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Enhanced energy transfer to an optomechanical piston from indistinguishable photons
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Thought experiments involving gases and pistons, such as Maxwell’s demon and Gibbs’ mixing,
are central to our understanding of thermodynamics. Here we present a quantum thermodynamic
thought experiment in which the energy transfer from two photonic gases to a piston membrane
grows quadratically with the number of photons for indistinguishable gases, while linearly for dis-
tinguishable gases. This signature of Bosonic bunching may be observed in optomechanical exper-
iments, highlighting the potential of these systems for the realization of thermodynamic thought

experiments in the quantum realm.

The concept of particle indistinguishability is deeply
entwined into the history of both quantum mechanics
and thermodynamics. The first remarkable example of
the consequences of the difference between distinguish-
able and indistinguishable particles is found in Gibbs’
thought experiment [1] on the extraction of work from
the mixing of gases. Subsequently, the indistinguishabil-
ity of energy quanta played a central role in the devel-
opment of quantum mechanics with Planck’s reconcilia-
tion of Wien’s law and the Rayleigh-Jeans limit of black
body radiation. The indistinguishability of elementary
particles, Fermions and Bosons, is now recognised as a
fundamental principle, with diverse signatures such as
the Pauli blockade [2] or the Hong-Ou-Mandel effect [3],
which causes even non-interacting photons to leave beam-
splitters in pairs, i.e. to bunch.

The role of the statistics of indistinguishable quan-
tum particles in thermodynamics has recently gath-
ered renewed attention. For quantum generalisations
of a Szilard engine the extractable work is indepen-
dent of whether the working substance is Bosonic or
Fermionic [4], but Bosonic bunching can enhance the con-
version of information and work [5] and the performance
of thermodynamic cycles [6].

Although any two Fermions or Bosons of the same type
are intrinsically identical, in practise it is often possible
to distinguish such particles via their internal states [7].
In the case of photons, for example, the distinguishability
can be carried by a degree of freedom such as polarization
that admits coherent superpositions. The distinguisha-
bility between two photons, one vertically polarised and
the other in the state |#) = cos@|V) + sinf |H) with
|V) and |H) referring to vertical and horizontal polariza-
tions, can thus be varied continuously, with the photons
partially distinguishable for 0 < 6 < /2.

The possibility of partially distinguishable quantum
gases has provided a natural generalisation to Gibbs mix-
ing [8, 9] with many implications for thermodynamics.
For example, it is impossible to perfectly distinguish non-
orthogonal quantum states without breaking the second
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FIG. 1. Illustration of an optomechanics setup to generalise a
variety of classic thermodynamic experiments involving gases
and piston membranes. The classical gases are realised by
photon gases on either side of a movable beamsplitter mem-
brane.

law of thermodynamics [10], the accessible information
in Gibbs mixing is limited by the Holevo bound [11],
and the extractable work from mixing, defined as the er-
gotropy [12], can decrease with distinguishability [13].

In this paper we present a thought-experiment that
probes the interplay of distinguishability and particles
statistics in quantum thermodynamics. Drawing inspira-
tion from ground breaking thought experiments involv-
ing gases performing work on a membrane attached to
a movable piston [1, 14, 15], we consider the interac-
tion between photon gases and a beamsplitter membrane,
that gives the photons access to superpositions of spatial
states located either side of the membrane. We find that
the photonic bunching results in striking consequences
for how energy is transferred between light and the mem-
brane. Namely, as a result of the Hong-Ou-Mandel effect,
the energy transfer grows quadratically with the number
of photons for indistinguishable gases, while linearly for
distinguishable gases.

The proposed thought experiment may be realised in
multi-mode optomechanical systems in which a micro-
scopic membrane separates an optical cavity into two
parts [16-21], thus highlighting a new avenue for quan-
tum thermodynamic experiments. We argue here that
such multi-mode optomechanical setups go beyond pre-
vious proposals in single-mode systems [22-25], by pro-



viding a platform both for studying quantum signatures
of distinguishability and, more broadly, realising thermo-
dynamic thought experiments involving the interaction of
gases with membranes.

