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Abstract

High-level synthesis (HLS) is the process of automatically compiling high-level programs

into a netlist (collection of gates). Given an input program, HLS tools exploit its inherent

parallelism and pipelining opportunities to generate efficient customised hardware. C-

based programs are the most popular input for HLS tools, but these tools historically

only synthesise sequential C programs. As the appeal for software concurrency rises, HLS

tools are beginning to synthesise concurrent C programs, such as C/C++ pthreads and

OpenCL. Although supporting software concurrency leads to better hardware parallelism,

shared memory synchronisation is typically serialised to ensure correct memory behaviour,

via locks. Locks are safety resources that ensure exclusive access of shared memory, elim-

inating data races and providing synchronisation guarantees for programmers.

As an alternative to lock-based synchronisation, the C memory model also defines

the possibility of lock-free synchronisation via fine-grained atomic operations (‘atomics’).

However, most HLS tools either do not support atomics at all or implement atomics using

locks. Instead, we treat the synthesis of atomics as a scheduling problem. We show

that we can augment the intra-thread memory constraints during memory scheduling of

concurrent programs to support atomics. On average, hardware generated by our method

is 7.5× faster than the state-of-the-art, for our set of experiments.

Our method of synthesising atomics enables several unique possibilities. Chiefly, we are

capable of supporting weakly consistent (‘weak’) atomics, which necessitate fewer ordering

constraints compared to sequentially consistent (SC) atomics. However, implementing

weak atomics is complex and error-prone and hence we formally verify our methods via

automated model checking to ensure our generated hardware is correct. Furthermore,

since the C memory model defines memory behaviour globally, we can globally analyse the

entire program to generate its memory constraints. Additionally, we can also support loop

pipelining by extending our methods to generate inter-iteration memory constraints. On

average, weak atomics, global analysis and loop pipelining improve performance by 1.6×,

3.4× and 1.4× respectively, for our set of experiments. Finally, we present a case study of

a real-world example via an HLS-based Google PageRank algorithm, whose performance

improves by 4.4× via lock-free streaming and work-stealing.
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1. Introduction

High-level synthesis (HLS) is the process of automatically compiling a behavioural de-

scription of an algorithm into an RTL design [1]. The goal of HLS is to encourage design

abstraction, which improves productivity of hardware experts and reduces the barrier-of-

entry for hardware design for software programmers. Since C/C++ is one of the most

commonly-used programming languages for both hardware and software designers, it is

also the most popular HLS input. Despite its popularity, most HLS tools tend to focus only

on synthesising features that are easily translatable and deemed useful. Hence, typically,

advanced C features such as recursion, templates, dynamic memory allocation and explicit

parallelism are not efficiently supported by HLS tools.

HLS support of C concurrency In this thesis, we explore the latest trend of HLS

tools supporting C/C++ concurrency. Historically, HLS tools only supported sequential

C programs. However, as the software world moves towards concurrency, concurrent

programs are becoming mainstream due to their superior performance. As HLS tools are

always seeking to expand their user-base, some of these tools are beginning to support

concurrent C inputs. Intel and Xilinx support the synthesis of OpenCL via their SDKs [2,

3]. LegUp supports the synthesis of C pthreads [4], which is a C library extension that

supports multithreading.

HLS treatment of concurrent C programs Although HLS tools are beginning to

support concurrent programs, most of the tools still treat threads as a collection of indepen-

dent sequential C functions. From a tooling perspective, this treatment is advantageous

because concurrent programs can be supported incrementally by simply re-using tech-

niques designed for sequential C programs. However, from a synthesis perspective, this

treatment is a problem as it stifles the possibility of optimising concurrent programs as a

whole. One instance of this problem is that memory scheduling of concurrent threads is

done on a per-thread basis and that its memory constraints are based on the requirement

of sequential C programs. This has two effects on the memory synthesis of concurrent

threads. Firstly, only memory orderings between aliasing memory operations (i.e. memory

operations to the same location) are preserved within a thread, since that is the require-

ment of a sequential C program. Secondly, since each thread is scheduled independently,

memory scheduling of a thread is agnostic towards the memory behaviour of the rest of
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the program. These synthesis choices force HLS tools to either enforce lock-step memory

synchronisation via barriers [5] or enforce mutual exclusion via locks [6].

Lock-based memory synchronisation Mutual exclusion enforces that only one thread

can access a particular shared data structure at a given point in time [7]. Typically, locks,

such as pthread mutexes [4], are used to enforce mutual exclusion [7]. A lock is a safety

resource that only allows one thread to own it at a given point in time. If multiple threads

access a shared data-structure simultaneously, then the program execution is racy and

hence its behaviour is undefined. Although locks ensure safe shared memory access, lock-

based programming has several drawbacks. Firstly, the use of locks may serialise shared

memory accesses via different levels of granularity. At the finest granularity, individual

memory accesses may be serialised. At a coarser granularity, memory accesses to a shared

data structure may be serialised. At the coarsest granularity, all shared memory accesses

can be serialised. Secondly, the use of locks may also lead to deadlocks. A deadlock

occurs when, for various reasons, a thread does not release a lock that other threads are

attempting to acquire, resulting in them waiting indefinitely.

Lock-free memory synchronisation As an alternative to mutual exclusion via locks,

the C memory model defines the possibility for threads to synchronise without locks. Lock-

free programming is made possible by fine-grained atomic operation (‘atomics’). Atomic

operations are indivisible memory operations that can synchronise with each other when

they obey certain synchronisation orderings, as dictated by the C memory model. When

these properties of atomics are obeyed, race-free and correct inter-thread memory syn-

chronisation can be achieved without locks. The key advantage of lock-free programming

is that we can avoid serialising memory accesses, which is enforced by mutual exclusion.

However, current HLS tools either do not support atomics at all or support them ineffi-

ciently and discourage their use. To the best of our knowledge, only two HLS tools support

the synthesis of C atomics. Intel’s OpenCL compiler supports atomics but claim that they

are expensive and they worsen performance [2]. LegUp HLS implements OpenMP atomics

by wrapping locks around each atomic memory access, hence still resorting to the use of

locks and defeating the fundamental reason of opting for atomics [8].

Goals and assumptions of this thesis In this thesis, we envision fine-grained C

concurrency between concurrent threads within the boundaries of an FPGA chip. This

vision is tailored to ensure that lock-free synchronisation across threads can be both non-

trivial and inexpensive. Therefore, we assume that HLS tools compile C shared memory

constructs directly onto on-chip memories without caches or write buffers. This assump-

tion is in line with the current HLS compilation procedure of multi-threaded HLS tools,

such as LegUp [8], Altera OpenCL [2] and SDAccel [3]. This assumption also provides
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the guarantee that memory operations are indivisible. Since indivisibility of atomics can

be guaranteed via HLS, we explore the possibility of expressing their ordering guarantees

within an HLS framework. Hence, the primary goal of this thesis is to devise an HLS-

friendly method that can synthesise concurrent programs with atomics, which then enables

the synthesis of lock-free concurrent programs. The mechanism to achieve this goal is to

augment HLS memory scheduling to be sensitive to atomics. Naturally, there are several

research questions (RQ) that manifest from our primary goal, all of which we address in

this thesis:

RQ 1 How do we implement C atomics efficiently via HLS scheduling, instead of wrapping

locks around each atomic access to ensure program correctness?

RQ 2 Since we have full control over HLS scheduling constraints, can we also support the

weakly consistent C atomics, a range of operations that are less restrictive than the

sequentially-consistent (SC) atomics, in an efficient manner?

RQ 3 Although we focus on scheduling threads individually, can these memory constraints

be based on global analysis and would such an analysis provide speedups?

RQ 4 Since atomics can be implemented using HLS scheduling constraints, can we also

support atomics in the context of loop pipelining?

RQ 5 What are the benefits of compiling atomics onto hardware via HLS and do our

analyses provide any performance improvements?

We systematically address these research questions in our technical chapters (Chapters 3

to 6), where we list our original contributions at the beginning of each technical chapter.

Then, in §7.1, we summarise our key contributions of our work and highlight the extent

to which we solve our research questions.

1.1 Thesis outline

This thesis is organised in the following manner:

• In Chapter 2, we discuss the motivation of our work and the necessary background

materials for this thesis, including thorough discussions on the critical aspects of

HLS scheduling and the C memory model.

• In Chapter 3, we show how state-of-the-art HLS tools generate memory models

that are too weak and must rely on mutual exclusion for any shared memory syn-

chronisation. Then we formalise the HLS scheduling constraints for concurrent C

programs and present how we can augment these constraints to allow for fine-grained

synchronisation via atomics.

• In Chapter 4, we show why HLS memory scheduling of concurrent programs is

conservative, since it is implemented on a per-thread basis. Then, we discuss why
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and how global analysis can improve the memory scheduling of concurrent programs

with atomics.

• In Chapter 5, we show how our analyses from Chapter 3 and Chapter 4 can be

extended to support loop pipelining via additional HLS scheduling constraints and

how these extensions can further improve performance.

• In Chapter 6, we present a case study on an HLS-based implementation of Google’s

PageRank algorithm. We improve the performance of this baseline implementation

by introducing lock-free streaming and dynamic load balancing, where these perfor-

mance improvements rely on all our analyses of previous chapters.

• Finally, in Chapter 7, we summarise our contributions and achievements of this

thesis and highlight its potential and future possibilities.

1.2 Publications

The original contributions made in this thesis have been published as peer-reviewed con-

ference papers and journal articles in the following publications:

1. N. Ramanathan, J. Wickerson, F. Winterstein and G. A. Constantinides, “A

case for work-stealing on FPGAs with OpenCL atomics” in Proceedings of the

2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

(FPGA) (short paper).

2. N. Ramanathan, S.T. Fleming, J. Wickerson, and G. A. Constantinides, “Hard-

ware Synthesis of Weakly Consistent C Concurrency” in Proceedings of the 2017

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA).

3. N. Ramanathan, J. Wickerson, and G. A. Constantinides, “Scheduling Weakly

Consistent C Concurrency for Reconfigurable Hardware” in IEEE Transactions on

Computers (TC), Volume 67, Issue 7, pp 992-1006, Jan 2018.

4. N. Ramanathan, G. A. Constantinides, and J. Wickerson, “Concurrency-Aware

Thread Scheduling for High-Level Synthesis” in Proceedings of the 2018 IEEE Inter-

national Symposium on Field-Programmable Custom Computing Machines (FCCM).

1.3 Experimental Data

All experimental data presented in this thesis is hosted at [9] for reproducibility.
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2. Background

In this chapter, we present our motivation and all necessary materials and concepts re-

quired to understand this thesis. We discuss the following:

• Firstly, in §2.1, we discuss the motivation to pursue the intersection between recon-

figurable architectures and software concurrency.

• Then, in §2.2, we present the relevant HLS materials: such as tools and languages,

abstractions, compilation processes and, most importantly, HLS scheduling.

• Additionally, in §2.3, we discuss the concept of memory models thoroughly, including

its history, definitions, most importantly, the C memory model.

• Furthermore, in §2.4, we discuss the various concepts of parallel programming and

the type of concurrent programs we are interested to synthesise via HLS.

• Finally, in §2.5, we discuss how we evaluate our methods, where we discuss a set of

benchmarks and data-flow patterns that we group into experiments and also describe

our experiment setups.

2.1 Motivation

To motivate our work, we present to current industry trends relating to reconfigurable

computing and software concurrency. Hardware acceleration via custom computing is

gaining traction due to its energy efficiency [11, 12]. Independently, as multi-core archi-

tectures become more pervasive, software written for computing is becoming concurrent to

allow for parallel execution of algorithms [7, 13, 14]. In this thesis, we focus on exploiting

these latest trends to extend the efficiency of hardware-accelerated computing. We discuss

the following in the section:

• In §2.1.1, we discuss why the use of reconfigurable computing is prevailing.

• In §2.1.2, we discuss how software concurrency is becoming important.

Discussion on these two themes require reference to the CPU trends of the last 50 years.

Hence, we refer to Rupp et al.’s collation in Fig. 2.1, which demonstrates the five important

CPU trends: transistor, single-thread performance, frequency, power and core count.
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Figure 2.1: CPU trends for the last 42 years [10] (original data upto 2010 was collected
by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C.
Batten.)

2.1.1 Power wall leads to hardware customisation via FPGAs

Moore’s law and Dennard scaling. Since the 1970’s, the transistor count of a single

chip has grown exponentially. This behaviour was predicted by G.Moore [15], where he

stated that the transistor count, for a constant chip area, will double every two years.

This prediction was mostly achieved by reducing the transistor’s dimension, where with

every new process generation the chip area halves for the same transistor count. Also,

Dennard [16] observed that as we reduce the transistor dimension, a lower power budget

is required for the same transistor count. In fact, for the same chip area, we can double

the transistor count but keep the power budget constant. Hence, we see in Fig. 2.1 that

frequency scaling and single-thread performance numbers increased at a faster rate than

the power budget for the first 30 years.

Power wall due to leakage current. However, since the 2000s, the post-Dennard

scaling era began. As we scale down the transistor’s dimensions, the power supply voltage

reduces to keep the electric field constant but the channel’s leakage current increases [12].

Dennard did not account for this leakage current, as it was negligible until the supply

voltage approached the transistor’s threshold voltage. Hence, we see in Fig. 2.1 that the

frequency and power budget plateaus after the 2000s and chip designers cannot continue

to scaling the transistor count without increasing the power requirements of a chip. Hence,

we are hitting a power wall in which only a subset of the chip area can be powered at a

time, leading to an era of dark silicon [17].
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Hardware acceleration reduces energy usage. As the power wall stifles micropro-

cessor performance, chip designers are forced to think of more energy-efficient alternatives.

The best way to reduce energy usage is via dedicated hardware acceleration [18], where

performance-critical functions are implemented on hardware. There are two popular op-

tions for hardware acceleration [12, 18]: 1) full-custom logic such as ASICs or ASSPs, or

2) reconfigurable architectures. Full-custom logic, such as ASIC, ASSP or tightly coupled

co-processors, offer the best energy efficiency and performance, since the function is op-

timised from the behavioural-level down to the layout-level [19, 20]. However, its design

and verification efforts combined with its fabrication and non-recurring costs make it a

high-risk proposition and unaffordable at low or medium volumes [21].

Reconfigurable computing is flexible and fast enough. Reconfigurable comput-

ing [11], on the other hand, implements arbitrary Boolean functions that can be dy-

namically reconfigured. Field-programmable gate arrays (FPGAs) are becoming more

attractive as a hardware acceleration fabric. Over the last 30 years, FPGAs have also

benefited from transistor technology scaling and have become increasingly large, more

cost-effective and sufficiently energy-efficient for many applications [11, 22, 18]. Addition-

ally, the inclusion of hardened logic, such as DSP blocks1 and on-chip memories, within

the FPGA fabric improves the performance of FPGA designs, closing the gap to GPUs [23]

and ASICs [21].

Why are FPGAs sought after? The key advantage of the FPGA is reconfigurability,

which has several benefits [11, 24]. Firstly, FPGA designs can be modified, upgraded and

replaced at any point which is not possible with ASICs. Secondly, the time-to-market

cost and development time is reduced significantly since the tape-out process of ASICs

is eliminated. Thirdly, FPGAs better facilitate design space exploration, compared to

ASICs, since design time to achieve a hardware implementation is reduced.

FPGAs are becoming more popular and readily available. As reconfigurable

architectures increase in popularity, several significant investments in the technology have

been made in recent times. In 2015, Intel acquired Altera, one of the largest FPGA

vendors, for USD 16.7 billion [25] with the intent of expanding their market segments

to low-power system-on-chip solutions, data centers and IoT. Amazon, via their Amazon

EC2 F1 Instances [26], and Microsoft, via their Catapult infrastructure [27], are deploying

FPGAs in a cloud environment to enable virtualised multi-hardware acceleration. One of

the major disadvantages of FPGAs is that their cost per unit is high and constant with

volume. However, deploying FPGAs in the cloud means that this cost can be amortised.

1A DSP is not to be confused with a DSP block. The former is a processor that is specialised for signal
processing applications and the latter is a hardware block within the FPGA fabric that strictly performs
arithmetic operations that are primirarily used for signal processing applications.
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Design abstraction improves productivity. As the complexity of applications in-

creases, higher levels of abstraction are required during the design process of reconfig-

urable computing. Abstraction is key as it eases the time and effort pressures during

design synthesis and verification. Abstraction is the main reason for the introduction of

high-level synthesis (HLS) [1, 28], where designs are described behaviourally in a high-level

language (HLL) instead of being described at the Register Transfer Level (RTL). Despite

abstracting away hardware idiosyncrasies, it has been shown that quality of generated

HLS designs are comparable to RTL designs [29].

Summary Reconfigurable architectures allow for hardware acceleration beyond the tra-

dition CPU power wall via hardware customisation. As reconfigurable architectures be-

come more widely adopted, their application use cases and design complexity are bound

to increase, requiring efficient design abstraction to express them efficiently. HLS plays

a major role in design abstraction and hence, in this thesis, we explore synthesising an

advanced feature of C – explicit fine-grained memory concurrency.

2.1.2 Exploiting parallelism is key to improving runtime performance

The scaling of a transistor’s dimension contributes to a part of the single-thread perfor-

mance improvements. Engineering efforts on how to utilise the additional transistor count

also contributes significantly. According to Pollack’s rule, microarchitecture advances lead

to a further 1.4× performance improvement for every process generation [30]. Historically,

these improvements are made by investing the available transistor count in exploiting two

types of parallelism [12]: instruction parallelism and memory parallelism.

Instruction parallelism improves performance. Instruction parallelism can come

in different levels of granularity [31]. Micro-architectural features such as out-of-order,

superscalar and speculative execution enable multiple instructions to execute within the

granularity of a single processor. Additionally, there are also architectures with spe-

cialised/vectorisation pipelines or co-processors that can execute multiple instructions or

on multiple data simultaneously while the processor is busy executing other instructions.

Finally, at the highest level of granularity, instructions can also be executed in parallel

across multiple processors, which can appear in two forms: GPUs or many-core sys-

tems. However, such systems are generally tailored to suit applications that are ‘single-

instruction-multiple-data’ (SIMD) [31] in nature, where the same set of instructions is

applied across a large chunk of data in lock-step manner.

Memory parallelism is equally important. Purely focusing on instruction paral-

lelism is not always sufficient to improve performance. In order for the hardware units to

be busy, the required data must arrive in a timely manner. Memory parallelism is typically

26



achieved by allowing out-of-order memory executions and also non-blocking memory op-

erations that mask access latencies [32]. As applications become more memory-intensive,

memory parallelism is critical to improve overall performance at all levels of granularity.

Hardware acceleration requires the same attention towards parallelism. To

achieve better performance via hardware acceleration, the target function/algorithm must

be analysed for its inherent parallelism. In addition to exploiting parallelism, hardware

acceleration can also improve the throughput of a function in the form of pipelining [33],

where consecutive hardware stages/tasks can be overlapped with each other in time if they

are not interdependent.

Single-thread performance saturates As seen in Fig. 2.1, the single-thread perfor-

mance saturates slowly. Consequently, chip designers began investing transistors into

duplicating these single-thread cores to form a multi-core architecture, as shown by the

steady increase in core count since the 2000s. Thus, it is vital for software to be written in

a concurrent manner so that algorithms can be truly parallelised on these architectures.

Software concurrency. Historically, the concept of concurrency existed even with the

single-thread processor [13, 34]. A single-thread processor can only process on one task at

a time but it frequently switches between tasks, i.e. context-switching. Context-switching

provided programmers with the abstraction and illusion of parallelism, although the un-

derlying hardware can only execute one task at a time.

Hardware concurrency. With the introduction of multicore architectures, hardware

concurrency was made possible, where multiple tasks are be executed simultaneously on

independent on-chip cores. This advancement allowed, or possibly forced [13], program-

mers to explicitly by partition their programs onto several tasks that can be distributed

across multiple cores, or multi-threading. Multi-threading support for software ensures

that concurrent programs can be executed in parallel by the underlying hardware.

Summary In this thesis, we are particularly interested in the synthesis of multi-threading

via the POSIX threads (or pthreads) library [4, 35] via HLS. HLS tools can, now, compile

concurrent software threads written in C into highly-customisable concurrent hardware

units (which we refer to as compute units) on FPGAs. Although this advance enables

instruction parallelism at the granularity of concurrent hardware threads, it still stifles

memory parallelism to ensure program correctness by serialising memory synchronisation

across threads via locks. Instead, we want to improve memory parallelism by compiling

lock-free fine-grained C concurrency.
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2.2 High-level Synthesis

High-level synthesis (HLS) is the process of automatically translating a behavioural de-

scription, written in a high-level language, into a register-transfer level (RTL) design,

expressed in the form of a collection of gates (or netlist) [1, 28]. HLS has existed since

the 1970s [28], though the first commercial HLS tools began to surface in the 1990s [1].

In this section, we discuss the following topics about high-level synthesis:

• First, in §2.2.1, we discuss the pros and cons of design abstraction.

• Then, we discuss how the various input HLLs and tools abstracts cycle accuracy

(§2.2.2) and memory synchronisation (§2.2.3) descriptions at different levels of gran-

ularities.

• Next, we show how untimed C is compiled to RTL (§2.2.4) and then we discuss

details of the compilation flow of LegUp HLS tool (§2.2.5).

• Finally, we discuss important details about HLS scheduling, including the SDC

scheduling formulation, in (§2.2.6).

2.2.1 The pros and cons of design abstraction

High-level synthesis enables design abstraction, which allows the designer to describe the

behaviour of an application rather than arduously implementing it directly in RTL. Design

abstraction of HLS provides designers with several advantages [36, 37]:

• Reduces design time. Focusing on the behaviour of an application during the

design process saves a lot of manual effort required during RTL design. The ease of

use of HLS allows for rapid production of prototypes.

• Improves simulation and verification. Designs can also be functionally verified

at the higher-level of abstraction instead of complex, error-prone and time-consuming

RTL-level simulation and verification.

• Enables design space exploration. An application can be explored to fulfil

various performance metrics (such as latency, throughput, area, energy). Addition-

ally, instead of committing to several micro-architectural decisions early in the RTL

design process, HLS tools via the injection of compiler directives allow for flexible

micro-architectural explorations.

• Reduces the barrier to hardware design. Finally, since some HLS tools sup-

port pre-existing high-level languages (HLLs), such as C and Java, it opens up the

possibility for software programmers to design custom hardware. It also increases

the scope of applications targeted to hardware, since the range of pre-existing appli-

cations written in HLLs are large and re-usable.

Despite all of these advantages, the design abstraction of HLS also results in several

28



SystemC

Better
clock accuracy

Untimed
Cycle-

accurate RTL

C/C++

MaxJ

Impulse-C Handel-C

Bluespec

Scala

Verilog

VHDL

Figure 2.2: Classification of HLLs based on clock-level abstraction.

disadvantages to designers:

• Optimising a design may require hardware expertise. Although HLS enables

designers to obtain an initial design quickly, fine-tuning a HLS-generated design

requires hardware expertise and, possibly, in-depth knowledge of the specific trans-

formations of a HLS tool. Non-experts may lack the know-how to inject the right

directives or to refactor code for fine-tuning purposes.

• Only a subset of a language may be supported. Since the primary focus of

HLS tools is design abstraction, they often limit the language features supported.

Typically, only features that are deemed to be simple and useful are implemented

by HLS tools. For example, typically, C-based HLS tools do not support dynamic

memory allocation, recursion or templates and Java-based HLS tools do not support

garbage collection. Hence, there are many situations in which the combination of a

language and tool may not support an advanced feature.

2.2.2 High-level languages and their clock-level abstractions

Here, we discuss the various high-level languages (HLLs), their key features and the HLS

tools that support them. We also discuss the clock-level abstraction provided by these

HLLs, since we are interested in the HLS scheduling process. There are many ways to

categorise HLLs. Fig. 2.2 shows the different types of HLLs organised in terms of their

clock-level abstraction. There are two types of clock-level abstractions, besides RTL:

• Untimed : The most natural way of writing software algorithms is with no notion of

timing. These HLLs typically require few modifications before the input is presented

to a tool.

• Cycle-accurate: Unlike untimed HLLs, there are also HLLs that expose the system-

clock and provide the notion of clock cycles to designers.

• RTL: RTL designs requires gate-level description, which demands complete timing,

structural and functional specifications. While RTL designs potentially perform
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best, it is arduous to re-time a circuit written in RTL.

The following HLLs are widely-used in both industry and academia:

• C/C++ is the most widely-used HLL and is supported by several commercial

and academic HLS tools, such as VivadoHLS [38], Catapult-C [39], ROCCC [40],

LegUp [41], BAMBU [42], DWARV [43] and Kiwi [44]. C/C++ as a HLL is advan-

tageous since this language has a large pre-existing userbase of programmers and

codebase of applications. C/C++ inputs are untimed and require HLS tools to

transform them into efficient RTL designs. We discuss this in §2.2.4.

