS computations delivered by emulation

offers a massive reduction in the computational resources required to infer the physical properties of

galaxies from observed spectra or photometry and simulate galaxy populations under SPS models,

whilst maintaining the accuracy required for a range of applications.

Keywords: galaxy spectra - galaxy evolution - machine learning

1. INTRODUCTION

Inferring the physical properties of galaxies from ob-
servations of the spectral energy distribution (SED) of

their emitted light is one of the cornerstones of modern

extragalactic astronomy. At the heart of this endeavor is

stellar population synthesis (SPS): predictive models for

galaxy SEDs that fold together the initial stellar mass

function, star formation and metallicity enrichment his-

tories, stellar evolution calculations and stellar spectral

libraries, phenomenological dust and gas models, black

hole activity etc., to predict the spectrum of a galaxy

given some input physical parameters associated with

Corresponding author: Justin Alsing

justin.alsing@fysik.su.se

∗ NSF Fellow
† NASA Einstein Fellow

each model component. SPS modeling has a rich his-

tory, with a plethora of parameterizations of varying
complexity available (see Conroy 2013 and references

therein).

The computational bottleneck in both inferring galaxy

properties from observations and simulating catalogs

under SPS models, is running the SPS models them-

selves. Forward-simulating upcoming Stage IV galaxy

surveys will demand ∼ 1010 SPS evaluations per cat-

alog simulation. For data analysis, inferring1 of order

ten SPS model parameters for a single galaxy (given

some photometric or spectroscopic data) typically re-

quires ∼ 105 − 106 SPS model evaluations. If inference

is then to be performed for a large sample of galaxies,

the number of SPS evaluations and associated computa-

tional demands quickly become prohibitive. For recent

1 e.g., Markov Chain Monte Carlo sampling.

ar
X

iv
:1

91
1.

11
77

8v
2

 [
as

tr
o-

ph
.I

M
]

 1
5

A
pr

 2
02

0

http://orcid.org/0000-0003-4618-3546
mailto: justin.alsing@fysik.su.se

2 Alsing et al.

context, Leja et al. (2019) analyzed ∼ 6 · 104 galaxies

under a 14-parameter SPS model, with a total cost of

1.5 million CPU hours2. With upcoming surveys such as

the Dark Energy Spectroscopic Instrument (DESI; Levi

et al. 2013; DESI Collaboration et al. 2016, 2018) pos-

ing the challenge of analyzing millions of galaxy spectra,

the need to address the bottleneck posed by SPS is clear

and urgent.

There are two principal ways of reducing the cost of

inference and simulation under SPS models: speeding

up individual SPS computations, and (in the case of in-

ference) reducing the number of SPS computations re-

quired to obtain robust inferences per galaxy. In this

paper we present neural network emulators for SPS spec-

tra and photometry that gain leverage on both fronts.

For galaxy spectra, our emulation framework uses prin-

cipal component analysis (PCA) to construct a basis

for galaxy SEDs, and then trains a neural network on

a set of generated SPS spectra to learn the PCA basis

coefficients as a function of the SPS model parameters.

For photometry, we train a neural network to learn the

magnitudes directly (for some set of band passes) as a

function of the SPS parameters. The result in both cases

is a compact neural network representation of the SPS

model that is both fast to evaluate, accurate, and has

analytic and readily-computable derivatives, thus mak-

ing it amenable to efficient gradient-based optimization

and inference methods (e.g., Hamiltonian Monte Carlo

sampling). Furthermore, calling the emulators from a

GPU is straightforward, enabling an additional order-of-

magnitude speed-up when evaluating many SPS models

in parallel.

We demonstrate and validate the emulator on two SPS

models3: one relatively simple eight-parameter model

targeting upcoming DESI observations (for which we

emulate spectra), and the more flexible 14-parameter

Prospector-α model from the recent Leja et al. (2019)

analysis (for which we emulate both spectra and pho-

tometry). For both models, we show that the emulator

is able to deliver percent-level accuracy over broad pa-

rameter prior and wavelength ranges, and gives a factor

∼ 103− 104 speed-up over direct SPS model evaluation.

Use of gradient-based inference methods enabled by the

emulators will provide further reductions in the cost of

inference under SPS models.

2 For added context, the CPU time for the Leja et al. (2019)
analysis would cost around twenty-thousand USD from Amazon
Web Services (estimated in 2019).

3 Implemented with the SPS code fsps (Conroy et al. 2009; Con-
roy & Gunn 2010) with python bindings python-fsps (Foreman-
Mackey et al. 2014).

The structure of this paper is as follows: In §2 we

outline the emulation framework. In §3–4 we validate

the spectrum emulator on two SPS model parameteri-

zations. In §5 we validate the photometry emulator for

the Prospector-α model. We discuss the implications for

current and future studies in §6.

2. SPECULATOR: EMULATING STELLAR

POPULATION SYNTHESIS

In this section we describe the framework developed

for fast emulation of SPS spectra (§2.2) and photometry

(§2.3). Some background knowledge of PCA and neu-

ral networks is assumed in this section; see e.g., Bishop

(2006) for a comprehensive and pedagogical review. For

previous work on representing spectra as interpolations

over PCA bases, see Czekala et al. (2015); Kalmbach &

Connolly (2017).

2.1. Notation

We will denote galaxy SEDs by l(λ;θ) ≡ lλ (luminos-

ity per unit wavelength) and log SEDs by Lλ ≡ ln lλ,

for wavelength λ and SPS model parameters θ. Photo-

metric fluxes, denoted by fb(θ), for a given band-pass b

with filter Wb(λ) and SPS parameters θ, are given by

fb(θ) =
1

gAB4π(1 + z)d2L(z)

∫ ∞

0

l(λ/(1 + z);θ)Wb(λ)dλ,

(1)

where gAB is the AB flux normalization, dL(z) the lumi-

nosity distance for redshift z, and the filter is assumed to

be normalized to unity,
∫
Wb(λ)dλ = 1. The associated

apparent magnitudes are denoted by mb(θ).

The goal of emulation is to find an efficient representa-

tion for the galaxy spectra lλ(θ) or photometry {mb(θ)}
as a function of the SPS model parameters that is as fast

as possible to evaluate, whilst maintaining accuracy.

2.2. Emulation of galaxy spectra

2.2.1. Parameterization considerations

There are a couple of simplifications to the SED-

emulation problem set-up that will make emulation sig-

nificantly easier.

We will emulate the rest-frame SEDs only, redshifting

(analytically) afterwards as needed. This is motivated

by the fact that emulator is contingent on finding a com-

pact PCA basis for galaxy SEDs; constructing this basis

is greatly simplified when working with in the rest-frame

only, i.e., without requiring that the basis can capture

arbitrary stretches in wavelength. Meanwhile, emulat-

ing rest-frame SEDs only does not reduce functional-

ity, since redshifted spectra can be obtained straightfor-

wardly (and exactly) from the rest-frame SEDs.

Emulating Stellar Population Synthesis 3

…

… …

hidden layers

SP
S

pa
ra

m
et

er
s,

✓

…

…

+
<latexit sha1_base64="P1qCVj24xUOB3//o90U52+fpGdY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3Cnoz6MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd5cXC660bX9ZuZXVtfWN/GZha3tnd6+4f9BUUSIZNlgkItn2qELBQ2xorgW2Y4k08AS2vNHt1G89olQ8Cu/1OEY3oIOQ+5xRbaT6Wa9Ysst2BrJMnDkpXX9Dhlqv+NntRywJMNRMUKU6jh1rN6VScyZwUugmCmPKRnSAHUNDGqBy0+zQCTkxSp/4kTQVapKpvydSGig1DjzTGVA9VIveVPzP6yTav3JTHsaJxpDNFvmJIDoi069Jn0tkWowNoUxycythQyop0yabggnBWXx5mTQrZee8XKlflKo3szQgD0dwDKfgwCVU4Q5q0AAGCE/wAq/Wg/VsvVnvs9acNZ85hD+wPn4ADeWN4g==</latexit>

+
<latexit sha1_base64="P1qCVj24xUOB3//o90U52+fpGdY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3Cnoz6MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd5cXC660bX9ZuZXVtfWN/GZha3tnd6+4f9BUUSIZNlgkItn2qELBQ2xorgW2Y4k08AS2vNHt1G89olQ8Cu/1OEY3oIOQ+5xRbaT6Wa9Ysst2BrJMnDkpXX9Dhlqv+NntRywJMNRMUKU6jh1rN6VScyZwUugmCmPKRnSAHUNDGqBy0+zQCTkxSp/4kTQVapKpvydSGig1DjzTGVA9VIveVPzP6yTav3JTHsaJxpDNFvmJIDoi069Jn0tkWowNoUxycythQyop0yabggnBWXx5mTQrZee8XKlflKo3szQgD0dwDKfgwCVU4Q5q0AAGCE/wAq/Wg/VsvVnvs9acNZ85hD+wPn4ADeWN4g==</latexit>

⇥
<latexit sha1_base64="0d/OcZ6raCi0aB6CyV7H6iGsQdI=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8SEmqoDeLXjxWsB/QhLLZbtqlm03cnQgl9E948aCIV/+ON/+FP8Ft2oO2Phh4vDfDzLwgEVyj43xZS8srq2vrhY3i5tb2zm5pb7+p41RR1qCxiFU7IJoJLlkDOQrWThQjUSBYKxjeTPzWI1Oax/IeRwnzI9KXPOSUoJHa3qmHPGK6Wyo7FSeHvUjcGSlffUOOerf06fVimkZMIhVE647rJOhnRCGngo2LXqpZQuiQ9FnHUEnMEj/L7x3bx0bp2WGsTEm0c/X3REYirUdRYDojggM9703E/7xOiuGln3GZpMgknS4KU2FjbE+et3tcMYpiZAihiptbbTogilA0ERVNCO78y4ukWa24Z5Xq3Xm5dj1NAwpwCEdwAi5cQA1uoQ4NoCDgCV7g1Xqwnq03633aumTNZg7gD6yPH24kkQM=</latexit>

⇥
<latexit sha1_base64="0d/OcZ6raCi0aB6CyV7H6iGsQdI=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8SEmqoDeLXjxWsB/QhLLZbtqlm03cnQgl9E948aCIV/+ON/+FP8Ft2oO2Phh4vDfDzLwgEVyj43xZS8srq2vrhY3i5tb2zm5pb7+p41RR1qCxiFU7IJoJLlkDOQrWThQjUSBYKxjeTPzWI1Oax/IeRwnzI9KXPOSUoJHa3qmHPGK6Wyo7FSeHvUjcGSlffUOOerf06fVimkZMIhVE647rJOhnRCGngo2LXqpZQuiQ9FnHUEnMEj/L7x3bx0bp2WGsTEm0c/X3REYirUdRYDojggM9703E/7xOiuGln3GZpMgknS4KU2FjbE+et3tcMYpiZAihiptbbTogilA0ERVNCO78y4ukWa24Z5Xq3Xm5dj1NAwpwCEdwAi5cQA1uoQ4NoCDgCV7g1Xqwnq03633aumTNZg7gD6yPH24kkQM=</latexit>