A setup realising this variety of quantum mechani-
cal generalizations of piston-like experiments is given by
an optomechanical system comprised of a cavity with a
membrane that behaves like a beamsplitter and that di-
vides the cavity symmetrically into a left and a right
part, as sketched in Fig. 1. The photon dynamics resul-
tant from the membrane can be modelled in terms of the
Hamiltonian

Ho= Y S(RIL,+LLR) . ()
p=H,V

where the annihilation (creation) operators of both the
horizontally, Rg) and Lg), and vertically, Rg) and Lg),
polarised photons in the right and left halves of the cav-
ity are explicitly modelled in order to study the effect
of distinguishability [26]. The membrane has a motional
degree of freedom (DOF), like a cantilever, and the in-
teraction between the light field and the motional DOF
is given by

H, = —g(Np — Np)Xu , (2)

in terms of the total particle number in the left and right
part of the cavity (i.e. Np = LELH + LJ{,LV7 Np =
RTHRH + RTVRV) and the displacement operator Xp; of
the membrane [27]. This optomechanical coupling will
allow us to discuss a notion of energy (be it work or
heat) transferred to the mechanical DOF in analogy to
the extraction of work in the classical setting.

The full system Hamiltonian H is given by the sum
of Hys and Hy (defined in Egs. (1) and (2)) and the
non-interacting terms for the four photonic modes Ho =
w(Np + Ng) and single phonon mode Hy; = wy MTM.
The eigenfrequencies of both parts of the cavity and
of the mechanical DOF are denoted by w and wy; re-
spectively and the annihilation (creation) operator M ()
of the mechanical phonons is related to the displace-
ment operator via Xp; = z,,:(M + MT). The prefactor
Z,p¢ 1s the mechanical oscillator’s zero point uncertainty
Zope = 1/4/2mwps with m the mass of the membrane.

To solve the system dynamics explicitly, despite the
high-dimensional Hilbert space, it is helpful to consider
the equations of motion for the observables of interest in
the Heisenberg picture. The equation of motion for the
displacement X s of the mechanical DOF,

d>X dX
72M 200 wh Xy =

AN A N;
dt dt (ANy + ANv)

3)

depends on the photonic mode imbalances AN, =
L;f,Lp - R;Rp (for p = H and V) whose dynamics re-
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sult from the equation of motion

Ly = —i(w+gXnm —ir)L, —iéRp, (4)
dt 2
aft = —i(w—gXym — k)R, — iéLp . (5)
dt 2
In a thought experiment the damping rates x and kps
of the cavity and mechanical modes can be assumed to
vanish such that the number of photons in each gas is con-
served and the piston membrane is frictionless. However,
any experiment would be realised with finite damping.

Solving the coupled differential equations Egs. (3-5),
exactly is prohibitively difficult but a perturbative solu-
tion that describes the dynamics of selected observables
for any given initial state can be constructed. Given that
the force exerted by a single photon on the membrane is
weak, the single photon coupling strength, gz,,;, is small
compared to the inter-cavity coupling strength, A. It
is therefore appropriate to solve the dynamics pertur-
batively in g. With the membrane cooled to cryogenic
temperatures (mean phonon occupation number 7i;, of
the order of 10) [28], the higher order contributions are
negligible, as discussed in the supplement [29]. We thus
focus here on the dynamics to first order; however, simi-
lar behaviour is observed to higher orders [29].

The initial state of the left and right parts of the cav-
ity and the membrane, p;, ® pr ® o)y, is chosen in anal-
ogy to classical thermodynamic thought experiments and
hence the gases are taken to have the same number distri-
bution (and therefore the same average photon number
(N(0)) = tr [NL(0) pr] = tr g[Ng(0) pr] and variance
dN(0)). The transition between distinguishable and in-
distinguishable photon gases can be explored by taking
all photons in the left cavity to be in the polarisation
state |V) and all photons in the right in |0), where 0
can be varied continuously between 0 to 7/2. For the
membrane, an initial state with vanishing displacement,
tr a7[Xn(0) oar] = 0, and vanishing momentum is inline
with the classical thought experiments, for example, the
membrane could be prepared in a thermal state.

