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Abstract 10 
During appraisal of an undeveloped segment of a producing offshore oilfield, three well penetrations 11 
revealed unexpected complexity and compartmentalization.  Business decisions on whether and 12 
how to develop this segment depended on understanding the possible interpretations of the 13 
subsurface.  This was achieved using the following steps that incorporated a novel practical 14 
application of Bayesian logic:  15 

1. Scenarios were identified to span the full range of possible subsurface interpretations. This 16 
was achieved through a facilitated cross-disciplinary exercise including external participants.  17 
The exercise generated 12 widely differing subsurface scenarios, which could be grouped 18 
into 4 types of mechanism:  slumping, structural, depositional and diagenetic. 19 

2. Prior probabilities were assigned to each scenario. These probabilities were elicited from the 20 
same subsurface team and external experts who performed (1), using their diverse 21 
knowledge and experience. 22 

3. The probabilities of each scenario were updated by evaluating them sequentially with 21 23 
individual pieces of evidence, progressively down-weighting belief in scenarios that were 24 
inconsistent with the evidence.  For each piece of evidence the likelihood (chance that the 25 
scenario could produce the evidence) was estimated qualitatively by the same team using a 26 
“traffic light” high-medium-low assessment.  Offline, these were converted to numerical 27 
likelihood values.  Posterior probabilities were derived by multiplying the priors by the 28 
likelihoods and renormalizing to sum to unity across all the scenarios. 29 

4. The most probable scenarios were selected for quantitative reservoir modelling, to evaluate 30 
the potential outcomes of business decisions, given each scenario. 31 

Of the 12 scenarios identified in step 1, most were strongly down-weighted by the sequential 32 
revisions against evidence in step 3; after this, only scenarios in the “slumping” group retained 33 
significant posterior probabilities.   The data showed minimal sensitivity to the initial assumption of 34 
prior probability in step 2. 35 

This process had several benefits.  Firstly, it encouraged the subsurface team to imagine a full range 36 
of scenarios that were likely to bracket the actual subsurface “truth”, something that is critical for 37 
subsequent decision making.   Secondly, it allowed belief in the probability of each scenario to be 38 
updated systematically in a way that was strongly conditioned to the evidence, so that the choice of 39 
scenarios to take through to reservoir modelling was more objective and evidence-based.  Thirdly, it 40 
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allowed an assessment of the usefulness of individual pieces of evidence, which could be used to 41 
guide value-of-information assessments for subsequent data acquisition.  Finally, the process 42 
enabled rigorous Bayesian revision methods to be applied in a simple practical way that engaged the 43 
subsurface team without exposing them to the underlying mathematics.  During field appraisal and 44 
development, when the subsurface is revealed gradually as more data are acquired and studied, the 45 
process outlined here provides a practical way of generating and modifying belief in a range of 46 
subsurface scenarios while minimizing exposure to potential biases and logical fallacies that could 47 
affect subsequent decision quality.  It also helps to decide which scenarios are sufficiently probable 48 
that they need to be represented by detailed reservoir models. 49 

 50 

Introduction 51 
Describing and understanding the subsurface of an oil and gas asset is necessarily an incremental 52 
process, as gradually more data become available through time.  For example, prior to exploration 53 
drilling, knowledge of the subsurface of a prospect may be based on seismic data and, if available, 54 
information from wells in other parts of the play.  After the exploration well has been drilled and a 55 
discovery has been made, new information is available from the well, increasing knowledge of the 56 
subsurface.  During appraisal, this may be augmented by improved seismic coverage and quality, 57 
more well penetrations, core analysis and well test data.  During development and production there 58 
will be further well penetrations and dynamic production data, all of which progressively increase 59 
the understanding of the subsurface, constraining the possible subsurface scenarios that could be 60 
present and their probabilities.  (Note that in this paper, the term “subsurface scenario” is used to 61 
describe a discrete internally consistent view of the subsurface) 62 

At each of these stages of field development various business decisions need to be made.   Making 63 
wise decisions using rigorous decision risk analysis methods requires a good quantification of 64 
uncertainty at each stage (Spetzler et al., 2016; SPE, 2016).   This paper examines the process by 65 
which knowledge of, and uncertainty in, the subsurface is updated as new data or the results of 66 
technical studies become available.  In particular, the question is addressed of how to apportion 67 
appropriate weight between previous existing information and the new information.   We focus on 68 
field appraisal, a time when there is usually a rapid influx of new information.   69 

There is a standard way of approaching such problems, using Bayesian updating (e.g. Van Wees et 70 
al., 2008; Willigers et al., 2013).  Nevertheless, examination of the relevant literature indicates that 71 
this is not routinely applied in practice in subsurface teams.  Possibly this is because the 72 
mathematics of probability is perceived as difficult, and the relevance of the Bayesian logic to real 73 
subsurface situations is not immediately evident to non-specialists. 74 

This paper describes a simplified intuitive Bayesian approach that, whilst being technically rigorous, 75 
is easy to adopt in practice by subsurface teams; this is demonstrated through a case study of the 76 
appraisal of an offshore oil field. 77 

 78 

Current pitfalls 79 
There are presently various pitfalls that can cause problems when trying to quantify changes to 80 
uncertainty in response to new information.  These are usually related to various motivational and 81 
cognitive biases that are well known to affect perceptions of uncertainty in general and of the 82 
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subsurface in particular (Milkov, 2015; Montibeller and von Winterfeldt, 2015; see also the chapter 83 
“Behavioral Challenges in Decision Making” in Bratvold & Begg, 2010).  Examples with potentially 84 
serious consequences for subsurface description include: 85 