• Impulse-C [45, Chapter 4] supports a C subset in the style of communicating se-

quential processes (CSP) [46], which is based concurrent processes that communicate

via streams. Impulse-C is supported by CoDeveloper [47] and is untimed.

• MaxJ [48] is the only Java-based HLL, which is supported by the MaxCompiler.

MaxJ enforces a streaming-like programming model that is then synthesised and

mapped onto Maxeler’s data-flow engine. This HLL is also untimed.

• SystemC [49] is a system design and modelling language tailored for hardware-

software co-design. SystemC reduces development cost by combines electronic system-

level design (ESL), which reduces serialisation of the design process, and transaction-

level modelling (TLM) [50]. SystemC is supported by various commercial and

academic tools as well, such as Catapult-C [39], Cynthesizer [51], CtoS [52] and

VivadoHLS [38]. SystemC is unique because it supports both untimed and cycle-

accurate inputs. An untimed SystemC input is simply a variant of C/C++. A

cycle-accurate SystemC input can be described using SC CTHREAD, which exposes

the system clock by default. Furthermore, SystemC supports untimed, loosely-timed

and approximately-timed transactions [53].

• Handel-C [54] also supports a C subset and additional software and hardware

libraries that target reconfigurable fabric and also soft-processors on Xilinx and

Altera FPGAs via the DK Design Suite [55]. This HLL is cycle-accurate, where its

functions and expressions are evaluated in one clock cycle.

• Bluespec [56, 57] is a specialised HLL that is based on guarded atomic rules. Blue-

spec also has powerful static elaboration, interfaces, polymorphic overloading that

makes it superior to Verilog/VHDL [58]. Bluespec is cycle-accurate since every

guarded rule executes within a clock cycle [59], consequently providing designers

with the notion of timing. Additionally, the system-clock is also exposable especially

for clock-domain crossing.

• Scala [60] can be compiled to hardware via Chisel [61], a HLS tool developed by

UC Berkeley. Since Chisel is embedded in Scala, it can support several high-level

abstractions such as object-orientation, functional programming and parameterised
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types. Chisel’s hardware specification is similar to SystemVerilog and provides an

abstraction that masks hardware modules as Chisel components [61].

2.2.3 Memory synchronisation for C/C++ via HLS

All C-based HLS tools support the synthesis of memory constructs. Fig. 2.3 classifies the

memory synchronisation restrictions of C-based HLS.

Sequential C On the right-hand side of the spectrum, we have sequential C inputs that

consist of C variables and arrays. Since there will only be one hardware unit, this unit is

provided with dedicated memories, instead of shared memory, and hence there is no need

for memory synchronisation.

Concurrent C processes with channels. To exploit further parallelism, HLS tools

support the synthesis of multiple C functions that become independent parallel hardware

units and these C functions are allowed to synchronise via dedicated communication chan-

nels. This is the de-facto standard for most HLS tools: independent C functions that

communicate via dedicated vendor-specific channels. For example, VivadoHLS provides

high-performance AXI streams across C processes [62], SystemC provides communication

channels via TLM [53] and Handel-C and Impulse-C must infer communication channels.

Concurrent C processes with a memory hierarchy and channels. Although ex-

plicit parallelism is supported by HLS tools via synthesising independent C functions,

this method is not unified from a programmer’s perspective. Programmers specify inde-

pendent C functions that adhere to specific communication APIs and then rely on HLS

tools to generate a synchronised multi-hardware system. This programming model also

stifles the possibility of expressing inter-thread memory synchronisation, a problem that

was overcome by OpenCL. Intel’s OpenCL SDK [2] and Xilinx’s SDAccel [3] pioneered

OpenCL HLS support for FPGAs. OpenCL provides a unified programming model that
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allows better expressiveness for memory synchronisation across threads via shared mem-

ory [5, §3.3]. Although OpenCL supports shared memory, its memory hierarchy is rigid

and restrictive since it prohibits certain collections of threads from communicating with

each other via memory scoping [5, §3.3.1]. This rigidity was put in place to optimise for

specialised processors, where memory accesses are regular and execution is in lock-step.

Concurrent C processes with generic shared memory. Although OpenCL pro-

vides a unified programming model, its memory synchronisation is still limited due to the

rigidity of its memory hierarchy and restrictions on memory synchronisation. Instead,

HLS tools, such as the LegUp HLS tool [8], are now beginning to support the C pthreads

library, which supports a generic shared memory space. Concurrent C programs that

use the pthreads library allow arbitrary shared memory access, but it comes with a price

as careful reasoning is required when synchronising across threads. The easiest way to

synchronise via shared memory is the use of locks but they serialise shared memory access.

Our work Instead of using locks, we devise a method in which lock-free synchronisation

can be achieved across threads via HLS. Hence, we can categorise our work as pushing the

boundaries of HLS to the left of this memory synchronisation spectrum, as in Fig. 2.3.

2.2.4 High-level compilation of untimed C to RTL

In this section, we discuss the high-level compilation of untimed C descriptions into RTL

designs. First, we present the process compiling C to hardware automatically (§2.2.4.1).

Then, we present the general work flow of a HLS tool to achieve this (§2.2.4.2).

2.2.4.1 Compiling C to hardware automatically

Fig. 2.4 shows the compilation process of a C program into RTL [11, Chapter 7], which

typically has four compilation stages. Also, dependent on tool support, the C code can

comprise different features such as loops, branches, floating-point operations etc.

From C code to control-flow graph. First, the C code is compiled into a control-flow

graph, as seen in Fig. 2.4(b). This graph consists of basic blocks as nodes and control-flow

paths as edges. A basic block consists of straight-line code without no branches in, except

at its entry, and no branches out, except at its exit.

Optimising CFGs Next, the compiler will perform optimisations and transformations

on this CFG to improve the quality of the graph, such as clustering, combining basic

blocks, expression optimisations and loop transformations. For example, Fig. 2.4(c) shows

the clustering of basic blocks (via shades) to reduces the number of control-flow paths.
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(a) C code (b) CFG of BBs (c) BB Clustering (d) BB to DFGs (e) Netlist

Figure 2.4: Overall flow for C compilation via HLS [11, Chapter 7]

Turning each basic block into data-flow graph. Once the CFG is finalised, each

basic block is then converted into a data-flow graph (DFG), as seen in Fig. 2.4(d). This

graph consists of operations (or instructions) as nodes and data dependence as edges.

Data dependence can be distinguished into three types [11, Chapter 7]:

• producer-consumer relationship, where the output of one operation is required as

input to another operation;

• control dependence, where instructions from one basic block are related to instruc-

tions in another basic block via control paths;

• ordering constraints, where the execution order of individual operations, such as

memory operations, must happen in the order stipulated by the programmer.

From a control data-flow graph to RTL. Finally, the graph that contains both

control-flow and data-flow, i.e. a control data-flow graph (CDFG), is transformed into

RTL/netlist, as seen in Fig. 2.4(e). This final stage compromises four HLS steps: alloca-

tion, scheduling, binding and generation. Next, we discuss these stages.

2.2.4.2 Turning a CDFG into RTL

Once the CDFG is generated, a back-end compilation consisting of four steps is required:

Allocation, Scheduling, Binding and RTL Generation. To achieve the best solutions, allo-

cation, scheduling and binding should be executed together since they are interdependent.

However, this approach becomes infeasible quickly for large problem sizes. Hence, the

order in which these steps are implemented has significant impact on design quality [1].

Allocation During allocation, all operations in the CDFG must be assigned to a type

of function unit/component. The exact number of components are typically defined as
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resource constraints. Components are selected from an RTL library, which must also

provide the latency, area and other characteristics.

Scheduling During scheduling, all operations must be assigned to a clock cycle for

execution. Scheduling is the step that introduces timing to an untimed C description.

Typically, the generated schedule must ensure that:

• all operations obey the CDFG dependencies; and,

• all design constraints, such as timing and resource constraints, are obeyed.

There are a range of methods that exist to find solutions for the various scheduling prob-

lems [63, Chapter 4]. We discuss these scheduling methods in §2.2.6.

Binding During binding, all operations must be connected to a hardware resource. The

challenges of binding include the possibility of multiple resources that can perform an oper-

ation, multiple operations sharing the same resource at the different times and connectivity

to customised and vendor-specific hardware resources such as buses, hardened multipliers

and block RAMs [1].

RTL generation Finally, the RTL generation step is a straightforward process that

translates the resultant design from the output of allocation, scheduling and binding into

RTL. This RTL is then ready to be targeted to different logic synthesis tools, which is our

case are the FPGA CAD tools.

2.2.4.3 C-based HLS tools

We considered several HLS tools as options to realise our work. We require a tool that

supports the synthesis of concurrent C programs and also the ability to tap into the

scheduling stage of this tool.

Vivado HLS Vivado HLS [38] is one of the most widely-used commercial HLS tool.

This tool only supports the synthesis of sequential C programs, thereby eliminating the

possibility of direct use of this tool. Indirect use of Vivado HLS is possible by synthesising

each thread as a sequential C program and then interfacing these threads to shared mem-

ory via scratchpad memory frameworks such as CoRAM [64] or LEAP [65]. One example

of this indirect use of interfacing Vivado HLS to LEAP was by Winsterstein et al. [66].

They analyse a sequential C program to identify sections of code that access independent

heaplets, and interface them to a shared memory scratchpad that allows parallel accesses.

We could not use their framework for two reasons. Firstly, their input program is a sequen-

tial C program. Secondly, despite being able to synthesise independent sections of code

that may able shared memory at the same time, their work did not require tapping into

the inner workings of Vivado HLS. They achieved the necessary hardware optimisations

34



mainly via source-to-source code transformations and pragmas. For our work, we require

intricate control of HLS scheduling.

OpenCL HLS There are two HLS tools that synthesise OpenCL programs: SDAccel [3]

and Intel OpenCL [2]. SDAccel is a classic example of extending a HLS tool to incremen-

tally synthesise concurrent C programs. Concurrent OpenCL threads/work-items within

SDAccel are synthesised via Vivado HLS as independent sequential programs and inter-

faced to shared memory, without any support for locks. The Intel OpenCL tool, on the

other hand, compiles a single hardware pipeline that executes several software threads [67,

§1.2]. In fact, it recommends users to write OpenCL programs as a single software thread

to improve compilation i.e. single work-item kernel [67, §1.3]. This tool also synthesises

atomics, but discourage their use claiming that they are expensive and may lowers opera-

tion frequency [2, A.1.6]. Investigating the generated RTL design shows that atomics were

implemented using a locking mechanism of a load-store unit [2, A.1.6]. Although these

tools support the synthesis of concurrent C programs, their shared memory subsystems

are not transparent, suboptimal and difficult to control. Additionally, understanding or

extending the scheduling step within their tool flow is neither a straight-forward process

nor encouraged.

Kiwi Kiwi [44] supports the synthesis of C# concurrency without scope for shared

memory, since it is focused on accelerating custom arithmetics for scientific applications.

Therefore, we can not explore the possibility of synthesising shared memory via Kiwi.

Why LegUp? We implement our analyses in LegUp [41] for several reasons. Firstly,

LegUp support the synthesis of concurrent C programs via the pthreads library [8], instead

of OpenCL via SDAccel or Intel OpenCL. Secondly, LegUp supports shared memory of

C [68], which can be targeted on-chip and synchronised via mutexes. Hence, it allows

us to leverage a synthesisable shared memory space that is generic and also allows us to

compare our work against lock-based synchronisation. Thirdly, LegUp is open source and

their scheduling is transparent, which allows us to implement our analyses as compiler

passes that are tightly coupled to the original tool flow. Finally, LegUp’s scheduling is

constraint-based, which allows us to formalise its existing memory model and extend it

to support the execution of atomics with the assistance of automated model checking. In

the next section, we introduce LegUp in detail.

2.2.5 Understanding the LegUp HLS tool

LegUp HLS [41] is a C-based academic tool that is based on the LLVM framework, which

is a modular and re-usable compiler and toolchain technology [69]. Since LegUp builds
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upon LLVM, it re-uses large parts of the LLVM infrastructure such as its toolchain, exe-

cutables and passes. LegUp can target both pure hardware designs and hybrid software

and hardware co-designs [8, 41, 68]. In this section, we discuss LegUp’s general tool flow

(§2.2.5.1), how we tap into their tool flow (§2.2.5.2), how LegUp synthesises pthreads

(§2.2.5.3) and, finally, few more details necessary for this thesis (§2.2.5.4).

2.2.5.1 Executables

LegUp HLS has a three-stage compilation process, each of which is represented by an

executable. These executables are as follows and perform the following tasks:

• clang is the front-end compilation that compiles C to LLVM Intermediate Repre-

sentation (LLVM IR), which is the CDFG.

• opt is the middle-end compilation that performs optimisations and transformations

on the IR to improve its quality. Additionally, LegUp implements its own hardware-

oriented passes such as if-conversion, arbitrary bitwidth support, loop pipelining,

array partitioning and pthreads support to prepare the IR for synthesis [6].

• llc is back-end compilation that converts the LLVM IR (CDFG) into RTL. Hence,

this executable performs allocation, scheduling, binding and RTL generation and

these stages are performed in sequence.

2.2.5.2 LLVM passes

Here, we discuss how we can influence the tool flow to insert our analysis. All the analy-

ses, optimisations and transformations in opt and llc are implemented as LLVM passes

on different levels of code hierarchy. There are four nested levels of class hierarchy in

LLVM [69], which can be related to a CDFG’s structure:

• The lowest level is an LLVM Instruction, which is a single LLVM IR instruction.

An LLVM Instruction is an operation in a DFG.

• The second level is an LLVM BasicBlock, which is a collection of LLVM Instructions

in a block of straight-line code. An LLVM BasicBlock is a DFG (or basic block) in

the CDFG.

• The third level is an LLVM Function, which is a collection of LLVM BasicBlocks

with control flow. An LLVM Function is a CDFG. C functions are compiled to LLVM

functions.

• The fourth and highest level is an LLVM Module, which is a collection of LLVM

Functions. An LLVM Module also contains LLVM GlobalVariables, which are the

global variables of the input C program.

Hence, for us to tap into the LegUp tool flow, we simply need to augment the existing
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volatile int v0,v1,a0[2];

pthread mutex mtx;

T0 T1 T2

mtx.lock() mtx.lock() mtx.lock()

int r0 = v0; int r2 = v1; int r4 = a0[1];

int r1 = v1; int r3 = a0[0]; int r5 = v0;

mtx.unlock() mtx.unlock() mtx.unlock()

(a) Sample access pattern

mtx

a0

v1

v0

↖

↖

↖

↖
T0

T1

T2

(b) LegUp 5.1

Figure 2.5: An example of memory architecture generated by LegUp Pthreads, where the
shaded circles are memory elements and circles with arrows are arbiters.

LLVM passes or insert our own additional LLVM passes [70] at the appropriate stage of

compilation and code hierarchy.

2.2.5.3 Synthesising pthreads

Throughout this thesis, we implement and evaluate our work via the LegUp 5.1 HLS

tool [6], which we interchangeably refer to as LegUp from now on. LegUp supports the

pthreads library and accepts multi-threaded C programs as inputs for both the pure hard-

ware and hybrid flows [8]. LegUp also supports pthread mutexes [8], which provides the

locking mechanism to achieve mutually-exclusive shared memory synchronisation. Re-

cently, LegUp has also introduced streaming FIFOs based on these mutexes [68].

LegUp treats each pthread as a C function and compiles it as an LLVM function, which

means each thread is an individual CDFG. LegUp then treats each CDFG independently

and synthesises it to hardware. This is standard practice by HLS tools [2, 3, 71] that

synthesise concurrent C programs, which has consequences on how memory accesses of

concurrent programs are synthesised.

Generated memory architecture LegUp compiles all global variables and arrays as

shared memory, under the pure-hardware pthreads flow. Each shared memory variable

and array is instantiated as an individual on-chip register and block RAM respectively.

Fig. 2.5(a) shows a sample program with two global variables (v0 and v1), a global array

(a0) and a pthread mutex (mtx). In this program, each thread accesses the mutex twice to

form a critical section and within this section each thread performs two memory accesses.

Fig. 2.5(b) shows the memory architecture that LegUp generates for this program. We

have four independent memory elements, where the array a0 is a block RAM (symbolised

by two-ported access arrows). Each memory element is protected by an arbiter, whose

thread connectivity is based on the program’s access pattern. Since each thread only

accesses two memory locations, excluding the mutex, full cross-bar connectivity to the
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Listing 2.1: Generated LLVM of T0 in Fig. 2.5(a)

1 define internal fastcc void @t0() #0 {

2 br label %loop.i

3
4 loop.i: ; preds = %loop.i, %0

5 %1 = load volatile i32* getelementptr inbounds ({ { i32, i32, i32, i32, i32, {

%struct.anon } } }* @mutex, i32 0, i32 0, i32 0), align 4, !legup_lock !1,

!atomic_address !2, !data_width !1, !mutexName !3, !mutexType !4

6 %2 = icmp eq i32 %1, 0

7 br i1 %2, label %loop.i, label %legup_lock.exit

8
9 legup_lock.exit: ; preds = %loop.i

10 %3 = load volatile i32* @v0, align 4, !tbaa !5

11 %4 = load volatile i32* @v1, align 4, !tbaa !5

12 store volatile i32 1, i32* getelementptr inbounds ({ { i32, i32, i32, i32, i32,

{ %struct.anon } } }* @mutex, i32 0, i32 0, i32 1), align 4, !legup_lock

!1, !atomic_address !1, !data_width !1

13 %5 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([7 x i8]*

@.str, i32 0, i32 0), i32 %3, i32 %4) #5

14 ret void

15 }

arbiters are not required. LegUp achieves this optimised connectivity via points-to analy-

sis [68]. This analysis generates variable-local arbitration for each shared memory element

i.e. LegUp generates local and shared-local memories. Memory elements that are only

accesses by one thread are allocated local memories, memory elements that are shared

between threads are allocated as shared-local memories and all memory elements that can

be distinguished by alias analysis are allocated as one monolithic global memory.

LegUp 5.1’s mutex locking and unlocking functions LegUp implements a mutex

as a shared register and transforms its locking and unlocking functions to dedicated LLVM

IR as a spinning load and a store respectively. These LLVM instructions are insufficient

to implement locks correctly, since they can potentially race at LLVM level. LegUp an-

notates each mutex with a unique identifier, which the underlying hardware uses to avoid

races [8, IV.B]. Listing 2.1 shows the generated LLVM IR from thread t0 of the program

in Fig. 2.5(a). The locking function is implemented as a spinning load, as seen in Lines 4-7.

The current value of the mutex is loaded in an attempt to acquire the lock (line 5), which

also has a unique identifier (legup lock) attached to it to prevent races at hardware level.

If the lock is acquired (check in line 6), then the critical section is executed (line 9). The

unlocking function is implemented as a single store to the mutex location (line 12), which

also has a unique identifier to prevent races at hardware level.
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2.2.5.4 Additional details

Two additional details about LegUp:

• LegUp’s alias analysis is critical to our work since it distinguishes whether two mem-

ory operations access the same location. This information manifests itself as ordering

constraints during the scheduling stage in the llc executable. Previously, LegUp

utilised LLVM’s original alias analysis [72], but they have recently switched to An-

dersen points-to analysis [73], which allows for variable-local arbitration.

• LegUp only allows one basic block to be active during runtime within a CDFG [6].

This is a limitation of the tool itself, and our work is not affected since our ordering

constraints are expressed as generic HLS constraints, as we will discuss in §2.2.6.1.

2.2.5.5 Limitations of LegUp

In the context of this work, LegUp limits us in a few ways:

• LegUp only supports shared-local memories via the pure hardware flow. In the

pure hardware flow, shared-local memories allow threads to synchronise with each

other via on-chip registers or RAMs. However, the pure hardware flow does not

support any caches or off-chip memory accesses, such as DRAMs or processor mem-

ory. Therefore, our investigation of implementing atomics was restricted to on-chip

memories.

• LegUp only allows one basic blocks to execute at a time. Our method does not rely

on this execution model since we can generate constraints across basic blocks. How-

ever, LegUp ignores any inter-basic block constraints that we provide it, restricting

reordering opportunities to only manifest within a basic block.

2.2.6 HLS Scheduling

Scheduling is an important step in the HLS flow that turns an untimed set of operations

into a corresponding timed set of operations. Scheduling assigns a specific time (in clock

cycles) for every operation in a CDFG, that respects the CDFG’s data dependence and all

resource constraints. All dependences and constraints must be obeyed to obtain a feasible

schedule [63].

Classes of scheduling. Broadly, there are two classes of scheduling: time-constrained

and resource-constrained scheduling [63, §5.1]. Both classes are generally solved by a mix

of as-soon-as-possible (ASAP) and as-late-as-possible (ALAP) scheduling. Unconstrained

scheduling, or ASAP scheduling, schedules each operation as soon as its predecessors in

the DFG are scheduled. Latency-constrained scheduling, or ALAP scheduling, schedules

each operation just before its successors in the DFG are scheduled.
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Methods for resource-constrained scheduling. Resource-constrained scheduling is

an NP-hard problem [63, §5.4]. There are two approaches to obtain a feasible schedule

under resource constraints: exact or approximate methods. An exact method is ILP-

based scheduling [74], which provides an optimum solution. However, the drawback of

ILP-based scheduling is its time complexity can become intractable for larger problem

sizes. Approximate methods such as force-directed scheduling [75] and list scheduling [76]

can be more time-efficient, but may result in non-optimal solutions.

2.2.6.1 SDC scheduling

In this section, we focus on describing the system of difference constraints (SDC) schedul-

ing method. SDC is a well-known method that is used by both industrial and academic

HLS tools such as VivadoHLS [38] and LegUp [41]. A large set of scheduling constraints

can be encoded as SDC constraints and powerful optimisations can be performed under

this unified mathematical framework. These constraints can then be fed into scheduling

optimisations such as ASAP, ALAP, longest path latency, expected overall latency and

slack distribution. We are interested in SDC, because LegUp adopted this method [6].

2.2.6.2 SDC formulation

Now, we present the way in which SDC constraints are formulated. A CDFG is a directed

graph where each vertex is a basic block (BB) and each edge represents a control-flow path.

Each BB is a data-flow graph (DFG) with operations as vertices (Vop) and dependencies

as edges (dd ⊆ Vop×Vop×N). Each edge is a triple comprising a source operation, a target

operation, and a dependence distance, which is a natural number representing the number

of loop iterations between these operations, if any. In the absence of loop pipelining, this

distance is simply zero.

Data dependences. In this work, we focus on the SDC constraint that captures data

dependencies, which is formulated as [77]:

∀(v, v′, dist) ∈ dd : end(v)− start(v′) ≤ II × dist . (2.1)

That is, for every edge (v, v′, dist) where operation v′ depends on v, the number of cycles

between the end of operation v and the start of operation v′ must be at the least the loop

initiation interval (II ) multiplied by the loop dependence distance (dist), where II is the

number of cycles between the initiations of two consecutive loop iterations. A dependence

is intra-iteration when dist = 0, and is otherwise inter-iteration. Note that, in the absence

of loop pipelining, the RHS of (2.1) reduces to zero.
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ASAP scheduling. Given a DFG with Vop and dd, we can achieve an ASAP schedule

via the objective function:

min
∑

v∈Vop
start(v)

where the fastest possible schedule of the DFG is obtained when the sum of the start times

of all operations is minimised.

ALAP scheduling. We can also achieve an ALAP schedule by tweaking the above

objective function to maximise the start times, instead of minimising them:

max
∑

v∈Vop
start(v)

Resource-constrained scheduling Resource-constrained scheduling is generally an

NP-hard problem. Hence SDC alleviates the NP-hardness of resource constraints by using

a heuristic, which introduces a set of linear orders for each resource [78, §3.2.3]. Then

SDC injects resource constraints based on this linear order. Let us say n is the number

of operations that use the resource R and c is the number of instances of R. Given a

linear order of operations that utilise R, V R = (v1, v2, . . . , vn), SDC resource constraints

are expressed between every operation vi ∈ V R and every operation that is c elements

after vi in V R (if it exists), i.e. vi+c ∈ V R, as follows:

∀i.1 ≤ i ≤ n− c : end(vi)− start(vi+c) ≤ 0

where vi+c can only execute after vi. Cong et al. suggest a linear order, which is based on

sorting operations according ALAP results, and using the ASAP results for tie-breaking2,

which encourages operation reordering and produces good-quality results [78, §3.2.3].

2.2.6.3 Modulo scheduling

Modulo scheduling [79], which is a well-known technique for loop pipelining, can also

be implemented within an SDC framework [80]. LegUp implements loop pipelining via

modulo scheduling [77]. Their implementation takes advantage of SDC to describe inter-

iteration constraints. Since their objective is to achieve the minimum initiation interval,

their implementation involves a backtracking mechanism to address a resource-constrained

scheduling problem in a loop-pipelining context. From the perspective of generating the

scheduling constraints for our work, we can simply encode inter-iteration data depen-

dences as an SDC constraints, as presented in (2.1) of page 40. The dependence distance

determines whether a constraint is intra- or inter-iteration (zero or a non-negative integer).