The dynamics induced by Hgg entangles the mechan-
ical and optical degrees of freedom, resulting in an en-
ergy transfer from the effective energy of the photons,
Mw — gXa)Np and A(w 4+ gXar)Ng, to the membrane.
To first order in the interaction constant g, the quan-
tum mechanical average of the energy of the membrane
is given by

AHp () = u(t) SN(0)+v(t) ((N(0)) + (N(0))? cos*(0)) ,

(6)
following Egs. (3-5). The scalar prefactors u(t) and v(t),
discussed further in [29], are positive oscillatory func-
tions (see Fig. 4) that depend on the system parameters
(g,wn, A\, m,k and Kps), but not on the initial state of
the gases, which enters through the terms dN(0), (N(0))
and cos?(#).
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FIG. 2. The correlation function gir, Eq. (2), as function
of time for single photon, coherent and thermal initial states
of the light field in the absence of damping (x = kn = 0).
Perfectly distinguishable (0 = 7/2), partially distinguishable
(0 = m/4) and perfectly indistinguishable (§ = 0) gases are
denoted by solid, dashed and dotted lines.

For any choice in the number distribution of the pho-
ton gases, the energy transfer to the membrane is larger
for indistinguishable photons than distinguishable pho-
tons, with the difference between these two cases scal-
ing as (N(0))2cos?(f). That is, the energy transfer
to the membrane is quadratically enhanced for indis-
tinguishable photons. The enhancement is most pro-
nounced for Fock states where the initial fluctuations in
photon number 6N (0) vanish, or coherent states where
the fluctuations are equal to the average photon num-
ber, 6N (0) = (N(0)). Conversely, for high temperature
thermal gases! the initial fluctuations in photon number
IN(0) will be substantial and so there is a substantial
contribution to AHj; that is independent of 6.

This dependence of the energy transfer on distinguisha-
bility is the opposite to Gibbs mixing where work ex-
traction is possible for distinguishable gases but not for
indistinguishable gases. The difference in behaviour is
perhaps unsurprising as the present mechanism does not
rely on mixing. What seems striking is the scaling with
particle number. Whereas the extractable work in the
Gibbs [1], and indeed the Szilard [15] and Maxwell De-
mon thought-experiments [14], scales linearly with the
particle number, i.e. it can be interpreted as ‘work per
particle’, the present situation realises a quadratic scal-
ing, with a potentially strongly enhanced energy transfer
to the membrane.

As we will show in the following, this quantum me-
chanical enhancement of energy transfer, AH;, between
light and the mechanical DOF is a direct consequence
of photon bunching as observed in the Hong-Ou-Mandel
(HOM) effect [3, 30]. To this end, it is instructive to in-

1 Here, and elsewhere when discussing thermal photon gases, we
refer to a gas with a fixed polarisation but a thermally distributed
photon number distribution.
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FIG. 3. The Hong-Ou-Mandel effect in the present optome-
chanical setup. In (a) the photon from the left is reflected
and the photon from the right is transmitted and vice versa
in (b). In (c) both photons are transmitted and in (d) both
are reflected. When the photons are perfectly distinguishable,
i.e. j = H and k =V or vice versa, then all four outcomes
(a - d) are equally probable. When the photons are perfectly
indistinguishable, ¢.e. j = Handk=Horj=Vand k=V,
then the amplitudes for outcomes (¢) and (d) destructively
interfere and the outcomes (a) and (b) are equally probable.

spect the two mode second order correlation function [31]

g n(t) = NeONr(®) )
(NL(t)(Nr(t))

A vanishing value of g, r indicates that a measurement
would find all photons in one cavity, whereas large values
of 9. r imply that approximately equal numbers would be
found in both halves of the cavity. A small value of g,
thus indicates bunching, whereas a large value indicates
anti-bunching [29].

The dynamics of g, as the light field interacts with
the beamsplitter membrane can readily be obtained to
first order in g. It is depicted in Fig. 2 in the absence
of damping effects (k = kp = 0) for perfectly distin-
guishable (§ = 7/2), perfectly indistinguishable (6 = 0)
and partially distinguishable (6 = 7/4) gases. In all three
sub-figures, corresponding to single photon, coherent and
thermal states of the light field, one can see that for all
times, distinguishable gases result in the largest values of
0. r and indistinguishable gases the smallest. Moreover,
the time averaged correlation function [29],

L (v +3 —cos(h)?), (8)

(Gur(t))e = 1

where v = 2 for thermal photons, v = 1 — % for an n
photon Fock state and v = 1 for coherent state photons,
has the same cos(6)? dependence on distinguishability as
the energy transfer to the membrane, Eq. (6). That is,
bunching is most pronounced for indistinguishable gases,
as expected.