Not identifying the full range of uncertainty.  Many surprises in field development and performance 86 
outcomes can be traced back to a subsurface scenario occurring that was never envisaged (Caers, 87 
2011).   Scenarios that have never been conceived cannot be planned for or managed.  This problem 88 
has its roots in biases such as overconfidence (we think we know more than we do) and anchoring 89 
(we have an irrational attachment to one particular scenario and thus consciously or sub-consciously 90 
ignore scenarios that are significantly different from this).   91 

Over-weighting prior information.  This is reflected in a reluctance to change from an existing view, 92 
despite new information to the contrary, resulting in an inaccurate assessment of remaining 93 
uncertainty.  This situation may be in some cases attributable to the degree of personal investment 94 
in current scenarios and models; if a large amount of resource has been expended to work up a 95 
scenario and to build static or dynamic models to represent it, there may be a “sunk cost” effect 96 
(Montibeller and von Winterfeldt, 2015) leading to a conscious or unconscious motivational bias to 97 
stick with the modelled scenario rather than creating more work by considering new scenarios. 98 

Over-weighting new information.  Having often worked hard to justify expensive data acquisition, 99 
and having invested in state of the art data, there may be a tendency to overweight information 100 
from this source compared to prior data.  This is a manifestation of the availability bias, where 101 
excessive weighting is given to information that is more easily called to mind or favoured.  This pitfall 102 
can lead to lurching from over-belief in one scenario to another with every new piece of information. 103 

These pitfalls can be avoided by adopting two measures: (1) Identifying the full range of subsurface 104 
scenarios at the outset, before building detailed reservoir models, through a facilitated cross-105 
disciplinary team exercise with representation from external experts, and (2) using a practical 106 
implementation of Bayes’ Rule to update the probabilities of each scenario so that the probabilities 107 
are appropriately supported by the available data.    Step 2 involves viewing relevant data and 108 
interpretations as individual pieces of evidence that can systematically be evaluated as to their 109 
likelihood of supporting each possible scenario.  The process described here is best applied at an 110 
early stage, before complex reservoir models have been created; it can be used to help decide which 111 
are the most probable subsurface scenarios need to be taken through to more detailed reservoir 112 
modelling.  The actual reservoir modelling is not addressed in this paper.   The theoretical basis for 113 
step 2 is described in the following section.  This process is then illustrated through a worked case 114 
study.   115 

 116 

Theoretical basis 117 
The purpose of this paper is to present an approach to Bayesian updating of probabilities that is 118 
accessible to subsurface teams.  We believe an important element in achieving engagement with 119 
such teams is to avoid the explicit use of mathematical formulae, and to keep the process visual, 120 
using images rather than numbers.   However, some background to the theoretical approach is 121 
useful.   122 

When updating probabilities based on new information, Bayes Rule is applicable: 123 
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P(S|E) = P(E|S) × P(S) / P(E)         (1) 124 

Where P(S|E) is the posterior (updated) probability of scenario S being true, given that evidence E 125 
has been observed; P(E|S) is the likelihood that, if scenario S was true, evidence E would be 126 
observed; P(S) is the prior probability of scenario S being true before evidence E has been 127 
considered, and P(E) is the probability of evidence E being observed. 128 

In practice, P(E) is often similar between the different scenarios that are being evaluated.  Bearing 129 
this in mind, and making the assumption that the identified subsurface scenarios cover the full range 130 
of possible subsurface realities, P(E) can be substituted by a normalising factor to ensure the 131 
posterior probabilities P(S|E) for all scenarios sum to unity.  This leaves: 132 

P(S|E)  P(E|S) × P(S)          (2) 133 

which can be read as the posterior probability being proportional to the likelihood multiplied by the 134 
prior probability (Lee, 2002). 135 

In the approach used here, the scenarios are identified first, making a concerted effort to include all 136 
possible scenarios.  Then a prior probability is assigned to each scenario based on expert opinion.  It 137 
is known that such probability estimation can be adversely affected by cognitive and motivational 138 
biases.   Steps are taken at this stage to minimise the effects of bias (e.g., Baddeley et al., 2004; 139 
Curtis & Wood, 2004).   140 

Next, a new piece of evidence is considered.  For this evidence, the likelihood is estimated by making 141 
the assumption that the scenario being considered is true, and then eliciting from experts the 142 
probability that the observed evidence could be explained by that scenario.  A likelihood of 1 means 143 
that the evidence is completely consistent with the what would be expected if the scenario was true, 144 
and 0 means that it is impossible that the scenario could have generated the observed evidence; 145 
there is, of course, a gradation in between these extremes.  The estimated likelihood is generated 146 
for each scenario and then multiplied by the prior probabilities.  The products for each scenario, 147 
when normalized to sum to one, become the posterior probabilities in equation 2.   This process is 148 
repeated sequentially for each piece of evidence.  At each step, the posterior from the previous 149 
iteration becomes the prior for the next. 150 

In practice, it is difficult to elicit a completely unbiased view of the initial prior probability.  However, 151 
if the process described above is repeated for numerous pieces of evidence, the posterior 152 
probabilities progressively become dominated by the evidence and less dependent on the initial 153 
assumed priors.  The scenarios that are the most probable, once they have been through several 154 
cycles of updating against the evidence, are the ones that may then be selected for more detailed 155 
quantitative reservoir modelling. 156 

Consideration of Equation 2 demonstrates the importance of identifying all relevant scenarios in the 157 
first place.  If not identified, their prior probability P(S) is effectively zero, and so new data can never 158 
change their probability. 159 

This process is now applied in a case study. 160 

 161 

 162 
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Case study from an undrilled segment of a producing oil field 163 

