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16S ribosomal-ribonucleic acid polymerase chain reaction (PCR) and targeted PCR aid microbiological
diagnosis in culture-negative clinical samples. Despite routine clinical use, there remains a paucity of
data on their effectiveness across a variety of clinical sample types, and cost-effectiveness. In this 4 year
multicentre retrospective observational study, all clinical samples referred for 16S PCR and/or targeted
PCR from a laboratory network serving seven London hospitals were identified. Laboratory, clinical,
prescribing, and economic variables were analysed. 78/607 samples were 16S PCR positive; pus samples
were most frequently positive (29/84; p < 0.0001), and CSF least (8/149; p=0.003). 210/607 samples
had targeted PCR (361 targets requested across 23 organisms) with 43/361 positive; respiratory
samples (13/37; p=0.01) had the highest detection rate. Molecular diagnostics provided a supportive
microbiological diagnosis for 21 patients and a new diagnosis for 58. 14/91 patients with prescribing
information available and a positive PCR result had antimicrobial de-escalation. For culture-negative
samples, mean cost-per-positive 16S PCR result was £568.37 and £292.84 for targeted PCR, equating
to £4041.76 and £1506.03 respectively for one prescription change. 16S PCR is more expensive than
targeted PCR, with both assisting in microbiological diagnosis but uncommonly enabling antimicrobial
change. Rigorous referral pathways for molecular tests may result in significant fiscal savings.

Molecular diagnostics have significantly enhanced laboratory ability to detect and identify bacteria in clinical
samples’? Whilst bacterial culture is considered the gold standard for microbiological diagnosis, there may be
a 24-48hour delay in providing a result for typical organisms and longer for slow-growing organisms such as
Mycobacteria spp®. Furthermore, false negative culture results may arise from fastidious organisms, non-viable
bacteria, or prior use of antimicrobials, potentially affecting patient management.

Two methods of Polymerase Chain Reaction (PCR) are recommended as supplementary tests by the United
Kingdom Standards of Microbiology Investigations (SMI); targeted PCR and 168 ribosomal ribonucleic acid
(rRNA) PCR*. 16S PCR is a pan-bacterial molecular diagnostic test™, whilst targeted PCR looks for a finite range
of organism targets where specific pathogenic organisms are suspected’. Identification of causative organisms
through targeted PCR or 16S PCR may influence clinical management decisions, serving to support or provide a
microbiological diagnosis or impacting antimicrobial prescribing decision-making®®.

The utility of 16S PCR in identifying causative organisms from specific sterile site samples has been demon-
strated in multiple isolated clinical syndromes'*-'>. The wider utility of 16S PCR has been evaluated by Rampini
et al.'®, who demonstrated a sensitivity and specificity of 42.9% and 100% for culture-negative bacterial infections
respectively. This study did not evaluate the functionality of this test based on sample type and we hypothesise
this will significantly impact the test’s utility. More recently, Tkadlec et al.? published a prospective study on the
added value of 16S PCR by sample type, demonstrating additional benefit with joint and heart valve samples. The
samples included in this study however were limited and predominantly blood cultures (62%), furthermore it is
not a study of culture-negative samples and not reflective of real-world use of this test. The utility of targeted PCR
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in assisting the diagnosis in other clinical scenarios has been demonstrated, but lack data on whether samples
were culture-negative specimens, the cost to the referring laboratories, or clinical utility>!”.

We conducted a retrospective observational study to identify all samples referred for 16S PCR and subse-
quently targeted PCR from a large centralised NHS (National Health Service) clinical laboratory serving seven
hospitals and analysed the frequency of positive results based on sample type, the appropriateness of testing, clin-
ical utility in providing diagnoses and enablement of antimicrobial de-escalation, and the cost-per-positive result.

Methods

Study design. A retrospective observational study was undertaken to evaluate the utility of 16S PCR and
targeted PCR in an NHS laboratory network setting (a centralised laboratory in a hub-and-spoke model). The
study was conducted in accordance with the Helsinki declaration and reported in line with STROBE guidelines.