To understand heuristically how this bunching affects
the membrane dynamics, it is instructive to consider the
case of single photon gases as sketched in Fig. 3. For
both distinguishable and indistinguishable photons the
(quantum) average displacement of the membrane will
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FIG. 4. The average energy of the membrane as a func-

tion of time for coherent states of the light field containing
6 x 10° photons. Perfectly distinguishable, partially distin-
guishable and perfectly indistinguishable gases are denoted by
red, purple and blue lines. We utilise the following parame-
ters from the experimental settings in [19, 20]: was = 350kHz,
w = 20THz, A = 34GHz, k =85kHz, Ky =1Hz, m =45ng and
g%, =3.3kHz, with similar behaviour expected for a range
of parameters.

be zero at all times. However, the fluctuations in the po-
sition of the membrane, and therefore the energy of the
membrane, will be greater for the case of indistinguish-
able photons because the probability for the membrane
to be displaced to the left or right is double that for dis-
tinguishable photons. Moreover, the quadratic scaling of
the energy transfer may be explained by the fact that the
HOM effect is a pairwise interference effect. Since (N(0))
photons in one gas can interfere with each of the (N(0))
photons in the other gas, the number of pairs of photons
which can interfere with one another scales as (N (0)? and
this quadratic scaling carries over to the energy transfer.

While considering an initial thermal state for the pho-
ton gases realises a close analogy with classical thermo-
dynamics, including the process of pumping brings the
discussion closer to an experimentally realizable situa-
tion. If the cavity is driven on resonance in a pulsed
fashion [32-35], with pulses that are shorter than the tun-
nelling time A, the driving processes and tunnelling pro-
cesses occur on different time scales and can be consid-
ered independently. Accordingly, driving the left modes
of the cavity with a short laser pulse of 6 polarised pho-
tons and the right modes with a short pulse of vertically
polarised photons, will generate the coherent states |, 6)
and |«, V) in the respective halves of the cavity [36], lead-
ing again to an enhanced energy transfer to the mem-
brane for indistinguishable photons as per Eq. (6) with
SN = (N) = |a]?.

In the limit in which the cavity damping is much faster
than the membrane damping, as is the case in experimen-
tal settings such as [20, 21], the energy of the membrane,
as shown in Fig. 4, tends to an approximately constant
value on the time scale % Lt K %M In this limit the
energy transfer to the membrane after being driven by a

single pair of pulses is
t£>1
AHy ™ = plal* + 0 (laf? + ol cos(6)?) . (9)

where 7 = 1.2 x 1078Hz and p = 1.3 x 107'8Hz for the
experimental parameters listed in Fig. 4. For a pulse
containing 6 x 10° indistinguishable photons, the ex-
pected energy transfer to the membrane is of the order
of 400kHZ. This effect could be amplified by driving the
cavity with a train of laser pulses, increasing the viability
of experimentally observing the enhanced energy transfer
to the membrane using currently available measurement
protocols [28].

It is natural to ask whether this energy transfer to the
piston membrane, AH,;, should be interpreted as heat
or work. While the question of how to define work [37—
40] and heat [41, 42] in the quantum regime has been
discussed extensively, in essence the distinction reduces
to the extent to which the energy is ‘useful’ energy as op-
posed to un-directed fluctuating energy. Since the quan-
tum mechanical average of the mechanical displacement
and momentum vanishes at all times, the energy trans-
fer AHj; is entirely given in terms of the fluctuations
resulting from the entanglement between light fields and
mechanical degree of freedom [43]. In this vein, one might
classify the energy transfer as heat rather than work.