Background 164 
The methods described above were applied in a case study of an offshore oil field.  The field in 165 
question has been producing for over a decade.  This study focuses on the appraisal of an 166 
undeveloped fault-bounded extension to the producing field.  Figure 1 shows the expected fluid 167 
distribution in the potential field extension before appraisal drilling.  The area to be appraised was 168 
predicted to contain oil down to the regional oil-water contact (OWC) in all three of the known 169 
reservoir sands, by analogy with most of the rest of the field.  However, the presence of water could 170 
not be discounted, as an adjacent area shown in blue on Figure 1 had previously been found 171 
unexpectedly to contain water at a level structurally higher than the regional OWC.  Three appraisal 172 
penetrations were made in the field extension – the original hole (OH) plus sidetracks 2 and 3 (ST2, 173 
ST3); these are shown in map form on Figure 2 and cross section in Figure 3.   174 

The OH results came in largely as expected, with all three reservoir sands (upper, middle and lower) 175 
present and full to the base of the well with oil.  The sands were variably depleted from production 176 
in the main part of the field, and this was interpreted to indicate that the mapped fault separating 177 
the extension from the producing part of the field (Figs. 1 and 2) had only had a baffling effect to 178 
pressure transmission on a production timescale and would probably not form a significant barrier 179 
to oil flow over geological time (i.e. during reservoir filling).   180 

The results for ST2 and ST3 were much more complex than expected.  ST2 found oil in the upper 181 
sand, but water in the middle and lower sands.  Frustratingly, oil-water contacts were not observed, 182 
and it was not possible to determine whether the contacts differed significantly from the 183 
extrapolated regional OWC (Fig. 3).  Pressures were only slightly depleted in each sand, not as much 184 
as would have been expected if this part of the reservoir was well connected to the producing area 185 
of the field or to the OH, so the existence of production timescale flow restrictions between ST2 and 186 
the OH was interpreted.  The ST3 penetration was placed between ST2 and the OH, in an attempt to 187 
tag the OWC.  It encountered all three reservoir sands, with oil in the upper and middle sands, and 188 
water in the lower sand, but the highest known water in the lower sand was higher than the lowest 189 
known oil in ST2 (Fig. 3). The measured or inferred OWC depths (Fig. 3) are comparable with the 190 
regional OWC in ST2, but several hundred feet higher in ST3, indicating that the lower sands in ST3 191 
are isolated from the regional aquifer.  Using the analytical expression for equilibration of OWCs 192 
from Smalley and Muggeridge (2010), the OWC would be expected to equilibrate over the ~400m 193 
(1300 ft) inter-well distance in a few tens of thousands of years, so the preservation of OWC 194 
differences over geological timescales indicates a significant barrier between the lower sand in the 195 
OH and middle sand in ST3.  Pressures in ST3 were less depleted than in the OH, and yet more 196 
depleted than in ST2.   The differences in pressure depletion laterally within each sand indicate flow 197 
baffles between the wells on a production timescale. 198 

  199 

Water samples from the OH spun from core have higher salinities than those sampled from other 200 
parts of the field, including the regional aquifer; this also suggests that the OH is isolated from the 201 
main aquifer over a geological timescale, assuming that any mixing is driven by aquifer flow rather 202 
than much slower diffusion (Go et al., 2014).   203 
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Key development decisions needed to be made for this part of the field: for example, should it be 204 
developed at all?  If so, should it be developed as a subsea satellite tied back to the main field, or 205 
should it be developed by drilling from the existing platform? Would water injection be required and 206 
in what pattern?  Such decisions are strongly affected by the view of reservoir flow barriers and 207 
baffles, the potential mechanisms causing them, and how they might affect the distribution of fluids.  208 
This necessitated an examination of possible compartmentalization scenarios.  209 
Compartmentalization here refers to the presence of any features that could prevent (barriers) or 210 
inhibit (baffles) fluid flow on a production timescale, or on a geological timescale sufficient to affect 211 
fluid distribution.  212 

Step 1.  Identify scenarios 213 
Based on the data from the wells, a variety of subsurface scenarios were conceived that could 214 
potentially explain the mechanisms of reservoir compartmentalization.   215 

When identifying scenarios, motivational and cognitive biases can come into play.  An example of 216 
motivational bias might be that, because the field team have a stake in the project and may benefit 217 
from a successful development of the area being appraised, they may consciously or subconsciously 218 
skew the interpretations to be more favourable to development.  An example of a cognitive bias 219 
could be that the field team are anchored to an existing geological interpretation of the field, and 220 
thus fail to identify scenarios that vary significantly from this, thus underestimating the uncertainty 221 
in the subsurface.  222 

The effects of biases were minimized by assembling a multidisciplinary team who were familiar with 223 
the field, plus others who were familiar with the regional geology, but worked outside the field 224 
team.  In addition, external (to the region) experts were included.  The intent was that the inclusion 225 
of different disciplines and external expertise would reduce the chance that the group was anchored 226 
towards one particular type of interpretation.  The use of external experts who did not have a stake 227 
in the success of the project was designed to minimize motivational bias.  228 

The result was a very wide range of possible subsurface scenarios, listed in Table 1, which covered all 229 
of the key mechanisms that could cause the observed compartmentalization effects.  The scenarios 230 
fell into 4 groups, based on mechanisms related to (1) slumping, (2) faulting, (3) deposition or (4) 231 
diagenesis.  Each scenario was visualized by generating a simple graphic (Figs. 4-7) so that the team 232 
all had a common understanding of how that scenario could lead to the observed flow barrier and 233 
baffle effects.  234 

The four slumping related scenarios (1a-d) relate to movement soon after deposition due to various 235 
mechanisms (Fig. 4):   236 

 Scenario 1a involves small-displacement slumps triggered by movement off a 237 
paleobathymetric high causing imbricate faults that act as flow barriers. 238 

 Scenario 1b is where a retrogressive slump failure is initiated by channels down-cutting into 239 
earlier layers, creating a gravitational instability that causes movement over the top of an 240 
overpressured shale.  The resulting faults become flow barriers. 241 