Setting. North-west London Pathology (NWLP) provides centralised clinical laboratory services to seven
London hospitals and over 100 primary healthcare facilities caring for a population of over two and a half mil-
lion patients. The seven hospitals provide tertiary referral neurosurgery, neurology, cardiothoracic, nephrology,
haematology, ophthalmology, vascular, hepatobiliary, orthopaedic, trauma, plastics, burns, paediatric, infec-
tious diseases, and neonatal services. Across all sample types, approximately 850,000 clinical samples for culture
and susceptibility are processed annually, resulting in approximately 150,000 clinical isolates per annum back
to clinicians. Transit times from referring hospitals to the centralised microbiology laboratory are on average,
less than 24 hours. UK SMI standard operating procedures (SOPs) are observed with minor local variation'®.
Microbiological culture is processed in house, with bacterial identification undertaken using matrix assisted
laser desorption/ionisation-time of flight (Biotyper, Bruker). Susceptibility testing is undertaken using European
Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints'®. The laboratory is accredited
through the United Kingdom Accreditation Service. As with many laboratories, targeted PCR for specific bac-
terial pathogens and 16S PCR is not performed in-house, but referred to third-party providers. NWLP sends
samples to Great Ormond Street Hospital, Micropathology Limited, and Public Health England for both tests.
These reference laboratories use proprietary in-house methods for extraction and PCR. Samples are only referred
for molecular diagnostics on the decision a Medical Microbiologist or Infectious Disease specialist involved in
that case. The decision of the Medical Microbiologist or Infectious Diseases specialist to agree to the tests or not
was based upon the composite clinical picture and the a priori likelihood of clinical utility from these tests (i.e.
testing for non-clinical research purposes was not conducted). Samples may concurrently be sent for further
extended culture-based diagnostics (including enrichment broths, and extended fungal, filamentous bacteria, or
mycobacterial culture media).

Data collection. The laboratory information management system (Sunquest v 8.2) was interrogated to iden-
tify all samples referred from NWLP for 16S or targeted PCR during four fiscal years, April 2015 to April 2019.
Culture results from concurrent samples sent during the clinical episode were reviewed. Patient records were
examined to identify prescription impact from positive PCR results. Samples sent just to assist identification of
a cultured organism, or those referred but not sent, were excluded from this study. Data was collected using a
data collection tool with demographic, laboratory, and clinical fields. Patient data was anonymised at the point
of collection.

Data analysis. Samples sent for 16S PCR and targeted PCR were delineated by sample type, and where posi-
tive, the organism identified. Molecular and culture results were compared, and a comparison made in PCR pos-
itivity between different sample types. Samples analysed included joint fluid, tissue specimens, CSE, pus, pleural
fluid, pericardial fluid, peritoneal fluid, bone marrow, bronchioalveolar lavage (BAL) fluid, blood, vitreous fluid
and urine. Statistical analysis was carried out using STATA IC 13 (College Station, TX), with Chi squared (and
Fisher’s exact where necessary) tests.

Definitions. Inappropriate referral for molecular diagnostics was based on samples referred despite culture
positivity. Time-to-result was calculated using the time sample was received in the laboratory and when the result
was released to clinicians by the Medical Microbiologist. A supportive microbiological diagnosis by molecular
diagnostics was a result concordant with another culture sample from the patient. A new microbiological diagno-
sis was defined as a molecular diagnostic result which identified a new clinically relevant bacterial species (i.e. not
previously known from any samples from the patient). A clinically significant antimicrobial change was defined
as a prescription change to a more efficacious or narrow-spectrum antimicrobial based on molecular diagnostic
result. An alternate diagnosis preferred to the positive 16S PCR or targeted PCR result was noted when docu-
mented by the clinical team in the patient record. The cost of sample handling, transport, and processing at the
reference laboratories for 16S (£51.50) and targeted PCR (£52.99) samples was derived from billing charges and
averaged across the three referral laboratories used.

Ethics approval and consent to participate. Informed consent was not required as anonymised data
was extracted from data collected as part of routine clinical care. Approval was gained for the project as a service
evaluation from the Research and Governance Department at North-west London Pathology at Imperial College
Healthcare NHS Trust (ref: MCB_002).
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666 samples referred for
16S rRNA PCR testing

e 55 samples sent to assist identification
of a known bacterial growth.
e 4 samples referred but not sent

607 samples for 16S
rRNA PCR included

210 samples also sent for
targeted PCR

529 samples returned
negative for 16S rRNA

170 samples returned
negative for targeted PCR

78 samples returned
positive for16S rRNA PCR

40 samples returned
positive for targeted PCR

9 samples positive by
targeted PCR and 16S
rRNA PCR

23 samples positive for
culture prior to referral

2 samples positive for
culture prior to referral

Figure 1. Sample referral and outcome for 16S rRNA PCR and targeted PCR, and number of samples referred
with a culture positive result at a London NHS laboratory network, April 2015 and April 2019. abbreviations:
ribosomal Ribonucleic Acid (rRNA), Polymerase Chain Reaction (PCR).