However, the fact that the quantum mechanical aver-
age over displacement vanishes can be seen as a direct
consequence of the system’s mirror symmetry (i.e. ex-
change of L, and R, and simultaneous replacement of
X with —X37). Given a symmetric initial state, this
symmetry is preserved during the dynamics and necessar-
ily needs to be satisfied in the final state. Nonetheless,
this symmetry could be broken with a measurement of
the photon number in the left or right part of the cav-
ity. As indicated by the correlations depicted in Fig. 2
and Fig. 3, a suitable measurement will collapse the sym-
metric superposition and therefore is likely to find a pro-
nounced misbalance of photons between left and right
corresponding to a substantial instantaneous displace-
ment of the membrane. Indeed, the cross correlation
function

(AN () Xnr(t)) = v(t)N + ((t) ((N) + (N)?cos(6)?) ,

(10)
between the photon number difference, AN = Ny, — Ng,
and the displacement of the membrane, with v(t) and
¢(t) oscillatory prefactors depending only the system pa-
rameters [29], features the same quadratic enhancement
for indistinguishable photons as found for the energy
transfer, Eq. (6). This suggests that a reasonably simple
Szilard-type extraction protocol [5], using auxiliary mea-
surements on the light field, would allow one to find a
predictable displacement of the membrane that increases
with the indistinguishability of the photons in the cavity.
The potential energy associated with this displacement



is well defined and thus could plausibly be interpreted as
a work output.

The bunching enhanced energy transfer to the piston
membrane for indistinguishable photons draws a link be-
tween iconic thermodynamic experiments conceived by
Gibbs, Maxwell and Szilard, and a paradigmatic example
of the impact of indistinguishability in quantum optics,
the HOM effect. The optomechanical analysis further
gives a flavor of the rich physics that can be explored
by explicitly introducing polarisation into optomechani-
cal setups, while introducing a new platform for quantum
thermodynamic experiments. For example, a crucial dif-
ference between the present optomechanical setting and
classical thermodynamical experiment, is the inability of
the photons to thermalize via mutual interactions. In-
teractions with dye-molecules on the other hand are rou-
tinely used to mediate effective interactions between pho-
tons resulting in thermalization [44, 45]. One may thus
envision extensions of the presently discussed setup with
thermalization rates as additional parameters, permit-
ting a broad range of future directions. Other open ques-
tions include the variation of initial state, optomechanical
coupling regime and coupling of the photons to the heat
bath. Similarly to the present analysis, such settings can
be discussed as a thought experiment or even realized in
practice with optomechanical systems.
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Supplementary Information for “Enhanced energy transfer to an optomechanical piston from
indistinguishable photons”

Here we provide a derivation of the results presented in the main text.

Initial condition We make the following assumptions on the initial state of the light field and the mechanical
osccilator:

1. The photons and membrane are initially non-interacting such that (A(0)B(0)) = (A(0))(B(0)) for any operator
of the light field, A, and operator of the membrane, B.

2. All photons in the left cavity are in the polarisation state |V) and all photons in the right part are in the
polarization state |6).

3. The number distribution of the photons in the left part of the cavity is the same as in the right part but the
precise form of this distribution can be freely chosen. That is, (f(Ny)) = (f(Ng)) for all functions f.

4. The average initial position and momentum of membrane is zero, that is (X;(0)) = (Pa(0)) = 0 where X,
and P)s are the position and momentum operators of the mechanical degree of freedom.

Calculation of dynamics The membrane evolves as a quantum harmonic osccilator driven by the radiation pressure
from the photons in the cavity. To explicitly calculate the dynamics of the membrane we work in the Heisenberg
picture since this allows us to obtain results for the evolution of pertinent physical variables that hold for the general
set of initial conditions stated above. Working in the Heisenberg picture, the equation of motion of the membrane
reads

d* X dXm | o F(g)
g TR T X =m0 (11)

where the driving force F/(g) = gAN and k) is the damping rate of the membrane.
To calculate the force exerted by the photons on the membrane we need to determine the dynamics of the photons.
The left and right modes (with polarisations p = H and p = V') obey

L A

b= —ilw+ gX —ir)L, —iT R, (12)
dR A
b= —ilw = gXur — im)Ry —iT Ly . (13)

where we include phenomenologically the damping of the cavity modes at the rate .

Solving these coupled differential equations, Eq. (11) and Eq. (12), for the four photonic modes and single mechanical
mode exactly is prohibitively difficult but a perturbative solution that describes the dynamics of selected observables
for any given initial state can be constructed. Given the typically weak coupling between the optical and mechanical
degrees of freedom, it is appropriate to consider the system dynamics perturbatively in the coupling g. To first order,
which we focus on, this amounts to assuming that the back action of the motion of the membrane on the photon
dynamics is negligible.