2LegUp implemented this tie-breaker based on program order rather than ASAP order. We fixed this
issue to improve memory parallelism.
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2.3 Memory models

The memory requirements of a single-processor system are simple: all memory accesses

must be obey coherence i.e. all memory accesses to the same location must be executed

in program order. Coherence does not restrict any reorderings between memory accesses

to different locations i.e. non-aliasing memory locations. The simplicity of the coherence

property encouraged micro-architectural advances and compiler optimisations to paral-

lelise and reorder memory accesses safely and aggressively [32]. Unfortunately, these

single-processor memory requirements are then replicated for multi-core architectures,

which is insufficient to guarantee memory synchronisation without mutual exclusion.

A memory model, intuitively. In a multiprocessor environment where individual

threads can access shared memory concurrently, a formal specification of the memory

semantics is required i.e. a memory model. A memory model ensures that all processors

access shared memory in a synchronised manner. Correct and efficient synchronisation

is vital to ensure the programmability of a shared memory system, as writing concurrent

programs may result in unexpected behaviours without these guarantees.

A memory model, more formally. A memory model defines the set of legal exe-

cutions of a concurrent program. A concurrent program consists of the set of memory

instructions or operations. These operations are compiled statically to a target hardware

and executed dynamically as memory events. Depending on the input program, there

can be exponentially many permutations in which these memory events can be executed

at runtime. From this set of all possible executions, the memory model identifies the set

of legal executions based on a set of rules over memory events (or event relations). An

execution is deemed to be illegal if it forms a cycle over the rules defined by the memory

model.

Where are memory models enforced? Historically, memory models were first en-

forced on hardware architectures. These models provide the programmers with memory

execution guarantees of its assembly code. As hardware memory models became a ne-

cessity, programming languages also began to describe their execution memory model. A

programming language’s memory model is hardware-independent and also independently

defines its own possible set of executions. Hence, there is the risk of mismatch between

the programmer’s view of a memory model in software and how the generated assembly

code can execute on hardware. This mismatch is known to give rise to complex and subtle

bugs [81, 82, 83, 84]. Consequently, it is critical to incorporate formal methods to describe

and verify memory models.
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Sequential consistency (SC) The strictest possible set of rules that can be enforced

by a memory model is to maintain sequential consistency [85]. Sequential consistency

enforces two properties:

• program order within a thread must be strictly obeyed; and,

• operations must be atomic and instantaneously visible to all threads.

These properties prohibit any reorderings of memory accesses, even if they are non-aliasing

accesses, and disallow any optimisations that would mask the latency of writes.

Weak memory models SC is an expensive illusion to maintain, both in terms of

hardware implementations and software optimisations. Instead of enforcing SC, most

hardware architectures relax the SC properties i.e. they support weak memory models.

Weak memory models are less restrictive than SC in two ways:

• they permit particular memory reorderings; and,

• they may allow writes to propagate in different order to different processors.

Since these properties provide ample implementation freedom, there are a range of weak

memory models.

In this section, we first discuss how hardware memory models support weak consistency

(§2.3.1). Then, we discuss why programming languages adopted memory models (§2.3.2).

Next, we discuss intricate details of the C11 memory model (§2.3.3). Finally, we present

the C11 input sets and relations that we use in this thesis (§2.3.4).

2.3.1 Weak memory models originated from hardware optimisations

In pursuit of better memory parallelism and shorter access latencies, chip designers avoid

adhering to SC requirements [32]. Instead, they support weaker memory guarantees

and provide programmers with safety nets, in the event that stronger guarantees are

required [86]. Most multi-processor architectures are weak since they allow 1) memory re-

orderings and 2) less-restrictive write propagation. Table 2.1 shows a list of multi-processor

architectures collated by Adve et al. [32]. This list is not comprehensive, but provides the

necessary intuition about weak memory models. This table shows the types of reorderings

(§2.3.1.1) and safety nets (§2.3.1.2) of various multi-processors. We do not cover write

propagation since the high-level synthesis of concurrent programs does not feature write

buffers or caches. In the future, HLS of concurrent programs may incorporate write

buffers or caches. In such any event, the atomicity of memory operations may no longer

be guaranteed and hence there must exist a hardware mechanism via HLS to ensure write

propagation when necessary.
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Table 2.1: Categorisation of the various weak memory models [32].

WMM W → R W →W R→
R/W

Safety Net

SC [85]

IBM 370 [87] X serialisation

TSO [88] X RMW

PC [89] X RMW

PSO [90] X X RMW,
STBAR

WO [91, 92] X X X syncs

RC [89] X X X rel-acq,
RMW

Alpha [93] X X X MB, WMB

RMO [94] X X X MEMBARs

PowerPC [89, 95] X X X SYNC

2.3.1.1 Relaxing memory ordering

They are three of types of reorderings that an architecture may permit: 1) reordering reads

after writes to non-aliasing locations (W → R); 2) reordering writes after writes to non-

aliasing locations (W →W ); and 3) reordering reads or writes after reads to non-aliasing

locations (R→ R/W ). Different architectures allow different types of reorderings:

• SC: SC does not allow any memory reordering.

• Reordering W → R: The IBM 370, Total Store Order (TSO) and Processor Con-

sistency (PC) models allow reordering of reads after writes to non-aliasing locations.

They are classified as total store order, since all writes must execute in-order.

• Reordering W →W : The Partial Store Order (PSO) model also allows reordering

of writes to non-aliasing locations and hence only partially orders stores.

• Reordering R→ R/W : The weak ordering (WO), release consistency (RC), Digital

Alpha, SPARC V9’s relaxed memory order (RMO) and IBM’s PowerPC models allow

all reorderings between memory accesses that do not alias.

2.3.1.2 Enforcing memory ordering via safety nets

In order to provide strong ordering guarantees for programmers, each architecture provides

safety nets that enforce memory ordering:

• SC: SC does not require any safety nets since it does not allow any reorderings.

• IBM 370: IBM 370 requires special serialisation instructions to enforce ordering.

• TSO and PC: TSO and PC, on the other hand, do not provide any serialisation

instructions but rather enforce order via read-modify-write instructions.

• PSO and RMO: Both PSO and RMO provide STBAR instruction that enforce
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ordering between two writes.

• RC: In addition to RMWs, RC provide acquire-release pairs that are special syn-

chronisation instructions that grant or relinquish access to a set of shared locations.

• Alpha, RMO and PowerPC: Alpha and RMO provide memory barriers (MB) to

guarantee order between any memory operations. Alpha also provides WMB that

only orders writes. PowerPC provides a SYNC instruction that is similar to MB.

2.3.2 Language standards began to adopt weak memory models

Chronologically, the first focus of weak memory models was on hardware architectures.

Once researchers began to understand the issues with weak memory models on hardware,

attention diverted to the fact the programming language standards were also inept in

expressing multi-processor memory synchronisation correctly.

2.3.2.1 Java memory model

The first signs of problems were identified in the Java memory model (JMM) [96]. Careful

studies of the JMM suggested that common compiler optimisations were violating the

memory model rules in a multi-threaded environment. JMM only supported coherence

and its support for volatiles was unclear. Additionally, the JMM allows prescient stores,

where a store can be executed much earlier than the order specified within a thread.

This optimisation consequently meant that the JMM could be broken with very simple

and targeted tests [96]. The Java memory model was fixed by Manson et al. [97]. They

provide a precise definition for thread interaction and well-formed executions with formal

and informal semantics.

2.3.2.2 C/C++ memory concurrency

Soon after the well-studied issues of Java’s memory model, the C/C++ pthread support

was under scrutiny. For example, Boehm et al. [98] noticed that threads cannot be imple-

mented and designed independently, similar to approaching each thread as a compilation

of a C library. They show that compiling threads independently leads to several cor-

rectness issues during compilation and highlight three concrete examples [98, § 4]. They

also highlighted that the C approach of multithreading was as under-specified as the Java

memory model used to be.

Formalisation of C memory concurrency Several independent efforts to formalise

the C11 took place simultaneously. Boehm et al.’s [99] approach is similar to the Java

memory model [97], in that they present a data-race-free model for C/C++, which guaran-

tees SC behaviour for programs without a data race and undefined behaviour for programs
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with a race. Batty et al. [100] build on the work of Boehm et al. and provide a mathemati-

cally rigorous semantics for C/C++ concurrency. This axiomatic model includes data-race

freedom and supports reasoning for locks, fences and atomic operations. Both these works

address a very important issue, one that is unique to C. These works support the definition

of weakly consistent C atomics (they refer to them as low-level atomics). Supporting weak

atomics is vital to reasoning about program correctness of performance-critical code. All

of these these efforts were pivotal to the drafts and final C11 standard [101].

2.3.3 C11 memory model

The 2011 revision of the C language, ‘C11’, defines three types of memory operations: ordi-

nary memory operations, atomic memory operations and memory fences [101, §5.1.2.4,§7.17].

Ordinary memory operations can either be regular loads or stores. Atomic operations can

either be atomic loads, stores or read-modify-writes. A memory fence is a synchronisation

operation that is not associated to a memory location. Atomic operations, atomics, are

memory operations that: 1) must appear to be instantaneous and 2) are not allowed to

be reordered with other memory operations within a thread. However, these properties

ensure that all atomic accesses obey SC i.e. they are SC atomics. C11 also defines a set

of weakly consistent C atomics, or weak atomics, that relax the properties of SC atomics,

which are identified via consistency modes (also known as memory order). Finally,

memory fences enforce ordering between operations before the fence and operations after

the fence. Our benchmarks do not utilise fences, but we support them for correction

purposes. Additionally, C11 also defines a set of weakly consistent fences.

In this section, we discuss the different C11 consistency modes (§2.3.3.1), how C11

defines runtime memory events and relations over these events to ensure legal execution

(§2.3.3.3), an example that describes this process of converting a static C11 program into

dynamic executions of memory events (§2.3.3.4) and, finally, discuss some related works

that have emerged after the introduction of C11 (§2.3.3.5).

2.3.3.1 C11 consistency modes

Overall, the available C11 memory orders are: SC, acquire, release, consume and relaxed.

The consume mode is not commonly used3 and we treat consume as acquire. Each memory

order applies its own set of rules. Firstly, different memory orders apply to particular types

of memory operations:

• SC mode applies to atomic loads and stores;

• acquire mode applies only to atomic loads;

3In fact, it is temporarily deprecated. Source: https://bit.ly/2Eb7j29

46

https://bit.ly/2Eb7j29


• release mode applies only to atomic stores;

• relaxed mode applies to atomic loads and stores.

Secondly, each memory order disallows particular reorderings from occurring with respect

to other memory operations within a thread:

• any atomic load or store cannot be reordered with any other atomic load or store

that accesses the same location (this property ensures coherence);

• an SC atomic load or store cannot be reordered with any other load or store;

• an acquire load cannot be reordered with loads or stores that are ordered after it in

program order;

• a release atomic store cannot be reordered with loads or stores that are ordered

before it in program order; and

• a relaxed atomic places no additional restrictions on reorderings.

2.3.3.2 Read-modify-write operations

Atomic read-modify-write (RMW) operations [101] are special operations, since they are

composite operations that combine two memory operations atomically: an atomic load

and an atomic store. No other aliasing memory operations in the entire program are

allowed to execute between this pair of operations. The C11 memory model express them

as two individual operations, connected via a rmw relation (Event relations are discussed

in the next section). This edge enforces the criterion that no aliasing memory accesses can

occur between the load and store of the RMW. Consequently, a RMW’s memory order

applies to its load and store operations as if they were individual operations4.

Atomic compare-and-swaps An atomic compare-and-swap (CAS) is a critical RMW

operation, that allows more than two threads to synchronise with each other. A default

CAS operation is expressed as a function with three arguments: an atomic location, an

expected value and a desired value. If the atomic location holds the expected value, it is

instantaneously swapped with the desired value, otherwise its value is unchanged. C11

also defines a set of weakly consistent CASes with two additional arguments: the memory

order when the comparison succeeds and the memory order when the comparison fails.

We only consider the the memory order when the comparison succeeds since it is always

stronger.

Additionally, C defines ‘strong’ and ‘weak’ CAS operations; the difference being that

a weak CAS may fail to swap even if the location does hold the expected value [101,

§7.17.7.4.4]. Note that this usage of ‘weak’ is distinct from weak consistency. The strength

of a CAS refers to its behaviour when the comparison succeeds; its consistency mode refers

4RMWs also support acquire-release mode, but we treat it as SC.
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to how the CAS operation can be reordered with the other memory operations in its thread.

We implement the strong CAS, as it is more powerful, and is required by our benchmarks.

2.3.3.3 Memory events and event relations

These C11 definitions of §2.3.3.1 are simple, easy to understand and sufficient to imple-

ment C11 correctly. These simplistic rules are implied from more complex and in-depth

definitions of the C11, where its memory semantics is defined in terms of allowed global

executions of a concurrent program. A concurrent C program consists of a set of memory

operations that are executed dynamically at runtime. Since a program’s execution is

dynamic, there are an exponential number of possibilities that can be executed in run-

time, defined as the set of candidate executions. C11 describes the set of allowed dynamic

executions amongst the set of candidate executions, defined as the set of legal executions,

C11 does so by defining a set of rules over memory events, i.e. event relations, to which

all concurrent programs must adhere.

Firstly, a memory event is a runtime event, which executes a memory operation from

the source program. An event has four parameters:

1. a read (R) or write (W);

2. a memory order of the memory event, where SC, ACQ, REL, RLX and na represent SC,

acquire, release, relaxed and non-atomic accesses respectively;

3. a memory location that the memory event applies to;

4. and, finally, a exact value that is either read from or written at runtime.

A memory event requires a value parameter since different execution paths taken by a

program can lead to different runtime values, especially for read events.

Additionally, C11 describes several binary relations over memory events. In contrast,

the only binary relation that C11 defines over the set of static memory operations is

program order (po). po is the intra-thread order of memory operations defined in the

source program. The C11 memory event relations that are vital for this thesis are:

• sequenced-before (sb), relates two memory events that are related by po. The only

difference is po relates memory operations whereas sb relates memory events.

• reads-from (rf ), relates two memory events where one event reads the value written

by another event to the same location. rf also enforces that the value written to

and value read by must be the same. rf is a subset of sw.

• modification-order (mo), relates the order in which two write events to the same

location are executed.

A candidate execution is legal if and only if we obtain an acyclic graph over particular

binary relations of C11. A cyclic candidate execution can either be inconsistent or consists
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atomic int x=y=0;

r0=atomic load explicit(&x, r1=atomic load explicit(&y,

memory order acquire); memory order acquire);

atomic store explicit(&y, 1, atomic store explicit(&x, 1,

memory order release); memory order release);

assert(!(r0==1 && r1==1))

Figure 2.6: an example C11 program performing load-buffering.

a: Wna x 0

c: RACQ x 0

d: WREL y 1

b: Wna y 0

e: RACQ y 1

f : WREL x 1

rf

sb
sbsb

momo

sb

sbsb

(a) a legal execution

a: Wna x 0

c: RACQ x 1

d: WREL y 1

b: Wna y 0

e: RACQ y 1

f : WREL x 1

rfrf

sb
sbsb

sb

momo sbsb

(b) an illegal execution

Figure 2.7: Two candidate executions of C11 program in Fig. 2.6.

a data race, whose full definitions can be obtained in Batty et al. [100, §2.10]. One of

these consistency conditions is to ensure that the happens-before (hb) relation is acyclic.

Loosely speaking, hb is the union of sb and rf. hb is also transitive in that if (a, b) ∈ hb
and (b, c) ∈ hb then (a, c) ∈ hb. We visualise the importance of acyclicity by example.

2.3.3.4 An example

As an example of how this semantics works, consider the C11-style program in Figure 2.6.

Here, we have a two-threaded program with two atomic variables, x and y. Both variables

are initialised to zero, before spawning the two threads. The left thread atomically reads

from x, and then atomically writes one to y, and the left thread atomically reads from y

and then atomically writes one to x. Both reads are acquire loads and both writes are

release stores. Weak atomic accesses in C11 are implemented using functions, where we

explicitly state a location, a value (if it’s a store) and, finally, a memory order. The final

assertion states that we must not be able to read ones from both reads as that would mean

that the writes were reordered with the reads in either thread, possibly because the loads

are buffered (hence, the name of this litmus test: load buffering [100, §3]).

This example in Fig. 2.6 has sixteen candidate executions i.e. can be executed in sixteen

possible ways during runtime. Fig. 2.7 show two executions of these executions: a legal

execution on the left and an illegal execution on the right (all executions can be seen

visually using cppmem5, a tool developed by Sewell et al. [88] to verify and reason about

5An interactive online view can be obtained at https://bit.ly/2BO0Ppk
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C11 programs).

This program has six memory events (a,b,c,d,e,f), each with four parameters, that can

be extracted from its source program. Two events, a and b, are from the initialisation step,

and the other four events are distributed evenly between two threads by dotted rectangles.

The sb relation relates events that are executed in the order specified at source-code

level i.e. when the static po relation is preserved during runtime by two memory events.

Hence, we see that the initialisations a and b are sequenced before c, d, e and f . We also

see that c is sequenced before d and that e is sequenced before f .

The mo relation relates the order in which two aliasing write events hit main memory.

In both executions, we see that a writes to x before f and b writes to y before d.

The rf relation orders an event that reads a value written by another event. For example,

e reads from d in both executions, since their value parameters are the same. However, in

Fig. 2.7(b), we see that c also reads from f , instead of a, since the value read by f is one,

leading to an illegal execution.

For this example, the union of sb and rf must not form a cycle to ensure that hb is

acyclic. This is not true for the execution in Fig. 2.7(b), since (c, d), (d, e), (e, f) and (f, c)

forms a cycle. This execution is inconsistent since we cannot identify the order in which

c, d, e and f are executed, as they contradict each other. This cycle does not exist in

Fig. 2.7(a), since c reads from a, instead of f . Hence, we can guarantee that c, d, e and f

are executed in strict order.

2.3.3.5 C11 related works

Since the official release of the C11 standard, there have been many works related to the

C11 memory model for various purposes.

Compilation verification to various architectures The key works involving C11

have been to implement it correctly within compiler infrastructures and various archi-

tectures. There are many works on compiling C/C++ correctly to specific architectures

such as x86 [88], POWER [102] and ARM [86, 103]. The formalisation of C11 allowed

several compiler issues to be identified [104]. CompCertTSO by Ševč́ık et al. [82] provides

correctness guarantees that any compiler pass within the CompCert toolchain is correct

for TSO-based memory models of x86. Morriset et al. [105] present several strategies

to approach bug hunting for concurrency issues regarding to the C11 memory model.

Vafeiadis et al. [81] identify compiler optimisations that misinterpret the C memory model

and introduce subtle bugs.

Simplification and unification of C memory model On the theoretical side, several

works to unify and simply the C memory model have been undertaken. Alglave et al. [83]
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propose an axiomatic model for SC, TSO, C release-acquire semantics, Power and ARM

and also offer a unifying simulation tool to allow concise specification of any of the above

memory model. Batty et al. [106] also provide an in-depth discussion on how to simplify

the semantics of SC atomics, which was rather convoluted and hard to understand prior to

their work. As variation between memory models are becoming increasingly subtle, Wick-

erson et al. [107] present a technique to automatically compare memory models against

each other and generate counter-examples.

Libraries of concurrent data structures Since weak atomics are notoriously hard to

implement correctly, several works present a library of data structures that can be re-used

by programmers. The idea is to avoid repeating the arduous reasoning process of memory

consistency by providing a thoroughly verified set of data structures. Batty et al. [108]

present a generalisation and abstraction for constructing complex concurrency libraries and

use compositional reasoning for concurrent C programs. Norris and Demsky [109] present

a collection of lock-free data structures that utilise weak atomics that are exhaustively

explored for all possible weak behaviours.

GPUs also support C memory model OpenCL [110] also began supporting weak

atomics with the inception OpenCL 2.0 [5, §3.3.4]. Alglave et al. [111] showed that GPUs

are also susceptible to weak behaviours for specific litmus tests under certain conditions

on an Nvidia GPU memory model. Within the GPU context, there is also the added

complexity that different memory scopes exist, where different groups of threads have

restricted access to certain memory hierarchies, as discussed by Wickerson et al. [84].

Operational models instead of axiomatic models Furthermore, some interesting

work by Sarkar et al. [102] and Alglave et al. [83] on defining memory models operationally,

rather than axiomatically, is also worth mentioning. These works highlight an important

problem with an axiomatic model, which is that its execution state space grows exponen-

tially with program size. Hence, simulation tools tend to verify axiomatic models up to a

fixed number of memory events.
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2.3.4 Inputs to our analyses

Having discussed the details of C11, all our analyses in this thesis require programs with

the following inputs: the set of memory operations (§2.3.4.1) and input relations (§2.3.4.2).

2.3.4.1 Memory operation sets

Firstly, we describe the set of all static memory operations, Vmem, as follows:

Vmem = Vld ∪ Vst ∪ Vfence (2.2)

where Vld, Vst and Vfence are the set of loads, stores and memory fences.

Then, we describe the set of all atomic operations, Vat ⊆ Vmem, as follows:

Vat = Vsc ∪ Vacq ∪ Vrel ∪ Vrlx (2.3)

where Vsc, Vacq, Vrel and Vrlx are the set of sequentially-consistent, acquire, release and

relaxed atomics. The details of these different consistency guarantees were elaborated

in §2.3.3.1. Additionally, acquire and release atomics only applies to loads and stores

respectively i.e. Vacq ⊆ Vld and Vrel ⊆ Vst.
Furthermore, we describe set of all fences, Vfence, as follows:

Vfence = Vscfence ∪ Vacqfence ∪ Vrelfence (2.4)

where Vscfence, Vacqfence and Vrelfence are the set of sequentially-consistent, acquire and

release fences.

2.3.4.2 Input relations

Our analysis also relies on the following relations between memory operations:

• po, the ‘program order’ relation, which relates all the memory accesses within each

thread in a strict total order, as stipulated by the programmer,

• sloc, the ‘same location’ relation, which relates all accesses to the same memory

location (as determined by an alias analysis), and

• sthd , the ‘same thread’ relation, which relates all accesses within the same thread,

and finally

• rmw, the ‘read-modify-write’ relation, which relates a load and a store to the same

location that are part of a read-modify-write operation.
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2.4 Lock-free programming

Synthesising the C11 memory model provides the flexibility using atomics, which are

fundamental synchronisation primitives that provide the means for safe concurrent access

of shared memory without the presence of locks. Atomics are fundamentally different to

locks, as atomics are non-blocking entities. An atomic access must execute instantaneously

and cannot be interrupted. Atomic accesses are linearisable [7] i.e. appear to happen at

discrete points in time without conflicts. In this section, we discuss the important classes

of multi-threaded algorithms.

Blocking algorithms In contrast, lock-based data structures are generally implemented

using mutexes. A suggested by its name, a mutex (mutual exclusion) guarantees exclusive

access of shared data to a thread. Mutexes, however, are function calls that block until the

lock is acquired or released respectively. As a result, lock-based concurrency are typically

classified as blocking algorithms. Blocking algorithms halt the progress of threads that

attempt to acquire a mutex, until they succeed. This scenario is bad because it prevents

these threads from doing any useful work and possibly, in the worst case, causes them

to to halt indefinitely because the lock is never released i.e. a deadlock. In addition

to being susceptible to deadlocks, mutexes also serialise the shared memory accesses,

which potentially worsens performance. Also, performance is typically reliant on usage

granularity of these mutexes [34].

Non-blocking algorithms Concurrent C programs that use atomics, instead of locks,

to synchronise across threads are lock-free programs. Lock-free programs can be written

in a non-blocking manner. However, utilising atomics does not guarantee that a lock-free

program is non-blocking. A non-blocking algorithm ensures that unexpected delays in

one thread do not cause other threads to be delayed [7]. As a counter-example, one can

imagine using atomics to implement a spinlock. Even though a spinlock does not halt

a thread’s execution at a function call since there is no mutex present, during runtime

the execution is still stuck in the same region of code until the lock is acquired. In this

regard, both blocking at a function call or spinning endlessly on an atomic variable are

conceptually similar, since they both stop the thread from making progress. Hence, we are

not interested in lock-free programs merely to avoid locks. We want to focus on lock-free

programs that are also non-blocking.

Lock-freedom For the context of this thesis, a lock-free algorithm guarantees that the

program as a whole is making progress i.e. at least one thread is making progress at any

given point of time [7]. Lock-free algorithms do not block progress of competing threads.