⇥
<latexit sha1_base64="0d/OcZ6raCi0aB6CyV7H6iGsQdI=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8SEmqoDeLXjxWsB/QhLLZbtqlm03cnQgl9E948aCIV/+ON/+FP8Ft2oO2Phh4vDfDzLwgEVyj43xZS8srq2vrhY3i5tb2zm5pb7+p41RR1qCxiFU7IJoJLlkDOQrWThQjUSBYKxjeTPzWI1Oax/IeRwnzI9KXPOSUoJHa3qmHPGK6Wyo7FSeHvUjcGSlffUOOerf06fVimkZMIhVE647rJOhnRCGngo2LXqpZQuiQ9FnHUEnMEj/L7x3bx0bp2WGsTEm0c/X3REYirUdRYDojggM9703E/7xOiuGln3GZpMgknS4KU2FjbE+et3tcMYpiZAihiptbbTogilA0ERVNCO78y4ukWa24Z5Xq3Xm5dj1NAwpwCEdwAi5cQA1uoQ4NoCDgCV7g1Xqwnq03633aumTNZg7gD6yPH24kkQM=</latexit>

⇥
<latexit sha1_base64="0d/OcZ6raCi0aB6CyV7H6iGsQdI=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8SEmqoDeLXjxWsB/QhLLZbtqlm03cnQgl9E948aCIV/+ON/+FP8Ft2oO2Phh4vDfDzLwgEVyj43xZS8srq2vrhY3i5tb2zm5pb7+p41RR1qCxiFU7IJoJLlkDOQrWThQjUSBYKxjeTPzWI1Oax/IeRwnzI9KXPOSUoJHa3qmHPGK6Wyo7FSeHvUjcGSlffUOOerf06fVimkZMIhVE647rJOhnRCGngo2LXqpZQuiQ9FnHUEnMEj/L7x3bx0bp2WGsTEm0c/X3REYirUdRYDojggM9703E/7xOiuGln3GZpMgknS4KU2FjbE+et3tcMYpiZAihiptbbTogilA0ERVNCO78y4ukWa24Z5Xq3Xm5dj1NAwpwCEdwAi5cQA1uoQ4NoCDgCV7g1Xqwnq03633aumTNZg7gD6yPH24kkQM=</latexit>

⇥
<latexit sha1_base64="0d/OcZ6raCi0aB6CyV7H6iGsQdI=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8SEmqoDeLXjxWsB/QhLLZbtqlm03cnQgl9E948aCIV/+ON/+FP8Ft2oO2Phh4vDfDzLwgEVyj43xZS8srq2vrhY3i5tb2zm5pb7+p41RR1qCxiFU7IJoJLlkDOQrWThQjUSBYKxjeTPzWI1Oax/IeRwnzI9KXPOSUoJHa3qmHPGK6Wyo7FSeHvUjcGSlffUOOerf06fVimkZMIhVE647rJOhnRCGngo2LXqpZQuiQ9FnHUEnMEj/L7x3bx0bp2WGsTEm0c/X3REYirUdRYDojggM9703E/7xOiuGln3GZpMgknS4KU2FjbE+et3tcMYpiZAihiptbbTogilA0ERVNCO78y4ukWa24Z5Xq3Xm5dj1NAwpwCEdwAi5cQA1uoQ4NoCDgCV7g1Xqwnq03633aumTNZg7gD6yPH24kkQM=</latexit>

⇥
<latexit sha1_base64="0d/OcZ6raCi0aB6CyV7H6iGsQdI=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8SEmqoDeLXjxWsB/QhLLZbtqlm03cnQgl9E948aCIV/+ON/+FP8Ft2oO2Phh4vDfDzLwgEVyj43xZS8srq2vrhY3i5tb2zm5pb7+p41RR1qCxiFU7IJoJLlkDOQrWThQjUSBYKxjeTPzWI1Oax/IeRwnzI9KXPOSUoJHa3qmHPGK6Wyo7FSeHvUjcGSlffUOOerf06fVimkZMIhVE647rJOhnRCGngo2LXqpZQuiQ9FnHUEnMEj/L7x3bx0bp2WGsTEm0c/X3REYirUdRYDojggM9703E/7xOiuGln3GZpMgknS4KU2FjbE+et3tcMYpiZAihiptbbTogilA0ERVNCO78y4ukWa24Z5Xq3Xm5dj1NAwpwCEdwAi5cQA1uoQ4NoCDgCV7g1Xqwnq03633aumTNZg7gD6yPH24kkQM=</latexit>

⇥
<latexit sha1_base64="0d/OcZ6raCi0aB6CyV7H6iGsQdI=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8SEmqoDeLXjxWsB/QhLLZbtqlm03cnQgl9E948aCIV/+ON/+FP8Ft2oO2Phh4vDfDzLwgEVyj43xZS8srq2vrhY3i5tb2zm5pb7+p41RR1qCxiFU7IJoJLlkDOQrWThQjUSBYKxjeTPzWI1Oax/IeRwnzI9KXPOSUoJHa3qmHPGK6Wyo7FSeHvUjcGSlffUOOerf06fVimkZMIhVE647rJOhnRCGngo2LXqpZQuiQ9FnHUEnMEj/L7x3bx0bp2WGsTEm0c/X3REYirUdRYDojggM9703E/7xOiuGln3GZpMgknS4KU2FjbE+et3tcMYpiZAihiptbbTogilA0ERVNCO78y4ukWa24Z5Xq3Xm5dj1NAwpwCEdwAi5cQA1uoQ4NoCDgCV7g1Xqwnq03633aumTNZg7gD6yPH24kkQM=</latexit>

⇥
<latexit sha1_base64="0d/OcZ6raCi0aB6CyV7H6iGsQdI=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8SEmqoDeLXjxWsB/QhLLZbtqlm03cnQgl9E948aCIV/+ON/+FP8Ft2oO2Phh4vDfDzLwgEVyj43xZS8srq2vrhY3i5tb2zm5pb7+p41RR1qCxiFU7IJoJLlkDOQrWThQjUSBYKxjeTPzWI1Oax/IeRwnzI9KXPOSUoJHa3qmHPGK6Wyo7FSeHvUjcGSlffUOOerf06fVimkZMIhVE647rJOhnRCGngo2LXqpZQuiQ9FnHUEnMEj/L7x3bx0bp2WGsTEm0c/X3REYirUdRYDojggM9703E/7xOiuGln3GZpMgknS4KU2FjbE+et3tcMYpiZAihiptbbTogilA0ERVNCO78y4ukWa24Z5Xq3Xm5dj1NAwpwCEdwAi5cQA1uoQ4NoCDgCV7g1Xqwnq03633aumTNZg7gD6yPH24kkQM=</latexit>

⇥
<latexit sha1_base64="0d/OcZ6raCi0aB6CyV7H6iGsQdI=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8SEmqoDeLXjxWsB/QhLLZbtqlm03cnQgl9E948aCIV/+ON/+FP8Ft2oO2Phh4vDfDzLwgEVyj43xZS8srq2vrhY3i5tb2zm5pb7+p41RR1qCxiFU7IJoJLlkDOQrWThQjUSBYKxjeTPzWI1Oax/IeRwnzI9KXPOSUoJHa3qmHPGK6Wyo7FSeHvUjcGSlffUOOerf06fVimkZMIhVE647rJOhnRCGngo2LXqpZQuiQ9FnHUEnMEj/L7x3bx0bp2WGsTEm0c/X3REYirUdRYDojggM9703E/7xOiuGln3GZpMgknS4KU2FjbE+et3tcMYpiZAihiptbbTogilA0ERVNCO78y4ukWa24Z5Xq3Xm5dj1NAwpwCEdwAi5cQA1uoQ4NoCDgCV7g1Xqwnq03633aumTNZg7gD6yPH24kkQM=</latexit>

⇥
<latexit sha1_base64="0d/OcZ6raCi0aB6CyV7H6iGsQdI=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8SEmqoDeLXjxWsB/QhLLZbtqlm03cnQgl9E948aCIV/+ON/+FP8Ft2oO2Phh4vDfDzLwgEVyj43xZS8srq2vrhY3i5tb2zm5pb7+p41RR1qCxiFU7IJoJLlkDOQrWThQjUSBYKxjeTPzWI1Oax/IeRwnzI9KXPOSUoJHa3qmHPGK6Wyo7FSeHvUjcGSlffUOOerf06fVimkZMIhVE647rJOhnRCGngo2LXqpZQuiQ9FnHUEnMEj/L7x3bx0bp2WGsTEm0c/X3REYirUdRYDojggM9703E/7xOiuGln3GZpMgknS4KU2FjbE+et3tcMYpiZAihiptbbTogilA0ERVNCO78y4ukWa24Z5Xq3Xm5dj1NAwpwCEdwAi5cQA1uoQ4NoCDgCV7g1Xqwnq03633aumTNZg7gD6yPH24kkQM=</latexit>

PCA basis
coefficients
↵(✓;w)

<latexit sha1_base64="odddpfok8GFhITDsL31+BykL3Mg=">AAACGnicbVDLSgNBEOz1bXxFPXoZDIJewq4KCh4MevGoYKKQDaF3MmsGZx/M9CphyXd48Ve8eFDEm3jxL/wEZ5McfDUMU1R109UVpEoact0PZ2x8YnJqema2NDe/sLhUXl5pmCTTXNR5ohJ9GaARSsaiTpKUuEy1wChQ4iK4Pi70ixuhjUzic+qlohXhVSxDyZEs1S57fpCojulF9vNRpV3c/M5QVxCyA+ZHSN0gzG/7W+1yxa26g2J/gTcClcNPGNRpu/zmdxKeRSImrtCYpuem1MpRk+RK9Et+ZkSK/BqvRNPCGCNhWvngtD7bsEyHhYm2LyY2YL9P5BiZwqvtLCya31pB/qc1Mwr3W7mM04xEzIeLwkwxSliRE+tILTipngXItbReGe+iRk42zZINwft98l/Q2K56O9Xts91K7WiYBszAGqzDJniwBzU4gVOoA4c7eIAneHbunUfnxXkdto45o5lV+FHO+xfgbKLL</latexit>