To calculate the dynamics of the membrane to 1st order in g, we drop the dependence of Eq. (12) on g and solve
the resulting coupled differential equations to find that

Ly(t) = exp (— (s + iw)t) (LP(O) cos (A;) —iR(0)sin (A;)) (14)
Ry(t) = oxp (—( + iw)t) (Rp(()) cos (?) —iL,(0)sin @t)) (15)

From this it follows that the membrane is driven by the force
F(g) = gexp(—2xt) (AN(0) cos(\t) + AK(0) sin(M)) . (16)

where we have defined AK := AKg + AKy with

AK, :=i(RIL, - R,L!) for p=H,V . (17)



The solution to the equation of motion of the membrane, Eq. (16), for the time dependent force induced by the
dynamics of the photons, Eq. (16), is of the form

X (t) = c()AN(0) + d(t)AK(0) + h(t) Xar(0) + 5 () Par (0) (18)

where the functions a(t),b(t),c(t) and d(t) depend on the system parameters (g,was, A, m,k and kps) and not on
the initial state. The functions a(t), b(t), c(t) and d(¢) can be calculated explicitly by substituting the trial solution
Eq. (18) into Eq. (11); however, since the functions do not depend on the initial state of the photons it is not necessary
to calculate these functions to determine the distinguishability dependence of the energy transfer to the membrane.
The average energy of the membrane can be written in terms of the membrane displacement operator as

(H (1) = <m”12”§”’“>2 s (”2> (19
and therefore
(Has(1) = 50 (o)) AN (0) + () MK (0) + A0 Xar(0) + 5(0) s (0))) 0
+5 ((EOAN(O) + dOAK(0) + h(t) Xar(0) + (1) Pas (0))?) -

Since we assume the light and mechanical modes are initially uncorrelated and that the mean position and mo-
mentum of the membrane vanish, it follows that the initial correlation functions (AN(0)X(0)), (AK(0)X(0)),
(AN(0)Pps(0)) and (AK(0)Py(0)) vanish. Similarly, since we assume that the photons in the left cavity are in
polarisation state |V) and the photons in the right cavity are in the polarisation state |0), the (AK(0)AN(0)) and
(AK(0)AN(0)) terms also vanish. It follows that the energy of the membrane is given by

(Har(1)) = (Har(0)) + % (mewdre(t)? +me(t)?) (AN(0)%) + % (meked(t? +md()?) (AK(©0)%) ,  (21)
and therefore the time dependent energy transfer to the membrane, AH;(t) = (Hp(t)) — (Hp(0)), is
AHy(t) = @ (AN(0)%) + @ (AK(0)%) , (22)

where u(t) = mw?,¢(t)? + mé(t)? and v(t) = mw?,d(t)? + md(t)?.
The distinguishability and photon number dependence of the energy of the membrane enter through the evaluation
of the (AN (0)?) and (AK(0)?) terms. The (AN (0)?) term is calculated as follows
(AN(0)?) = ((NL(0) — Ng(0))*)
= (N£(0)? + Ng(0)* — 2N (0) Nr(0)) (23)
= 2(N?) — 2(N)?

where the final line follows from the fact that we assume the photon number distribution in the two halves of the
cavity are equal and therefore we can write (N) := (N (0)) = (Ng(0)) and (N?) := (N(0)?) = (Nz(0)?). Thus the
(AN (0)?) is distinguishability independent and equal to the variance, N, in the number of photons in each gas,
(AN(0)?) = (N?) — (N)? := 6N . (24)
Similarly, for the (AK(0)?) term we have that
(AK(0)*) = (AK#(0) + AKv(0))?) (25)
= (AKy(0)* + AKv(0))? + 2K#(0) Ky (0)) .

The cross term vanishes since all the photons in the left cavity are vertically polarised and remaining two terms
evaluate to

(AK(0)%) = (AK(0)> + AKy(0))?)
= (L} Ly) + (Rl Ru) + 2(L} Ly )(RY R) + (L, Lv) + (R}, Ry) + 2(L, Ly )(R},Ry) ~ (26)
= 2(N) +2(N)?cos(6)* .