If two threads are competing to access the same lock-free data structure, one thread is

guaranteed to succeed and the other thread is informed that it has failed. The failing
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thread has now the choice of trying again or performing other tasks i.e. the failing thread

is not prevented from doing other useful things instead of halting. Wait-free algorithms

provide stronger guarantees compared to lock-free algorithms. A wait-free algorithm guar-

antees that a thread will be able to make progress within a finite number of steps [7]. The

downside of incorporating wait-free algorithms, compared to lock-free algorithms, is that

the complexity and average time taken to complete a given task may be slower. We are

not interested in wait-free programs in this thesis, but it is definitely a unique property

that could be exploited in the future. Wait freedom can be particularly interesting since

Alistarh et al. [112] show that a large class of lock-free algorithms are, in fact, wait-free

under the scheduling conditions of commercially available hardware.

Benefits of lock freedom Empirically, lock-free programs are known to have good

performance compared to their lock-based counterparts [113]. Due to their non-blocking

nature and superior performance, a range of lock-free data structures are typically found

as part of the Linux kernel [114] and high-performance libraries such as Boost [115] and

libcds [116]. As lock-free programs are beginning to gain wider acceptance in the software

world, we are motivated to enable lock-free C concurrency via the synthesis of the C11

memory model. Our work enables C programs with atomic operations to be directly

synthesised and executed on reconfigurable hardware. Hence, we are enabling a plethora

of lock-free data structures to be targeted to FPGAs for the first time.
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2.5 Evaluation of our methods

Since HLS support of lock-free programs is relatively new, we evaluate our work on a set

of hand-picked lock-free data structures from software benchmarks. In this section, we

discuss the following:

• we introduce, describe and characterise our set of lock-free data structures, in §2.5.1;

• we define three data-flow patterns, which are based on different arrangements of our

data structure routines, in §2.5.2;

• we introduce our memory- and compute-dominant experiments that we use to eval-

uate our work, in §2.5.3.2;

• and, finally, we describe the HLS, CAD and simulation tools and setups used through-

out our work, in §2.5.4.

2.5.1 Benchmarks

We evaluate our method on three lock-free data structures: a single-producer-single-

consumer buffer [117], the Treiber stack [118] and the Michael–Scott queue [119]. These

data structures are real-world examples of lock-free data structures and are part of the

Boost library [115] and Linux kernel [114]. We use weak versions of the stack and queue

from Norris and Demsky [109].6

To access a lock-free data structure correctly in a concurrent setting, each data structure

imposes a pre-defined ordered set of memory accesses, referred to as routines. Routines

play an important role for all our experiments. Examples of data structure routines

include pushing, popping, enqueueing and dequeueing. Routines provide an abstraction

that enforces particular memory orderings when accessing these data structures, which

ensures race-free and correct synchronisation between concurrent threads. Typically, the

routines’ the original implementation re-attempt their accesses until successful via while

loops. We re-factor these routines to only execute a single attempt. We do so for two

reasons. Primarily, re-attempts within these routines implicitly turn the stack and queue

into blocking data structures, whereas we are interested in non-blocking data structures.

Secondarily, avoiding while loops allows the entire routine to fit into a basic-block, which

suited LegUp compilation.

In the remaining part of this subsection, we describe each data structure and how

they support the specified synchronisation in a lock-free manner, before finally we char-

acterise all their routines for comparison. All data structure routines are represented in

Appendix A, with most memory accesses labelled for reference.

6http://plrg.eecs.uci.edu/git/model-checker-benchmarks.git/
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2.5.1.1 SPSC buffer

The SPSC buffer [117], as represented in Listing A.1 of page 176, only allows commu-

nication between two threads, a producer (only allowed to push) and a consumer (only

allowed to pop). This buffer is first-in-first-out (FIFO), and therefore requires two atomic

pointers, tail and head, protecting a non-atomic array. The tail points to the next

location in array that the producer can push to while the head points the next element

in array that the consumer must pop. Since it only allows two threads to synchronise, it

can be implemented via atomic loads and stores without CASes.

Push and pop routines The producer checks if the buffer is not full (line 6) before

pushing data to the array (line 9) and then updating the tail pointer (line 10). The

consumer checks if the buffer is not empty (line 20) before popping data from the array

(line 22) and then updating the head pointer (line 22). Both the pointer updates are done

in a circular/modulo fashion via the increment function.

Routine synchronisations These push and pop routines ensure correct inter-thread

memory behaviour by enforcing that the non-atomic array only synchronises as a conse-

quence of its release-acquire pairs synchronising, i.e.

• ¸ synchronises with ¼, if the release store of ¹ and the acquire load of » synchronise.

• ¼ synchronises with ¸, if the release store of ½ and the acquire load of · synchronise.

2.5.1.2 Treiber stack

A Treiber stack [118], as represented in Listing A.2 of page 177, allows communication

between multiple threads. This stack is last-in-first-out (LIFO), and therefore requires a

single atomic pointer, top, protecting a linked list that is implemented with two arrays,

an atomic array nodes next (holding all nodes’ next pointers) and a non-atomic array

nodes value (holding all nodes’ values). Since multiple threads can attempt to push and

pop on the stack concurrently via a single atomic pointer, all accesses to update the top

must be done via CASes.

Push and pop routines To push to the stack, first the top pointer is read (line 4).

Then, a new node is allocated, where its next pointer is updated with the current top

value (line 6). Finally, a CAS is performed to advanced the top pointer of the stack by

one (line 8) to ensure the success of the push routine. To pop from the stack, the current

top pointer is read (line 14) and the next pointer of the current node pointed to by top

is read (line 15). Then, the stack is checked that it is not empty (line 16). If so, then

the top pointer is advanced via a CAS operation (line 18). If the CAS succeeds, the pop

routine is completed and the node value can be read (line 20).
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Routine synchronisations The push and pop routines ensure correct inter-thread

memory synchronisation by enforcing that the linked list’s next pointer is always updated

via atomic accesses (¸ and ») and this updates to the linked list are synchronised via

atomic release-acquire pairs of the top pointer, i.e.

• ¸ synchronises with », if the release store of ¹ and the acquire load of º synchronise.

• » synchronises with ¸, if the release store of ½ and the acquire load of ¶ synchronise.

2.5.1.3 Michael–Scott queue

A Michael–Scott queue [119], as represented in Listing A.3 of page 178, allows communi-

cation between multiple threads. This queue is FIFO, and therefore requires two atomic

pointers, tail and head, protecting a linked list that is implemented with two arrays,

an atomic array nodes next (holding all nodes’ next pointers) and a non-atomic array

nodes value (holding all nodes’ values). The head and tail point to the first and last

nodes in the list respectively. The enqueue and dequeue routines of this queue concurrently

update the linked list via these two atomic pointers. Since multiple threads can perform

both enqueues and dequeues concurrently, all updates of head and tail must be executed

via CASes.

Enqueue routine To enqueue a node to this queue, firstly the node must be allocated

atomically (lines 6 to 9). Then, the tail value and the next pointer of the node pointed

by tail are checked to be consistent (lines 12 to 15). If these values are consistent, then

check if the tail is pointed to the last node, and if so, perform a CAS to enqueue the

newly allocated node (lines 19 to 22). If the tail was not pointing to the last node, then

it is updated (lines 26 to 28).

Dequeue routine To dequeue a node from this queue, firstly the head value and the

next pointer to the node pointed by the head are checked to be consistent (lines 40 to 42).

If these values are consistent and the queue is not empty, then the head value is updated

to the next node in the list (lines 56 to 58) via a CAS operation. On the contrary, if the

tail is failing behind, then the tail is updated (lines 47 to 51). Note that the dequeue

routine accesses both atomic pointers whereas the enqueue only accesses the tail.

Routine synchronisations The enqueue and dequeue routines ensure correct inter-

thread memory behaviour via the use of CASes and several release-acquire pairs that

protect the linked list. These pairs are used to check the queue consistency at the start of

each loop and also to update the next pointers, i.e.:

• ¶ can synchronise with », ¼ or w12 ,

• ½ can synchronise with w14 , and

• ¹ can synchronise with ·, º or ¾.
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Table 2.2: Our benchmarks and their memory access properties.

Benchmarks
push accesses pop accesses atomic accesses
total atomic total atomic acq rel rlx na CAS

SPSC buffer [117] 4 3 4 3 2 2 2 2 0
Treiber stack [118] 4 4 4 4 2 2 4 0 2

MS queue [119] 10 9 7 6 5 5 5 2 5

T1 d1 T2 . . . dn Tn+1

(a) Chaining

T2 d1

Tn+1 dn

T1
...

(b) Reduction

T1

d1 T2

dn Tn+1

...

(c) Distribution

Figure 2.8: The experiments we conduct for each data structure. Squares represent
threads, circles represent data structure objects and arrows represent data
flow.

2.5.1.4 Memory characterisation

Table 2.2 characterises the memory access requirements of each data structure by routine

and consistency modes, which provides several highlights. Firstly the ratio of atomic

accesses to all memory accesses are high. In fact, the buffer and queue only has one non-

atomic access per routine whereas the stack has none. Secondly, all data structures only use

weak atomics, i.e. none of their weak version use any SC atomics. Thirdly, the stack and

queue require CAS operations to synchronise across more than two threads. Finally, the

queue has the most number of memory accesses with the most complex synchronisation.

2.5.2 Data-flow patterns

We evaluate our data structures on three common data-flow patterns. These three pat-

terns are typically how data flows across threads: one-to-one (chaining), many-to-one

(reduction) and one-to-many (distribution). Fig. 2.8 show these patterns visually. We test

all three patterns on our data structures via their routines.

For each data pattern, we instantiate n independent data structure objects and n + 1

pthreads, where we scale n from 1 to 8. Within each thread, we run a fixed number of

iterations (256). Each thread implements at least one data structure routine on at least

one data structure object. The three data-flow patterns are set up as follows:

• Chaining as in Fig. 2.8(a): T1 pushes to d1, Ti (for 2 ≤ i ≤ n) pops data from di−1

and pushes it to di. We measure time taken by Tn−1.

58



• Reduction as in Fig. 2.8(b): T2 to Tn+1 push data to d1 to dn respectively and T1

pops data from all n data structure objects. We measure time taken by T1.

• Distribution as in Fig. 2.8(c): T1 pushes data to all n data structure objects, and

T2 to Tn+1 pop data from d1 to dn respectively. We measure time taken by T1.

2.5.3 Experiments

2.5.3.1 Memory-dominant experiments

The combination of three data structures and three data-flow patterns provide nine unique

settings, which we refer to a set of experiments. We also refer to these experiments as

a set of memory-dominant experiments, since its entire workload only comprises of data

structure routines. Memory-dominant experiments provide good insights when considering

relative performance of memory scheduling by our different analyses.

2.5.3.2 Compute-dominant experiments

Memory-dominant experiments do not include any computational workload, in conjunction

to their memory workload. Thus, these experiments do not show the capabilities of our

analyses in the presence of computation, especially when we evaluate loop pipelining.

Hence, we introduce another set of experiments, the compute-dominant experiments. This

set of experiments are designed to evaluate the effects of loop pipelining when computation

is part of a thread’s workload. We do so by including long-latency division operators within

certain threads of our three data-flow patterns, as follows:

• Chaining : We divide all data popped from d1 to dn−1 by three and push the result

to d2 to dn within T2 to Tn respectivelym where we increment data pushed by T1

by 3n.

• Reduction: We divide all data popped from d1 to dn by three within T1. We also

increment the data pushed by T2 to Tn+1 by three.

• Distribution: We divide all data by three before pushing them to d1 to dn within

T1. We also increment all data by three, also within T1, before the division.

2.5.4 Experimental Setup

We utilise LegUp 5.1 to synthesise each pthread as a hardware accelerator, with shared

memory implemented on the FPGA. The memory architecture generated by LegUp when

using their pthread flow was discussed in §2.2.5.3. We perform cycle-accurate simulation

on our all experiments using vsim, which is invoked by LegUp. We place-and-route all our

designs using Quartus 15.0 for a Cyclone V SoC FPGA (5CSEMA5) with 32075 ALMs,
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128300 registers, and 3970 Kb of RAM blocks. We extract the clock frequency and resource

utilisation data of our designs from Quartus’ post place-and-route reports.
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3. Scheduling Fine-grained C

Concurrency for High-Level Synthesis

3.1 Introduction

When writing multi-threaded programs for conventional multi-processors, the most effi-

cient way of synchronising threads is to use fine-grained atomic operations (‘atomics’) –

as opposed to, for instance, coarse-grained mutual exclusion based on locks [113]. Despite

the benefits of fine-grained concurrency in the form of atomics, state-of-the-art high-level

synthesis (HLS) tools do not sufficiently support them [8, 120]. One approach for im-

plementing atomics is to wrap each atomic operation in its own critical section by using

pthread mutexes [8]. Each atomic operation is surrounding by a pair of lock() and un-

lock() function calls, which implicitly enforces mutual exclusion. Although this approach

is correct, there are three problems with such an approach.

Firstly, atomics are the fundamental primitive of memory synchronisation. More com-

plex synchronisation primitives such as test-and-set, spinlocks and semaphores are built

based on the guarantees of atomic operations [7]. Hence, the HLS approach of imple-

menting atomics using locks is problematic because it is a counter-intuitive starting point

for the software community, who are the prospective HLS audience. Secondly, the usage

of locks to implement atomics re-introduces memory serialisation and deadlocks, which

contradicts the goal of implementing lock-free memory synchronisation. Thirdly, a lock’s

function calls also introduce performance overheads and inhibit loop pipelining.

To enable efficient high-level synthesis of lock-free programs, we focus on the two prop-

erties of an atomic operation. Firstly, an atomic operation must be an indivisible memory

operation, which is guaranteed by current HLS compilation procedure for all memory

operations. Secondly, an atomic operation must also obey specific memory orderings

as per the C memory model, discussed thoroughly in §2.3.3. To satisfy these ordering

guarantees, we frame the implementation of atomics as a HLS scheduling problem, where

memory orderings can be represented using HLS scheduling constraints.

Since the C memory model only requires atomics to preserve memory orderings within

its own thread, we can express these memory orderings as intra-thread memory constraints.

These intra-thread memory constraints are then applied during the memory scheduling
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of individual threads. Although intra-thread constraints only affect the schedule of their

respective threads, the C memory model guarantees that, when these individual thread

schedules interact with each other, correct global memory behaviour is preserved.

In summary, we can implement atomic accesses by imposing additional intra-thread

memory constraints on them. We inject these additional constraints based on certain

scheduling rules, whereby these rules collectively form a memory model. Since our work

poses the implementation of atomics as a scheduling problem, we are able to devise the

first HLS method capable of compiling weak atomics, which we verify via automated model

checking. We do so by using Alloy [121] to ensure our generated hardware is correct-by-

construction. In this chapter, we discuss the following:

• In §3.2, we formalise the memory model generated by state-of-the-art HLS schedulers

of multi-threaded programs by defining their intra-thread memory dependencies;

• In §3.3, we show why this memory model cannot synthesise any form of memory

synchronisation across threads without relying on locks;

• In §3.4, we introduce a running example to visually capture the effects of our work

on scheduling outcomes, where this example will be re-use in subsequent chapters

to compare memory scheduling of various analyses.

• In §3.5.2, we augment the HLS schedulers to impose additional intra-thread de-

pendencies on atomic accesses, generating a memory model that can support SC

atomics;

• In §3.5.3, we further modify the HLS schedulers to tailor these additional dependen-

cies of atomics based on their consistency guarantees, generating a memory model

that can support weak atomics;

• In §3.6, we verify via automated model checking that our memory models generate

hardware that implement atomics correctly, as per the C11 standard;

• In §3.7, we implement our methods in the LegUp 5.1 HLS tool;

• In §3.8, we discuss how we implement CASes in LegUp, which is required to syn-

chronise more than two threads;

• Finally, in §3.9, we evaluate our method on a set of experiments, .

3.2 Formalising the state-of-the-art

Throughout our work, we focus on the scheduling stage of synthesis in which software

instructions are assigned to hardware clock cycles1. Typical, HLS schedulers seek to

maximise instruction-level parallelism by allowing independent instructions to be executed

out-of-order. In particular, typically, non-aliasing memory accesses, or those that exhibit

1We assume that operations of all threads are executed within the same clock domain.
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only read-after-read dependencies (e.g. x=z; y=z), can be reordered. These reorderings

are invisible in a single-threaded context, but they can introduce unexpected behaviours

in a multi-threaded context. For instance, if another thread is simultaneously writing to

z, then reordering two instructions above may introduce the behaviour where x is assigned

the latest value but y gets an old one.

The implication of this is not that existing HLS tools are wrong; these optimisations can

only introduce new behaviours when the code already exhibits a race condition, and races

are deemed a programming error in C [101, §5.1.2.4]. Rather, the implication is that if

these memory accesses are upgraded to become atomic (and hence allowed to race), then

existing scheduling constraints are insufficient. Hence, in this section, we first summarise

the existing HLS memory dependencies injected during the scheduling stage of a sequential

C program. Then, we follow this discussion with how these memory dependencies are

naively extended to concurrent C programs and are insufficient to support fine-grained

memory synchronisation across threads without locks.

3.2.1 Memory dependencies for sequential programs

Our formalisation refers to the following contents from our Background chapter:

• the input memory operation sets and memory relations, given in §2.3.4 of page 52;

• and, the SDC formulation, described thoroughly in §2.2.6.2 of page 40.

Also, we assume the absence of loop pipelining in this chapter and Chapter 4. Hence,

all dependence distance are zero for all constraints of both chapters. Loop pipelining is

discussed thoroughly in Chapter 5.

Memory dependencies (mem), which hold between memory operations, Vmem ⊆ Vop, are

a subset of data dependencies (mem ⊆ dd). C-based HLS tools perform alias analysis on a

sequential C program and preserve read-after-write (RAW), write-after-write (WAW) and

write-after-read (WAR) dependencies between aliasing memory operations, which can be

formally described as follows:

mem-alias = {(v, v′, 0) | (v, v′) ∈ po ∧ (v, v′) ∈ sloc ∧
(v ∈ Vst ∨ v′ ∈ Vst)}

(3.1)

where Vst ⊆ Vmem is the set of store operations, po is the ‘program order’ relation and

sloc is the ‘same location’. mem-alias expresses that for every memory operation v that

is ordered before any memory operation v′, where both accesses are to the same location

and either one is a store, there must be exist an ordering edge between v and v′.

The memory model enforced by state-of-the-art HLS tools on sequential C programs,
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mem, is defined as follows:

mem = mem-alias ∪ nopipe (3.2)

where nopipe inhibits any overlap between successive iterations:

nopipe = {(v, v′, 1) | v ∈ Vmem ∧ v′ ∈ Vmem}.

nopipe enforces that all memory operations within an iteration (v) must be executed

before any memory operations (v′) from the next iteration, via a dependence distance of

one, which prohibits any opportunities for loop pipelining.

In summary, mem only preserves memory ordering between aliasing memory operations

where at least one of them is a store. In other words, this memory model omits orderings

between all non-aliasing memory operations and also between operations that have RAR

dependencies. Although these omissions afford better memory parallelism of sequential C

programs, such optimisations are only legal in a single-thread context.

3.2.2 Synthesising multi-threaded programs

Unfortunately, mem is also applied individually to each thread of a concurrent C program.

This is because memory scheduling of individual threads is treated as memory scheduling

of a collection of sequential C programs. HLS tools enforce mem within each thread and

then connect all threads to their shared memory constructs via hardware interfacing and

arbitration, as discussed in §2.2.5.3 of page 37. These intra-thread constraints are, thereby,

too weak to support any form of memory synchronisation between threads without locks.

3.3 Demonstrating the gap in current HLS capabilities

To understand why the current HLS memory model cannot support atomic operations, we

provide two simple multi-threaded programs: “coherence” and “message-passing”. These

are two examples designed to test whether a memory model confronts to sequential consis-

tency (SC), where all memory accesses appear to occur instantaneously and in the same

order as the corresponding instructions in each thread [85].

These two examples can demonstrate unexpected behaviours, when mem of (3.2) from

page 64 is applied individually to each thread. In both cases, the unexpected behaviour

only arises when particular instruction sequences are carefully contrived, but we argue

that similar sequences could easily occur in ‘realistic’ programs too. To make our examples

concrete, we present actual LegUp schedules demonstrating these behaviours occurring. In

these schedules, all memory locations are identified to be non-aliasing and are instantiated
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atomic int x=0;

T1() { T2() {
1.1 int r0=0,r1=0; 2.1 atomic store(&x,1);

1.2 r0=atomic load(&x); }
1.3 r1=atomic load(&x);

}
assert(r0 = 1⇒ r1 6= 0)

Figure 3.1: A minimal example of a coherence violation. The assertion failing indicates a
coherence violation, where the second load of x (r1) happens before the first
load of x (r0).

volatile int x=0; volatile int y=0;

T1(int a) { T2() {
1.1 int r0=0,r1=0,r2=0; 2.1 x=1;

1.2 r0=y+y+y+y+y+y; }
1.3 r1=x;

1.4 r2=x/a;

}
assert(r1 = 1⇒ r2 6= 0)

Figure 3.2: A program that can exhibit a coherence violation when compiled using LegUp,
if atomics are treated as non-atomics (thread T1 is launched with a = 1).

as LegUp global memory, where a load takes two cycles and a store takes one cycle [41].

We emphasise that the unexpected behaviours discussed here do not mean that LegUp’s

scheduler is wrong, because LegUp does not claim to provide support for C11 atomics.

Rather, we use these examples to demonstrate how the scheduling rules need to be altered

to handle atomics correctly, and thereby avoid the problematic cases demonstrated in this

section. Although our examples are based on the LegUp HLS tool, they are relevant to

any HLS tool that performs constraint-based scheduling on a per-thread basis.

Coherence One of the simplest violations of SC is a coherence violation [122, §8], as

illustrated in Fig. 3.1. The atomic variable x, initially zero, is shared between two pthreads,

T1 and T2, that are synthesised as parallel hardware units executing concurrently. A

coherence violation occurs when the first load (line 1.2) observes x’s new value but the

second load (line 1.3) observes x’s old value2. This violation is detectable via the final-

state assertion. This violation of coherence is due to the absence of read-after-read (RAR)

edges in mem-alias of (3.1) from page 63.

We can observe a coherence violation in LegUp by first making some innocuous trans-

formations to the source code, as shown in Fig. 3.2. The key objective in Fig. 3.2 is

to increase the priority of the second load of x compared to the first one in an ASAP

2By default, all atomic operations are SC unless a memory order is specified.

65



Cycle: 1 2 3 4 5 6 7 · · · 36

1.2 ld y

1.2 ld y

1.2 ld y

1.2 ld y

1.2 ld y

1.2 ld y

1.3 ld x

1.4 ld x

1.4 divide

2.1 st x

Figure 3.3: Schedules for threads T1 (top) and T2 (bottom) that allow the program in (b)
to exhibit a coherence violation.

int x=0; atomic int y=0;

T1() { T2() {
1.1 x=1; 2.1 int r0=0,r1=0;

1.2 atomic store(&y,1); 2.2 r0=atomic load(&y);

} 2.3 if(r0==1) r1=x;

}
assert(r0 = 1⇒ r1 = 1)

Figure 3.4: A minimal example of a message-passing violation. The assertion failing indi-
cates a message-passing violation, where the flag is set (r0 = 1) but the data
is stale (r1 = 1).

scheduling context. We do so with two steps. First, we replace the atomic variables with

their volatile counterparts, to simulate atomics as unoptimised regular loads and stores.

Then, we chain the second load’s value into a division (whose denominator is set to 1 at

runtime) and also inject extra loads of y that are part of an addition chain.

These transformations result in the schedule shown in Fig. 3.3.3 Because of the division’s

large latency, the scheduler seeks to schedule the second read of x as early as possible.

It determines that line 1.4 does not depend on line 1.3 (there is only a read-after-read

(RAR) dependency on x) or on line 1.2, and hence can be executed on the first cycle. The

repeated reads of y cause a delay between the two reads of x, and it is during this gap

(third cycle) that thread T2 updates x. T2 only update x at the third cycle because LegUp

takes two cycles to spawn consecutive threads. The resultant execution shows that the

second load of x reads stale data because the first load of x reads the latest value.

3The schedule is constrained by dual-ported shared memory access, since LegUp global memory is im-
plemented using block RAMs.
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int x=0; volatile int y=0;

T1(int a) { T2() {
1.1 x=a/3; 2.1 int r0=0,r1=0;

1.2 y=1; 2.2 r0=y;

} 2.3 if(r0==1) r1=x;

}
assert(r0 = 1⇒ r1 = 1)

Figure 3.5: A program that can exhibit a message-passing violation when compiled using
LegUp, if atomics are treated as non-atomics (thread T1 is launched with
a = 3).

Cycle: 1 2 3 4 5 · · · 35 36

1.2 ld a

1.2 divide

1.2 st x

1.3 st y

2.1 ld y

2.2 ld x

2.2 slt y==1?
x:null

Figure 3.6: Schedules for threads T1 (top) and T2 (bottom) that allow the program in (b)
to exhibit a message violation.