PCA basis
functions

…

+
<latexit sha1_base64="P1qCVj24xUOB3//o90U52+fpGdY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3Cnoz6MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd5cXC660bX9ZuZXVtfWN/GZha3tnd6+4f9BUUSIZNlgkItn2qELBQ2xorgW2Y4k08AS2vNHt1G89olQ8Cu/1OEY3oIOQ+5xRbaT6Wa9Ysst2BrJMnDkpXX9Dhlqv+NntRywJMNRMUKU6jh1rN6VScyZwUugmCmPKRnSAHUNDGqBy0+zQCTkxSp/4kTQVapKpvydSGig1DjzTGVA9VIveVPzP6yTav3JTHsaJxpDNFvmJIDoi069Jn0tkWowNoUxycythQyop0yabggnBWXx5mTQrZee8XKlflKo3szQgD0dwDKfgwCVU4Q5q0AAGCE/wAq/Wg/VsvVnvs9acNZ85hD+wPn4ADeWN4g==</latexit>

+
<latexit sha1_base64="P1qCVj24xUOB3//o90U52+fpGdY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3Cnoz6MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd5cXC660bX9ZuZXVtfWN/GZha3tnd6+4f9BUUSIZNlgkItn2qELBQ2xorgW2Y4k08AS2vNHt1G89olQ8Cu/1OEY3oIOQ+5xRbaT6Wa9Ysst2BrJMnDkpXX9Dhlqv+NntRywJMNRMUKU6jh1rN6VScyZwUugmCmPKRnSAHUNDGqBy0+zQCTkxSp/4kTQVapKpvydSGig1DjzTGVA9VIveVPzP6yTav3JTHsaJxpDNFvmJIDoi069Jn0tkWowNoUxycythQyop0yabggnBWXx5mTQrZee8XKlflKo3szQgD0dwDKfgwCVU4Q5q0AAGCE/wAq/Wg/VsvVnvs9acNZ85hD+wPn4ADeWN4g==</latexit>

+
<latexit sha1_base64="P1qCVj24xUOB3//o90U52+fpGdY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3Cnoz6MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd5cXC660bX9ZuZXVtfWN/GZha3tnd6+4f9BUUSIZNlgkItn2qELBQ2xorgW2Y4k08AS2vNHt1G89olQ8Cu/1OEY3oIOQ+5xRbaT6Wa9Ysst2BrJMnDkpXX9Dhlqv+NntRywJMNRMUKU6jh1rN6VScyZwUugmCmPKRnSAHUNDGqBy0+zQCTkxSp/4kTQVapKpvydSGig1DjzTGVA9VIveVPzP6yTav3JTHsaJxpDNFvmJIDoi069Jn0tkWowNoUxycythQyop0yabggnBWXx5mTQrZee8XKlflKo3szQgD0dwDKfgwCVU4Q5q0AAGCE/wAq/Wg/VsvVnvs9acNZ85hD+wPn4ADeWN4g==</latexit>

+
<latexit sha1_base64="P1qCVj24xUOB3//o90U52+fpGdY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3Cnoz6MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd5cXC660bX9ZuZXVtfWN/GZha3tnd6+4f9BUUSIZNlgkItn2qELBQ2xorgW2Y4k08AS2vNHt1G89olQ8Cu/1OEY3oIOQ+5xRbaT6Wa9Ysst2BrJMnDkpXX9Dhlqv+NntRywJMNRMUKU6jh1rN6VScyZwUugmCmPKRnSAHUNDGqBy0+zQCTkxSp/4kTQVapKpvydSGig1DjzTGVA9VIveVPzP6yTav3JTHsaJxpDNFvmJIDoi069Jn0tkWowNoUxycythQyop0yabggnBWXx5mTQrZee8XKlflKo3szQgD0dwDKfgwCVU4Q5q0AAGCE/wAq/Wg/VsvVnvs9acNZ85hD+wPn4ADeWN4g==</latexit>

+
<latexit sha1_base64="P1qCVj24xUOB3//o90U52+fpGdY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3Cnoz6MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd5cXC660bX9ZuZXVtfWN/GZha3tnd6+4f9BUUSIZNlgkItn2qELBQ2xorgW2Y4k08AS2vNHt1G89olQ8Cu/1OEY3oIOQ+5xRbaT6Wa9Ysst2BrJMnDkpXX9Dhlqv+NntRywJMNRMUKU6jh1rN6VScyZwUugmCmPKRnSAHUNDGqBy0+zQCTkxSp/4kTQVapKpvydSGig1DjzTGVA9VIveVPzP6yTav3JTHsaJxpDNFvmJIDoi069Jn0tkWowNoUxycythQyop0yabggnBWXx5mTQrZee8XKlflKo3szQgD0dwDKfgwCVU4Q5q0AAGCE/wAq/Wg/VsvVnvs9acNZ85hD+wPn4ADeWN4g==</latexit>

+
<latexit sha1_base64="P1qCVj24xUOB3//o90U52+fpGdY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3Cnoz6MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd5cXC660bX9ZuZXVtfWN/GZha3tnd6+4f9BUUSIZNlgkItn2qELBQ2xorgW2Y4k08AS2vNHt1G89olQ8Cu/1OEY3oIOQ+5xRbaT6Wa9Ysst2BrJMnDkpXX9Dhlqv+NntRywJMNRMUKU6jh1rN6VScyZwUugmCmPKRnSAHUNDGqBy0+zQCTkxSp/4kTQVapKpvydSGig1DjzTGVA9VIveVPzP6yTav3JTHsaJxpDNFvmJIDoi069Jn0tkWowNoUxycythQyop0yabggnBWXx5mTQrZee8XKlflKo3szQgD0dwDKfgwCVU4Q5q0AAGCE/wAq/Wg/VsvVnvs9acNZ85hD+wPn4ADeWN4g==</latexit>

+
<latexit sha1_base64="P1qCVj24xUOB3//o90U52+fpGdY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3Cnoz6MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd5cXC660bX9ZuZXVtfWN/GZha3tnd6+4f9BUUSIZNlgkItn2qELBQ2xorgW2Y4k08AS2vNHt1G89olQ8Cu/1OEY3oIOQ+5xRbaT6Wa9Ysst2BrJMnDkpXX9Dhlqv+NntRywJMNRMUKU6jh1rN6VScyZwUugmCmPKRnSAHUNDGqBy0+zQCTkxSp/4kTQVapKpvydSGig1DjzTGVA9VIveVPzP6yTav3JTHsaJxpDNFvmJIDoi069Jn0tkWowNoUxycythQyop0yabggnBWXx5mTQrZee8XKlflKo3szQgD0dwDKfgwCVU4Q5q0AAGCE/wAq/Wg/VsvVnvs9acNZ85hD+wPn4ADeWN4g==</latexit>

+
<latexit sha1_base64="P1qCVj24xUOB3//o90U52+fpGdY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3Cnoz6MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd5cXC660bX9ZuZXVtfWN/GZha3tnd6+4f9BUUSIZNlgkItn2qELBQ2xorgW2Y4k08AS2vNHt1G89olQ8Cu/1OEY3oIOQ+5xRbaT6Wa9Ysst2BrJMnDkpXX9Dhlqv+NntRywJMNRMUKU6jh1rN6VScyZwUugmCmPKRnSAHUNDGqBy0+zQCTkxSp/4kTQVapKpvydSGig1DjzTGVA9VIveVPzP6yTav3JTHsaJxpDNFvmJIDoi069Jn0tkWowNoUxycythQyop0yabggnBWXx5mTQrZee8XKlflKo3szQgD0dwDKfgwCVU4Q5q0AAGCE/wAq/Wg/VsvVnvs9acNZ85hD+wPn4ADeWN4g==</latexit>

Emulated spectrum

w = {W1,b1,W2,b2, . . . ,Wn,bn}
<latexit sha1_base64="Bu+iIa9pLIrKxqwkWmYk4tDxTeE=">AAACUXicdVHLSgMxFL0dX7W+Rl26CRbBRSkzVdGNKLpxqWAf0Cklk2ZsaCYzJBmlDPOLLnTlX7hw40Ix01pofVwIufecc5ObEz/mTGnHeSlYc/MLi0vF5dLK6tr6hr251VBRIgmtk4hHsuVjRTkTtK6Z5rQVS4pDn9OmP7jM+eY9lYpF4lYPY9oJ8Z1gASNYG6hr970Q674fpA8ZOkVeOimbWdetoEnlz1SGq81wtYrXi7SqTAnEjEB4WdcuO9UjJw/0O3Gro90pn73CKK679pM5lCQhFZpwrFTbdWLdSbHUjHCalbxE0RiTAb6jbZMKHFLVSUeOZGjPID0URNIsodEIne5IcajUMPSNMp9S/eRy8C+unejgpJMyESeaCjK+KEg40hHK7UU9JinRfGgSTCQzsyLSxxITbT6hZEyYvBT9nzRqVfegWrs5LJ9fjN2AIuzALuyDC8dwDldwDXUg8Ahv8AGfhefCuwWWNZZahe+ebZgJa+ULgT21sw==</latexit>

network weights and biases

q�, i
<latexit sha1_base64="wADluPfD1OzRdzqTJoVbYDUIbUQ=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEF6UkVdCdRTcuK9gHNCFMJtN26OThzESooV/ixoUibv0Ud/6Fn+A07UJbDwwczjmXe+f4CWdSWdaXUVhZXVvfKG6WtrZ3dsvm3n5bxqkgtEViHouujyXlLKItxRSn3URQHPqcdvzR9dTvPFAhWRzdqXFC3RAPItZnBCsteWb53sscrvMBrjpVNvHMilWzcqBlYs9J5fIbcjQ989MJYpKGNFKEYyl7tpUoN8NCMcLppOSkkiaYjPCA9jSNcEilm+WHT9CxVgLUj4V+kUK5+nsiw6GU49DXyRCroVz0puJ/Xi9V/Qs3Y1GSKhqR2aJ+ypGK0bQFFDBBieJjTTARTN+KyBALTJTuqqRLsBe/vEza9Zp9WqvfnlUaV7M2oAiHcAQnYMM5NOAGmtACAik8wQu8Go/Gs/FmvM+iBWM+cwB/YHz8APzslBY=</latexit>

L̂�(✓;w) =

NpcaX

i=1

↵̂i(✓;w) q�, i

<latexit sha1_base64="mnsbwL0w9jAf6p1P4xX8X5WQLh4=">AAACdXichVFba9RAFJ7EW11vq74URBi7Ki0sayIVC6VY9MUHkQpuW9hZw8lk0gydSeLMiWUZ8g/8db75L8QXX51k90FbwQOH+fi+c5tz0lpJi1H0PQgvXb5y9dra9cGNm7du3xnevXdoq8ZwMeWVqsxxClYoWYopSlTiuDYCdKrEUXr6ptOPvghjZVV+xEUt5hpOSplLDuipZPiVFYDuXZsw5ZMy2GRppTK70P5hWAgEukuZBizS3J21W3SPMtvoxMm9uP3k3ie9ZrSrObRtX4yBqgtoE/m/Wmz8OXGrvmM2lm0yHEWTqDd6EcQrMHr1g/R2kAy/sazijRYlcgXWzuKoxrkDg5Ir0Q5YY0UN/BROxMzDErSwc9dvraVPPJPRvDLeS6Q9+2eGA2274X1kN7M9r3Xkv7RZg/nO3MmyblCUfNkobxTFinYnoJk0gqNaeADcSD8r5QUY4OgPNfBLiM9/+SI4fD6JtycvPmyP9l8vt0HWyAOyQTZJTF6SffKWHJAp4eRnsB48CjaCX+HD8HH4dBkaBquc++QvC5/9Bkoewcs=</latexit>

Figure 1. Schematic of the PCA neural network emulator set-up. A dense neural network parameterizes the PCA basis
coefficients as a function of the SPS model parameters (i.e., taking SPS parameters as input and predicting the basis coefficients).
These basis coefficients are then multiplied by their respective PCA basis functions and summed to give the predicted spectrum.