Substituting these expressions into the equation for the total energy of the membrane we have that the change in
energy of the membrane is given by

AHy (t) = u(t)5N + v(t) ((N) + (N)2 cos()?) . (27)

We thus see that the energy transfer to the membrane is quadratically enhanced for indistinguishable photon gases.
The derivation of the membrane correlation function (AN (¢)Xas(t)), Eq. (10), proceeds in an entirely analogous
manner to the derivation of AH,(t) set out here.

In the general case the expressions for u(t) and v(t) are long and uninstructive. However, in the experimentally
realisable limit in which the cavity damping x is much faster than the membrane damping k,;, the energy of the
membrane tends to an approximately constant value on the time scale % Lt K % as shown in Fig. 4. In this limit
we can effectively disregard the membrane damping, that is set xp; = 0, and calculate the time averaged change in
energy of the membrane in the limit of large ¢,

AHZ® = lim (Hy(t) — Ha(0)) (28)
P

To perform this calculation we disregard any terms that exponentially vanish in the limit of large ¢ and average over
remaining sinusoidal terms. On doing so we obtain,

AH, " = SN + 1 ((N) + (N)? cos(6)?) (29)
where
_ 2% 204K+ wiy) + (V4 wiy)dko (30)
om (4R2 + (N —war)?)(4r2 + (A 4 war)?)
2 2)\2 )\2 2 5n
i + (A + w00 (31)

m (4k2 + (A — war)?)(4r2 + (A + war)?)

In the idealised case of a friction-less piston and no cavity damping, that is for k = 0 and k), = 0, these expressions
reduce to

~2¢% N2+ 3wi,

b w22 #2)
i T (33)
m (X +w}))?)
with the ratio of the prefactors given by
n 3N 4wy, (34)

w2002 +3w2)

Therefore the relative significance of the distinguishability dependent contribution to the energy transfer term depends
on the relative magnitude of the tunnelling rate A and the membrane frequency wp;. However, in the presence of
damping, that is for k # 0, these expressions reduce to

_ 2% 2(4k% + w?)) (35)
Com (4R2 + (N —war)?) (4R + (A 4 war)?)
n=2 - , (36)
m (4k2 + (A —wpr)?) (42 + (A +wy)?)
with the ratio of the prefactors given by
)\2
L (37)

w2046 + wiy)

When A is substantially greater than x and wys, as is the case in the experimental settings such as [20, 21], n
is substantially larger than p and therefore the distinguishability dependent term in Eq. 27 dominates over the
fluctuation dependent term.
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The effect of the back action of the membrane’s motion on the photons dynamics can be incorporated by calculating
the evolution of the membrane’s displacement to second order in g. As shown in Fig. 5 below, the second order
contribution to the energy transfer to the membrane also increases with the indistinguishability of the photons. In
contrast to the first order contribution, the second order contribution depends on the initial state of the membrane.
Assuming the membrane is initially thermal, the second order contribution increases with the initial temperature of
the membrane as shown in Fig. 5. Also, in contrast to the first order, the second order contribution to the energy of
the membrane, once averaged over oscillations, grows quadratically over time. Nonetheless, the effect of back action
is negligible over the lifetime of the cavity, 1/k, as long as the initial thermal occupancy of the membrane, i, is
lower than ~ 50 phonons. Such low temperature regimes have been experimentally achieved [28].

g, = 100 g, = 1000
N
=
sz
b J J
T
<
X
0 /4 w/2 0 /4 w/2 0 /4 /2
Distinguishability 6 Distinguishability 6 Distinguishability 6

FIG. 5. We plot the first and second order contributions to the time averaged energy transfer to the membrane as a function
of the distinguishability of the photons in the cavity in the absence of damping effects (k = k¢ = 0). Once the energy transfer
to the membrane is averaged over fast oscillations the first order contribution to the energy transfer is constant in time, while
the second order contribution has an amplitude that grows quadratically in time. Here we plot the second order correction up
to 10us (the cavity lifetime in the experimental setup of Ref[23]). The membrane is prepared in a thermal state containing on
average 7y, phonons, where iy, = 10, e, = 100 and 7gp, = 1000 in the left, centre and right plots respectively and the light
field in both halves of the cavity is initially in a coherent state containing on average 10° photons. We utilise the following
parameters from the experimental settings in [19, 20]: was = 350kHz, w = 20THz, A = 34GHz, m = 45ng and gz, =3.3kHz,
with similar behaviour expected for a range of parameters.