Message-passing Another example of an SC violation is illustrated by a failure of the

message-passing paradigm [122, §3], which is illustrated in Fig. 3.4. This example involves

two shared locations, x and y, where x represents a message being passed from thread T1

to thread T2, and y is used as a ‘ready’ signal. A message-passing violation occurs if T2

observes that y is set (line 2.3) but observes that x is still 0, as enforced by the final-state

assertion. The reason for this violation is that there are no aliasing memory operations to

preserve within both threads.

As before, some innocuous code transformations can coax the ASAP scheduler into

revealing this behaviour, as shown in Fig. 3.5. This time, our objective is to delay the

store of x (line 1.1) so that it executes after the atomic store of y (line 1.2). This scenario

is easy to achieve. We simply delay the store of x by computing its store value via a

division (line 1.1).

Fig. 3.6 shows the resultant schedule, where this high-latency operation delays the store

to x. Because lines 1.1 and 1.2 are deemed independent, the scheduler permits them to

be reordered and the store of y can be executed on the first cycle. In the reading thread

(T2), both loads are scheduled simultaneously having used if-conversion [123] to replace
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Cycle: 1

a=42; stna a 42

ast(&b,1,REL); stREL b 1

x=17; stna x 17

ast(&y,1,REL); stREL y 1

Figure 3.7: A running example of four non-aliasing stores, of which two are store releases,
and its schedule based on mem in (3.2) from page 64.

the control flow with predicated statements via a select (or slt) statement in line 2.2.

Again, since this thread is spawned by LegUp after two cycles, we can observe the new

value of y but the old value of x – a violation of message passing.

In summary, we show the current HLS memory models are too weak and fragile to

support atomic operations. Even innocuous code transformations can affect the scheduling

priorities of memory operations and tool-specific details, such as the way LegUp spawns its

threads, can influence the outcomes of memory synchronisation. Hence, in §3.5, we enforce

additional scheduling rules on atomics to generate memory models that can support the

execution of lock-free synchronisation.

3.4 A running example

Before we delve into our methods for supporting atomics, we present a running example

that helps visualise the scheduling outcomes of the various memory models we propose.

The example will also be revisited in subsequent chapters for comparison purposes.

In Fig. 3.7, we propose an example with a single thread that stores to four different

memory locations: two of which are atomic locations (b and y) and release stores (REL).

Each shaded cell represents the cycle in which the particular memory event is scheduled

(memory events were discussed in §2.3.3.3). We also assume that each store takes one

cycle and we assume ASAP scheduling with an unconstrained number of memory ports.

The schedule in Fig. 3.7 shows our running example implemented using mem in (3.2)

from page 64. The scheduler treats atomics as ordinary operations, and since these memory

accesses do not alias, all four memory operations are free to be scheduled simultaneously.

Hence the total latency of this example is just one cycle. However, in presence of atomics,

this schedule can be wrong since the store releases are scheduled earlier than they should

be. We show how to alleviate this problem in §3.5.
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3.5 Injecting HLS ordering constraints to support atomics

Thus far, we have seen how the current HLS memory models, via mem of (3.2) from

page 64, are too weak to support atomics. In this section, we systematically enlarge mem

to allow correct execution of atomics via additional scheduling rules. These rules are

generic for all programs, but generate program-specific intra-thread scheduling constraints

for each thread of an input concurrent C program. These constraints are then applied

during memory scheduling of individual threads.

Our method supports C atomic loads, stores and read-modify-writes as well as fences.

The input memory operation sets and memory relations required by our method are intro-

duced in §2.3.4 from page 52. In this section, we discuss four memory models that enlarge

the mem relation of (3.2) from page 64:

• In §3.5.1, we introduce a memory model that implements SC [85]. This implemen-

tation is straightforward but forbids any memory parallelism.

• In §3.5.2, we introduce a memory model that can support SC atomics. This memory

model treats all atomics as SC atomics, which is the default consistency mode when

left unspecified.

• In §3.5.3, we introduce a memory model that can support weak atomics. This

memory model is sensitive to each atomic’s consistency mode.

• Finally, in §3.5.4, we introduce a memory model that is extended to support memory

fences.

3.5.1 Preserving SC semantics

A naive solution to ensure correct memory behaviour is to serialise all memory operations,

regardless of any alias analysis or any atomics. This is achieved by defining sc as follows:

sc = {(v, v′, 0) ∈ Vmem × Vmem | (v, v′) ∈ po}. (3.3)

sc enforces strict order between all every pair of memory operations (v, v′), where v is

ordered before v′. This memory model entirely overrules mem. Consequently, sc disallows

any memory parallelism since it will only allow one memory operation to be executed in

any given cycle.

Running example Fig. 3.8 shows the schedule of our running example based on sc. sc

serialises all four memory accesses, resulting in a latency of four cycles, even though all

accesses are non-aliasing and some accesses are non-atomic.
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Cycle: 1 2 3 4

a=42; stna a 42

st(&b,1,REL); stREL b 1

x=17; stna x 17

st(&y,1,REL); stREL y 1

Figure 3.8: A running example of four non-aliasing stores, of which two are store releases,
and its schedule of based on sc from (3.3) of page 69.

Cycle: 1 2 3 4

a=42; stna a 42

ast(&b,1,REL); stREL b 1

x=17; stna x 17

ast(&y,1,REL); stREL y 1

Figure 3.9: A running example of four non-aliasing stores, of which two are store releases,
and its schedule of based on mem-sc from (3.4) of page 70.

3.5.2 Exploring SC atomics

Now, we now define a memory model that can support SC atomics. We introduce two

additional rules that generates intra-thread memory dependencies for each atomic oper-

ation within each thread. Vat ⊆ Vmem is the set of all atomics where we treat them all

as SC atomics. This implementation is conservative but simple to understand and easy

to implement. The two additional rules we introduce, at 9 and at 8 , prevent atomics from

moving ‘earlier’ or ‘later’ in the schedule respectively:

mem-sc = mem ∪ at 8 ∪ at9 (3.4)

where
at8 = {(v, v′, 0) | (v, v′) ∈ po ∧ v ∈ Vat}
at9 = {(v, v′, 0) | (v, v′) ∈ po ∧ v′ ∈ Vat}.

at 8 specifies that for every atomic operation v that is ordered before any memory operation

v′, there must exist an ordering edge from v to v′. at 9 specifies that for every memory

operation v′ that is ordered after any atomic operation v, there must exist an ordering edge

from v to v′. The combination of these two constraints and mem sufficiently implements

a memory model that can support SC atomics.

Running example Fig. 3.9 is the schedule of our running example when we implement

mem-sc. The atomic store of b is constrained to execute after the store of a and before

the store of x and y (by at9 and at8 respectively). The atomic store of y is constrained

to execute after the stores of a, b and x (by at 9 ). Hence, the latency of this example is

four cycles. Notice that the resultant schedule is the same as when we apply sc of (3.3)
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Cycle: 1 2 3 4

a=42; stna a 42

ast(&b,1,REL); stREL b 1

w=5; stna w 5

x=17; stna x 17

ast(&y,1,REL); stREL y 1

Figure 3.10: A slightly modified running example with five non-aliasing stores instead of
four, of which two are store releases, and its schedule of based on mem-sc
from (3.4) of page 70.

from page 69, as shown in Fig. 3.8. It turns out that mem-sc can produce schedules

as conservative as sc. This can happen when |Vat| ≈ |Vmem| or when atomic operations

appear in alternation to non-atomic operations, as in this example.

The difference between mem-sc and sc can be shown by adding another non-atomic store

to a new location (let’s say w) in middle of the four stores in our running example. Fig. 3.10

shows the schedule when applying mem-sc to these five memory accesses. The store of w

must execute after the store of b and before the store of y (by at 8 and at 9 respectively).

However, the store of w and x are unordered and hence they can be executed in parallel.

In contrast, sc enforces memory serialisation, which means it will produce a latency of five

cycles with no memory parallelism for this modified example.

3.5.3 Exploiting weak atomics

Next, we define a memory model that can support weak atomics by making our scheduling

rules sensitive to the consistency mode of atomic accesses. Recall, from §2.3.4, that Vsc,

Vacq, Vrel, and Vrlx are the sets of sequentially consistent, acquire, release and relaxed

atomics, such that Vsc∪Vacq∪Vrel∪Vrlx = Vat. We require five additional rules to support

atomics: two for SC atomics, one for acquire atomics, one for release atomics and one to

preserve RAR dependencies for all atomics. mem-weak is a memory model that supports

weak atomics, as follows:

mem-weak = mem ∪ sc 8 ∪ sc 9 ∪
acq 8 ∪ rel 9 ∪ rar

(3.5)
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Cycle: 1 2 3

a=42; stna a 42

st(&b,1,REL); stREL b 1

x=17; stna x 17

st(&y,1,REL); stREL y 1

Figure 3.11: A running example of four non-aliasing stores, of which two are store releases,
and its schedule of based on mem-weak from (3.5) of page 71.

where
sc 8 = {(v, v′, 0) | (v, v′) ∈ po ∧ v ∈ Vsc}

sc 9 = {(v, v′, 0) | (v, v′) ∈ po ∧ v′ ∈ Vsc}

acq 8 = {(v, v′, 0) | (v, v′) ∈ po ∧ v ∈ Vacq}

rel 9 = {(v, v′, 0) | (v, v′) ∈ po ∧ v′ ∈ Vrel}

rar = {(v, v′, 0) | (v, v′) ∈ po ∧ sloc(v, v′) ∧
v ∈ Vat ∩ Vld ∧ v′ ∈ Vat ∩ Vld}.

sc9 and sc8 define the ordering dependencies for SC atomics, which are similar to at 9 and

at8 in mem-sc of (3.4) from page 70, except that they only apply to SC atomics rather

than all atomics. acq 8 defines that acquire atomics cannot move ‘down’ in the schedule:

for every acquire atomic v that is ordered before any memory operation v′, there must

exist an ordering edge from v to v′. rel 9 defines that release atomics cannot move ‘up’ in

the schedule: for every release atomic v′ that is ordered after any memory operation v,

there must exist an ordering edge from v to v′. rar defines that read-after-read (RAR)

dependencies must be enforced for all atomics: for every atomic load v that is ordered

before any atomic load v′ to the same location, there must exist an ordering edge from v

to v′. This rule differentiates relaxed atomics from non-atomic memory operations since

non-atomic memory operations do not enforce RAR dependencies.

Running example Fig. 3.11 is the schedule of our running example when we implement

mem-weak. rel 9 enforces that store of b must execute after the store of a and that the

store of y must execute after all memory accesses. However, the store of x is non-atomic

and not constrained by mem-weak. Hence, in an ASAP schedule, this store of x can be

reordered with the stores of a and b and executed in the first cycle. By supporting weak

atomics, we can achieve a latency of three cycles, instead of four by mem-sc in Fig. 3.8.

3.5.4 Supporting memory fences

The C memory model also defines the behaviour of memory fences [101]. Under our

assumption that the indivisibility of our memory accesses are guaranteed, memory fences

also can also be implemented via scheduling constraints, similar to atomic operations.
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In this section, we discuss the scheduling constraints necessary to support C11 fences.

Although none of our benchmarks utilise fences, we include fences for correctness purposes.

Recall, from §2.3.4, that Vscfence, Vacqfence and Vrelfence be the set of sequentially-consistent,

acquire and release fences. We support memory fences with three additional rules: one

each of SC, acquire and release fences. We implement a memory model, mem-weak-fence,

that supports weakly consistent atomics and memory fences as follows:

mem-weak-fence = mem-weak ∪ sc-fence ∪ acq-fence ∪ rel-fence (3.6)

where

sc-fence = {(v, v′′, 0) | (v, v′) ∈ po ∧ (v′, v′′) ∈ po ∧ v′ ∈ Vscfence}
acq-fence = {(v, v′′, 0) | (v, v′) ∈ po ∧ (v′, v′′) ∈ po ∧ v′ ∈ Vacqfence ∧ v ∈ Vld}
rel-fence = {(v, v′′, 0) | (v, v′) ∈ po ∧ (v′, v′′) ∈ po ∧ v′ ∈ Vrelfence ∧ v′′ ∈ Vst}.

sc-fence defines that for each SC fence operation v′, there must exist an ordering edge

between v and v′′, such that v is a memory operation ordered before memory fence v′

and v′′ is a memory operation ordered after memory fence v′. acq-fence defines that for

each acquire fence operation v′, there must exist an ordering edge between v and v′′, such

that v is a load operation ordered before memory fence v′ and v′′ is a memory operation

ordered after memory fence v′. rel-fence enforces that for each release fence operation v′,

there must exist an ordering edge between v and v′′, such that v is a memory operation

ordered before memory fence v′ and v′′ is a store operation ordered after memory fence v′.

Intuitively, fences can be thought of as upgrading some memory operations to be atomic

operations. acq-fence upgrades all loads ordered before the memory fence into acquire

loads, rel-fence upgrades all stores ordered after the memory fence into release stores and

finally sc-fence combined the effects of acq-fence and rel-fence for SC fences.

3.6 Ensuring correctness via automated model checking

Since the C11 memory model is complex, it is critical that our additional rules are verified

formally to ensure correct behaviour on our generated hardware. Even though our schedul-

ing constraints are relatively straightforward to realise, it is still challenging to justify that

our rules are sufficient to eliminate all executions that are deemed inconsistent by the C11.

3.6.1 Verifying our method

The C standard does not define the meaning of individual atomic accesses, but rather

in terms of which executions of an entire program are allowed and which are not, as we
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described in §2.3.3. Let us consider three candidate executions of our message-passing

example in Fig. 3.4, each of which consists of memory events (discussed in §2.3.3.3)

Wna x 1

WSC y 1

RSC y 0
po

rb

Wna x 1

WSC y 1

RSC y 1

Rna x 1

po po
rf

rf
Wna x 1

WSC y 1

RSC y 1

Rna x 0

po po
rf

rb

The first candidate is the execution where the if-statement’s test condition fails. Here, the

rb (‘reads before’) edge indicates that the second thread’s read of y is overwritten by the

first thread’s write to y. In the second candidate, the test condition succeeds and the new

value of x is observed. Here, the rf (‘reads from’) edges indicate that the writes of x and y

are observed by the other thread’s read events. In the third candidate, the test condition

succeeds but the old value of x is observed. C allows the first and second candidate

executions, but forbids the third. The mechanism for rejecting the third execution is the

detection of a cycle made of rf edges between SC atomics, po edges, and rb edges. The

precise rules that C uses to forbid executions are detailed by Lahav et al. [124].

Let us define a buggy execution to be an execution that is forbidden by C yet allowed by

our method. The existence of such an execution would demonstrate that our method does

not preserve enough of program order. Characterising the executions that are forbidden

by C is straightforward: they are the executions that violate at least one of Lahav et al.’s

rules. Characterising the executions of our implementation is more subtle.

As discussed earlier, the only source of memory reorderings in our implementation is

instruction reorderings. Therefore, our starting point is to characterise the executions

allowed by SC. Shasha and Snir [125] characterise SC executions using the rule

acyclic(po ∪ rf ∪mo ∪ rb) (3.7)

which states that there are no cycles made up of po, rf , rb, and mo edges. (The ‘modifica-

tion order’, mo, is a relation between write events on the same location that represents the

order in which the writes hit the main memory.) The rule works by rejecting executions

in which data-flow (as captured by rf , rb, and mo) contradicts the program order.

We weaken the Shasha-Snir rule in (3.7) by replacing po with the ordering constraints

generated by our scheduling rules of mem-weak-fence in (3.6) from page 73:

acyclic(mem-weak-fence ∪ rf ∪mo ∪ rb).

This rule has the same effect as (3.7) applied to a less constrained program order.
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3.6.2 Modelling our local analysis in Alloy

To build confidence that our work implements C11 atomics correctly, we use the Alloy

model checker [121] throughout our development process. Previous work has proved the

correctness of C11 implementations both on CPUs [100] and on GPUs [84], but such

proofs are laborious and fragile, and hence ill-suited to our prototype implementation.

Therefore, we turn to lightweight methods for verifying correctness via Alloy. Alloy is a

mature and well-supported tool whose input language (based on relational algebra) closely

matches the style in which most memory models are written. It has previously been used

by Wickerson et al. [107] to check C11 and OpenCL memory model implementations for

several CPU and GPU architectures. Here, we port their work to HLS.

Alloy refers to both its analyser and its programming language. The Alloy analyser

translates models into a Boolean satisfiability problem (SAT) to be solved. The Alloy

programming language is based on first-order logic and allows the specification and model

checking of complex structures and behaviours. We discuss our verification process while

walking through a few important features of Alloy, namely: signatures, constraints and

commands. Our Alloy model file is provided as Listing B.1 in Appendix B on page 180.

Alloy signatures The Alloy programming language is based on sets and relations over

these sets, which are declared via signature declarations. We describe a memory event as a

signature (lines 33 to 43). In this signature, we declare four sets: memory events, memory

event types, atomic events and consistency modes. We also declare five relations over

these events: program order (po), control dependencies (cd), read-modify-write (rmw),

same thread (sthd) and same location (sloc).

Alloy constraints Another feature of the Alloy programming language is constraints.

There are several types of constraints: facts, functions, predicates and assertions. Facts are

constraints that are assumed to always hold. Based on a memory event’s sets and relations,

we apply several facts about them. These facts define how different memory events relate

to each other (lines 43 to 78) and also how the the different relations related to each other

(lines 78 to 101). Functions and predicates are constraints that are not facts, i.e. they

only hold when invoked and thus can be included (or excluded) for different configurations.

When invoked, a predicate is a constraint that applies to a model. A function packages a

predicate for re-use, i.e. it is an expression, which require input arguments and provides

a result. For further details on functions and predicates, please refer to [121, §4.5].

Modelling the C memory model We combine signatures, predicates and functions ex-

tensively to verify our methods. We set up a top-level predicate find bug chap3 (lines 273

to 288), where we describe two models. The first is the C11 memory model, based on the

rules of Lahav et al. (line 282), and the second is a model of our method, which includes
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Figure 3.12: Verifying mem-weak-fence from (3.6) of page 73 up to a bounded number
of events

the Shasha-Snir rules and our scheduling rules (line 285). Finally, we verify our scheduling

rules by setting up these two models to generate counter-examples that are allowed by our

method but disallowed by C11.

Modelling our scheduling rules Our scheduling rules, represented bymem-weak-fence

of (3.6) from page 73, are directly translatable to Alloy constraints, as described by the

function rules chap3 on line 244. Constraints are applied to atomics and fences individ-

ually. Lines 246 to 252 represent mem-weak of (3.5) from page 71. Line 246 represents

mem-alias and rar, line 249 represents acq 8 and sc 8 , and line 252 represents rel 9 and

sc 9 . Finally, lines 256 to 264, represent sc-fence, acq-fence and rel-fence respectively.

Executing our verification via Alloy commands Finally, we execute a command

over our top-level predicate find bugs chap3. A command executes a predicate to find

instances that satisfy it. Lines 289 to 296 show examples of run commands, where we

indicate the predicate to execute and its scope. The scope bounds the instance size, since

Alloy requires a finite bound on its search space.

Verification results We run Alloy on a machine with 16 cores of 2.1 GHz AMD Opteron

processors and 128 GB of RAM, and we use the Glucose SAT-solving backend. Alloy was

able to verify that no counter-examples can be generated for executions of up to 130

memory events. Though our verification result is bounded, it is a strong result because

many common memory-related bugs can be minimised to even smaller programs, typically

comprising between four and six events [126]. Fig. 3.12(a) shows that Alloy’s verification

time increases cubically with the number of memory events. Alloy executes its verification

in two steps: first, it constructs a SAT problem and then it solves this problem. In our
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Figure 3.13: Stages of the LegUp Pthread’s pure-hardware flow from its multi-threaded
input (on the left) to a single RTL design (on the right).

case, the SAT construction dominates execution time since the number of SAT clauses

generated by Alloy is also cubic with memory events, as shown in Fig. 3.12(b). Also, at

140 memory events, Alloy is unable to construct the SAT problem since it is too large to

fit in memory.

3.7 Implementing our method on LegUp 5.1

We implement our method in LegUp 5.1 pthreads flow [8] (discussed thoroughly in §2.2.5

of page 39). LegUp’s frontend automatically compiles a multi-thread C program with C11

atomics into LLVM IR. At the LLVM IR level, we have visibility of all memory opera-

tions within a thread and we identify the atomic operations and their consistency modes.

Fig. 3.13 shows the LegUp tool flow. The Scheduling stage is where the scheduling rules

generate SDC constraints (§2.2.6.1 of page 40). We augment this stage to inject additional

memory dependencies of all atomics, on per-thread basis, based on our scheduling rules.

We emphasise that despite the fact that we are injecting intra-thread constraints, our

method ensures correct inter-thread synchronisation is preserved in the presence of C11

atomics. LegUp also serialises the execution of LLVM basic blocks, so we only need to

inject our memory constraints within a basic block. Additionally, we also deal with fences

at the RTL generation stage by simply removing them, since they are sufficiently handled

by our constraints in §3.5.4 of page 72.

3.8 Extending LegUp to support atomic

compare-and-swap

To support a larger set of benchmarks, we also needed to extend LegUp to support atomic

compare-and-swaps (CAS) for the use of all our analyses throughout this thesis. As de-

scribed in §2.3.3.2, CASes are read-modify-write operations that allow more than two con-

current threads to synchronise with each other. A CAS consists of an atomic load followed
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by an atomic store to the same location, which can not be interrupted. A straightforward

method of implementing CAS operations in HLS is to perform an ordinary load and store

while holding a mutual-exclusion lock [8]. However, as previously discussed, using locks to

implement atomics is inefficient, since it requires extra cycles and prohibits reorderings.

Instead of using locks, we modify LegUp to support CAS directly on hardware in two

parts. Firstly, we ensure that our analyses can handle the mapping of CASes as a pair of

atomic load and store operations connected by rmw edges. Secondly, we modify LegUp’s

RTL generator to implement the effect of a rmw edge, which ensures that no other aliasing

memory operations can interrupt a CAS operation.

Analysis treatment of CASes C11 treats a CAS as a pair of accesses: an atomic

load followed by an atomic store, as discussed in §2.3.3.2. Hence, we treat CASes as a

pair of accesses where the consistency modes of the load and the store are determined

from the consistency mode of the original CAS. CAS operations can be assigned different

consistency modes for their success and failure cases; we only consider the success mode as

it is always stronger [101, §7.17.7.4.2]. We map the consistency modes of a CAS operation

into different load and store event pairs:

• a relaxed CAS becomes a relaxed load and a relaxed store,

• an acquire CAS becomes an acquire load and a relaxed store

• a release CAS becomes a relaxed load and a release store

• an acquire-release CAS becomes an acquire load and a release store

• an SC CAS becomes an SC load and an SC store.

Any ordering edges that are associated to the either the load or store operations are

automatically applied to both via the rmw edge.

Hardware implementation of CASes Figure 3.14 shows the generated memory ar-

chitecture when two threads access a shared array. The basic mechanism for accessing

shared memory in LegUp is as follows. A thread asserts its enable (en) signal to request

(req) access from the arbiter. On each cycle, the arbiter grants (grant) access only to one

thread while other unsuccessful threads must stall (stall) and keep their enable signal

asserted. To perform a CAS on a RAM, a thread requires two consecutive cycles to com-

plete an uninterrupted sequence of read and write accesses. An uninterrupted sequence

of read and write accesses to a shared memory location has the desired effect of a rmw

edge. To achieve this effect, we first add circuitry that holds (hold) the arbiter’s grant

signal for an extra cycle, as shown in the grey shaded region of Fig. 3.14. Then, we modify

each thread’s state machine to pack the read and write into consecutive cycles. Finally,

we implement the comparison logic between the read and write. To perform a CAS on a

register, the hold signal is not required as registers have zero-latency reads and hence the
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Figure 3.14: A (simplified) circuit showing how CAS works for two threads, the shaded
region indicating circuitry added by us.

CAS can be packed into a single cycle whilst still preserving the functionality of a rmw

edge.

3.9 Evaluation

In this section, we evaluate our method against the state-of-the-art support of atomics in

LegUp 5.1. We evaluate our memory models on our set of memory-dominant experiments,

discussed in §2.5.3.1. The rest of this section is as follows:

• In §3.9.1, we introduce the various design points for evaluation.

• In §3.9.2, we discuss the runtime performance of these design points for our set of

memory-dominant experiments.

• In §3.9.3, we discuss the hardware utilisation overheads of these design points.

3.9.1 Design points

We evaluate six design points: one unsound version, two lock-based versions and three

lock-free versions, as listed in Table 3.1. The Unsound design point is the performance of

native LegUp HLS tool without any modification. Hence, this design point only preserves

aliasing memory orderings. Although its results are invalid in a multi-threaded context,

it serves as a practical upper bound for our design points.

The two lock-based versions, OMP atomics and Locks, use locks (via pthread mutexes)

to achieve program correctness, since mutual exclusion is the only memory synchronisation
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Table 3.1: Design points for evaluation of Chapter 3.

Short name Description Model Ref.