 Scenario 1c is where a large-scale gravity slide down a regional bathymetric gradient is 242 
interrupted by encountering another high.  The resulting down-dip compression creates 243 
thrust faults that compartmentalize the reservoir.  244 
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 Scenario 1d involves rapid turbidite deposition onto unstable substrate which then initiates 245 
local subsidence, disruption and mud injection; in this scenario, it is the injected mud that 246 
creates flow barriers. 247 

The three faulting scenarios (2a-c) relate to structuration after deposition and consolidation of the 248 
reservoir sands (Fig. 5): 249 

 Scenario 2a invokes large faults between the appraisal wells that are sufficiently large to 250 
compartmentalize the reservoir but are just below the threshold for being visible given the 251 
resolution of the seismic data. 252 

 Scenario 2b involves zones of smaller-scale deformation between the wells, for example 253 
small faults that are well below the current seismic resolution (“sub-seismic faults”), 254 
deformation bands related to bending stresses, or boudinage in sands created by flexural 255 
slip in bounding shales. 256 

 Scenario 2c relates to tar-filled fractures, where overpressured source rock from depth has 257 
hydraulically fractured into the overburden, and created continuous, through-going, 258 
impermeable, bitumen-filled fractures. 259 

The stratigraphic scenarios (3a-c) involve depositional architecture creating compartments by means 260 
of off-lapping or down-cutting channels that are lined with shale. These are illustrated in Figure 6: 261 

 Scenario 3a has compartmentalization caused by zones of amalgamation in stacked channel 262 
deposits with long axes oriented normal to the line of appraisal wells.   In this scenario, there 263 
are short-distance facies variations and clay-prone sands and silts deposited towards the 264 
edges of the channels. 265 

 Scenario 3b involves shale drapes over compensation lobes.  In this scenario, the reservoir 266 
sands would be deposited towards the edges of submarine fans where sands are less 267 
channelized and shales with larger lateral extent can be developed and preserved.  The 268 
preserved shale drapes cause the compartmentalization. 269 

 Scenario 3c is where turbidite deposition is influenced by paleotopography of the sea bed.  270 
Syn-depositional paleobathymetric relief caused decreased flow velocity as the turbidites 271 
approached the topographic high.  Finer material was preferentially deposited along 272 
particular zones, degrading reservoir quality sufficiently to affect reservoir connectivity. 273 

Two diagenetic scenarios were also identified (4a,b), illustrated in Figure 7: 274 

 Scenario 4a is where the aquifer is heavily cemented and the resulting low permeability 275 
creates a bottom seal, inhibiting pressure support from the aquifer being transmitted to the 276 
wells. 277 

 Scenario 4b involves differential diagenesis.  Small scale variations in primary sediment 278 
composition or subsurface conditions (e.g. waters moving up fractures) enhanced diagenesis 279 
(e.g. quartz or carbonate cementation) in certain areas, causing permeability reduction 280 
between the well locations. 281 

The team was confident that this wide range of diverse scenarios covered all the possible 282 
compartmentalization mechanisms that could account for the observations from the appraisal wells. 283 

 284 
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Step 2. Assign prior probabilities 285 
Based on experience from elsewhere in the field, and in the wider region, it was evident to the team 286 
that the 12 scenarios identified were not equiprobable, so the probability of each scenario was 287 
estimated.  This was done in a workshop environment facilitated by an expert in probability and 288 
uncertainty.  The team was made aware of cognitive biases that can influence the behaviour of 289 
groups, such as anchoring, the authority fallacy, herding and trust heuristics (Milkov, 2015).  To 290 
minimize these effects, the prior probabilities for each scenario were estimated individually by 291 
members of the multi-disciplinary team in isolation.  Their estimates were then averaged after 292 
eliminating anomalies, rather than being adjusted by group consensus.  The probabilities were then 293 
normalized to sum to one across all the scenarios.   These estimated prior probabilities are shown in 294 
Table 1.  Clearly, the scenarios related to slumping were seen as the front runners, followed by 295 
scenario 2a that invoked larger but un-imaged faults.   296 

The sensitivity to the estimates of prior probabilities is examined later, as are possible improvements 297 
to the estimation methodology. 298 

 299 

Step 3.  Update probabilities by sequential consideration of evidence 300 
The scenarios identified in step 1 and assigned prior probabilities in step 2 were then tested against 301 
various pieces of evidence – observations and interpretations derived from a range of data types, 302 
shown in Figure 8.  For each piece of evidence, the subsurface team as a facilitated group made a 303 
qualitative estimate of the likelihood (i.e. P(E|S) in Equation 2) that each scenario could be capable 304 
of generating that evidence, by assigning a traffic-light (red, yellow or green) colour to each 305 
evidence-to-scenario combination.  An assessment of “red” means that it is judged highly unlikely 306 
that the scenario could have generated the observed evidence, yellow means that it is somewhat 307 
likely, and green means that the evidence is exactly what would be expected if the scenario were 308 
true.  In addition, some pieces of evidence were marked as “grey”, where it was felt that the 309 
scenario had no bearing on the evidence.   310 

The first 19 pieces of evidence were available at or soon after the time that the scenarios were 311 
identified.  Sometime later, reprocessed seismic data became available which had better resolution 312 
and definition, allowing improved imaging of the reservoir layering and faulting, which were two key 313 
uncertainties.  This dataset provided two important new pieces of evidence.  In map view, the two 314 
down-dip sidetracks were seen to be situated in an almond-shaped area of poor and disturbed 315 
reflectivity.  In cross section view, the boundary between the disturbed and background reflectivity 316 
was interpreted as a scoop-shaped detachment.  Both pieces of evidence were judged as consistent 317 
with the slumping-related scenarios, but inconsistent with the faulting-, deposition- and diagenesis-318 
related scenarios, leading to red traffic light assessments (Fig. 8). 319 