Redshifting involves three transformations on the em-

ulated rest-frame SEDs: a stretch by λ → λ/(1 + z),

re-scaling by [(1 + z)dL(z)2]−1, and adjusting the age of

the Universe at the lookback time for a given redshift,

tage(z), so that the age of the stellar population is con-

sistent with that lookback time. Therefore, tage(z) must

be included in the list of SPS parameters θ.

Similarly, we fix the total stellar-mass, M , for the em-

ulated spectra to 1 M� and scale the mass analytically

afterwards as required (the total stellar-mass formed M

enters as a simple normalization of the SED). Hence, a

galaxy spectrum for a given redshift z, total stellar-mass

formedM , and SPS model parameters θ can be obtained
from the corresponding emulated rest-frame unit stellar-

mass SED l(λ;θ) as

l(λ;θ,M, z)→ l(λ/(1 + z);θ)|tage(z)
1

(1 + z)dL(z)2
M.

(2)

2.2.2. PCA neural network emulator framework

A schematic overview of the PCA network emulator

framework described below is given in Figure 1, for ref-

erence throughout this section.

To build an emulator for a given SPS model parame-

terization, we begin by generating a training set of Ntrain

galaxy SEDs {(Lλ,θ)1, (Lλ,θ)2, . . . , (Lλ,θ)Ntrain
} under

the target SPS model, by drawing SPS parameters from

the prior and computing the associated SEDs.

From this training set, we construct a basis {qλ, i}
for the SEDs by performing a PCA decomposition of

the training spectra, and taking the first Npca principal

components as basis vectors. The number of PCA com-

ponents retained is chosen such that the resulting PCA

basis is comfortably able to recover the model SEDs at

the desired accuracy (i.e., � 1% if we want to ensure

that the errors associated with the PCA basis are a small

fraction of the total error budget).

With the PCA basis {qλ, i} in hand, we model the (log)

SED as a linear combination of the PCA basis functions,

Lλ(θ) =

Npca∑

i=1

αi(θ) qλ, i, (3)

where the vector of coefficients α(θ) are some unknown

(non-linear) functions of the SPS parameters θ. The

remaining step, then, is to learn some convenient para-

metric model α̂(θ;w) (with parameters w) for the basis

coefficients α(θ) as a function of the SPS parameters.

We parameterize the basis coefficients as a function of

the model parameters by a dense fully-connected neural

network with n hidden layers, with {h1, h2, . . . , hn} hid-

den units and non-linear activation functions {a1, a2, . . . , an}

4 Alsing et al.

respectively, i.e.,

α̂(θ;w) = an(Wnyn−1 + bn),

yn−1 = an−1(Wn−1yn−2 + bn−1)

...

y1 = a1(W1θ + b1). (4)

The weight matrices and bias vectors for each network

layer are denoted by Wk ∈ Rhk×hk−1 and bk ∈ Rk,

we use w = {Wk, bk} as shorthand for the full set of

weights and biases of the whole network, and yk denotes

the output from layer k.

Finally, to train the emulator we optimize the network

parameters w by minimizing the loss function,

−lnU(w; {θ,α}) =
1

Ntrain

Ntrain∑

m=1

|αm − α̂(θm;w)|2,

(5)

where {αm} are the PCA basis coefficients for the SEDs

{Lλ} in the training set, and θm the corresponding SPS

model parameters for those training set members. This

loss function is just the mean square error between neu-

ral network predicted and true PCA basis coefficients

over the training set.

The emulator model is succinctly summarized by

L̂(θ) = Q α̂(θ;w), (6)

where L̂(θ) = (L̂λ,1(θ), L̂λ,2(θ), . . . , L̂λ,Nλ(θ)) is the

emulated SED for parameters θ, Qλi = qλ,i is the set

of basis functions, and α̂(θ;w) is given by Eq. (4).

The neural network emulator is specified entirely by

the set of matrices and non-linear activation functions

{Wk, bk,Q, ak}. Calculating an emulated SPS model
spectrum using Eqs. (6) and (4) is hence reduced to a

series of linear matrix operations, and passes through

simple non-linear (e.g., tanh) activation functions. Fur-

thermore, the neural network in Eq. (4) is straightfor-

wardly differentiable (by the chain rule), so derivatives

of the model spectra with respect to the SPS parameters

are readily available. We highlight that implementation

of the trained emulator using Eqs. (4) and (6) is simple,

so incorporating the trained emulator into existing (or

future) analysis codes should be straightforward.

In the limit of a large PCA basis, large training set,

and complex neural network architecture, the emulator

described above can represent any (deterministic) SPS

model to arbitrary precision. However, the power of

this emulation framework comes from the fact that – as

we will demonstrate in the following sections – a rela-

tively small PCA basis and neural network architecture

can achieve percent-level precision over broad parameter

ranges, even for relatively complex SPS parameteriza-

tions. It is this fact that allows the emulator to achieve

such significant speed ups.

2.2.3. Discussion

The use of neural networks in this context is solely as

a convenient parametric model for an unknown function

that we want to learn, in a situation where the dimen-

sionality is too high to make direct interpolation effi-

cient. Neural networks have a number of useful features

that make them well-suited to this sort of emulation

task. The universal approximation theorem tells us that

a neural network with a single hidden layer and finite

number of nodes can approximate any continuous func-

tion on compact subsets of Rn under some mild assump-

tions about the activation function (Csáji 2001). Their

derivatives can be computed efficiently (by backprop-

agation), making for efficient training. Once trained,

they are straightforward and fast to evaluate, and im-

portantly the computational cost of evaluation is fixed

ahead of time and independent of the size of the training

set (in contrast to Gaussian processes4, where the cost

of evaluation näıvely scales as N3 with the training set

size).

In this study we show that relatively simple dense

fully-connected network architectures are able to per-

form well in the context of SPS emulation. However, for

more complex SPS models than those considered here,

or where fidelity requirements are very high, more so-

phisticated architectures may prove beneficial (for more

discussion see §6).

We note that training an emulator on a given SPS pa-

rameterization is performed over some pre-determined

prior ranges for the parameters. Care should be taken

to train the emulator over well-chosen priors in the

first instance, since emulated SEDs outside of the pre-

determined prior ranges of the training set should not

be expected to be reliable.

2.3. Emulation of galaxy photometry

For applications where photometry rather than spec-

tra are the primary target, it makes sense to emulate the

photometry directly, i.e., learn a compact model for the

fluxes or magnitudes for some set of filters, as a function

of the SPS parameters. Emulating photometry presents

a simpler problem than emulating spectra: the number

of bands of interest is typically O(10) (or fewer), so no

4 For use of PCA and Gaussian processes in a similar context,
see Czekala et al. (2015).

Emulating Stellar Population Synthesis 5

…

… …

hidden layers
SP

S
pa

ra
m

et
er

s,

✓

…

w = {W1,b1,W2,b2, . . . ,Wn,bn}
<latexit sha1_base64="Bu+iIa9pLIrKxqwkWmYk4tDxTeE=">AAACUXicdVHLSgMxFL0dX7W+Rl26CRbBRSkzVdGNKLpxqWAf0Cklk2ZsaCYzJBmlDPOLLnTlX7hw40Ix01pofVwIufecc5ObEz/mTGnHeSlYc/MLi0vF5dLK6tr6hr251VBRIgmtk4hHsuVjRTkTtK6Z5rQVS4pDn9OmP7jM+eY9lYpF4lYPY9oJ8Z1gASNYG6hr970Q674fpA8ZOkVeOimbWdetoEnlz1SGq81wtYrXi7SqTAnEjEB4WdcuO9UjJw/0O3Gro90pn73CKK679pM5lCQhFZpwrFTbdWLdSbHUjHCalbxE0RiTAb6jbZMKHFLVSUeOZGjPID0URNIsodEIne5IcajUMPSNMp9S/eRy8C+unejgpJMyESeaCjK+KEg40hHK7UU9JinRfGgSTCQzsyLSxxITbT6hZEyYvBT9nzRqVfegWrs5LJ9fjN2AIuzALuyDC8dwDldwDXUg8Ahv8AGfhefCuwWWNZZahe+ebZgJa+ULgT21sw==</latexit>

network weights and biases

m
(✓

;w
)

<latexit sha1_base64="LYqrvJ9b2S5gOK4DUOZqZN8QcjA=">AAACE3icbVDLSgNBEOz1bXxFPXoZDEL0EHajoOBB0YtHBWOE7BJmZ2fN4OyDmV4lLPkHL/6KFw+KePXizb/wE5xNFDSxYZiiqpuuLj+VQqNtf1hj4xOTU9Mzs6W5+YXFpfLyyoVOMsV4gyUyUZc+1VyKmDdQoOSXqeI08iVv+tfHhd684UqLJD7Hbsq9iF7FIhSMoqHa5S03otjxwzzqVV0/kYHuRuZzscORkn3yI9/2Ntvlil2z+0VGgfMNKgef0K/TdvndDRKWRTxGJqnWLcdO0cupQsEk75XcTPOUsmt6xVsGxjTi2sv7N/XIhmECEibKvBhJn/09kdNIF15NZ2FRD2sF+Z/WyjDc83IRpxnymA0WhZkkmJAiIBIIxRnKrgGUKWG8EtahijI0MZZMCM7wyaPgol5ztmv1s53K4dEgDZiBNViHKjiwC4dwAqfQAAZ38ABP8GzdW4/Wi/U6aB2zvmdW4U9Zb18uy5/D</latexit>

m
ag

ni
tu

de
s,

Figure 2. Schematic of the emulator set-up for photome-
try under SPS models; the magnitudes (for some chosen set
of band-passes) as a function of the SPS model parameters
are parameterized as a dense fully-connected neural network
(c.f., Eq. (7)).

basis construction or dimensionality reduction is neces-

sary.