Unsound constraints treat atomics as ordinary ac-
cesses (theoretical upper bound)

mem §3.2

OMP atomics like Unsound, but each individual atomic
access is wrapped around a lock

mem

Locks like Unsound, but each push/pop routine
is wrapped around a lock

mem

SC constraints force all memory accesses to
obey SC

sc §3.5.1

SC atomics constraints treat all atomics as if they are
SC atomics

mem-sc §3.5.2

Weak atomics constraints sensitive to consistency modes
of each atomic

mem-weak §3.5.3

supported by LegUp. OMP atomics implements atomics by wrapping locks around each

atomic access, which is similar to how OpenMP atomics are implemented in LegUp [68].

Locks implements lock-based programming by wrapping locks around each data structure

routine, which is a coarser-grained approach of using locks than OMP atomics.

The three lock-free design points are based on our method of this chapter. The SC

design point implements an SC memory model, which enforces memory serialisation. The

SC atomics design point implements a memory model that supports SC atomics, where it

treats all atomics as SC atomics. The Weak atomics design point implements a memory

model that support weak atomics, where it is sensitive to their consistency modes.

Highlighting an interesting LegUp issue As discussed in §2.2.5.3, LegUp 5.1 im-

plements a mutex’s locking and unlocking functions as a spinning load and a store at IR

level. This implementation causes an interesting problem, in particular the store. Since

this store is a regular store, it can be reordered with other memory accesses. Hence, a

mutex can potentially be released before the completion of a critical section.

There are two options to avoid this problem. The first option is to enforce SC, as we

do with SC, to ensure that the mutex’s store is not reordered. However, this approach

enforces memory serialisation, which does not provide a good performance estimate of our

lock-based design points. The second option is to disable if-conversion, which ensures that

the mutex’s store is its own basic block in LegUp and cannot be reordered with other

memory accesses. Ultimately, the bullet-proof method of solving this problem is to write

an LLVM pass to identify all mutex’s store and enforce strict order on these operations.

However, we choose the second option because it is easier to implement, ensures correctness

and provides a fair performance estimate of our lock-based design points.
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3.9.2 Performance

Fig. 3.15 shows the performance of our six design points on our set of memory-dominant

experiments, which consists of nine unique settings, as discussed in §2.5.3.1. Our subfigures

enumerate these settings, derived from combining three benchmarks (row-wise) and three

data-flow patterns (column-wise). Note that we have 8 data points (n = 8) per design

point. All averages reported are geometric means.

3.9.2.1 Unsound

Unsound has the best runtime performance across all experiments, since it only ensure

ordering between aliasing memory accesses. Although its results are invalid, Unsound

serves as an upper bound and our goal is to follow the trends of Unsound as closely as

possible without violating correctness.

3.9.2.2 OMP atomics

OMP atomics is the state-of-the-art HLS method of implementing atomics but it is per-

forms the worst across all experiments. On average, OMP atomics is 30× slower than

Unsound. Also, OMP atomics’s performance worsens as we scale the thread count, with

a maximum of 162× slower than Unsound. OMP atomics performs badly for two reasons.

Firstly, locks enforce the serialisation of all atomic memory accesses. Secondly, the locking

and unlocking functions require additional cycles and hardware, which impacts cycle count

and clock frequency. Hence, this design point is unnecessarily low performance.

3.9.2.3 Locks

Instead of wrapping locking and unlocking functions around each atomic access, Locks

wraps these functions around each data structure routine. On average, Locks performs 2×
better than OMP atomics, with a maximum of 4×. Locks reduce the granularity of mutual

exclusion to serialise routines, instead of serialising all memory accesses. Hence, although

parallelism across routines is disallowed, parallelism within routines is still allowed. Fur-

thermore, coarser-grained mutual exclusion reduces the number of function calls, which

improves cycle counts and clock frequency. In rare cases, Locks can be slower than OMP

atomics but this typically happens at low thread counts where the impacts of memory and

routine serialisation are indistinguishable, as in Figures 3.15(d) and 3.15(g). In summary,

Locks is the best-performing lock-based design point.
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Figure 3.15: Runtime performance of our generated hardware for all design points Ta-
ble 3.1 on our memory-dominant experiments.
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3.9.2.4 SC

SC enforces memory serialisation within each thread of a concurrent program to ensure

SC behaviour. Despite being the most conservative lock-free design point, SC performs 3×
faster than Locks, on average, with a maximum of 20×. SC also scale better than Locks

and OMP atomics, especially for the chaining experiments, since SC does not enforce

memory serialisation globally but only locally within each thread.

3.9.2.5 SC atomics

The SC atomics implements all atomic accesses as SC atomics. On average, SC atomics

is 1.2× faster than SC, with a maximum of 1.6×. In most cases, SC atomics runtimes are

very similar to SC. This is due to the ratio of atomic accesses to non-atomic accesses in

our benchmarks, as shown in Table 2.2. There are very few non-atomic accesses per data

structure routine, leading to memory serialisation within each thread, just like SC. SC

atomics also depends on the data-flow pattern, where SC atomics consistently outperform

SC for all reduction experiments. Sometimes SC can outperform SC atomics, not due to

number of cycles but due to clock frequency variations during hardware synthesis.

3.9.2.6 Weak atomics

Weak atomics implements atomics based on their consistency modes. As we can see in

Table 2.2, none of the benchmarks use SC atomics by default. Hence, on average, Weak

atomics is 1.6× faster than SC atomics, with a maximum of 3.8×. The different data-flow

patterns also provide further insights.

The chaining experiments provide the smallest speedup, compared to SC atomics. In the

chaining experiments, the number of routines within a thread is fixed (regardless of thread

count). Hence, these experiments show the parallelism with routines of each benchmark.

On average, Weak atomics improves the performances of the buffer, stack and queue by

2.2×, 1.3× and 1.4× respectively.

The reduction and distribution provide larger speedups, compared to the chaining ex-

periments. For both of these experiments, the number of independent routines within the

distributor or reducer threads increase with the thread count. Hence, Weak atomics is

able to overlap these parallel routines to a certain extent. Although Weak atomics still

scales with the thread count, its scaling is far better than SC atomics. Still, the best

scaling achieved is by Unsound since it only preserve ordering of aliasing accesses.

Overall, Weak atomics is the best-performing design point. On average, Weak atomics

is 6× faster than Locks (the best lock-based design). Weak atomics also support atomics

correctly without violating correctness, unlike Unsound. Nevertheless, on average, Weak
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Figure 3.16: Relative resource utilisation of design points discussed in Table 3.1 compared
to Unsound.

atomics recovers 40% of performance achievable by Unsound, with a maximum of 80%.

3.9.3 Resource utilisation

Fig. 3.16 shows the relative resource utilisation of our design points compared to Unsound.

We divided each data point with the Unsound’s LUT and register usage, where each data

point is distinguished by benchmark, data-flow patterns and thread count. We see that

all design points require higher LUT and register usage compared to Unsound.

LUT usage SC, SC atomics and Weak atomics have similar LUT usage overhead, which

is around 18% more than Unsound. LUT usage is proportional to schedule latency and

typically these design points have higher latencies than Unsound. Both lock-based design

points, Locks and OMP atomics, require higher LUT usage, compared to all lock-free

design points. This trend is expected since additional hardware is required to implement

the mutex hardware and its function calls within each thread. OMP atomics require more

LUT usage than Locks since it requires more function calls. On average, OMP atomics

requires an average of 9% more LUTs than Locks.

Register usage On average, SC, SC atomics and Weak atomics have similar register

usage, which is around 30% more than Unsound. These three design points also have

the higher maximum relative usage, which is about 2× more than Unsound, since the

synthesis tools can identify the potential for register duplication to produce better clock

frequencies. Interestingly, on average, Locks uses fewer registers than SC, SC atomics and

Weak atomics since register duplication does not applied to it. OMP atomics uses the

most registers since its schedule latencies is the highest.
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3.10 Conclusion

In this chapter, we set out to address the question of devising a HLS-friendly method to

implement fine-grained memory synchronisation of concurrent C programs. We motivated

why the HLS memory models are insufficient to support C11 atomics. Then, we showed

how we can enlarge its memory orderings to support atomic operations, by implementing

additional intra-thread scheduling rules. By doing so, we can also support weak atomics

and memory fences. Since implementation of weak atomics is complex and error-prone, we

also ensured the correctness of our method by verifying our scheduling rules against C11

via automated model checking. Finally, we implemented our method on LegUp’s scheduler

and evaluated all our methods on a set of experiments. Overall, this chapter addresses

research questions RQ 1 and RQ 2 that we presented in the Introduction chapter.

OMP atomics Locks SC SC atomics Weak atomics Unsound

2× 3.1× 1.2× 1.6× 2.5×

Figure 3.17: Average speedups of our design points in Tab. 3.1 for our set of experiments.

Fig. 3.17 shows the summary of results for the six design points in Table 3.1. We see

that the current LegUp mechanism of implementing atomics, OMP atomics, performs the

worst since it implements atomics using locks. Instead, we implement Locks that performs

2×better than OMP atomics, since we serialise routines rather than serialise all memory

accesses. We also show that serialisation of memory accesses within a thread without

locks, SC, is 3.1×faster than Locks. This is our first encouraging results, which shows that

posing atomics as a scheduling problem improves performance drastically. Furthermore,

when we make our memory model sensitive to atomics via SC atomics, which treat all

atomics as SC atomics, we achieve a further 1.2×speedup. Finally, we show that making

our memory model sensitive to the consistency modes of each atomics via Weak atomics

enables a further 1.6×speedup. Looking ahead, Weak atomics is still slower than our upper

bound, Unsound, by 2.5×. Hence, there is still room for improvement and the following

chapters (Chapter §4 and §5) aim to address this gap in different contexts.
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4. Concurrency-aware Scheduling of

Fine-grained C Concurrency

4.1 Introduction

In the previous chapter, we showed how fine-grained atomics can be synthesised efficiently

via HLS scheduling constraints, instead of wrapping locks around them. Our method that

support SC atomics is 7.5× faster than the HLS state-of-art on our set of experiments.

Furthermore, since we have full control over the scheduling constraints of each atomic

operation, we can also synthesise weakly consistent atomics directly onto hardware. We

showed that weak atomics improves performance by 1.6×, compared to SC atomics, on

our set of experiments.

In Chapter 3, we leverage the fact that it is standard practice for HLS tools to perform

memory scheduling of concurrent C programs on a per-thread basis. Consequently, the

memory orderings preserved within each thread is only based on its own memory access

patterns i.e. thread-local analysis. Hence, we took advantage of this approach to enlarge

the set of memory orderings within each thread. Despite only enforcing intra-thread mem-

ory constraints, we were able to ensure that the correct execution of atomics globally. C

memory model allows global synchronisation to be achieved by simply enforcing memory

orderings within each thread, as discussed in §2.3.3. In this chapter, we argue that thread-

local analysis is a good first step but it leads to overly-conservative memory scheduling of

threads, when we consider concurrent programs as a whole.

Consider the following single-threaded program, which consists of a non-atomic store to

x followed by an atomic store to y:

x=1;

atomic store(&y,1);
(Program 1)

Assuming x and y do not alias, these two instructions can safely be parallelised. However,

if we perform thread-local memory scheduling on this program then we have to work on

the assumption that there might be other threads concurrently accessing x and y, and

hence we cannot safely reorder the two stores.
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For instance, there could be an additional thread that loads atomically from y and then

non-atomically from x, as shown below, where || separates the two threads:

x=1; if(atomic load(&y))

atomic store(&y,1); r0=x;
(Program 2)

In this case, the two stores must no longer be reordered. This is because the C memory

model dictates that when an atomic load observes an atomic store in another thread, the

two threads synchronise [101, §5.1.2.4.11]. As a consequence, all memory accesses that

happen before the atomic store are guaranteed to become visible to all memory accesses

after the atomic load. This guarantee could be violated in Program 2 if the stores are

executed out of order. Hence, thread-local scheduling must account for this worst-case

scenario and disallow reordering even for Program 1.

Natively, the C memory model defines memory access behaviour globally. C defines

that atomic accesses act as explicit synchronisation points across threads and that any

other memory accesses are restricted to synchronise as a consequence of these atomic

synchronisation points. This definition implies that two memory accesses can synchronise

during runtime when there exists a path of atomic synchronisation points between them.

We utilise this definition to improve memory scheduling of individual threads, by only pre-

serving orderings between pairs of memory accesses that are part of these synchronisation

paths.

Hence, in this chapter, we propose a global analysis that determines which pairs of

memory operations must not be reordered within a thread. We can perform such an

analysis via HLS since HLS enforces that threads to be synthesised as hardware are iden-

tified via configuration settings/pragmas [3, 68, 120]. Hence, the entire program’s memory

access pattern is available at compile-time as inputs to our global analysis. Although our

analysis receives a program’s global access pattern as its input, it still generates intra-

thread memory constraints as its output, which is then applied to memory scheduling of

individual threads. Our analysis can handle programs that use both SC and weak atomics,

and hence is verified via the Alloy model checker to build confidence of our method.

In this chapter, we discuss the following:

• In §4.2, we present a more practical example of why global analysis is beneficial

when scheduling fine-grained C concurrency.

• In §4.3.1, we present our method that globally-analyses concurrent C programs with

SC atomics and generates intra-thread scheduling constraints for each thread.

• In §4.3.2, we further extend our method to support weak atomics, by making our

synchronisation paths sensitive to the consistency modes of atomics.

• In §4.4, we discuss an optimisation that reduces the number of synchronisation paths
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int xd=0,yd=0; atomic int xr=0,yr=0;

T0 T1 T2

¶ xd=42; º r1=atomic load(&xr); ¼ r3=atomic load(&yr);

· atomic store(&xr,1); if(r1==1) if(r3==1)

¸ yd=17; » r2=xd; ½ r4=yd;

¹ atomic store(&yr,1);

assert((r1==1 =⇒ r2==42) && (r3==1 =⇒ r4==17))

(a) a program

¶

·

¸

¹

º

»

¼

½

(b) thread-local analysis

¶

·

¸

¹

º

»

¼

½

(c) global analysis

Figure 4.1: Three-threaded message passing example with two channels.

to explore whilst obtaining the same set of constraints as our näıve method.

• In §4.5, we also check the correctness of our method and optimisation via automated

model checking to ensure that they do not violate the C memory model.

• In §4.6, we discuss how we implement our method on LegUp 5.1 as an LLVM pass.

• In §4.7, we evaluate our global analysis approach against the thread-local analysis,

from the previous chapter, on our memory-dominant experiments.

• Finally, in §4.7.4, we discuss the analysis times and scalability of our global analysis.

4.2 A motivating example

In this section, we provide a more realistic program that can benefit from our global anal-

ysis, and explain intuitively how our analysis works. Consider the program in Fig. 4.1(a),

where T0 uses atomic variables to pass messages to T1 and T2 respectively. This is an

important concurrent programming pattern, as it represents a master thread distributing

work to two other threads. Thread T0 passes messages to T1 and T2 by first writing to

a non-atomic variable (xd or yd) and then writing to an atomic variable that serves as a

ready signal (xr or yr). Threads T1 and T2 receive T0’s messages by checking that their

ready signals are set before reading the data. The final-state assertion ensures that there

are no message-passing violations i.e. that T1 and T2 receive 42 and 17 respectively if their

ready signals are set.

The arrows in Fig. 4.1(b) show the ordering constraints that the thread-local analysis

of Chapter 3 would impose. These constraints are injected on the basis that · and ¹ are

atomic, and hence must not be reordered with other memory accesses, which is is derived

via mem-sc of (3.4) from page 70. This memory model forces all four memory operations
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to be serialised during scheduling.

However, when considering the program as a whole, the ordering constraints in T0

are overly conservative. Intuitively, there is no need to enforce ordering between the

two independent message-passing channels within T0 that transfer data to two different

threads. Accesses to xd and xr transfer a message to T1 whereas accesses to yd and yr

transfer a message to T2. However, thread-local analysis of T0 cannot make this judgement

as it is agnostic to any behaviour outside its thread boundary. In contrast, our global

analysis only considers pairs of atomics that can actually synchronise at runtime. As

shown by the arrows in Fig. 4.1(a), T0 can synchronise with T1 and T2 via their respective

atomic synchronisation points i.e. if º observes · and if ¼ observes ¹ respectively. If

these operations do synchronise, then we must ensure that all memory accesses before the

atomic store are visible to all memory accesses after the atomic load, where visibility only

occurs between memory accesses to the same location. We can guarantee this visibility by

preserving two ordering constraints in T0 and one constraint each in T1 and T2, as shown

in Fig. 4.1(c). All other accesses can be safely reordered because no thread would be able

to observe such a reordering. Hence, our global analysis reduces the number of ordering

constraints in T0 from five to two, affording better parallelism during memory scheduling.

4.3 Globally-analysing fine-grained C memory concurrency

In this section, we present our method for globally-analysing concurrent C programs with

atomics to generate intra-thread memory constraints for memory scheduling. We can

explore all possible inter-thread synchronisation opportunities by focusing on the atomic

accesses of a concurrent program. When two atomic accesses synchronise at runtime, we

must ensure that memory visibility is guaranteed i.e. all memory accesses that happened

before this synchronisation point must be observable by all aliasing memory accesses that

happens after this synchronisation point.

The inputs to our analysis are all memory operations of all threads that we grouped

into several sets and relations, as discussed in §2.3.4 of page 52 (we shall provide a short

recap when introducing them here). We treat each input memory operation as a memory

event that can potentially occur at any point in time during hardware execution. Hence,

we must ensure that we explore all possible permutations in which these memory events

can execute at runtime during our global analysis. In the rest of section, we discuss the

following:

• In §4.3.1, we present our global analysis that identifies explicit synchronisation points

between atomics and presents a set of constraints when exploring all possible syn-

chronisation paths of a given concurrent program;
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int x=0; atomic int y=0, z=0;

T0 T1 T2

¬ x=17; ® r1=atomic load(&y); ° r2=atomic load(&z);

 atomic store(&y,1); if(r1==1) if(r2==1)

¯ atomic store(&z,1); ± r3=x;

assert((r1==1 ∧ r2==1) =⇒ r3==17)

(a) program

¬



®

¯

°

±

canSync canSync

po po po

sloc

(b) a legal path

Figure 4.2: An example of three-threaded message passing.

• In §4.3.2, we extend our analysis to be sensitive to weak atomics, which potentially

reduces the number of synchronisation points and consequently improve memory

scheduling of threads;

• Finally, in §4.3.3, we revisit our running example in the context of global analysis.

4.3.1 Identifying instructions that must not be reordered

Our analysis first identifying pairs of operations that can cause threads to synchronise:

canSync = (Vat × Vat) ∩ sloc \ sthd . (4.1)

The canSync relation connects any two atomic operations on the same location (sloc)

from different threads (sthd). This definition treats all atomic accesses as SC atomics

and hence utilises Vat, which the set of all atomics. Since canSync considers all atomic

accesses of a concurrent program, it represents the global synchronisation opportunities

across threads. If two operations in canSync, say A and B, do synchronise at runtime,

then all memory operations that A has observed must become visible to operations that

follow B, where visibility means a memory access that follows B must be able to see all

accesses before A that are to the same location. For instance, the canSync edges of our

motivating example are given by the arrows in Fig. 4.1(a). If · synchronises with º at

runtime, then operation ¶ must be visible to » since both these accesses are to the same

location (xd) and hence both po edges (¶,·) and (º,») must be preserved.

In general, we must not only consider isolated canSync edges, but paths of them, in

order to handle programs like the one shown in Fig. 4.2(a). In this program, thread T0
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can synchronise with T2 indirectly, via thread T1, as shown by the arrows. If both flags y

and z are observed, then T2 must observe the value of x that is written by T0, as captured

by the assertion. This program shows that the global synchronisation can depend on paths

that are made up of several canSync edges.

Therefore, to enumerate all possible synchronisation opportunities, we must explore

and construct all possible synchronisation paths of a program, where each path obeys the

following properties. A path is an ordered list of edges, and each edge is a pair of po-

related operations. The set AllPaths is defined to contain the path [(v0, v
′
0), . . . , (vn, v

′
n)]

if and only if it satisfies all of the following conditions:

∀i. 0 ≤ i ≤ n =⇒ (vi, v
′
i) ∈ po (4.2)

∀i. 0 ≤ i < n =⇒ (v′i, vi+1) ∈ canSync (4.3)

(v0, v
′
n) ∈ sloc (4.4)

(v0, v
′
n) ∈ Vld × Vld =⇒ (v0, v

′
n) ∈ Vat × Vat (4.5)

∀i, j. 0 ≤ i < j ≤ n =⇒ (vi, vj) /∈ sthd (4.6)

Condition (4.2) states that every path is an ordered list of n + 1 edges from po. Con-

dition (4.3) states that the target operation of each po edge is connected to the source

operation of the next po edge in the path via canSync. Also, we are only interested in paths

that start and end with accesses to the same location (Condition 4.4) because visibility

is only observed by memory accesses to the same location. Additionally, if a path begins

and ends with loads, then we only consider it if both loads are atomic (Condition 4.5).

Non-atomic loads can be reordered because this reordering cannot be observed unless the

program has a data race [124], and this would be a programming error.

Fig. 4.2(b) shows a path that satisfies these four constraints. We have a path that

begins and ends with po edges, with alternating po and canSync edges along the path,

as stipulated by Conditions (4.2) and (4.3). Also, the start and end memory operations

of the path are to the same location, sloc, and neither of them are non-atomic loads, as

stipulated by Conditions (4.4) and (4.5).

Finally, we only consider paths that do not revisit a thread (Condition 4.6), since such

paths are either illegal (cyclic) or can be minimised by removing the detour. Fig. 4.3

shows the two types of paths that we avoid with Condition (4.6). Fig. 4.3(a) shows that

revisiting the same thread can result in a cycle, as we can construct paths from both ¬

to ± and ± to ¬. This cycle forms an inconsistent execution, which violated program

correctness, and hence it is illegal. Fig. 4.3(b) shows that revisiting the same thread can

result in a redundant path of alternating po and canSync edges (solid lines), which can

simply be minimised to one po edge from ¬ to ± (dotted line). Condition (4.6) also
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(a) Illegal path (T2 inserted above T0)
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(b) Redundant path (T2 inserted below T0)

Figure 4.3: An example of paths that revisit the same thread.

induces a practical implication to our method, which is that it limits the path size, n, to

be smaller than the number of threads. Hence, we can avoid any path explorations that

are beyond the size of n.

We enumerate all paths that satisfy Conditions (4.2) to (4.6) and we preserve all the po

edges that appear in at least one path. That is, we define the preserved program order,

ppo, as follows:

ppo = {(v, v′, 0) | ∃p ∈ AllPaths. (v, v′) ∈ p}. (4.7)

As an example, there are two paths in Fig. 4.1(a) that satisfy Conditions (4.2) to (4.6):

[(¶,·), (º,»)] and [(¸,¹), (¼,½)]. Hence, the only edges that need to be preserved in

Fig. 4.1(a) are the four po edges in its two paths: (¶,·), (º,»), (¸,¹), and (¼,½), as

shown in Fig. 4.1(c).

4.3.2 Exploiting weak concurrency

Thus far, our analysis considers all atomics as SC atomics and hence are subjected to

the same synchronisation opportunities. However, this is a conservative assumption since

the C memory model limits their synchronisation opportunities of weak atomics, which in

turn allows weak atomics to exploit better performance compared to SC atomics. Now,

we describe how to extend our analysis to exploit weak atomics.

Recall that Vsc, Vacq and Vrel are the set of sequentially-consistent, acquire and release

atomics, as in §2.3.4. Then, we redefine the pairs of atomics that can cause threads to

synchronise, as follows:

canSync = ((Vrel × Vacq) ∪ (Vsc × Vat) ∪ (Vat × Vsc)) ∩ sloc \ sthd . (4.8)

This new definition relates two atomics to the same location on different threads if: (a)

the first operation is a release atomic and the second is an acquire atomics, or (b) either

operation is an SC atomic. Condition (a) captures the one-way nature of release/acquire

synchronisation [101, §5.1.2.4.11], while Condition (b) lets SC atomics retain their full
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atomic int x=0, y=0;

¬ atomic store explicit(&x,1, ® atomic store explicit(&y,1,

memory order release); memory order release);

 r1=atomic load explicit(&y, ¯ r2=atomic load explicit(&x,

memory order acquire); memory order acquire);

(a) a program

¬



®

¯

(b) SC

¬



®

¯

(c) Weak

Figure 4.4: The ‘store buffering’ programming pattern, and its canSync edges under SC
and weak consistency

Cycle: 1

a=42; stna a 42

ast(&b,1,REL); stREL b 1

x=17; stna x 17

ast(&y,1,REL); stREL y 1

Figure 4.5: A running example of four non-aliasing stores and its schedule based on global
analysis when considering this thread as the entire program.

synchronising abilities.