Results

Of 666 microbiological samples referred for 16S PCR, 607 were included (Fig. 1). Among those samples sent for
16S PCR, 210 had targeted PCR requested with clinicians looking for 367 bacterial targets corresponding to 23
different species. The mean age of patients from whom these samples were sent was 44 years (range 0-97 years),
and 251 (40.7%) were female. The mean referral-to-result time was 13 days (median =11, range 2-104 days).

Molecular bacterial detection by sample type. 78/607 (12.9%) samples referred for 16S PCR yielded a
positive result, while 40/210 samples (19.0%) sent for targeted PCR were positive, but for both molecular tests this
varied markedly across sample types (Table 1). For the aggregated samples submitted for molecular diagnostics,
a positive targeted PCR result was more likely compared to 16S PCR (p value = 0.04).

For 16S PCR, the sample with the highest detection rate was pus (29/84, 34.5%; p < 0.0001 compared to all
other sample types); CSF samples demonstrated the lowest organism detection rate by 16S PCR, with 8/149 pos-
itive (5.4%; p =0.003 compared to all other sample types). Joint fluid was the most commonly referred sample
type, resulting in 13/157 (8.3%; p = 0.21 compared to all other sample types) positives; 8/136 (5.9%) positive from
native joints, and 5/21 (23.8%) positive from prosthetic joint synovial fluid. Please see Supplementary Tables 1
and 2 for the diversity of sites from which tissue and pus samples were obtained respectively, with corresponding
16S PCR results.

For targeted PCR, 40/210 samples (19.0%) were positive corresponding to a total of 43 bacteria. The highest
detection rate by sample type was for respiratory samples (13/37 (35.1%); p=0.01 compared to all other sample
types), with 4/6 (66.7%) BAL fluid and 9/31 (29.0%) pleural fluid positive.

Molecular bacterial detection by organism type. For 16S PCR, Group A and group B Streptococcus
spp. (6/78), Streptococcus spp. (to genus level only; 6/78) and Haemophilus sp. (6/78) were the most common
bacterial species detected. 28 different bacterial species were identified with 16S PCR, with 8 isolates not identi-
fied beyond Staphylococcus spp. or Streptococcus spp. genus level. A further 10 positive 16S PCR results identified
mixed species and 3 organisms could not be identified to a genus level (Table 2).

For targeted PCR, Streptococcus pneumoniae (13/44) was the most commonly identified bacteria by targeted
PCR. Streptococcus pneumoniae, Group A & group B Streptococcus spp. and Staphylococcus aureus contributed to
32/44 of positive results by targeted PCR, with a total of 9 different species identified (Table 2).

Clinical utility. 51/607 (8.4%) samples submitted for molecular diagnostics ultimately had a positive culture
result (from additional enriched media/prolonged culture etc) prior to receiving the final molecular result. Of
these, 23/51 were 16S PCR positive, whilst 28/51 were negative, correlating (for this subset) to a sensitivity of
only 45%. 9/210 samples sent for targeted PCR and 16S PCR were positive through both modalities. The use
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Targeted PCR 16S PCR
Positivity Positivity | Significant difference between
Sample Number | Positive | rate (%) Number | Positive | rate (%) molecular modalities (p)
CSF* 62 8 12.9 149 8 5.4 0.11
Pus® 18 3 16.7 84 29 34.5 0.23
Tissue/Biopsy* 49 8 16.3 131 14 10.7 0.44
Joint Fluid! 40 8 20 157 13 8.3 0.06
Peritoneal Fluid | 0 0 n/a 9 2 22.2 n/a
Ilg\lis:gl};ll'aiavagee 6 4 66.7 9 3 333 0.46
Pleural Fluidf 31 9 29.0 45 5 11.1 0.09
Pericardial Fluidé | 4 0 0 12 2 16.7 n/a
Vitreous fluid 0 0 n/a 4 0 0 n/a
Blood culture 0 0 n/a 4 2 50 n/a
Bone Marrow 0 0 n/a 2 0 0 n/a
Urine 0 0 n/a 1 0 0 n/a
Total 210 40 19.0 607 78 12.9 0.04