To emulate photometry for some set of band-passes

{b1, b2, . . . , bk} under a given SPS model, we parameter-

ize the magnitudes m(θ) = (mb1(θ),mb2(θ), . . . ,mbk(θ))

by a dense fully-connected neural network, i.e. (Figure

2),

m̂(θ;w) = an(Wnyn−1 + bn),

yn−1 = an−1(Wn−1yn−2 + bn−1)

...

y1 = a1(W1θ + b1), (7)

where m̂(θ;w) denotes the neural network emulated

photometry. As before, the weight matrices and bias

vectors for each network layer are denoted by Wk ∈
Rhk×hk−1 and bk ∈ Rk, we use w = {Wk, bk} as short-

hand for the full set of weights and biases of the whole

network.

2.4. Activation function choice for neural SPS

emulation

We find that SPS spectra and photometry as functions

of the model parameters are mostly smooth, but exhibit

some non-smooth features. In particular, the behavior

as a function of stellar and gas metallicity parameters

exhibits discontinuous changes in gradient. When con-

sidering neural network architecture choices for SPS em-

ulation, it is therefore advantageous to choose activation

functions that are able to capture both smooth features

and sharp gradient changes; well-chosen activation func-

tions will allow us to achieve higher fidelity emulation

with smaller (faster) network architectures.

To this end, we adopt activation functions of the fol-

lowing form,

a(x) =
[
γ + (1 + e−β�x)−1(1− γ)

]
� x, (8)

where γ and β are included as additional free parame-

ters of the network to be trained alongside the network

weights and biases. This activation function is able to

cover smooth features (small β), and sharp changes in

gradient (as β → ∞). In experiments, we find that ac-

tivation funcions of this form outperform other popular

neural network activation choices for the SPS emula-

tion problem (including tanh, sigmoid, ReLU and leaky-

ReLU; see Nwankpa et al. 2018 for recent trends in acti-

vation function choice). Non-linear activation functions

of the form Eq. (8) are hence adopted throughout this

work.

2.5. Target accuracy for SPS emulation

Whilst a great deal of progress has been made in

reducing modeling uncertainties associated with stel-

lar population synthesis, some fundamental uncertain-

ties remain (e.g., the effect of binaries and rotation on

the ionizing photon production from massive stars Choi

et al. 2017; for a review of SPS model uncertainties

see Conroy 2013). When analyzing galaxies under SPS

models it is therefore common practice to assume an

error floor of 2–5% on the SEDs or photometry, to ac-

count for the theoretical SPS model uncertainties (e.g.,

Leja et al. 2019). On the observational side, for pho-

tometry it is also common practice to put an error floor

(typically 5%) on the measured fluxes to account for

systematic uncertainties in the photometric calibration

(e.g., Muzzin et al. 2013; Chevallard & Charlot 2016;

Pacifici et al. 2016; Belli et al. 2019; Carnall et al. 2019).

This context provides a natural accuracy target for

SPS emulation (for both spectra and photometry): .
5% accuracy, or,� 5% if we want to ensure the emulator

error is a small fraction of the total error budget. Whilst

this covers a range of use cases, we note that for analysis

of high S/N spectra under very complex SPS models, the

fidelity requirements may be more like� 1% (see §6 for

discussion).

3. VALIDATION I: DESI MODEL SPECTRA

In this section, we demonstrate and validate the emu-

lator on a relatively simple eight-parameter SPS param-

eterization. The model is outlined in §3.1, the emulator

set-up described in §3.2, and validation tests and per-

formance discussed in §3.3-3.4.

6 Alsing et al.

3.1. Model and priors

Our first model (hereafter, the DESI model) is moti-

vated by upcoming analyses of large numbers of optical,

low signal-to-noise (S/N) spectra being collected by cur-

rent and future surveys. The specifics of the model pre-

sented in this section are targeted at the analysis of low-

redshift spectra for the upcoming DESI Bright Galaxy

Survey (BGS; DESI Collaboration et al. 2016). The

BGS will be a flux-limited survey that will target &10

million galaxies with z . 0.45 over 14, 000 deg2. It will

measure spectra over a wavelength range between 360 to

980nm with a resolution R = λ/∆λ between 2000 and

5500, depending on the wavelength. Individual spectra

will have a median S/N of ∼ 2−3 per pixel. The key fea-

tures and free parameters of the model, and associated

prior ranges, are as follows.

We model the star-formation and chemical enrichment

histories as a function of lookback time as linear combi-

nations of a set of pre-computed basis functions (Figure

3). The shape and number of basis functions were deter-

mined by applying a non-negative matrix factorization

to the star-formation and chemical enrichment histories

of galaxies above 109 M� in the Illustris simulation (Vo-

gelsberger et al. 2014a). We sought to construct a ba-

sis with the minimal number of components that would

reconstruct the history of galaxies, and therefore their

optical spectra, to an accuracy dictated by the typical

DESI S/N. In practice, the chosen basis has a depen-

dence on the optical colours of the galaxies. The basis

used here is an indicative example of what will be used

to analyse DESI spectra; further details are given in To-

jeiro et al. (in prep).

The star formation history5 for a galaxy at redshift

z is implemented as a linear combination of four SFH

basis functions {sSFHi (t)} (shown in Figure 3)

SFH(t; tage(z)) =

4∑

i=1

βSFH
i

sSFHi (t)
∫ tage(z)
0

sSFHi (t)dt
, (9)

where the SFH basis coefficients {βSFH
i } are free param-

eters of the model, the basis functions are normalized to

unity over the age of the Universe at the lookback time

of the galaxy tage(z), and time runs from 0 to tage(z).

We train the emulator over a flat-Dirichlet prior for the

basis coefficients, i.e., a uniform prior over all combi-

nations of basis coefficients under the constraint that∑4
i=1 β

SFH
i = 1 (ensuring that the total SFH is normal-

ized to unity for the emulated spectra).

The metallicity enrichment history (ZH) is similarly

parameterized as a linear combination of two basis func-

5 i.e., stellar mass formed per unit time, [M�Gyr−1].

tions {sSFHi (t)} (shown in Figure 3)

ZH(t) =

2∑

i=1

γZHi sZHi (t), (10)

where again the ZH basis coefficients {γZHi } are free pa-

rameters of the model, and time runs from 0 to tage(z).

We take uniform priors for the ZH basis coefficients,

γZHi ∈ [6.9× 10−5, 7.33× 10−3].

Dust attenuation is modelled using the Calzetti et al.

(2000) attenuation curve, with the optical depth τISM as

a free parameter with a uniform prior τISM ∈ [0, 3].

The eight model parameters, their physical meanings,

and associated priors are summarized in Table 1.

3.2. Emulation

We generated a training and validation set of 5× 105

and 105 SEDs respectively, for model parameters drawn

from their respective priors (see Table 1) and covering

the wavelength range 200 to 1000 nm.

The PCA basis was constructed by performing a PCA

decomposition of all of the training SEDs6. We choose

the number of PCA components to keep in the basis such

that the basis is able to describe the validation SEDs to

� 1% accuracy over the whole wavelength range and

parameter volume. Figure 4 shows the fractional error

distribution of the validation spectra represented in the

PCA basis with 20 components retained; the 20 compo-

nent basis is able to describe the SEDs to . 0.5% ac-

curacy over the whole wavelength and parameter prior

range. Note that the PCA basis is constructed for log

SEDs, but accuracy in Figure 4 is displayed in linear

space.

The PCA basis coefficients are parameterized by a

dense neural network with two hidden layers of 256 hid-

den units, with non-linear activation functions (Eq. (8))

on all expect the output layer, which has linear acti-

vation. The network is implemented in tensorflow

(Abadi et al. 2016) and trained with the stochastic gra-

dient descent optimizer adam (Kingma & Ba 2014).

Overfitting is mitigated by early-stopping7.

6 Performing a PCA decomposition over large training sets can
be memory intensive. Here we used scikit-learn’s “incremen-
tal PCA”, which constructs a PCA basis while only processing a
few training samples at a time, keeping the memory requirements
under control.

7 The training set is split 9 : 1 into training and validation sub-
sets, the networks are trained by minimizing the loss for the train-
ing subset only, but the loss for the validation subset is tracked
during training. Overfitting is observed when the validation loss
stops improving, whilst the training loss continues to decrease.
Training is terminated when the loss of the validation set ceases
to improve over 20 training epochs.

Emulating Stellar Population Synthesis 7

24681012
lookback time, t [Gyr]

0.0

0.1

0.2

0.3

0.4

0.5
St

ar
 fo

rm
at

io
n

ra
te

 [M
Gy

r
1] SFH basis function 1, sSFH

1

SFH basis function 2, sSFH
2

SFH basis function 3, sSFH
3

SFH basis function 4, sSFH
4

24681012
lookback time, t [Gyr]

0

1

2

3

4

5

6

M
et

al
lic

ity
, Z

ZH basis function 1, sZH
1

ZH basis function 2, sZH
2

Figure 3. Basis functions for the star formation history (left) and metallicity history (right) for the DESI model (see §3.1).
The SFH basis functions are normalized such that the total mass formed is one solar mass. The metallicity components are
unnormalized, but the values refer to the mass fraction in metals (Z� = 0.019).

Parameter Description Prior

βSFH
1 , βSFH

2 , βSFH
3 , βSFH

4 Star formation history basis function coefficients flat-Dirichlet

γZH
1 , γZH

2 Metallicity enrichment history basis function coefficients Uniform [6.9× 10−5, 7.3× 10−3]

tage Age of Universe at lookback-time of the galaxy Uniform [9.5, 13.7] Gyr

(equivalent to 0 < z < 0.4)

τISM Dust optical depth (Calzetti et al. 2000 attenuation model) Uniform [0, 3]

Table 1. Summary of SPS model parameters and their respective priors for the DESI model (§3.1).

Network training is performed on a Tesla K80 GPU8

and takes of the order of a few minutes for the network

architecture and training set described above; the com-

putational cost of building the emulator is overwhelm-

ingly dominated by performing the direct SPS compu-

tations (using fsps) to generate the training set (∼10

hours compared to minutes).

3.3. Results and validation

For validating the trained emulator, we generated 105

SEDs for model parameters drawn from the prior, and

compared the emulated and exact SPS spectra for this

validation set. The results are summarized in Figure 5.

The upper panels show typical, low and extreme case

performance of the emulator, taken as the 50th, 99th,

and 99.9th percentiles of the mean (absolute) fractional

error per SED (over the full wavelength range). The

bottom left panel shows the 68, 95, 99 and 99.9 percent

intervals of the fractional error as a function of wave-

length, and the bottom right panel shows the cumula-

tive distribution of the mean (absolute) fractional error

for the validation samples (over the wavelength range).

Note that the emulator is trained on the PCA coeffi-

8 Freely available with Google Colab https://colab.research.
google.com/.

cients of log SEDs, but accuracy is shown in Figure 5 in

linear space.