Figure 4.4(a) shows an example program that is influenced by this logical strengthening

of the canSync relation. It illustrates the ‘store buffering’ pattern, which appears in,

for instance, Dekker’s algorithm for mutual exclusion [127]. It consists of two atomic

locations, x and y, with a release store and then an acquire load to these two locations

in alternating order within each thread. If SC behaviour is enforced, then the outcome

r1 = r2 = 0 would be forbidden by C. To ensure that this outcome cannot happen, our

original analysis generates canSync edges, as shown in Fig. 4.4(b), which lead to paths such

as [(¬,), (®,¯)] thereby requiring to preserve both po edges. However, by re-defining

canSync to be sensitive to weak atomics, it produces one-way canSync edges, as seen in

Fig. 4.4(c), which in turn rules out any synchronisation paths. Hence, the two operations

in each thread can be reordered since SC behaviour need not be preserved.

4.3.3 Revisiting our running example from §3.4

Now, we revisit our running example in the context of global analysis. This example was

introduced in §3.4, where we have four non-aliasing stores of which two are release stores.

Thread-local analysis has two possible outcomes: 1) latency of four cycles, if all atomics

are SC atomics or 2) latency of three cycles, if we consider weak atomics.

Fig. 4.5 shows the schedule that global analysis generates if this is the only thread in the
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Cycle: 1 2

¶ a=42; stna a 42

· st(&b,1,REL); stREL b 1

¸ x=17; stna x 17

¹ st(&y,1,REL); stREL y 1

Figure 4.6: A running example of four non-aliasing stores, of which two are store releases,
and its schedule of based on global analysis when considering this thread as
T0 of Fig. 4.1(a).

entire program. In a single-threaded program, there are no canSync edges and hence no

paths to explore. Also, there are no aliasing accesses in this thread. Hence, all four stores

can executed in parallel with a latency of one cycle. Although one can argue about the

meaningfulness of such a single-threaded program, this toy example shows the advantage

of global analysis, compared to thread-local analysis.

Fig. 4.1(a) represents a more meaningful program, where T0 is writing to T1 and T2 via

two independent message-passing channels. The memory accesses of T0 are similar to the

memory accesses of our running example, where a and b is one channel and x and y is

another channel (as shown by the numberings to the left of the source code in Fig. 4.6).

Our global analysis determines that only two po edges preserved within T0, which generates

a schedule of two cycles. For this particular example, the consistency modes of atomics do

not make a difference to the schedule latency. However, in our evaluation, we will see cases

in which the use of weak atomics does make a difference in our evaluation. In summary,

global analysis improves memory scheduling of this example by at least 1.5×, compared

to weak atomics, and up to 2×, compared to SC atomics.

4.4 An optimised implementation of path enumeration

In §4.3.1, we described our method of enumerating the set of AllPaths and then extracting

the ppo edges from it. Although our global analysis potentially improve memory schedul-

ing, during initial implementations, we found that our method scales poorly with realistic

programs. The crux of the problem is that realistic programs can have a large number of

canSync edges and that can exponentially increases the number of exploration paths.

Hence, we devised an optimisation to improve scalability. We observed that in realistic

programs many canSync edges overlap each other, which causes exploration of redundant

paths. Hence, our optimisation avoids considering any overlapping canSync edges during

path enumeration. However, removing these overlapping canSync edges does not capture

all pairs of memory operations whose orderings must be preserved. Therefore, we propose

a post-enumeration step that re-generates that same ppo as our näıve implementation. In
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¬ ® ¯ ² ³ µ

¬  ° ² ³ µ
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¬  ° ± ´ µ

(b) Results of path enumeration

Figure 4.7: An example of our näıve path enumeration.

summary, this optimisation is targeted to reduce the number of redundant paths visited

during path enumeration, whilst ensuring the same ppo is generated.

More concretely, we describe a more efficient method to calculate ppo. The idea is to

identify a subset of the canSync edges as ‘secondary’ and to remove them while enumer-

ating paths; then to re-introduce them on a per-path basis when calculating ppo. The

argument here is that these secondary canSync edges overlap with at least one other

canSync edge and hence can be removed during the path enumeration and re-introduced

after path enumeration to implicitly re-generates AllPaths, extracting ppo again.

For example, Fig. 4.7(a) shows the shape of a program with three threads and four

canSync edges. When we analyse this program using our näıve implementation, we see

that there are four paths from ¬ to µ as shown in Fig. 4.7(b). Out of these four paths,

we only extract eight ppo edges, since some edges repeat themselves in different paths:

(¬,),(¬,®), (¯,±),(¯,²), (°,±),(°,²), (³,´) and (³,µ). Although this example is

small, we can see how the number of paths grow exponentially with the number of canSync

edges and thread count. Our goal is to reduce the number of paths to enumerate and we

can do so by analysing canSync carefully.

Consider the example in Fig. 4.7(a), but this time we identify the two dotted canSync

edges as secondary edges, as shown in Fig. 4.8(a). We refer to these two edges as secondary

because for any path that passes through one or more of these secondary edges, there

always exists a path between the same endpoints that does not pass through any secondary

edges. Hence, we only focus on enumerating paths based on primary canSync edges.

More formally, we define the primary canSync edges as:

canSyncPrimary =

{(va, vb) ∈ canSync | @(vc, vd) ∈ canSync.

(va, vc) ∈ po∗ ∧ (vd, vb) ∈ po∗ ∧
(vc 6= va ∨ vd 6= vb)}.

That is, (va, vb) is a primary edge providing there exists no other canSync edge (vc, vd)

95



¬



®

¯

°

±

²

³

´

µ

(a) Extracted information

¬ ® ¯ ² ³ µ

(b) Results of primary path enumeration

¬



®

¯

°

¯

±

²

³

´

(c) Secondary canSync exits
above primary canSync



®

¯

°

²

±

²

³

´

µ

(d) Secondary canSync arrives
below primary canSync



®

¯

°

±

²

³

´

(e) Combination of both
cases, (c) and (d)

Figure 4.8: An example of how our optimisation improves example in Fig. 4.7 where we
consider primary (solid red) and secondary (dotted red) canSync edges.

such that vc is either equal to va or po-after it, and vd is either equal to vb or po-before

it. (Recall that r∗ is the reflexive transitive closure of r.)

We then define the set of primary paths, PrimaryPaths, as those that pass only through

primary canSync edges, by redefining (4.3) to:

∀i. 0 ≤ i < n =⇒ (v′i, vi+1) ∈ canSyncPrimary . (4.9)

For instance, our new definition only generates a single path from ¬ to µ, as shown

in Fig. 4.8(b), compared to four paths when using our näıve implementation, as shown

in Fig. 4.7(b). For now, we have achieved our goal of reducing the number of paths to

explore but we have only extracted three out of eight ppo edges.

Having calculated the set of primary paths, it remains to generate the same ppo in a

way that re-includes the non-primary paths. This can be done efficiently on an per-path

basis. The idea is, for each edge in each path, to put into ppo not just that po edge, but

also any other po edge that a secondary path between the same threads could have taken.

Intuitively, we must consider the effects of overlapping canSync edges on each enu-

merated path. In Fig. 4.8(b), we see that (,°) and (±,´) overlap (®,¯) and (²,³)

respectively. These overlappings contribute to five ppo edges, which we represent as dashed

black edges in Figures 4.8(c), 4.8(d) and 4.8(e). There are three overlapping cases:

• when a secondary canSync edge exits a thread above a primary canSync edge, as in
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Fig. 4.8(c), where the po edge from the source of the primary po edge to the source

of the secondary canSync edge must be preserved. Hence, (¬,) and (¯,±) must

be in ppo.

• when a secondary canSync edge arrives at a thread below a primary canSync edge,

as in Fig. 4.8(d), where the po edge from the destination of the secondary canSync

edge to the destination of the primary po edge must be preserved. Hence, (°,²)

and (´,µ) must be in ppo.

• and, finally, a combination of the first two cases, as in Fig. 4.8(e), where we might

important corner cases if we do not consider the first two cases jointly. When we

consider the first two cases together, we see that we must include (°,±) in ppo.

All three cases only require processing a maximum of two primary canSync edges at a

time, hence our post-processing step is local to each primary path and easy to implement.

More formally, we generate ppo as follows:

ppo =

{(w1, w2) | ∃[(v0, v′0), . . . , (vn, v′n)] ∈ PrimaryPaths.

∃i. 0 ≤ i ≤ n ∧
(w1 = vi ∨ ((vi, w1) ∈ po ∧ (w1, v

′
i−1) ∈ (canSync−1 ; po∗)) ∧

(w2 = v′i ∨ ((w2, v
′
i) ∈ po ∧ (vi+1, w2) ∈ (po∗ ; canSync−1))}

(recalling that r ;s is the sequential composition of relations r and s, and r−1 is the inverse

relation of r). That is, the path edge (vi, v
′
i) leads to the po edge (w1, w2) being put into

ppo whenever:

• w1 is equal to vi, or it is po-after vi and is the target of a canSync edge whose source

is po-before or equal to the previous operation in the path (namely, v′i−1), and

• w2 is equal to v′i, or it is po-before v′i and is the source of a canSync edge whose

target is po-after or equal to the next operation in the path (namely, vi+1).

In §4.7.4, we show the benefits of reducing the number of path explored during enu-

meration in terms of analysis times and comment on the complexity of this optimisation

in §4.7.4.1.

4.5 Ensuring correctness via automated model checking

We re-use our Alloy models from the previous chapter, in §3.6, to verify our global analysis.

In the previous chapter, we define two models: the C11 model and then Shasha-Snir rule,

which we weaken to include our thread-local scheduling rules. Then, we set up Alloy to

generate counter-examples in which a C11 execution is allowed by our rules but disallowed
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Figure 4.9: Time taken to verify our global analysis using Alloy.

by C11 and Alloy was not able to find any counter-examples for up to 130 memory events.

In this chapter, rather than modelling our thread-local scheduling rules, we replace them

with our global scheduling rules that generate ppo. Hence, we weaken the Shasha-Snir

rule in (3.7) of page 74 with constraints generated by global analysis as follows:

acyclic(ppo ∪ rf ∪mo ∪ rb).

4.5.1 Modelling our global analysis on Alloy

To verify our global analysis, we first set up our top-level predicate in Alloy to find counter-

examples that are allowed by our global analysis but forbidden by C11, expressed as

find bugs chap4 in lines 396 to 413 of Listing B.1 of Appendix B. Next, we must define

ppo in Alloy and we do so in three parts.

Firstly, we define canSync which relates among events across threads in line 315, as

defined in (4.8) of page 92. Secondly, we provide our path properties of Conditions (4.2)

to (4.6) from page 91:

• Lines 340 to 353 represent Conditions (4.2) and (4.3), where paths must consists of

alternating po and canSync edges that start and end with po edges;

• Lines 358 to 370 represent Conditions (4.4) and (4.5), where the first and last oper-

ations of a path must be to the same location, and if both of them are loads then

they must be atomic;

• and, line 356 represents Condition (4.6), where no paths revisit the same thread.

Thirdly, and finally, we formalise our optimisation steps from §4.4. Line 334 defines

canSyncPrimary of 95 from page 95, which reduce the number of paths to explore. How-

ever, when we use canSyncPrimary for path enumeration, we also need to post-process

all paths to ensure that we generate the same ppo, as we should when using the entire

canSync set, as described in lines 383 and 384.

Alloy was able to confirm that there are no buggy executions for any executions of up to

seven events. Fig. 4.9 shows that the time taken for Alloy to deduce this result increases
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Figure 4.10: Our modification of LegUp pthread’s pure-hardware flow to implement our
method of global analysis for multi-threaded programs.

exponentially with the event bound. The exponential behaviour is expected as Alloy uses

SAT solving, which is NP-hard. Although a bound of seven events appears small, note that

Alloy’s search space covers executions of all programs, so any bug that can be minimised

to seven events or fewer will be found. Nevertheless, experience indicates that most bugs

related to weak memory can be minimised to between four and six events [126], so our

result is a useful and strong validation of our method. Also, the time taken by Alloy to

verify seven bounds shows that our global rules are more complex than our thread-local

rules. Given the same computational resources and time feasibility, Alloy can verify up

to 130 memory events for thread-local analysis but only up to seven memory events for

global analysis.

4.5.2 Comparing our global analysis to our thread-local analysis

In most cases, our global analysis imposes fewer constraints than thread-local analysis.

However, there also exist programs for which our global analysis imposes more constraints

than thread-local analysis. This happens only in programs that access the same location

using both an SC atomic and a non-SC atomic, and such programs are “not common” [124].

Indeed, we have used Alloy to verify that for all programs that do not mix SC and non-SC

atomics on the same location, our global analysis never imposes more constraints than

the local analysis. Alloy was able to prove this property for all programs with up to 30

operations in about a second. The Alloy verification of these comparisons are included in

Listing B.1 of Appendix B from lines 419 to 444.
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4.6 Implementing our method in LegUp 5.1

We implement our global analysis in LegUp 5.1, where Fig. 4.10 shows our additions to

the LegUp flow. To globally-analyse all threads, we cannot implement our analysis at the

Scheduling stage as it only holds single-threaded information . Hence, we perform global

analysis after the allocation stage as an LLVM module pass, which iterates over all LLVM

functions and can access all global variables. Having obtained our inputs, we generate

canSync and enumerate AllPaths, as discussed in §4.3.1, in a breath-first manner. At first,

we generated paths of length one and then iteratively we generate paths of lengths up to

the number of threads. We generate all paths that satisfy Conditions (4.3), (4.2) and (4.6)

of page 91. Once we obtain these paths, we filtered out ppo by applying Conditions (4.4)

and (4.5) of page 91, since these two conditions require the start and end of the paths

to be identified. We also implement our optimisation, described in §4.4, within the same

LLVM Module pass. Once we extract Eppo, we provide these constraints the Scheduling

stage of their respective threads, as shown by the dotted arrows c0 . . . cN in Fig. 4.10.

4.7 Evaluation

We evaluate global analysis, compared to thread-local analysis, on our memory-dominant

experiments, as described in §2.5.3.1. In this section, we discuss the following:

• In §4.7.1, we present our design points for evaluation;

• In §4.7.2 and §4.7.3, we present the runtime performance and resource utilisation of

our generated hardware;

• Finally, in §4.7.4, we discuss the scalability of our näıve and optimised implementa-

tions in terms of analysis times.

4.7.1 Design points

Tab. 4.1 summaries the five design points we evaluate, of which three are carried forward

from Chapter 3: Unsound, LocalSC and LocalWeak. Unsound represents the results of our

experiments when provided to LegUp without modifications, which is our theoretical upper

bound. LocalSC is our thread-local analysis when all atomics are treated as SC atomics.

LocalWeak is our thread-local analysis that supports weak atomics. Both LocalSC and

LocalWeak as serve as baseline implementations of thread-local analysis. LocalSC and

LocalWeak were referred to as SC atomics and Weak atomics in the previous chapter,

in Table 3.1. We evaluate two design points based on global analysis: GlobalSC and

GlobalWeak. GlobalSC’s canSync definition is based on (4.1) of page 90, where all atomics

are treated as SC atomics. On the other hand, GlobalWeak’s canSync definition is based
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Table 4.1: Design points for evaluation of Chapter 4.

Short name Description Model Ref.

Unsound constraints treat atomics as ordinary ac-
cesses (theoretical upper bound)

mem §3.2

LocalSC thread-local analysis that treats all atom-
ics as if they are SC atomics

mem-sc §3.5.2

LocalWeak thread-local analysis that is sensitive to
the consistency modes of atomics

mem-weak §3.5.3

GlobalSC global analysis that treats all atomics as
SC atomics, where canSync is (4.1)

ppo §4.3.1

GlobalWeak global analysis that is sensitive to weak
atomics, where canSync is (4.8)

ppo §4.3.2

on (4.8) of page 92, which supports weak atomics.

4.7.2 Hardware Performance

Fig. 4.11 shows the runtime performance of our five design points on our memory-dominant

experiments. All averages reported are geometric means.

4.7.2.1 Recap of Unsound, LocalSC and LocalWeak

We recap a few highlights of thread-local analysis. We see that LocalSC is the slowest

across all experiments, since it implement all atomics as SC atomics. LocalWeak always

performs faster than LocalSC, since weak atomics requires fewer ordering constraints and

hence achieves better memory parallelism. Also, both LocalSC and LocalWeak do not scale

well with the thread count for the reduction and distribution experiments. As the number

of threads increases, the distributor (or reducer) thread in the distribution (or reduction)

experiments starts to access multiple independent routines. However, since thread-local

analysis is agnostic to the existence or behaviour of other threads, it limits the overlapping

of these routines. In contrast, we see that the Unsound design point scales perfectly for all

experiments, since Unsound only preserves memory ordering between aliasing operations.

4.7.2.2 GlobalSC

GlobalSC versus LocalSC GlobalSC is always faster than LocalSC. GlobalSC improves

both parallelism within routines and across routines, since it is 1.3× faster (with a maxi-

mum of 1.6×) for the chaining experiments and it is 3.8× and 3.4× faster (with a maximum

of 8× and 7.4×) for the reduction and distribution experiments. Parallelism across routines

allows for better speedups, compared to parallelism within routines, because GlobalSC

scales well with the thread count, just as Unsound.
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Figure 4.11: Runtime performance of our generated hardware for all design points in Ta-
ble 4.1 on our memory-dominant experiments.
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Figure 4.12: Relative resource utilisation of global analysis, compared to thread-local anal-
ysis, of both SC atomics and weak atomics.

4.7.2.3 GlobalWeak

GlobalWeak versus LocalWeak Global analysis also improves performance of pro-

grams that use weak atomics. In most cases, GlobalWeak is faster than LocalWeak. Glob-

alWeak is 1.1× faster than LocalWeak for chaining experiments. GlobalWeak is 2.3× and

2.6× faster than LocalWeak for reduction and distribution experiments, with a maximum

of 5× and 7.5×. Once again, these experiments show that global analysis improves both

the intra-routine and inter-routine parallelism.

GlobalWeak versus GlobalSC GlobalWeak further exploits further parallelism within

routines afforded by weak atomics, compared to GlobalSC, and it is 1.2× faster than

GlobalSC. These speedups also vary with benchmarks. For the buffer and queue exper-

iments, GlobalWeak is faster than GlobalSC by 1.2× and 1.3×. In contrast, GlobalWeak

and GlobalSC perform similarly for the stack experiments. This can be related to the

ratio and consistency modes of the each benchmark’s memory accesses, as characterised

in Table 2.2. The buffer and queue have non-atomic accesses and also use weak accesses.

In contrast, the stack only uses atomic accesses and its weak accesses does not permit

further reorderings, compared to SC atomics.

GlobalWeak versus Unsound In most cases, GlobalWeak is slower than Unsound. The

only exception is the queue’s distribution experiments in Fig. 4.11(i), where GlobalWeak is

slightly faster than Unsound. The schedule latencies of both GlobalWeak and Unsound are

the same, so one would expect their cycle counts to be the same. Although their schedule

latencies are the same, the cycle count can differ at runtime because the CASes can stall

for a few cycles when there is contention. Hence, due to dynamic interactions of the CAS

accesses, it is possible that GlobalWeak’s cycle count is marginally small than Unsound.

Their cycle count difference is never larger than the number of iterations, which suggests

that the CASes do not stall for more than one cycle per iteration.

4.7.3 Resource Utilisation

Fig. 4.12 shows the relative LUT and register usage generated by global analysis, compared

to thread-local analysis. Overall, we see that the impact of global analysis on resource
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utilisation is minimal since it incurs similar amount of LUTs, compared to thread-local

analysis. LUT usage relates to schedule latencies. Since GlobalSC does not reduce schedule

latencies much, its LUT usage range is shorter than GlobalWeak. In contrast, we see that

GlobalWeak can save up to 14% relative LUT usage, since is capable of achieving shorter

latencies. On average, global analysis require 5% fewer registers, compared to thread-local

analysis, and can save up to 12% registers.

4.7.4 Analysis scalability

Finally, we discuss the time taken by our näıve and optimised implementations of global

analysis to generate memory constraints of all threads for all our experiments. Fig. 4.13

shows the runtimes of our implementations, which has the following four design points:

• NäıveSC implements GlobalSC naively by exploring AllPaths, as presented in §4.3.1.

• NäıveWeak is similar to NäıveSC but uses the canSync of (4.8) from page 92.

• OptimisedSC implements GlobalSC by exploring the optimised implementation that

only enumerates PrimaryPaths, as discussed in §4.4, and then re-constructs ppo.

• OptimisedWeak is similar to OptimisedSC but uses the canSync of (4.8) from page 92.

NäıveSC performs the worst In most cases, NäıveSC is the worst-performing im-

plementation because it explores paths based on the original canSync presented in (4.1),

which treats all atomics as SC atomics. NäıveSC does especially badly for the chaining

experiments, where it shows the exponential nature of path-enumeration. The higher the

thread count, the more paths to explored and hence the larger the analysis time and

memory usage. For these chaining experiments, we exhaust memory quickly (up to 6GB

of RAM) since we implement a breath-first enumeration. For this reason, NäıveSC can

only generate four and three data points for the stack and queue experiments respectively

(Fig. 4.13(d) and Fig. 4.13(g)). We could implement our path enumeration as a depth-first

exploration, but this would simply shifts the complexity problem to the time dimension,

rather than the space dimension. We see that NäıveSC scales badly for all stack and queue

experiments, since these benchmarks require atomic compare-and-swaps.

OptimisedSC improves NäıveSC We see that OptimisedSC copes well with all the

worst-case behaviour of NäıveSC, discussed in the previous paragraph. In most cases,

OptimisedSC is faster than NäıveSC because it reduces the exponential growth of path-

enumeration. On average, OptimisedSC is 12× faster than NäıveSC, with a maximum of

1800×. Although our optimisation also consists of a post-enumeration step, the time sav-

ings obtained from reducing the number of paths to visit during enumeration far outweighs

the cost of this post-enumeration step.
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Figure 4.13: Analysis times of our näıve and optimised analysis.
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ald(&y1); ald(yN−1); ald(yN);

x=42; ald(&z1); ald(zN−1); ald(zN);

ast(&y1,1); ast(&y2,1); · · · ast(yN,1); r0=x;

ast(&z1,1); ast(&z2,1); ast(zN,1);

Figure 4.14: A class of programs on which our analysis scales poorly, because the number
of paths scales exponentially with the size of the program.

Weak atomics naturally reduce analysis times The runtime of NäıveWeak is much

better than NäıveSC. This is because weak atomics, by definition, only highlights the

important inter-thread synchronisations, reducing |canSync|. Hence, NäıveWeak’s path

enumeration is less time-consuming compared to NäıveSC. On average, NäıveWeak is 16×
faster than NäıveSC, with a maximum of 2500×. Occasionally, NäıveWeak can be slower

than NäıveSC, but only for low thread counts and under the region of 10 milliseconds.

Effects of optimisation is less evident on weak atomics When we apply for our

optimisation on programs with weak atomics, it benefits are less evident. Since weak

atomics itself reduce the size of the canSync set, our optimisation does not impact runtime

significantly as it does not eliminate many secondary edges from the näıve canSync set.

Hence, on average, OptimisedWeak has similar runtime to NäıveWeak. OptimisedWeak

can be up to 1.9× slower than NäıveWeak, since our optimisation imposes additional

post-processing that is largely unnecessary for weak atomics.

4.7.4.1 Worst-case scalability

In the worst case, the runtime of our global analysis can still scale exponentially, since

its complexity not only depends on the program size but also the access pattern of the

input program. Fig. 4.14 shows a pathological program that scales exponentially, despite

applying our optimisation. For each program obtained by instantiating the parameter N ,

there are 2N primary paths from x=42 to r0=x that must be explored. This is because

there are two possible synchronisation choices for each stage in the chain, either via a

y-variable or via a z-variable.

4.8 Conclusion

In summary, we show that global analysis can improve memory scheduling of threads

of a concurrent program. We do so by exploiting C11 definition that describes memory

behaviour in terms of global executions, rather thread-local memory behaviour. Our global

analysis can handle SC and weak atomics, as well as atomic compare-and-swaps. Since our
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Figure 4.15: Speedups for design points in Table 4.1, averaged over all experiments.

analysis scope is global, our path enumeration can grow exponentially. Thus, we propose

an optimisation to reduce the exponential growth of our analysis, especially for SC atomics.

We also turn to automated model checking via Alloy to verify our method and ensure that

our rules, and also our optimisation, is correct and that our generated hardware is correct

by construction. We implement our method in LegUp 5.1 and compare our global analysis

to our thread-local analysis from Chapter 3. Overall, this chapter primarily addresses

research question RQ 3, and also RQ 2, that we presented in the Introduction chapter.