Table 1. Comparison of 16S rRNA PCR and targeted PCR at a London NHS laboratory network, April 2015
and April 2019. Abbreviations: Polymerase Chain Reaction (PCR), Cerebrospinal Fluid (CSF). Combinations
of targeted PCRs sent: CSF* (Streptococcus pneumoniae, Group A/B Streptococcal spp., Staphylococcus aureus,
Listeria sp., Escherichia coli, Enterobacter sp., Brucella sp., Neisseria sp., Mycoplasma sp., Mycobacteria sp.,
Leptospira sp. Ureaplasma urealyticum, Tropheryma whipplei); Pus® (Streptococcus pneumoniae, Group

A/B Streptococcal spp., Staphylococcus aureus, Propionibacterium sp., Mycobacterium sp., Actinomyces sp.);
Tissue/Biopsy* (Streptococcus pneumoniae, Group A/B.); Joint Fluid? (Streptococcus pneumoniae, Group

A/B Streptococcal spp., Staphylococcus aureus, Escherichia coli, Kingella kingae, Neisseria sp., Salmonella sp.,
Mycobacteria sp.); Bronchial Alveolar Lavage® (Streptococcus pneumoniae, Legionella pneumophila); Pleural
Fluidf (Streptococcus pneumoniae, Group A/B Streptococcal spp., Staphylococcus aureus, Haemophilus influenzae,
Mycoplasma sp., Mycobacteria sp., Coxiella burnetti); Pericardial Fluid8 (Streptococcus pneumoniae, Actinomyces
sp., Borrelia Burgdorferi).

of molecular diagnostics (16S and targeted PCR) provided an additional positive result in 86/607 samples sent
(Fig. 2). Figure 3 details this further with a breakdown by sample type.

Molecular diagnostics (either 16S PCR, targeted PCR or a combination of both) provided a supportive micro-
biological diagnosis in 21/109 (19.3%) and a new microbiological diagnosis in 58/109 (53.2%). 91 samples had
associated prescribing information available and of these, a positive molecular diagnostic result translated to a
clinically significant antimicrobial change in 14/91 (15.4%) cases. This was not significantly different between a
positive 16S PCR 9/64 (14.1%) and targeted PCR 7/36 (19.4%) (p=0.67). Positive molecular results were thought
to represent contaminants and an alternate diagnosis more likely for 12/78 (15.4%) positive 16S PCR results com-
pared to 2/40 (5%) positive targeted PCR results (p =0.18).

Cost-effectiveness. For 16S PCR, the cost of testing 607 samples was £31,260.50. Across all sample types,
the number needed-to-test to obtain one positive 16S PCR result was 7.78 resulting in an average cost-per-16S
PCR positive result of £400.78. If those samples that were ultimately culture-positive are discounted, the number
needed-to-test to obtain one positive 16S PCR/culture-negative result rose to 11.0 and the average cost to £568.37.
The notable variation in number needed-to-test indicates cost-effectiveness is markedly altered depending on the
sample type (Table 3). Among the subset for whom prescribing data was available, the cost for a 16S PCR positive/
culture-negative result to impact an antimicrobial prescription equated to £4041.76.

For targeted PCR, the cost of testing 210 samples was £11,127.00. The number needed-to-test to obtain one
positive targeted PCR result was 5.25 resulting in an average cost-per-targeted PCR positive result of £278.20.
If those samples that were culture-positive are discounted, the number needed-to-test to obtain one positive
targeted PCR/culture-negative result rose to 5.53 and the average cost to £292.84. Similarly to 16S PCR, the
marked variation in number needed-to-test correlates to notable variation in cost-effectiveness between sample
types (Table 4). Among the subset for whom prescribing data was available, the cost for a targeted PCR positive/
culture-negative result to impact an antimicrobial prescription equated to £1506.03.