To use the evidence to update quantitatively the probabilities for each scenario, it was necessary to 320 
convert the indicative traffic light colours (Fig. 8) into numerical likelihood values.  This was done 321 
offline, after the elicitation workshops described above.  In this analysis, the following assumptions 322 
were made. “Red” was assigned a likelihood of 0.1, indicating that it was unlikely that the evidence 323 
could be consistent with the scenario.  Note that no zero likelihoods were assigned; this would have 324 
rendered the posterior probability for the affected scenario as zero, and this was seen as 325 
unreasonably definite given the uncertainty involved in all of the pieces of evidence.  “Yellow” was 326 
assigned a value of 0.7, and “Green” was given a 1.0, signifying complete consistency between the 327 
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scenario and the evidence.  “Grey” was also assigned a likelihood of 1, as lack of relevance should 328 
not be regarded as positive evidence against a scenario.  The likelihoods are shown on Figure 8. 329 

Using these likelihoods, the probabilities of each scenario were updated sequentially for each piece 330 
of evidence, i.e. in 21 steps.  In each step, the previous posterior probability was used as the new 331 
prior, this prior was multiplied by the likelihoods (Fig. 8), and the products normalized to sum to one 332 
across all the scenarios, following Equation 2.  With the application of each piece of evidence the 333 
relative probabilities of each scenario changed (Fig. 9).   334 

After the first 19 pieces of evidence, that is having considered all the data initially available, but prior 335 
to the reprocessed seismic data becoming available, the scenario with the highest probability was 2a 336 
(large faults) at 0.45, followed by the slumping-related scenarios 1a and 1b.  The large faults scenario 337 
(2a) involves having faults large enough to compartmentalize the reservoir and cause the observed 338 
variations in pressure and fluid distributions, but just below seismic resolution.  The reprocessed 339 
seismic information was thus a potentially critical piece of evidence, as the improved resolution of 340 
the reprocessed seismic data could have revealed such faults.  Despite its higher resolution there 341 
was still no evidence for such faulting from the reprocessed seismic data.  The likelihood that 342 
scenario 2a could explain the observations from the reprocessed seismic data (evidence 20, scoop-343 
shaped detachment, and evidence 21, arcuate low reflectivity zone) was thus expressed as a “red” 344 
(Fig. 8).  The depositional and diagenetic scenarios (3a-c, 4a-b) similarly are unable to explain these 345 
observations.  On the other hand, the reprocessed seismic observations were consistent with the 346 
slump-related scenarios 1a-c, though less consistent with 1d (local subsidence), which would have 347 
been unlikely to have resulted in the scoop shaped detachment.   The result of applying the two 348 
critical pieces of evidence (items 20 and 21 on Fig. 8) was thus quite dramatic, in that the slumping-349 
related scenarios 1a and 1b rose to become the most probable scenarios (~0.4 each), overtaking the 350 
large fault scenario 2a, which dropped from a prior probability (after 19 iterations) of 0.45 to a 351 
posterior probability (after 21 iterations) of ~0.1 (Fig. 9). 352 

Note that the probability aggregation process, being purely multiplicative, is unaffected by the order 353 
in which the pieces of evidence are considered.  Whatever the order, the final posterior probabilities 354 
are the same.  355 

The posterior probabilities were used to guide the choice of which scenarios to take forward into 356 
geocellular and reservoir simulation models.  These were, in turn, used to help make development 357 
decisions about this field segment.  358 

 359 

Discussion 360 

Sensitivities 361 
The approach used here for estimating the probabilities of the identified subsurface scenarios –  by 362 
estimating an initial prior probability for each scenario, and then using sequential Bayesian updating 363 
against different types of evidence to generate improved posterior probabilities – is potentially 364 
sensitive to two probability estimations: (1) the initial prior probabilities, and (2) the numerical 365 
likelihood values assigned to the qualitative likelihood assessment (i.e. red, yellow, green in Fig. 8).   366 

In the analysis presented so far, and shown in Fig. 9, the initial prior probabilities were estimated by 367 
the subsurface team using judgement, based on their own experience and knowledge of the field 368 
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and region.  Whilst steps were taken to try to minimize motivational and cognitive biases (e.g. 369 
including the views of independent external experts), assessing prior probability remains a 370 
problematic area (e.g., Baddeley et al., 2004; Curtis & Wood, 2004).  To test the sensitivity to the 371 
priors, the sequential Bayesian updating was repeated but using different values for the priors.  372 
Figure 10 shows one such case where the scenarios were initially assumed to be equally probable.   373 

Comparison of Figures 9 and 10 shows that for the first few iterations the probabilities are strongly 374 
influenced by the assumed prior probabilities.  With subsequent iterations the initial prior becomes 375 
less of a control, and the probabilities become dominated by the cumulative effect of the Bayesian 376 
updates.  This means that, by including many types of evidence, and thus many iterations of 377 
sequential Bayesian updating, the scenario probabilities become strongly aligned with the 378 
interpretations of the individual pieces of evidence.  This is desirable, as this will be less susceptible 379 
to the possible systematic biases affecting the prior probability estimation. 380 

Sensitivities were also run on different assignments of numerical values to the red, yellow or green 381 
assessments (Fig. 8).  The results (not shown) indicate some effect on the absolute scenario 382 
probabilities, but minimal effect on the relative order of the scenario probabilities.  Indeed, for all 383 
reasonable values, the top 5 most probable scenarios were the same.  As long as the conversion 384 
from qualitative to numerical values is applied consistently, this should not be a dominant factor on 385 
the outcomes and the subsequent business decisions made as a result. 386 