Photon correlation function calculation The degree of bunching of the photons in the cavity is quantifiable by the
second order coherence correlation function g. The second-order correlation function between any two modes a and
b is given by

(af ()b (1)b(t)a(t))

abl(t) = , 38
where (af(t)b (t)b(t)a(t)) is the probability of measuring a photon in mode a and a photon in mode b at time ¢, and
the product of

Na(t) = (af(t)a(t)) and Ny(t) = (b (1)b(1)) (39)

is a normalisation factor.

The second order correlation function is most often used to quantify the spacing of photons within a single mode,
i.e. where a = b. A coherent light beam has randomly spaced photons and therefore a g, , value of 1. If g, 4 is
greater than 1 the probability of measuring two photons simultaneously is greater than expected for a random beam
of photons and in this sense the photons are ‘bunched’ together. Thermal light with super-Poissonian statistics and a
Jq,q value of 2 is therefore bunched. In contrast, if g, , is less than 1 then the probability of measuring two photons
simultaneously is greater than expected for a random beam of photons and the photons are said to be ‘antibunched’.
The correlation function corresponding to an n photon Fock state scales as 1 — % Therefore a single Fock state
photon is maximally antibunched with a g, , of 0 but the degree of antibunching decreases as the number of photons

is increased [36, 46].
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We are primarily interested in the correlations between the between the left and right modes, rather than within a
mode, that is g;, »(¢) which can be written as

_ (NrL(t)Ng(1))
9n®) = TN Y (NR ()

A gr g value of 0 entails that if we simultaneously measure the number of photons in the left and right halves of the
cavity, we are certain to find at least one photon in the left cavity and zero photons in the right cavity, or vice versa,
despite on average there being photons in both halves of the cavity. Thus, in contrast to the single mode correlation
function, a g,y value of 0 indicates that the correlations between the photons in the two halves of the cavity are
such that the photons are bunched in a single cavity. Conversely, a g, of 1 indicates that whenever a photon is
measured in the one cavity, it is certain that at least one photon will be measured in the other cavity, indicating that
the photons are evenly spread between the two halves of the cavity. In this way, we can use g, » to quantify the degree
to which on measurement the photons bunch in one half of the optical cavity.

(40)

To verify that bunching is playing an active role in the dynamics we calculate the correlation function g (¢) for
cavities containing a BS membrane. To do so, we use the expressions for the evolution of the creation and annihilation
operators of the cavity modes on disregarding the back-action of the membrane on the photon dynamics, Eq. (14).
We find that the number operators for the photons in the left and right halves of the cavity evolves as

NL(t) = cos? (?) N1(0) + sin? (A;) Nr(0) + Singt) AK (41)
Na(t) = cos? <A2t> Ng(0) + sin? <A2t> NL(0) — Sm;”) AK (42)

and therefore the correlation function evaluates to

B 1 cos(At) + 3 sin(\t)? 9 9 9
00 = T (g VO V() + S (10 + (Va(0) - aK?) )
=1 ]1V> ((cos(At) + B)(N)? + 2sin(At)*((N?) — (N) — (N)? cos*(6))) (43)
i ((cos(At) + 3) + 2sin(At)*(g.,..(0) — cos*(0))) ,
where g, ,(0) =0 r(0) = % is the second order correlation function of both the photon gases.

To highlight the distinguishability dependence of the correlation function it is insightful to consider the quantity
1—(grr(t)): where (g r(t))+ denotes the time average of g, r (t). This quantity is a measure of the degree of bunching
in the cavity. More precisely, it equals 0 when the photons are evenly spread between the two halves of the cavity
but is positive for light bunched in a single cavity and negative for light that is antibunched between the two parts.
Using Eq. 43, we thus find that

1—(gur(t)) = i (14 cos(8)® — g...(0)) - (44)

Therefore, for all possible photon number distributions of the initial gases, the bunching within one half of the cavity
decreases with the distinguishability of the photons.
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