Discussion

Our study finds 16S PCR to be a useful but notably expensive test for bacterial detection in culture-negative
samples in an NHS laboratory services network where third party reference laboratories are used for molecular
diagnostics. Targeted PCR is cheaper per-positive result but still incurs a significant cost. Pus samples are the
sample type of choice to produce a positive 16S PCR result, and respiratory fluids most likely to yield a positive
result with targeted PCR. A large number of culture-positive samples were referred for 16S PCR testing, repre-
senting inefficient, inappropriate referral pathways. Molecular diagnostics have a small but contributory role in
providing supportive or new microbiological diagnoses and assisting clinicians in their choice of antimicrobial
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Culture 16S rRNA PCR | Targeted PCR
Organism (n=607) | (n=607) (n=1367)
Gram Positive Organism
Staphylococcus aureus 8 1 9
Unidentified Staphlococcus spp 0 2 n/a
Coagulase negative Staphyloccocus spp 17 3 n/a
Streptococcus pneumoniae 0 2 13
Group A/B Streptococcus spp 0 6 10
Streptococcus dysgalactiae 0 2 n/a
Streptococcus milleri group 2 3 n/a
Unidentified Streptococcus spp 2 6 n/a
Enterococcus sp 3 2 n/a
Propionibacterium sp 2 2 2
Bacillus sp 0 1 n/a
Corynebacterium sp 0 1 n/a
Dermacoccus sp 0 1 n/a
Eubacterium sp 0 1 n/a
Gemella sp 0 1 n/a
Aerococcus sp 1 0 n/a
Gram Negative Organism
Haemophilus sp 1 6 1
Pseudomonas sp 3 3 n/a
Escherichia coli 1 3 1
Kilebsiella sp 0 1 n/a
Herbaspirillum sp 0 2 n/a
Prevotella sp 1 1 n/a
Aeromonas sp 0 1 n/a
Haematobacter sp 0 1 n/a
Neisseria sp 0 1 0
Proteus sp 0 1 n/a
Ureaplasma sp 0 1 1
Achromobacter sp 1 0 n/a
Paracoccus sp 0 1 n/a
Bartonella sp 0 0 1
Chlamydia sp 0 0 1
Kingella kingae 0 0 1
Anaerobes
Fusobacterium sp 0 3 n/a
Aggregatibacter sp 0 1 n/a
Actinomyces 1 0 0
Other
Mycoplasma sp 0 5 0
(Candida albicans) 1 0 n/a
Mycobacterium sp 0 0 3
Unidentified organism 3 3 n/a
Mixed species 4 10 n/a
Total positives 51 78 43

Table 2. Comparison of microbiological diagnosis by culture, 16S rRNA PCR and targeted PCR at a London
NHS laboratory network, April 2015 and April 2019. Abbreviations: ribosomal Ribonucleic Acid (rRNA),
Polymerase Chain Reaction (PCR)

therapy. Finally, the cost-per-positive of 16S PCR and targeted PCR is significantly different based on the sample
type referred, with evidence to suggest targeted PCR is the more cost-effective.

In our study, 55 microbiological samples were culture-negative yet 16S PCR positive and 38 samples were
culture-negative yet targeted PCR positive; when considering these samples are often from hospitalized patients,
this offers significant potential to make clinically impactful decisions. Furthermore, the laboratory service net-
work serves fifteen tertiary referral speciality services, where a microbiological diagnosis can often be critical
to ongoing care. Rampini et al. demonstrated a 42.9% sensitivity of 16S PCR in culture-negative samples'® and
Harris et al. demonstrated a 62% bacterial detection rate (43/69) by 16S PCR on heart valves from clinically
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Figure 2. Positive results for 16S rRNA PCR, targeted PCR and microbiological culture among 607 samples
referred for molecular diagnostics at a London NHS laboratory network, April 2015 and April 2019.
abbreviations: ribosomal Ribonucleic Acid (rRNA), Polymerase Chain Reaction (PCR).
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Figure 3. (a) Positive results by 16S rRNA PCR and microbiological culture by sample type at a London NHS
laboratory network, April 2015 and April 2019. Abbreviations: ribosomal Ribonucleic Acid (rRNA), Polymerase
Chain Reaction (PCR), Cerebrospinal Fluid (CSF). (b) Positive results by 16S rRNA PCR and targeted PCR

by sample type at a London NHS laboratory network, April 2015 and April 2019. Abbreviations: ribosomal
Ribonucleic Acid (rRNA), Polymerase Chain Reaction (PCR), Cerebrospinal Fluid (CSF). (c) Positive results by
targeted PCR and microbiological culture by sample type at a London NHS laboratory network, April 2015 and
April 2019. Abbreviations: Polymerase Chain Reaction (PCR), Cerebrospinal Fluid (CSF).