Identifying the full range of scenarios 387 
Making good field development decisions, and managing the risks around the outcomes of such 388 
decisions, demands a good understanding of the relevant subsurface uncertainties.  A common 389 
problem with subsurface modelling (described for example in Caers, 2011) is that the full range of 390 
uncertainties is not fully comprehended; consequently, they are not incorporated into reservoir 391 
uncertainty modelling, resulting in non-optimal decisions and surprise business outcomes.  392 
Anecdotal evidence points to two possible causes for this.  Firstly, anchoring – where one particular 393 
subsurface scenario dominates, perhaps because it was the first one thought up, or because it 394 
reflects the interpretational experience of the individuals in the subsurface team (Bond et al., 2002).  395 
With anchoring, the team finds it difficult to imagine different scenarios because they are anchored 396 
to the existing one.  A second potential cause is perhaps more of a motivational bias related to a 397 
sunk cost effect – where a complex reservoir model already exists and has had much investment of 398 
resources to build and calibrate it.  Within the existing model it may be possible, or even easy, to 399 
investigate the impact of some uncertainties by running numerous cases where the uncertain input 400 
values are varied.  However, it may be very difficult to model truly different subsurface scenarios, as 401 
this could demand building completely new models.  Thus, the motivational bias, whether conscious 402 
or subconscious, is to restrict the imagination of alternative scenarios that cannot be represented by 403 
the existing model. 404 

For good decision making and risk management, it is crucial that the subsurface “truth” lies within 405 
the imagined range of possibilities (Spetzler et al., 2016).  If the “truth” lies outside the imagined 406 
range, there is a large scope for poor decisions and unpleasant surprise outcomes.  Consequently, 407 
perhaps the most important part of the process outlined in this paper is the scenario identification 408 
step.  It is critical that this looks wide enough to ensure that all subsurface possibilities are 409 
embraced.  The benefit of the current process is that any number of scenarios can be imagined 410 
without inhibition, safe in the knowledge that: (a) the sequential Bayesian updating process will 411 
systematically narrow the wide initial range of scenarios (12 in the present case study) down to a 412 
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smaller, more manageable number, before starting to build reservoir models; and (b) that this will 413 
be done in an objective manner, strongly linked to evidence from subsurface observations and 414 
measurements.   This process thus helps to mitigate the aforementioned biases.  415 

The impact of different data types  416 
The way in which a particular type of data affects the understanding of the subsurface is readily 417 
gleaned from Figure 8. Data that are not relevant to a particular scenario (grey in Fig. 8) have no 418 
effect on the posterior probability of that scenario.  Where this is repeated across many scenarios, 419 
that piece of evidence is less valuable, relative to other data types that have a stronger effect on the 420 
posterior probabilities.  Perhaps counter-intuitively, though, observations that are consistent with a 421 
particular scenario also do not necessarily effect its posterior probability greatly; with a likelihood of 422 
1 (green on Fig. 8) these are equivalent to irrelevant grey data.  On the other hand, “red” evidence 423 
that cannot be explained by a particular scenario can have a great effect (reduction) on its posterior 424 
probability, and data that do this across many scenarios are of particular value in constraining 425 
uncertainty.  Thus, the product of the likelihoods for each piece of evidence across all scenarios is an 426 
indication of how useful that evidence was in distinguishing between the scenarios.  For the 427 
different types of evidence in Figure 8, the products of the likelihoods vary from 5x10-10 to 1 (Table 428 
2), with the most useful (lowest likelihood product) being evidence derived from the reprocessed 429 
seismic data. 430 

It would be very interesting and useful to gather such likelihood data over many studies in a wide 431 
range of situations to create a database of types of evidence and their potential usefulness for 432 
constraining different types of subsurface scenario.  This would be of benefit for designing data 433 
acquisition programs, which could use such analogue information to determine what data would 434 
have the greatest chance of providing good evidence to constrain the subsurface uncertainties.  This 435 
could provide a quantitative basis for estimates of data reliability that are needed for Value of 436 
Information studies (e.g. Coopersmith & Cunningham, 2002; Grose & Smalley, 2017). 437 

Potential improvements to the process 438 
Elicitation of priors.  In the current implementation of the process, the prior probabilities of each 439 
scenario were generated by estimations from team members.  No weighting was used, so each team 440 
member’s estimate was given equal weight.  Theoretically, the most correct way of doing this is to 441 
rank the individual experts in terms of their estimating reliability (e.g. Bordley, 1982) or the quality 442 
of the estimating heuristics they use (Baddeley et al., 2004), and weight their estimates accordingly 443 
(see Delfiner, 2008, for a practical example).  However, the effectiveness of weighting depends on 444 
the ability of the overall process facilitator to assign objective reliable weighting to each contributor 445 
(Bolger and Rowe, 2015), which is exceedingly difficult in any situation, but more so in a subsurface 446 
team consisting of multiple disciplines, backgrounds and experiences.  Without reliable weightings, 447 
weighted aggregations of probabilities are not significantly better than unweighted aggregations.  As 448 
Bolger and Rowe (2015, p10) observed, “good things do not come to those who weight”!  In any 449 
case, in the current process, the updating of prior probabilities with numerous steps of Bayesian 450 
updating renders the final posterior probabilities insensitive to the initial assumption of priors 451 
(compare Figures 9 and 10).  We thus do not see benefit from expending resources in generating 452 
weightings for the prior probability estimates.  The current method of using averaged individual 453 
estimates, rather than a group consensus, avoids many of the issues with estimating in groups (e.g. 454 
Delfiner, 2008) and is a good practical compromise. 455 