The emulator is accurate at the < 1% level over the

full wavelength range for > 99% of the SEDs in the val-

idation set. A small fraction (less than one percent) of

validation samples have errors at the few-percent level at

the shortest wavelengths. We note that this small num-

ber of “outliers” occur where the recent star formation

history turns on/off and the SEDs are very sensitive to

the most-recent SFH coefficients. Whilst even in these

cases the emulator errors are acceptable, they may be

further improved by re-parameterization of the SFH, or

better sampling of the prior volume in this part of pa-

rameter space.

There are two distinct sources of emulator error: the

adequacy of the PCA basis, and the accuracy of the

neural network in learning the PCA basis coefficients as

functions of the SPS parameters. Comparing Figures 4

and 5 (bottom left), we see that the error budget in this

case is dominated by the neural network rather than the

PCA basis. Accuracy could hence be further improved

with a larger neural network architecture (accompanied

by a larger training set if necessary), at the cost of some

reduction in the performance gain (since a larger net-

work will be more expensive to evaluate).

3.4. Computational performance

https://colab.research.google.com/
https://colab.research.google.com/

8 Alsing et al.

Figure 4. Validation of the PCA basis for the DESI model
(§3). Shown are the central 95% (red), 99% (salmon) and
99.9% (grey) intervals of the fractional errors on the DESI
model spectra represented in the basis of the first 20 PCA
components. The 20 PCA component basis is able to de-
scribe the model spectra to . 0.5% accuracy over the whole
wavelength range and parameter volume.

With the network architecture described above (§3.2),

we find that the trained emulator is able to generate

predicted SEDs a factor of 104 faster than direct SPS

computation with fsps on the same (CPU) architecture.

Implementation in tensorflow allows the emulator

to automatically be called from a GPU, allowing for easy

exploitation of GPU-enabled parallelization. Generat-

ing 106 emulated SEDs takes around ∼ 2 s on a Tesla

K80 GPU, compared to ∼ 0.2 s per direct SPS compu-

tation on an Intel i7 CPU; an overall effective factor of

105 speed-up.

When inferring SPS model parameters from galaxy

observations, additional performance gains are expected

from the use of gradient-based inference and optimiza-

tion methods that are enabled by the emulator (which

has readily available derivatives). We leave investigation

of these extra gains to future work.

4. VALIDATION II: PROSPECTOR-α SPECTRA

In this section we demonstrate and validate the spec-

trum emulator on a more flexible 14-parameter SPS pa-

rameterization – the Prospector-α model (Leja et al.

2017, 2018, 2019). The model is outlined in §4.1, the

emulator set-up described in §4.2, and validation tests

and results discussed in §4.3-4.4.

4.1. Model and priors

The Prospector-α model includes a non-parametric

star formation history, a two-component dust attenu-

ation model with a flexible attenuation curve, variable

stellar and gas-phase metallicity, dust emission powered

via energy balance, and emission from a dusty AGN

torus. Nebular line and continuum emission is gener-

ated using CLOUDY (Ferland et al. 2013) model grids

from Byler et al. (2017). MIST stellar evolution tracks

and isochrones are assumed (Choi et al. 2016; Dotter

2016), based on MESA (Paxton et al. 2010, 2013, 2015).

The model has been tested and calibrated on local

galaxies (Leja et al. 2017, 2018), and recently used to

analyze a sample of ∼ 60, 000 galaxies from the 3D-HST

photometric catalog (Skelton et al. 2014) over 0.5 < z <

2.5 (Leja et al. 2019). The model is described in detail

in Leja et al. (2017, 2018, 2019); we review the salient

features, model parameters and associated priors below.

A summary of model parameters and priors is given in

Table 2.

The star formation history is modelled as piece-wise

constant, with seven time bins spaced as follows. Two

bins are fixed at [0, 30] Myr and [30, 100] Myr to cap-

ture recent SFH. A third bin is placed at the other end

at [0.85, 1] tage, where tage is the age of the Universe at

the lookback time of the galaxy, to model the oldest star

formation. The remaining four bins are spaced equally

in logarithmic time between 100 Myr and 0.85 tage. The

six ratios of the logarithmic star formation rate (SFR)

in adjacent SFH bins {riSFH} are included as free model

parameters. Following Leja et al. (2017, 2018, 2019) we

take independent Student’s-t priors on the log SFR ra-

tios (see Table 2). This prior is chosen to allow similar

transitions in the SFR as seen in the Illustris hydrody-

namical simulations (Vogelsberger et al. 2014b,c; Torrey

et al. 2014; Diemer et al. 2017), although care is taken

to ensure a wider range of models is allowed than is seen

in those simulations.

A single stellar metallicity is assumed for all stars

in a galaxy. The observed stellar mass-stellar metal-

licity relationship from z = 0 Sloan Digital Sky Sur-

vey (SDSS) data (Gallazzi et al. 2005) is used to mo-

tivate the metallicity prior. For a given stellar-mass,

the stellar-metallicity prior is taken to be a truncated

normal with limits9 1.98 < log(Z/Z�) < 0.19, mean

set to the Gallazzi et al. (2005) z = 0 relationship, and

standard deviation taken to be twice the observed scat-

ter about the z = 0 relationship (to allow for potential

redshift evolution in the mass-metallicity relation).

As discussed in §2 we fix the integral normalization of

the SFH to 1 M� for the spectra in the training set, and

stellar-mass can then be set by adjusting the normaliza-

tion of the emulated spectra. However, because in this

case the metallicity prior is taken to be mass-dependent,

we sample total stellar-mass formed from a log uniform

prior from 107M� to 1012.5M� first (for the purpose of

9 Set by the range of the MIST stellar evolution tracks.

Emulating Stellar Population Synthesis 9

Figure 5. Validation of the emulator for the DESI model (§3). Top figure: “typical”, “low” and “extreme case” accuracy of
the emulated SEDs from a validation set of 105 spectra generated with parameters drawn from the prior (Table 1). These cases
correspond to the 50th, 99th and 99.9th percentiles of the mean (absolute) fractional error between emulated and true SED (over
the wavelength range). Bottom left: 68 (dark red), 95 (red), 99 (salmon) and 99.9 (grey) percentiles of the fractional emulator
error as a function of wavelength. Bottom right: cumulative distribution (blue) and 68 (dark red), 95 (red), 99 (salmon) and
99.9 (grey) percentiles of the mean (absolute) fractional errors (over the wavelength range). We see that the emulator is broadly
accurate to . 1%, with a small fraction (less than one percent) of validation samples having errors at the few-percent level or
more at the lower end of the wavelength range.

sampling from the metalliticy prior correctly), and then

renormalize the spectra to 1 M� afterwards when train-

ing the emulator.

Gas-phase metallicity is decoupled from the stellar

metallicity and allowed to vary (uniformly) between

2 < log(Zgas/Z�) < 0.5.

Dust is modelled with two components – birth cloud

and diffuse dust screens – following Charlot & Fall

(2000) (see Leja et al. 2017 for details). The birth cloud

(τ1) and diffuse (τ2) optical depths are free model pa-

rameters, with truncated normal priors: τ2 ∼ N (0.3, 1)

with limits τ2 ∈ [0, 4], and τ1/τ2 ∼ N (1, 0.3) with limits

τ1/τ2 ∈ [0, 2]. The power law index of the Calzetti et al.

(2000) attenuation curve for the diffuse component is

also included as a free model parameter, with a uniform

prior n ∈ [−1, 0.4].

AGN activity is modelled as described in Leja et al.

(2018), with the fraction of the bolometric luminosity

from the AGN fAGN and optical depth of the AGN

torus τAGN as free parameters with log-uniform priors

ln fAGN ∈ [ln(10−5), ln(3)] and ln τAGN ∈ [ln(5), ln(150)]

respectively.

The model parameters, their physical meanings, and

associated priors are summarized in Table 2.

4.2. Emulation

We generated a training and validation set of 2× 106

and 105 SEDs respectively10, for model parameters

10 We used a larger training set for the Prospector-α compared
to the DESI model, owing to the larger parameter space. Train-
ing set sizes for both models were chosen so that they could be
generated in . days and achieved percent-level accuracy upon val-

10 Alsing et al.

Parameter Description Prior

M Total stellar-mass formed Log-Uniform [107, 1012.5]M�

r1SFH, . . . , r
6
SFH Ratio of log-SFR between adjacent bins Clipped Student’s-t: σ = 0.3, ν = 2, |riSFH| ≤ 5

tage Age of Universe at the lookback-time of galaxy Uniform [2.6, 13.7] Gyr, (0 < z < 2.5)

τ2 Diffuse dust optical depth Normal µ = 0.3, σ = 1, min=0, max=4

τ1 Birth-cloud optical depth Truncated normal in τ1/τ2

µ = 1, σ = 0.3, min=0, max=2

n Index of Calzetti et al. (2000) dust attn. curve Uniform [−1, 0.4]

ln (Zgas/Z�) Gas phase metallicity Uniform [−2, 0.5]

fAGN Fraction of bolometric luminosity from AGN Log-Uniform [10−5, 3]

τAGN Optical depth of AGN torus Log-Uniform [5, 150]

ln (Z/Z�) Stellar metallicity Truncated normal with µ and σ from

Gallazzi et al. (2005) mass-metallicity relation (see §4),

limits min=-1.98, max=0.19

z Redshift Uniform [0.5, 2.5]

Table 2. Summary of SPS model parameters and their respective priors for the Prospector-α model (§4.1). Note that for
emulating spectra under this model (§4), generated training spectra are computed in the rest-frame (but over a range of values
for tage), and renormalized such that they correspond to M = 1M� (see §2 for motivation). When emulating photometry under
this model (§5), M and z are kept as free parameters to be emulated over.

drawn from the prior (see Table 2) and covering the

wavelength range 100 nm to 30µm (using the SPS code

fsps).

For emulating higher-dimensional SPS models over

very broad wavelength ranges, such as this case, it is

advantageous to split the emulation task into a number

of wavelength sub-ranges, which can be stitched together

afterwards. Here, we will emulate 100 − 400 nm (UV),

400− 1100 nm (optical-NIR) and 1100 nm− 30µm (IR)

separately. We find in experiments that without split-

ting into wavelength sub-ranges, more PCA components

are required (in total) to achieve the same consistent ac-

curacy across the full wavelength range. Furthermore,

from the perspective of training the neural networks,

emulating relatively smaller PCA bases (for each wave-

length sub-range) represents an easier learning task com-

pared to emulating a single large (> 100 component) ba-

sis. This means that relatively smaller networks can be

used for each sub-range, requiring less training data and

being faster to evaluate once trained. We do not find any

evidence for discontinuities in the emulated spectra at

the boundaries between wavelength regions (within the

accuracy of the emulator at the boundaries; Figure 7).