Number Cost(£)/positive | Cost(£)/positive 16S rRNA

Samples referred sent 16S rRNA and negative culture

Pus 84 149.17 227.68

CSF 149 959.19 1278.92

Tissue/Biopsy 131 481.89 674.65

Joint Fluid 157 621.96 898.39

Pleural Fluid 45 463.50 463.50

Bronchial Alveolar Lavage | 9 154.50 154.50

Other 32 274.67 549.33

All samples 607 400.78 568.37

Table 3. Comparison of cost-per-positive (£) by sample type for 16S rRNA PCR positive results at a London
NHS laboratory network, April 2015 and April 2019.

confirmed infective endocarditis cases with culture-negative samples'’. In our wider and more diverse clini-
cal setting we found a lower rate of positivity of 9.9%, after discounting culture-positive samples. Furthermore,
differentiating by sample type, we show 16S PCR utility to be significantly better with pus samples (including
promisingly 7/12 brain abscesses). The low level of positive 16S PCR results from CSF was particularly notable,
and we question the use of this test in this sample type. Tkadlec et al. report consistent data; of the 66 CSF sam-
ples tested only 6 additional positive results (9.1%) were returned by 16S PCR where culture was negative®. A
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Number | Cost(£)/positive | Cost(£)/positive targeted
Sample referred sent targeted PCR PCR and negative culture
Pus 18 317.94 317.94
CSE 62 410.67 410.67
Tissue/Biopsy Culture 49 324.56 370.93
Joint Fluid 40 264.95 302.80
Pleural Fluid 31 182.52 182.52
Bronchial Alveolar Lavage 6 79.49 79.49
Other 4 N/A N/A
All samples 210 278.20 292.84

Table 4. Comparison of cost-per-positive (£) by sample type for targeted PCR positive results at a London NHS
laboratory network, April 2015 and April 2019. Abbreviations: ribosomal Ribonucleic Acid (rRNA), Polymerase
Chain Reaction (PCR), Cerebrospinal Fluid (CSF).

meta-analysis conducted by Srinivasan et al. evaluated culture-negative CSF data from 15 studies and found 30%
of cases yielded a positive result by 16S PCR, but a wide range between studies (3-100%) possibly reflecting the
variation in inclusion criteria'!. The sensitivity of 16S PCR for CSF samples is likely to depend on various factors
from CSF volume, constituents (e.g. a pleocytosis) and extraction technique, which requires further evaluation
for future standardisation.

Sample type was also of importance in detection rates for targeted PCR. Respiratory samples including BAL
and pleural fluid had the highest yield for targeted PCR, predominantly demonstrating Streptococcal pneumoniae.
With the introduction of rapid point of care/near patient multi-plex platforms for CSF samples, the use of 16S
PCR in this setting may reduce and targeted PCR increase; our targeted bacteriology PCR analysis of CSF samples
does however suggest questionable utility of this modality in this setting as well.

As shown by Morel et al., 16S PCR improves the diagnosis of fastidious organisms and assists in the identifica-
tion in a wider array of organisms’. We show this is apparent when compared with targeted PCR. This benefit of
16S PCR over targeted PCRs should feed forward into the future construction of molecular testing algorithms (i.e.
should a multiplex panel of likely organisms be undertaken first, and then only proceed to 16S PCR if this initial
panel is negative?). Whilst not in routine clinical use, 16S PCR testing with deep sequencing, as opposed to Sanger
sequencing, has proven an even more sensitive approach to diagnosing the flora of causative organisms in brain
abscesses, and in particular their polymicrobial nature. Furthermore, Kommedal et al. demonstrated the presence
of either or a combination of Aggregatibacter aphrophilus, Fusobacterium nucleatum, and Streptococcus interme-
dius in all spontaneous polymicrobial abscesses?®. We do therefore urge a note of caution on the interpretation of
16S PCR results using Sanger sequencing and the limitations of low concentration bacteria isolates that ensues.
The polymicrobial nature of certain infections also exposes the inherent limitation of targeted PCR; as the range
of bacteria causing different clinical syndromes is constantly enlarging and changing, the repertoire of organisms
‘targeted’ from a sample will also need to evolve for a more certain microbiological diagnosis.