 456 
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Elicitation of likelihoods.   For each piece of evidence that was considered, the team made a 457 
judgement concerning each scenario in turn: if the scenario was true, what would be the likelihood 458 
that the evidence would be observed.   In the current case study, this was done in a facilitated group 459 
meeting.  Such situations are potentially vulnerable to various group biases (e.g. Baddeley et al., 460 
2004), though this was mitigated to some degree by using trained facilitators well acquainted with 461 
such potential biases.   As discussed previously for elicitation of prior probabilities, a more rigorous 462 
approach would be to use likelihood estimates from individuals, and weight these according to their 463 
expertise.  However, without actual data on the reliability of predictions from each individual, this 464 
would be subjective.  Furthermore, the process would be highly complex, with the reliability of each 465 
team member having to be judged for all 21 individual types of data being considered, potentially 466 
hundreds of permutations.  We currently feel this complexity would be counter-productive.  Our use 467 
of the simple traffic-light system scoring system for likelihood estimation (Fig. 8) is not only 468 
extremely simple, but avoids many of the issues with quantitative probabilistic elicitations because 469 
the three categories (red, yellow, green) are sufficiently distinct that the appropriate category is 470 
usually fairly obvious.  However, a future possibility would be to track the probability estimating 471 
record of individuals through multiple exercises, so that their estimates could be calibrated and 472 
weighted appropriately using unobtrusive software tools that did not interfere with the flow of the 473 
team workshop. 474 

 475 

Quantification of likelihoods.  In the current process, likelihoods are elicited as red, yellow or green 476 
categories, as described above, and these are translated offline to numerical values (0.1, 0.7 and 1.0 477 
respectively).   A future improvement could be to develop a more rigorous process for converting 478 
the categories to numbers, which could potentially incorporate different numerical scales for 479 
different types of data.  The principles of fuzzy logic (Zadeh, 1978) may be helpful in this regard, 480 
though the mathematics would need to be performed in the background to avoid compromising the 481 
simple flow of the process for subsurface teams. 482 

 483 

Aggregation of probabilities.  In the approach used here, the likelihood estimated for each piece of 484 
evidence is incorporated simply by applying Equation 2 iteratively.    The final posterior probabilities 485 
are then the products of the arrays of prior probabilities and likelihoods.  While some authors have 486 
used broadly similar methods (e.g. Curtis and Wood, 2004), some have proposed more sophisticated 487 
methods to aggregate probabilities (e.g.  Bordley, 1982; Allard et al., 2012).  More sophisticated 488 
aggregation techniques are advantageous for two main reasons: (1) they allow weighting of inputs 489 
from different estimators based on their reliability; and (2) they can account for data redundancy 490 
related to the lack of independence between some of the pieces of evidence, and indeed between 491 
members of the team providing the estimates of prior probabilities and likelihoods.   492 

We do not believe more sophisticated probability aggregation would have added significant value in 493 
the present case, but this is something that could be considered in the future.  For the first 494 
advantage to materialize, the participants in probability estimation would need to be calibrated as to 495 
their prediction reliability as described above.  For the second advantage, data redundancy between 496 
the participants would also need to have been assessed as to their individual areas and depths of 497 
expertise, something that is possible, though could be complicated by the confidentiality of personal 498 
data.  Redundancy between different types of data should be a more tractable issue, requiring 499 
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research to generate a table of dependencies between data types that could be built in to the 500 
selected probability aggregation algorithm. 501 

With any future improvements to the process, it is crucial that any complex calculations are kept 502 
“behind the scenes” and do not impact the enthusiasm and focus of the subsurface team or the flow 503 
of the workshops used to implement the process.  Unless the process is seen as simple, it will 504 
probably not be used at all. 505 

 506 

Conclusions 507 
Statistical techniques such as sequential Bayesian updating may seem intimidating for non-508 
mathematicians, a possible reason why it has not been widely adopted by subsurface teams.   This 509 
paper demonstrates a technique that applies Bayesian logic in a practical manner that is visual, 510 
rather than being overtly mathematical, and is thus easily engaged with by subsurface teams.  The 511 
process frees teams to imagine a wide range of subsurface scenarios covering the full range of 512 
possible Earth realities, in the knowledge that these can subsequently be systematically reduced to a 513 
more manageable set of scenarios that are constrained objectively by evidence.  After assigning 514 
prior probabilities to each scenario based on current knowledge and professional judgement, the 515 
sequential Bayesian updating method is easily applied in a team setting using a qualitative traffic-516 
light approach to indicate likelihoods for the data (probability that the scenario could have 517 
generated the observed evidence).  These can subsequently be converted to a quantitative scale by 518 
assigning numerical values to each traffic light colour.  The likelihoods are multiplied by the prior 519 
probabilities and renormalized to sum to one across all of the scenarios to generate posterior 520 
probabilities.  This process is iterated for many types of evidence (21 in the case study presented), at 521 
each iteration the posterior from the previous iteration becoming the prior for the next.  The final 522 
posterior probabilities for each scenario are strongly constrained by the available evidence, making 523 
maximal use of all the available data, and being insensitive to the initial prior probability 524 
assessments.  The product of the likelihoods for each piece of evidence is a measure of their 525 
usefulness, a useful input to value-of-information studies. 526 

This process is proposed as a practical, consistent and objective process to prioritize subsurface 527 
scenarios to take forward for subsequent more detailed static and dynamic reservoir modelling. 528 
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Tables 608 
 609 

Group Scenario 
Prior 
probability 

1. Slumps 1a. Slumps off bathymetric high 0.231 
  1b. Undercut regressive slope failure 0.202 
  1c. Thrusts caused by gravity slide 0.116 
  1d. Local subsidence of unstable substrate 0.169 
2. Faults 2a. Large but un-imaged faults 0.116 
  2b. Smaller scale deformation 0.012 
  2c. Tar-filled fractures 0.012 
3. 
Sedimentologic 
and 
stratigraphic 3a. Zone of amalgamation 0.029 
  3b. Compensation lobes with continuous shale drapes 0.029 
  3c. Paleotopography 0.058 
4. Diagenesis 4a. Cemented aquifer 0.012 
  4b. Differential diagenesis 0.012 