The PCA basis was constructed as before by perform-

ing a PCA decomposition of all of the training SEDs (for

the three wavelength ranges separately), and the num-

ber of PCA components retained chosen such that the

resulting basis is able to capture the (validation) SEDs

with . 1% level accuracy. Figure 6 shows the distribu-

idation. For more discussion on optimization of training set sizes
see §6.

tion of errors on the validation SEDs for the PCA ba-

sis with 50 components for UV, and 30 components for

optical-NIR and IR respectively. This basis is sufficient

to describe the SEDs to . 1% over the full wavelength

range and parameter volume. The errors can be reduced

further by increasing the size of the PCA basis, but are

sufficient for our current purposes. Note that the PCA

basis was constructed for log SEDs, but accuracy shown

in Figure 6 in linear space.

The basis coefficients for each wavelength range are

parameterized by a dense neural network with three hid-

den layers of 256 hidden units, with non-linear activa-

tion functions (Eq. (8)) on all hidden layers, and linear

activation on the output. Network implementation and

training follows exactly as described in §3.2.

4.3. Results and validation

Similarly to the DESI model, for validating the trained

emulator we generated 105 SEDs for model parameters

drawn from the prior, and compared the emulated and

exact SPS spectra for this validation set. The results are

summarized in Figure 7. The upper panels show typi-

cal, low and extreme case performance of the emulator,

taken as the 50th, 99th, and 99.9th percentiles of the

mean (absolute) fractional error per SED (over the full

wavelength range). The bottom left panel shows the 68,

95, 99 and 99.9 percent intervals of the fractional error

as a function of wavelength, and the bottom right panel

shows the cumulative distribution of the mean (abso-

lute) fractional error for the validation samples (over

the full wavelength range). Note that the emulator is

trained on the PCA coefficients of log SEDs, but accu-

racy is shown in Figure 7 in linear space.

Emulating Stellar Population Synthesis 11

Figure 6. Validation of the PCA basis for the Prospector-α model (§4). Shown are the central 95 (red), 99% (salmon) and
99.9% (grey) intervals for the fractional errors on the 105 validation spectra represented in the basis of the first 50, 30 and 30
PCA components for UV, optical-NIR and IR wavelength ranges respectively. The basis is able to capture the Prospector-α
model spectra to . 1% accuracy over the entire wavelength and parameter ranges.

The emulator has typical fractional SED errors (68th

percentile) at the � 1% level over the full wavelength

range and parameter volume. 99.9% of validation sam-

ples are accurate to better than 2% down to 200nm,

below which the accuracy steadily degrades with tails

out to ∼ 6% at the lowest wavelengths (100nm).

4.4. Computational performance

For the Prospector-α model, with the network archi-

tecture described in §4.2 the emulator is able to generate

predicted SEDs a factor of 103 faster (per wavelength

range) than direct SPS computation with fsps on the

same CPU architecture.

For applications where parallel SPS evaluations can be

leveraged, the emulator can be called on a GPU with-

out any additional development overhead. Generating

106 emulated SEDs takes around ∼ 2 s on a Tesla K80

GPU, compared to ∼ 0.05 s per fsps call on an Intel i7

CPU; an overall factor of 104 effective speed-up per SPS

evaluation.

We leave investigation of additional performance gains

enabled by the use of gradient based optimization and

inference methods to future work.

5. VALIDATION III: PROSPECTOR-α

PHOTOMETRY

In this section we demonstrate and validate direct em-

ulation of photometry on the same Prospector-α model

as considered in the previous section (see §4.1 and Table

2 for the model and parameters).

For this demonstration, we emulate the 24 bands as-

sociated with the AEGIS field for the 3D-HST pho-

tometric catalog (Skelton et al. 2014), supplemented

by Spitzer/MIPS 24µm fluxes from (Whitaker et al.

2014). This is motivated by the recent Leja et al. (2019)

analysis of the 3D-HST galaxies using the Prospector-

α model. The 24 bands are as follows (shown in Fig-

ure 8): CFHTLS ugriz (Erben et al. 2009), CANDELS

F606W, F814W, F125W, F160W (Grogin et al. 2011;

Koekemoer et al. 2011), NMBS J1, J2, J3, H1, H2, K

(Whitaker et al. 2011), WIRDS J, H, Ks (Bielby et al.

2012), 3D-HST F140W (Brammer et al. 2012), SEDS

3.6µm and 4.5µm (Ashby et al. 2013), EGS 5.8µm and

8.0µm (Barmby et al. 2008), and Spitzer/MIPS 24µm

(Whitaker et al. 2014).

In contrast to spectrum emulation in §4 where only

rest-frame unit-mass SEDs were emulated (and mass

and redshift adjusted afterwards as required), when em-

ulating photometry we keep both mass M and redshift

z as free parameters to be emulated over. Recall also

that for photometry we will emulate the apparent mag-

nitudes directly (§2.3); there is no need for an interme-

diate (PCA) basis construction step in this case.

5.1. Emulation

We generated a training and validation set of 2× 106

and 1×105 SEDs and associated photometry, for model

parameters drawn from the prior (see Table 2). We pa-

rameterized the apparent magnitudes for each band in-

dividually by a dense neural network with four hidden

layers of 128 units each, with non-linear activation func-

tions (Eq. (8)) on all but the output layer, which has

linear activation.

Network implementation and training follows exactly

§3.2.

5.2. Results and validation

The performance of the emulator is summarized in

Figure 9, which shows the frequency density (black) and

95 (red), 99 (salmon) and 99.9% (grey) intervals of the

emulator errors over the validation set, for all 24 emu-

lated bands. Across the board, the standard deviations

of the error distributions are < 0.01 magnitudes. For the

majority of bands, 99.9% of validation samples are accu-

rate to better than . 0.02 magnitudes, and better than

. 0.04 in the worst cases. In applications where an error

floor of 0.05 magnitudes is adopted due to SPS modeling

and/or photometric calibration systematics, the emula-

tor errors will make up a modest fraction of the total

error budget.

12 Alsing et al.

Figure 7. Validation of the emulator for the Prospector-α model (§4). Top figure: “typical”, “low” and “extreme case”
accuracy for the emulated SEDs from a validation set of 105 spectra generated with parameters drawn from the prior. These
cases correspond to the 50th, 99th, and 99.9th percentiles of the mean (absolute) fractional error between the emulated and true
SED (over the wavelength range). The displayed fractional errors (middle row) are faded out where the SEDs → 0. Bottom
left: 68 (dark red), 95 (red), 99 (salmon) and 99.9 (grey) percentiles of the fractional emulator error as a function of wavelength.
Bottom right: cumulative distribution and 68th (darkred), 95th (red), 99th (salmon) and 99.9th (grey) percentiles of the mean
(absolute) fractional errors on the SEDs (over the full wavelength range). Typical errors (68%) are sub-percent across the
whole wavelength range. 99.9% of samples are accurate to < 2% over most of the wavelength range, with the tails of the error
distribution extending out to ∼ 6% at the shortest wavelengths.

Figure 8. The filters for the 24 bands emulated (for the Prospector-α model) in §5, spanning the wavelength range 300 nm to
24µm.

Emulating Stellar Population Synthesis 13

5.3. Computational performance

We find that with the neural network architecture de-

scribed above, the emulator is able to predict photome-

try a factor of 2 · 103 faster (per band) than direct SPS

computation for the Prospector-α model, with an addi-

tional order of magnitude speed-up when calling the em-

ulator from the GPU. We find in experiments that larger

network architectures give further improvements in ac-

curacy, at the cost of some computational performance,

and leave further optimization of network architectures

for this problem to future work.

6. DISCUSSION AND CONCLUSIONS

SPS emulation offers a factor ∼ 103 − 104 speed-up

over direct SPS computation, whilst delivering percent-

level accuracy over broad parameter and wavelength

ranges. Parallel SPS evaluations can be further lever-

aged by calling the emulator from a GPU, giving an

overall speed-up factor of 104 − 105 compared to direct

SPS evaluations on a CPU (for the models considered).

In addition to the direct speed-up of SPS calls, the emu-

lated SEDs and photometry come with readily accessible

derivatives (with respect to the SPS model parameters),

enabling the use of gradient-based inference and opti-

mization methods; this is expected to reduce the num-

ber of SPS evaluations required when analyzing galaxy

spectra or photometry under SPS models. The impli-

cations of the speed-up are clear: analyses that previ-

ously required significant high-performance computing

investment could now be performed on a laptop, and

previously intractable analyses of large populations of

galaxies will now be tractable. For context, the ∼ 1.5

million CPU hour analysis of Leja et al. (2019) could

now be performed in ∼days on 16-cores, and leveraging

the gradients for inference is expected to give additional

orders-of-magnitude improvement on top of that (e.g.,

Seljak & Yu 2019). Similarly, the computational cost as-

sociated with SPS evaluation when forward-simulating

large surveys will be radically reduced.

Whilst the specific SPS models presented in this paper

were motivated by analysis of photometry and low S/N

spectra respectively, another promising area for emula-

tion is SPS models designed to fit high S/N, high reso-

lution galaxy spectra. These models are often computa-

tionally expensive (∼1 minute per SPS evaluation) and

are thus particularly attractive candidates for speed-

up by emulation. However, the model dimensionality

and required precision can be demanding. For the sim-

ple case of quiescent galaxies, state-of-the-art models

have up to ∼40 parameters which control components

such as the initial mass function, individual elemental

abundances, as well as detailed models of continuum

line spread functions (e.g., Conroy & van Dokkum 2012;

Conroy et al. 2018). The systematic residuals for such

models are on the order of 1%, so in practice an em-

ulator would need to reproduce thousands of pixels to

sub-percent-level accuracy. Star-forming galaxies bring

additional challenges, notably nebular emission – pho-

toionisation codes can have hundreds of parameters con-

trolling hundreds of emission lines (Ferland et al. 2017),

of which each emission line in principle could have its

own line spread function. Although the model complex-

ity and fidelity requirements are higher for this use case,

because these models are so much more expensive one

has considerably more leeway in using larger and more

sophisticated neural network architectures, whilst still

potentially achieving significant computational speed-

up.

Another avenue that SPS emulation opens up is

Bayesian hierarchical analysis of large galaxy popu-

lations under SPS models, i.e., jointly inferring the

physical properties of individual galaxies in a sample

along with the intrinsic (prior) distribution of galaxy

characteristics. The high-dimensional inference tasks as-

sociated with such analyses typically requires gradient-

based inference algorithms, such as Hamiltonian Monte

Carlo sampling, which will be made substantially easier

with emulated SPS.