Whilst assessing the utility of molecular diagnostics, a clinically significant antimicrobial prescription change
was observed in 15.4% of samples that had tested positive. O’'Donnell et al. found a positive 16S PCR result sup-
ported the use of continued empiric antimicrobial therapy in 79% of patients and de-escalation of the current
anti-microbial regimen in 21%, whilst escalation of antimicrobial therapy was not required for any positive PCR
result®. We found molecular diagnostics helped in supporting or providing a new microbiological diagnosis in
79/109 clinical samples. This aids clinicians in antimicrobial choice, length of treatment, and overall clinical
management. We do however report on a significant proportion of positive results which failed to impact clinical
management as an alternate diagnosis was deemed more likely; this was more evident in 16S PCR positive results
compared to targeted PCR and quite how to manage these errant molecular positive results remains a challenge.

The clinical significance of any result depends on timely processing and we report a turnaround-time of 13
days, a slight increase to that reported previously®. We therefore advocate that in an NHS laboratory network
model, consideration be given to the practicalities and costs of repatriating tests such as these to ‘home-site’
laboratories rather than referral to third-parties. Laboratories with core-sequencing facilities typically have a
turn-around time for 16S PCR and targeted PCR of 24-48 hours, reflecting the potential impact of repatriation.
We propose further whole-healthcare-economy perspective cost-analyses be undertaken looking at the added
value (or costs) arising from quicker turn-around-times as these molecular microbiological methods become
more commonly used.

The cost-efficiency of molecular diagnostics relies on its employment in the setting of culture-negative sam-
ples. We found 51/607 samples referred had a culture-positive result (from prolonged incubation or subsequent
specialist media), questioning the added utility of molecular diagnostics. Furthermore, the cost of 16S PCR/
positive result rose from £400.78 to £568.37 when accounting for those results that were 16S PCR positive and
culture-negative. We recommend SOPs restrict referral for 16S PCR until culture based methods have been
exhausted. Additionally, the over 5.6 fold difference in cost-effectiveness between pus and CSF samples should
mandate that sample type be strongly considered in SOPs prior to 16S PCR use. Additionally, targeted PCR is a
cheaper test when employed, at a cost/positive result of £278.20, which rises to an average cost of £292.84 when
culture-positive samples are excluded. Here, once again CSF samples are the most expensive. We therefore recom-
mend targeted PCR be more commonly employed to assist microbiological diagnosis in culture-negative samples,
especially when considering referral of respiratory samples.
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Our study does have some limitations. The retrospective collection of clinical impact and prescribing data can
mean the subtleties in interpretation of the molecular results at the time of the receipt may have been overlooked.
NWLP refers to three third-party laboratories for bacterial molecular diagnostics which may reflect a varying
sensitivity/specificity from their testing methods, masked in the aggregate data. Furthermore, molecular diag-
nostics should be ideally performed on sterile site samples; BAL samples, when taken from hospitalised patients
can have a reduced specificity due to prolonged intubation and variation in prior port cleaning, which was not
controlled for in our study*..

Conclusions

16S PCR and targeted PCR demonstrate clinical utility in aiding bacterial identification in a range of clinical
specimens, but particularly in pus and respiratory samples respectively. This extends to assisting in antimicrobial
choice in a limited number of cases. We find a wider array of microorganisms identified with 16S PCR com-
pared to culture and targeted PCR, and suggest molecular testing algorithms be constructed accordingly. The
cost-effectiveness of 16S PCR is improved when strictly culture-negative samples are referred, with a marked var-
iability in cost-per-positive-result between sample types with both molecular diagnostic techniques. We recom-
mend laboratory SOPs be adjusted to reflect these findings, generating potential clinical benefit and cost-savings
for healthcare facilities.

List of abbreviations. Polymerase Chain Reaction (PCR); standards of microbiology investigations (SMI);
ribosomal ribonucleic acid (rRNA); National Health Service (NHS); North-west London Pathology (NWLP);
standard operating procedures (SOPs); European committee on antimicrobial susceptibility testing (EUCAST);
bronchioalveolar lavage (BAL)
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