 610 

Table 1. Scenarios imagined to explain the observed reservoir compartmentalization, and their 611 
assigned prior probabilities. 612 

 613 

Evidence Product of 
likelihoods 

New seismic data: scoop shaped detachment 5E-10 
New seismic data: arcuate low reflectivity zone 2E-08 
Pressure: inter-well baffling 2E-02 
OWC 3E-02 
Uniform stratigraphy 8E-02 
Basin boundary 1E-01 
Faults above reservoir 1E-01 
Amplitude dim 1E-01 
Shale correlation 1E-01 
High curvature 2E-01 
Previous faults missed 2E-01 
Sub-regional isochore 2E-01 
Local isopach map 2E-01 
Uncharged clayey interval 2E-01 
Tar presence 3E-01 
Field analogues 3E-01 
Analogue fault style 5E-01 
Missing section 5E-01 
Tar conduits 5E-01 
Deformation in fast-track seismic data 1E+00 
Pressure ramp; overpressured shales 1E+00 

 614 

Table 2. Products of likelihoods across all 12 scenarios, sorted from lowest to highest. The evidence 615 
with the lowest values have the greatest constraints on the posterior probability of the scenarios. 616 
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Figure 1 618 

 619 

Figure 1. Reservoir structure map showing interpretation prior to appraisal drilling results. The map 620 
shows major seismically-visible faults (heave gaps shown as brown), with compartments coloured by 621 
pore fluid: green is known oil, blue is known water. In the area being appraised the colors follow a 622 
common risk segment map convention:  yellow is moderate risk of encountering water, red is a high 623 
risk of encountering water. Grey denotes probable water below the sub-regional oil-water contact. 624 
The blue circle is a water penetration. The shade of colour relates to reservoir depth; darker shades 625 
are deeper.  The contour interval is 500 ft (150 m).  The scale bar is 1km (0.62 mile). 626 

  627 
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Figure 2 628 

 629 

Figure 2. Reservoir structure map showing an interpretation after the appraisal drilling results, but 630 
before the current study was performed. Legend as for Figure 1. The appraisal penetrations are 631 
shown: black square is wellhead, black circles are bottomhole locations of the original hole (OH) and 632 
sidetracks 2 and 3, black lines are well paths.  The contour interval is 500 ft (150 m).  The scale bar is 633 
1km (0.62 mile). 634 

 635 

  636 
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Figure 3 637 

 638 

Figure 3. Cross section, roughly NNW-SSE, through the bottomhole locations of the three appraisal 639 
penetrations (OH = original hole, ST2 = sidetrack 2, ST3 = sidetrack 3), showing encountered fluid 640 
type (green is oil, blue is water, hatched green is unknown).  HKW = highest known water; LKO = 641 
lowest known oil. 642 

 643 

 644 

Figure 4 645 

 646 

Figure 4. Cartoons illustrating the possible conceptual subsurface scenarios related to slumping. (A) 647 
Slumps off a bathymetric high; (B) Undercut regressive slope failure; (C) Thrusts caused by gravity 648 
slide; (D) Local subsidence of unstable substrate. 649 

  650 



22 
 

Figure 5 651 

 652 

Figure 5. Cartoons illustrating the subsurface scenarios related to faulting. (A) Large but un-imaged 653 
faults; (B) Smaller scale deformation; (C) Tar-filled fractures. Well trajectories shown in red. 654 
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Figure 6 655 

 656 

Figure 6. Cartoons of subsurface scenarios related to deposition. (A) Zones of amalgamation; (B) 657 
Compensation lobes with continuous shale drapes; (C) Paleotopography.  658 
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Figure 7 659 

 660 

Figure 7. Cartoons of subsurface scenarios related to diagenesis. (A) Cemented aquifer; (B) 661 
Differential diagenesis. 662 

 663 

  664 
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Figure 8 665 

 666 

Figure 8. Matrix showing the subsurface scenarios (columns) and pieces of evidence (rows). The 667 
colours relate to the traffic light scores initially assigned (green – evidence highly likely from 668 
scenario; yellow – evidence fairly likely; red – evidence unlikely; grey – evidence contains no 669 
information related to the scenario). The numbers are the scores that were later assigned to the 670 
traffic light colours. Items 20 and 21 were derived from reprocessed seismic data sometime later 671 
than the other evidence. 672 
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2 Local isopach map 1 1 1 1 1 1 0.7 0.7 0.7 1 1 0.7

3
Deformation in fast-track 
seismic

1 1 1 1 1 1 1 1 1 1 1 1

4 Pressure: inter-well baffling 1 1 1 1 1 1 1 0.7 0.7 0.7 0.1 0.7

5
Pressure ramp; 
overpressured shales

1 1 1 1 1 1 1 1 1 1 1 1

6 Basin boundary 0.7 0.7 1 0.7 1 1 1 0.7 1 1 0.7 0.7

7 Uniform strat 0.7 0.7 0.7 0.7 1 1 1 0.7 1 0.7 1 0.7
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New seismic data: scoop 
shaped detachment
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low-reflectivity zone
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Figure 9 675 

 676 

Figure 9. The probability of each subsurface scenario, showing how the view of their probability 677 
evolves when considering each individual piece of evidence, and applying the likelihoods shown in 678 
Figure 8, in the same order. The initial probabilities (at step 0) are the prior probabilities for each 679 
scenario assigned by the subsurface team. 680 

 681 

Figure 10 682 

 683 

Figure 10. The probability of each subsurface scenario, showing how the view of their probability 684 
evolves when considering each individual piece of evidence, and applying the likelihoods shown in 685 
Figure 8. This differs from Figure 9 in that the initial probabilities (at step 0) are here assumed to be 686 
equal for each scenario (i.e. assuming no prior information). The results after 21 iterations compare 687 
closely with those of Figure 9. 688 
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