There are a number of areas where the neural net-

work emulation framework presented here can be im-

proved upon. Firstly, we did not go to great lengths to

optimize the neural network architectures to deliver the

optimal trade-off between accuracy and speed-up. Once

the training sets have been generated, training the em-

ulator networks is sufficiently cheap that a search over

network architectures (including more sophisticated ar-

chitecture types) to deliver the best performance is com-

putationally feasible.

Regarding basis construction for galaxy spectra, we

have shown that PCA is effective for a range of appli-

cations. However, for complex SPS models or where

fidelity requirements are very high, alternative basis

constructions such as non-negative matrix factorization

(NMF) in linear flux (Hurley et al. 2014; Lovell 2019),

or non-linear representation construction with autoen-

coders, may prove more powerful.

The other area where some additional effort could

give substantial improvements is intelligently sampling

the parameter space when building the training set. In

this study, little focus was given to optimizing param-

eter space sampling and training set size; training set

sizes were simply chosen so that they could be gener-

ated in . days and deliver percent-level accuracy in the

trained emulators. However, it is clearly advantageous

14 Alsing et al.
fre

qu
en

cy
 d

en
sit

y

CANDELS F160W 99.9%
99%
95%

CFHTLS u CFHTLS g CANDELS F606W

fre
qu

en
cy

 d
en

sit
y

CFHTLS r CFHTLS i CANDELS F814W CFHTLS z

fre
qu

en
cy

 d
en

sit
y

CANDELS F125W NMBS J1 NMBS J2 NMBS J3

fre
qu

en
cy

 d
en

sit
y

WIRDS J 3D-HST F140W NMBS H1 NMBS H2

fre
qu

en
cy

 d
en

sit
y

WIRDS H NMBS K WIRDS Ks IRAC 3.0 m

0.06 0.03 0.00 0.03 0.06
magnitude error, memu

b mb

fre
qu

en
cy

 d
en

sit
y

IRAC 4.5 m

0.06 0.03 0.00 0.03 0.06
magnitude error, memu

b mb

IRAC 5.8 m

0.06 0.03 0.00 0.03 0.06
magnitude error, memu

b mb

IRAC 8.0 m

0.06 0.03 0.00 0.03 0.06
magnitude error, memu

b mb

MIPS 24 m

Figure 9. Frequency densities (black) and 95 (red), 99 (salmon) and 99.9 (grey) percent intervals of the errors on the emulated
apparent magnitudes for the 24 bands considered (§5), over the 105 samples in the validation set. For the chosen neural network
architecture (§5), the emulator is able to deliver percent-level accuracy across the board, with 99.9% of validation samples being
accurate to . 0.02 magnitudes for most bands, and . 0.04 in the worst cases.

to use online learning to optimally sample the param-

eter space on-the-fly in conjunction with the emulator

training (see e.g., Rogers et al. 2019; Alsing et al. 2019).

This approach has the benefits that it both enables more

optimal sampling of the parameter space, and by gener-

ating the training set synchronously with training, the

size of the training set required to achieve a given accu-

racy target can be determined on-the-fly (i.e., training

and acquisition of training data can be stopped when

the accuracy reaches the desired threshold).

For inference applications when the emulator error

cannot safely be assumed to be a negligible fraction of

the total error budget, it will be desirable to have some

quantification of the emulator uncertainties that can be

folded into the likelihood function. This can be achieved

within the neural network paradigm by using Bayesian

neural networks: performing posterior inference over the

network weights given the training data (and some pri-

ors), hence providing posterior predictive distributions

over the output SEDs or photometry rather than simple

point estimates. This sophistication comes at the cost

Emulating Stellar Population Synthesis 15

of having to perform many forward passes through the

network to obtain an emulator error estimate at a given

set of SPS parameters.

The emulation code – speculator – is publicly avail-

able at https://github.com/justinalsing/speculator.

We thank Benjamin Joachimi and François Lanusse

for useful discussions. JA and HVP were partially

supported by the research project grant “Fundamen-

tal Physics from Cosmological Surveys” funded by the

Swedish Research Council (VR) under Dnr 2017-04212.

HVP, BL and DJM acknowledge the hospitality of the

Aspen Center for Physics, which is supported by Na-

tional Science Foundation grant PHY-1607611. JL is

supported by an NSF Astronomy and Astrophysics

Postdoctoral Fellowship under award AST-1701487.

This work was also partially supported by a grant from

the Simons Foundation, and partially enabled by fund-

ing from the UCL Cosmoparticle Initiative.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., et al. 2016, CoRR,

abs/1603.04467, arXiv:1603.04467.

http://arxiv.org/abs/1603.04467

Alsing, J., Charnock, T., Feeney, S., & Wandelt, B. 2019,

MNRAS, 488, 4440

Ashby, M., Willner, S., Fazio, G., et al. 2013, The

Astrophysical Journal, 769, 80

Barmby, P., Huang, J.-S., Ashby, M., et al. 2008, The

Astrophysical Journal Supplement Series, 177, 431

Belli, S., Newman, A. B., & Ellis, R. S. 2019, The

Astrophysical Journal, 874, 17

Bielby, R., Hudelot, P., McCracken, H., et al. 2012,

Astronomy & Astrophysics, 545, A23

Bishop, C. M. 2006, Pattern recognition and machine

learning (springer)

Brammer, G. B., Van Dokkum, P. G., Franx, M., et al.

2012, The Astrophysical Journal Supplement Series, 200,

13

Byler, N., Dalcanton, J. J., Conroy, C., & Johnson, B. D.

2017, The Astrophysical Journal, 840, 44

Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, The

Astrophysical Journal, 533, 682

Carnall, A., McLure, R., Dunlop, J., et al. 2019, Monthly

Notices of the Royal Astronomical Society, 490, 417

Charlot, S., & Fall, S. M. 2000, The Astrophysical Journal,

539, 718

Chevallard, J., & Charlot, S. 2016, Monthly Notices of the

Royal Astronomical Society, 462, 1415

Choi, J., Conroy, C., & Byler, N. 2017, The Astrophysical

Journal, 838, 159

Choi, J., Dotter, A., Conroy, C., et al. 2016, The

Astrophysical Journal, 823, 102

Conroy, C. 2013, Annual Review of Astronomy and

Astrophysics, 51, 393

Conroy, C., & Gunn, J. E. 2010, The Astrophysical

Journal, 712, 833

Conroy, C., Gunn, J. E., & White, M. 2009, The

Astrophysical Journal, 699, 486

Conroy, C., & van Dokkum, P. G. 2012, ApJ, 760, 71

Conroy, C., Villaume, A., van Dokkum, P. G., & Lind, K.

2018, ApJ, 854, 139

Csáji, B. C. 2001, Faculty of Sciences, Etvs Lornd

University, Hungary, 24, 48

Czekala, I., Andrews, S. M., Mandel, K. S., Hogg, D. W., &

Green, G. M. 2015, The Astrophysical Journal, 812, 128

DESI Collaboration, D., Aghamousa, A., Aguilar, J., et al.

2016, arXiv preprint arXiv:1611.00036

—. 2018

Diemer, B., Sparre, M., Abramson, L. E., & Torrey, P.

2017, The Astrophysical Journal, 839, 26

Dotter, A. 2016, The Astrophysical Journal Supplement

Series, 222, 8

Erben, T., Hildebrandt, H., Lerchster, M., et al. 2009,

Astronomy & Astrophysics, 493, 1197

Ferland, G., Porter, R., Van Hoof, P., et al. 2013, Revista

mexicana de astronomı́a y astrof́ısica, 49, 137

Ferland, G. J., Chatzikos, M., Guzmán, F., et al. 2017,

RMxAA, 53, 385

Foreman-Mackey, D., Sick, J., & Johnson, B. 2014,

python-fsps: Python bindings to FSPS (v0. 1.1), doi:

10.5281/zenodo. 12157, ,

Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D., &

Tremonti, C. A. 2005, Monthly Notices of the Royal

Astronomical Society, 362, 41

Grogin, N. A., Kocevski, D. D., Faber, S., et al. 2011, The

Astrophysical Journal Supplement Series, 197, 35

Hurley, P., Oliver, S., Farrah, D., Lebouteiller, V., &

Spoon, H. 2014, Monthly Notices of the Royal

Astronomical Society, 437, 241

Kalmbach, J. B., & Connolly, A. J. 2017, The Astronomical

Journal, 154, 277

Kingma, D. P., & Ba, J. 2014, arXiv preprint

arXiv:1412.6980

Koekemoer, A. M., Faber, S., Ferguson, H. C., et al. 2011,

The Astrophysical Journal Supplement Series, 197, 36

https://github.com/justinalsing/speculator
http://arxiv.org/abs/1603.04467

16 Alsing et al.

Leja, J., Johnson, B. D., Conroy, C., & van Dokkum, P.

2018, The Astrophysical Journal, 854, 62

Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P. G., &

Byler, N. 2017, The Astrophysical Journal, 837, 170

Leja, J., Johnson, B. D., Conroy, C., et al. 2019, The

Astrophysical Journal, 877, 140

Levi, M., Bebek, C., Beers, T., et al. 2013, arXiv preprint

arXiv:1308.0847

Lovell, C. C. 2019, arXiv preprint arXiv:1911.12713

Muzzin, A., Marchesini, D., Stefanon, M., et al. 2013, The

Astrophysical Journal Supplement Series, 206, 8

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S.

2018, arXiv preprint arXiv:1811.03378

Pacifici, C., Kassin, S. A., Weiner, B. J., et al. 2016, ApJ,

832, 79

Paxton, B., Bildsten, L., Dotter, A., et al. 2010, The

Astrophysical Journal Supplement Series, 192, 3

Paxton, B., Cantiello, M., Arras, P., et al. 2013, The

Astrophysical Journal Supplement Series, 208, 4

Paxton, B., Marchant, P., Schwab, J., et al. 2015, The

Astrophysical Journal Supplement Series, 220, 15

Rogers, K. K., Peiris, H. V., Pontzen, A., et al. 2019,

Journal of Cosmology and Astroparticle Physics, 2019,

031

Seljak, U., & Yu, B. 2019, arXiv preprint arXiv:1901.04454

Skelton, R. E., Whitaker, K. E., Momcheva, I. G., et al.

2014, The Astrophysical Journal Supplement Series, 214,

24

Torrey, P., Vogelsberger, M., Genel, S., et al. 2014, Monthly

Notices of the Royal Astronomical Society, 438, 1985

Vogelsberger, M., Genel, S., Springel, V., et al. 2014a,

Nature, 509, 177

—. 2014b, Monthly Notices of the Royal Astronomical

Society, 444, 1518

—. 2014c, Nature, 509, 177

Whitaker, K. E., Labbé, I., Van Dokkum, P. G., et al. 2011,

The Astrophysical Journal, 735, 86

Whitaker, K. E., Franx, M., Leja, J., et al. 2014, The

Astrophysical Journal, 795, 104