Fig. 4.15 provides a summary of how global analysis improves performance of our set

of experiments, extended from §3.9. As discussed in the §3.10, thread-local analysis of

weak atomics (LocalWeak) provides a 1.6× speedup, compared to thread-local analysis of

SC atomics (LocalSC). Overall, global analysis achieves better runtimes than thread-local

analysis on our set of experiments. A speedup of 3.6× is achieved when globally-analysing

SC atomics (GlobalSC) compared to thread-local analysis of SC atomics (LocalSC). Also, a

speedup of 1.9× is achieved when globally-analysing weak atomics (GlobalWeak) compared

to thread-local analysis of weak atomics (LocalWeak). We see that GlobalWeak is also

1.2× faster than GlobalSC, since weak atomics can further exploit memory parallelism.

Finally, we see that Unsound is only 1.4× faster than GlobalWeak. We have managed to

bridge the gap between LocalWeak and Unsound which was 2.6×, as reported in Fig. 3.17.

GlobalWeak is the closest we can get to Unsound without violating program correctness.

In the next chapter, we look beyond this upper bound to further improve our runtimes.
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5. Enabling Loop Pipelining for

Fine-grained C Concurrency

5.1 Introduction

In Chapter 3 and 4, we presented methods to synthesise programs with fine-grained atomics

via HLS scheduling. Thread-local analysis is where each thread’s memory constraints

is generated based only on its memory accesses, whereas global analysis is where each

thread’s memory constraints is generated based on the global access pattern. We show

that thread-local analysis yields a speedup of 7.5×, compared to the state-of-the-art, for

our set of experiments and that globally-analysing concurrent programs achieve a further

speedup of 3.4×, compared to thread-local analysis. We also discuss that global analysis

is close to our theoretical upper bound, which only preserves aliasing memory orderings.

In this chapter, we present an effort to venture beyond this upper limit.

Thus far, both our thread-local and global analyses support code with loops but assume

that operations of multiple loop iterations do not execute simultaneously. This assumption

is conservative since HLS tools allows loop pipelining, where successive loop iterations can

start before preceding iterations complete. To implement loop pipelining, a HLS tool com-

putes an initiation interval (II ), which is the interval between the start times of consecutive

iterations. The tool then arranges operations of an iteration into a pipeline schedule that

can be repeated at fixed II . The computed II and pipeline schedule is feasible if it does

not violate any dependency and resource constraints. Smaller II s increase instruction-

level parallelism but also increases hardware utilisation and potentially decreases clock

frequencies. Hence, loop pipelining presents an interesting trade-off between area and

performance that relies on the generated II .

The goal of this chapter is to extend our thread-local and global analyses to support

loop pipelining of concurrent programs with atomics. By supporting loop pipelining,

we cannot only reordering memory operations within an iteration but across loop iter-

ations, improving parallelism during memory scheduling. Whilst we encourage memory

reorderings across iterations, we must ensure that the generated pipeline schedules do not

violate program correctness. Currently, our scheduling rules from previous chapters are

insufficient to support atomics in a loop pipelining context, since we assumed that loop
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iterations do not overlap and that all our constraints are intra-iteration i.e. its dependence

distances are all zero. Therefore, in this chapter, we extend our analyses to also generate

inter-iteration memory constraints for atomic accesses, thereby supporting atomics within

pipelined memory schedules.

In terms of C11 execution, each memory operation of an iteration expresses itself as an

independent memory event. However, C11 does not distinguish between memory events of

different iterations. A memory event of an iteration is simply related to all memory events

of consecutive iterations by program order (po). In contrast, HLS tools distinguishes

memory constraints across iterations via dependence distance, which is the number of

iterations between two memory operations. For our work, we only focus on preserving

memory orderings of atomics between two consecutive iterations, since these orderings

inductively extend to subsequent iterations. Hence, all our inter-iteration memory con-

straints have dependence distances of one. Several methods that analyse loop-carried

dependences, especially via the polyhedral model [128, 129, 130], can generate memory

constraints with dependence distance that is larger than one. It is important to note

that our analyses does not restrict these methods, but simply complement the constraints

generated by these methods.

Our work in this chapter is unique for three reasons. Firstly, since we synthesise atomics

via HLS scheduling constraints, our method is the first method capable of supporting loop

pipelining for atomics. In comparison, state-of-the-art HLS tools implement atomics via

wrapping locks around them via function calls. Typically, these function calls must exe-

cute in-order, implicitly forcing loop iterations to also execute in-order and hence disabling

loop pipelining. Secondly, our method is also the first method capable of synthesising weak

atomics in the context of loop pipelining. Weak atomics affords better memory parallelism,

compared to SC atomics, and this property also applies to memory operations across iter-

ations. Finally, our method is generally applicable to any lock-free programs with atomics.

Choi et al. [71] developed a method to pipeline lock-based concurrent programs. However,

their method relies on users utilising their customised streaming library, which restricts

the programming idioms that can generate high-performant streaming. Our method faces

no such problem and can be applied to any C11 program with atomics.

In this chapter, we discuss the following:

• In §5.2, we formalise inter-iteration memory constraints generated by HLS tools.

• In §5.3, we demonstrate, by example, why these constraints are insufficient to support

loop pipelining of atomics.

• In §5.4, we present our loop extensions for both our thread-local and global analyses.

• In §5.5, we re-visit our running example to contextualise how loop-pipelining benefits

performance.
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• In §5.6, we ensure that our extensions adhere to the C memory model.

• In §5.7, we discuss how we implement our methods in LegUp 5.1.

• Finally, in §5.8, we evaluate our extensions on two sets of experiments.

5.2 Formalising inter-iteration memory constraints of

state-of-the-art

In §3.2, we formalise the memory constraints generated by current HLS tools in the absence

of loop pipelining. mem of (3.2) from page 64 preserves the RAW, WAR and WAW depen-

dencies of aliasing memory operations via mem-alias and disallows overlap of operations

from different iterations via nopipe. However, all edges in mem-alias are intra-iteration,

i.e. they all have a dependence distance of zero. To support loop pipelining, HLS tools

eliminate nopipe and also enforce RAW, WAR and WAW dependencies of aliasing memory

operations across iterations, as defined by mem-pipe:

mem-pipe = intra-iter ∪ inter-iter (5.1)

where
intra-iter = mem-alias

inter-iter = {(v, v′, 1) | (v, v′) ∈ sloc ∧ (v ∈ Vst ∨ v′ ∈ Vst)}.

inter-iter expresses that for every memory operation v in the current iteration and

every memory operation v′ in the next iteration, where at least one of them is a store and

both accesses are to the same location, there must exist an inter-iteration constraint of

dependence distance one from v to v′. Together, intra-iter and inter-iter preserve RAW,

WAR and WAW dependencies of aliasing memory operations within and across iterations.

Note that it is possible that two memory operations can be represented in both intra-iter

and inter-iter with different distances. In this case, the intra-iter edge takes precedence

since it is stronger.

Similar to our discussion in §3.2, HLS tools enforce memory orderings between aliasing

memory operations across iterations, permitting reorderings between non-aliasing memory

operations and between operations that have RAR dependencies across iterations. On one

hand, omitting these reorderings can improve parallelism during memory scheduling. On

the other hand, omitting these reorderings can lead to incorrect behaviour when synthesis-

ing atomics in the context of loop pipelining. In the next section, we show an example of

why mem-pipe cannot support loop pipelining for programs with atomics as it is stands,

which motivates our work of enlarging it systematically.
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atomic int x = 0; atomic int y = 0;

T0() { T1() {
for(int i=1;i<=2;i++){ 2.1 int r0=atomic load(y, ACQ); ¸

1.1 atomic store(y, i, REL); ¶ 2.2 if(r0==2){
1.2 int data = i; 2.3 r1 = atomic load(x, RLX); ¹

1.3 atomic store(x, data, RLX); · 2.4 }
} }
}

assert(r0 == 2 =⇒ r1 6= 0)

Figure 5.1: A minimal example of message-passing across loop iterations.

Cycle: 1 2

1.1 st y 1 REL st y 2 REL

1.3 st x 1 RLX st x 2 RLX

Figure 5.2: Pipeline schedule generated by LegUp of T0 in Fig. 5.1, where different shades
represent different iterations and each store takes one cycle.

5.3 A motivating example

In this section, we show how current HLS tools synthesise atomics in the context of loop

pipelining and why it violates program correctness. Fig. 5.1 is a two-threaded program

with two atomic locations, x and y. T0 comprises a two-iteration for-loop, where each

iteration consists of a write to y and then to a write to x. The first write in the loop body

is a release store of the loop index i to y. The second write is relaxed store of the loop

index i to x. T1, which consists of straight-line code, executes an acquire load of y and

if the value of this load of y is two, then it executes a relaxed load of x to check that

its value is not zero (as enforced by the final-state assertion). This assertion must hold

because, in T0, the relaxed store of x in the first iteration must happen before the release

store of y of the second iteration. Therefore, if r0 is two, then the release store to y of

the second iteration has been executed and hence r1 cannot be zero.

Fig. 5.2 shows the pipeline schedule that LegUp generates natively based on the code in

T0. The darker shade represents operations from the first iteration and the lighter shade

represents operations from the second iteration. LegUp preserves the order of aliasing

memory operations within (intra-iter) and between (inter-iter) iterations, as described

in mem-pipe of (5.1) from page 110. Within an iteration, the stores of y and x can be

executed in parallel since they do not alias. Between iterations, the ordering of writes

to aliasing memory operations across iterations are preserved. Hence, the writes to y

and x, respectively, happen in iteration order. This pipeline schedule does not violate

the program assertion regardless of when the observing thread T1 chooses to execute its
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atomic int x = 0; atomic int y = 0;

T0(int arg) { T1() {
for(int i=1;i<=2;i++){ 2.1 int r0=atomic load(y, ACQ); ¸

1.1 atomic store(y, i, REL); ¶ 2.2 if(r0==2){
1.2 int data = i/arg; 2.3 r1 = atomic load(x, RLX); ¹

1.3 atomic store(x, data, RLX); · 2.4 }
} }
}

assert(r0 == 2 =⇒ r1 6= 0)

Figure 5.3: A modification to our minimal example in Fig. 5.1, where we including a
division by an input argument (dynamically set to one) before writing to x.

Cycle: 1 2 3 · · · 33 34 35

1.1 st y 1 REL st y 2 REL

1.2 divi=1 divi=2

1.2 divi=1 divi=2

1.2 divi=1
...

1.2 divi=1 divi=2

1.3 st x 1 RLX st x 2 RLX

Figure 5.4: Pipeline schedule generated by LegUp 5.1 for Fig. 5.3, which violates the pro-
gram assertion between the 3rd and the 34th cycle.

program:

• if T1 executes on the first cycle, r0 will be 0 and r1 will be 0;

• if T1 executes on the second cycle, r0 will be 1 and r1 will be 0;

• and, if T1 executes on the third cycle, r0 will be 2 and r1 will be 2.

However, this correctness is fragile and can be easily stressed to break.

Consider a second program, in Fig. 5.3, where we pass an argument to T0, which we

dynamically set to one, and perform a division of the loop index with this argument before

writing the result to x. This simple change can caused the program assertion to fail on

LegUp. Fig. 5.4 shows the pipeline schedule generated by LegUp for T0 of this second

program, where T0 is provided with a divider with latency of 33 cycles whose execution

is pipelined (a new division can start on every cycle). Hence, the division of each loop

iteration can start consecutively and their results are ready for the stores at the 34th and

35th cycle respectively.

As in the original example, the aliasing memory operations across iterations are guar-

anteed to happen in-order. However, the tool can only schedule the two writes to x at the

34th and 35th cycle respectively. Independently, the tool also discovers that the second
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WREL y 1

WRLX x 1

WREL y 2

WRLX x 2

i=1

i=2

Figure 5.5: The memory events of the both iterations (i=1 and i=2) of T0 in Fig. 5.1
and 5.3, annotated with the aliasing inter-iteration edges (black solid arrows)
and also the additional inter-iteration edge (red dotted arrow) required to
ensure correct execution of atomics.

iteration’s store of y does not depend on the first iteration’s store to x. As a result, the

second iteration’s store of y is allowed to execute in the second cycle. Unfortunately, this

reordering means that between the third and 34th cycle, T1 will observe that r0 is two but

r1 is zero, violating the program assertion. This example shows why certain reorderings

across iterations must be disallowed to ensure the correctness of programs with atomics.

In the next section, we present methods to ensure these types of illegal behaviours are

prohibited.

5.4 Extending our methods to support loop pipelining

In this section, we present methods to extend both our thread-local and global analy-

ses from Chapters 3 and 4 to support loop-pipelining. We discuss how to generate the

necessary inter-iteration memory constraints to complement our existing intra-iteration

memory constraints to support atomics correctly in the context of loop pipelining.

Our method by example To build an intuition on how to extend our analysis, let’s

revisit our motivating example in Fig. 5.1. Previously, we discussed how fragile its cor-

rectness is when memory scheduling is based on mem-pipe of (5.1) from page 110.

Fig. 5.5 shows the memory events of T0 in Fig. 5.3. We have four memory events (two

per iteration) and two iterations (i=1 and i=2). Memory events are discussed thoroughly

in §2.3.3.3. As discussed in §5.2, HLS tools preserve aliasing memory constraints across

iterations via inter-iter, as given by the black solid arrows in Fig. 5.5. However, we also

discussed that these constraints are insufficient to ensure correct behaviour of atomics

since to first iteration’s store of x can be reordered with the second iteration’s store of

y. Hence, to ensure this wrong behaviour does not occur, we must inject an additional

inter-iteration constraint between these two memory events, as shown by the red dotted
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Cycle: 1 2 3 · · · 33 34 35

1.1 st y 1 REL st y 2 REL

1.2 divi=1 divi=2

1.2 divi=1 divi=2

1.2 divi=1
...

1.2 divi=1 divi=2

1.3 st x 1 RLX st x 2 RLX

Figure 5.6: The corrected pipeline schedule of Fig. 5.3 after injecting an inter-iteration
constraint between the first iteration’s write to x and the second iteration’s
write to y.

arrow in Fig. 5.5.

Considering memory constraints between two consecutive iterations We only

need to consider inter-iteration constraints between two consecutive iterations since these

constraints induce a chaining effect across subsequent iterations in the pipeline. For ex-

ample, one way of expressing the red dotted arrows in Fig. 5.1 is to enforce a rule that

all memory operations in the current iteration must be executed before any atomic stores

in the next iteration (dependence distance of one). Hence, if we were to execute three

iterations of T0 in Fig. 5.1, instead of two, this rule manifests itself as two constraints: an

edge from the first iteration’s store of y to the second iteration’s store of x and an edge

from the second iteration’s store of y to the third iteration’s store of x.

Assumptions Throughout this chapter, we assume two properties on our inputs:

• We assume that our loops only have loop bodies with straight-line code with all

control-flow converted via if-conversion;

• and, we assume all accesses to the same C array as aliasing accesses, regardless of

the index/offset values.

In the rest of this section, we present extensions to support loop pipelining of atomics,

for our thread-local (§5.4.1) and global (§5.4.2) analyses respectively.

5.4.1 Locally-analysing atomics for loop pipelining

In §3.5, we presented two memory models that support the synthesis of SC and weak

atomics respectively, in the absence of loop pipelining. In this section, we extend these

memory models to support atomics correctly in the context of loop pipelining. Our start-

ing point is mem-pipe of (5.1) from page 110, then we enlarge it based on intra-iteration

memory constraints of our non-pipelined memory models in §3.5 and, finally, we enforce
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several additional inter-iteration scheduling rules to support SC (§5.4.1.1) and weak atom-

ics (§5.4.1.2) respectively.

5.4.1.1 Pipelining SC atomics

In §3.5.2, we defined a memory model, mem-sc of (3.4) from page 70, that supports SC

atomics in a non-pipelined setup. We utilise two intra-iteration rules from this definition

(at 9 , at 8 ) and two additional inter-iteration rules to enlarge mem-pipe to support loop

pipelining of SC atomics, as given below:

mem-sc-pipe = mem-pipe ∪ at9 ∪ at 8 ∪
at 9 -inter-iter ∪ at 8 -inter-iter

(5.2)

where
at9 -inter-iter = {(v, v′, 1) | v ∈ Vat ∧ v′ ∈ Vmem}
at8 -inter-iter = {(v, v′, 1) | v ∈ Vmem ∧ v′ ∈ Vat}.

at9 -inter-iter defines that for every atomic operation v in the current iteration and every

memory operation v′ in the next iteration, there must exist an inter-iteration edge from

v to v′ with a dependence distance of one. Conversely, at 8 -inter-iter defines that for

every memory operation v in the current iteration and every atomic operation v′ in the

next iteration, there must exist an inter-iteration edge from v to v′ with a dependence

distance of one. These two rules guarantees that all atomics are executed in iteration

order and at9 and at 8 ensure that atomics execute in program order within an iteration.

Hence, these four rules, together with the aliasing constraints of intra-iter and inter-iter

from mem-pipe, guarantee that SC atomics can be executed correctly within a pipelined

schedule.

5.4.1.2 Pipelining weak atomics

In §3.5.3, we define a memory model, mem-weak of (3.5) from page 71, that supports weak

atomics in a non-pipelined context. We utilise five intra-iteration rules from mem-weak

(sc 9 , sc 8 , acq 8 , rel 9 and rar) and five additional inter-iteration rules to enlarge mem-pipe

to support weak atomics in the context of loop pipelining, as given below:

mem-weak-pipe = mem-pipe ∪ sc 8 ∪ sc9 ∪
acq 8 ∪ rel 9 ∪ rar ∪
sc 9 -inter-iter ∪ sc 8 -inter-iter ∪
acq-inter-iter ∪ rel-inter-iter ∪ rar-inter-iter

(5.3)
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where
sc 9 -inter-iter = {(v, v′, 1) | v ∈ Vsc ∧ v′ ∈ Vmem}
acq-inter-iter = {(v, v′, 1) | v ∈ Vacq ∧ v′ ∈ Vmem}
sc 8 -inter-iter = {(v, v′, 1) | v ∈ Vmem ∧ v′ ∈ Vsc}
rel-inter-iter = {(v, v′, 1) | v ∈ Vmem ∧ v′ ∈ Vrel}
rar-inter-iter = {(v, v′, 1) | v ∈ (Vat ∩ Vld) ∧ v′ ∈ (Vat ∩ Vld)

(v, v′) ∈ sloc}.

sc 9 -inter-iter and acq-inter-iter are similar rules to at9 -inter-iter but apply only to SC

and acquire atomics respectively, where for every memory operation v in the current

iteration that is either SC or acquire atomic and every memory operation v′ in the next

iteration, there must exist an inter-iteration edge from v to v′ with dependence distance

of one. These two rules ensure that all SC or acquire atomics in the current iteration

must be executed before any memory operations from the next iteration are executed.

sc 8 -inter-iter and rel-inter-iter are similar rules to at 8 -inter-iter but apply only to SC

and release atomics, where for every memory operation v in the current iteration and every

SC or release atomic v′ in the next iteration, there must exist an inter-iteration edge from v

to v′ with dependence distance of one. These two rules ensure that all memory operations

from the previous iteration are executed before any SC or release atomics in the current

iteration can be executed. Finally, rar-inter-iter applies to all atomics including relaxed

atomics, where for every atomic load v in the current iteration and every atomic load v′ in

the next iteration to the same location (sloc), there must exist an inter-iteration edge from

v to v′ with dependence distance of one. This rule enforces that all RAR dependencies of

atomics are enforced across iterations.

5.4.2 Globally-analysing atomics for loop pipelining

In Chapter 4, we presented a global analysis that consider memory operations of all threads

to generate memory constraints for individual threads of a concurrent program. This

analysis also assumes the absence of loop pipelining and hence only considers operations

of a single iteration of each loop in each thread as inputs. In the context of loop pipelining,

however, loop iterations can overlap and execute simultaneously. Therefore, considering a

single iteration of each loop in each thread is insufficient to guarantee correctness. Since our

work focusses on preserve orderings between two consecutive iterations, we must extend

our inputs to consider operations of two consecutive iterations of each loop in each thread.

Now, we describe the additional steps required to support loop pipelining for our global

analysis by re-visiting our motivating example and then providing a generalisation.

Consider our motivating example in Fig. 5.1. In T0, we have a loop with two iterations

and we have two memory operations per iteration, labelled as ¶ and · respectively. In T1,
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(b) Path enumeration on new inputs

Figure 5.7: Extending global analysis to support loop pipelining for our example in
Fig. 5.1.

we have straight-line code with two memory accesses, ¸ and ¹. Before we can globally-

analyse this program for loop pipelining, we must expand our inputs to consider memory

operations of two consecutive iterations for the loop in T0. Then, we extend the po relation

to the next iteration i.e. we include a po edge from the first iteration’s · to the second

iteration’s ¶, as seen in Fig. 5.7(a). Next, we also introduce a new relation, the nite

relation. nite relates all memory events in the current iteration to all memory events

in the next iteration, as shown by the dashed red arrows labelled as nite in Fig. 5.7(a).

nite is important to keep track of which po relations are inter-iteration, to distinguish its

appropriate dependence distance.

Based on these new inputs, we analyse the canSync edges across threads, as given by

the solid red arrows from T0 and T1. Notice that there can also be canSync edges from

the second iteration of T0 to T1, so our method is exhaustively considering all possible

inter-thread synchronisations, even for ones across loop iterations. Then, we perform path

enumeration and find that there is only one path that fits the properties described in §4.3.1,

as shown in Fig. 5.7(b). Finally, we extract the necessary ppo edges from this path. Notice

that one of po edge we must preserve in T0 is an inter-iteration edge because this po edge is

also related by nite. Without nite, we cannot distinguish between intra- and inter-iteration

dependence. Based on this edge, we must include the following SDC constraint within T0

for the following memory operations: (¶,·,1). This inter-iteration edge together with the

aliasing inter-iteration edges, which global analysis identifies, (¶,¶,1) and (·,·,1), ensure

that we observe correct program behaviour when the loop is pipelined.

General steps to support loop pipelining In general, we require five additional steps

to support loop pipelining for global analysis. Firstly, we must extend the inputs of our

global analysis to consider memory operations of two consecutive iterations. Secondly,

we must extend po and introduce nite to relate all memory operations in the current
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iteration to all memory operations in the next iteration. Thirdly, these new inputs must be

considered in its entirety when generating the canSync set. Fourthly, these new input and

canSync sets must be considered for path enumeration based on the same rules discussed

in §4.3.1. Finally, after all paths have been enumerated, we extract all the ppo edges within

these paths. The resulting ppo edges can either be intra-iteration or inter-iteration, and

we use nite to distinguish between them and use the appropriate dependence distance.

Formally, we re-define ppo in (4.7) to be:

ppo = ppo-intra ∪ ppo-inter (5.4)

where

ppo-intra = {(v, v′, 0) | ∃p ∈ AllPaths. (v, v′) ∈ p ∧ (v, v′) ∈ po ∧ (v, v′) /∈ nite}
ppo-inter = {(v, v′, 1) | ∃p ∈ AllPaths. (v, v′) ∈ p ∧ (v, v′) ∈ po ∧ (v, v′) ∈ nite}

ppo-intra represents the intra-iteration po edges within all enumerated paths, where these

edges exist in po but do not exist in nite and hence both v and v′ belong to the same

iteration, requiring dependence distance of zero. ppo-inter represents the inter-iteration

po edges within enumerated paths, where these edges exist in po and also nite and hence v

belongs to the current iteration and v′ belongs to the next iteration, requiring a dependence

distance of one.

In §4.4, we proposed an optimisation to alleviate the exponential growth of the number of

paths enumerated. Since our five additional steps to support loop-pipelining does not affect

the path enumeration step itself, no modifications are required for our optimisation to

support loop pipelining for atomics. Understanding that our optimisation works seamlessly

even in the context of loop pipelining is critical. When we consider two consecutive

iterations for each loop in the program, in practice, it can result in up to four times

as many canSync edges that are overlapping canSync edges, which directly affects the

scalability of our global analysis.

5.5 Re-visiting our running example

Here, we re-visit our running example of both thread-local (§3.4) and global (§4.3.3)

analyses without loop pipelining. In this chapter, we focus on memory scheduling the same

set of memory accesses, but we execute them within a two-iteration for-loop. Consider

the program in Fig. 5.8, where in T0 we have a two-iteration for-loop with the same

four memory accesses as the previous running examples . Additionally, we have two

more threads, T1 and T2 that both have two memory accesses each, which global analysis

considers when scheduling T0, just as in §4.3.3. T0 passes messages to T1 and T2 via
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int a=0,x=0; atomic int b=0,y=0;

T0 T1 T2

for(i=1;i<3;i++){ ºint r1=ald(&b); ¼int r3=ald(&y);

¶ a=i; if(r1!=0) if(r3!=0)

· ast(&b,i,REL); » int r2=a; ½ int r4=x;

¸ x=i;

¹ ast(&y,i,REL);

}
assert(r2≥r1 && r4≥r3)

Figure 5.8: A sample program where T0 sends messages to T1 and T2 from within a two-
iteration loop.

Cycle: 1 2 3 4 5 6 7 8

a=42; stna a 1 stna a 2

st(&b,1,REL); stREL b 1 stREL b 2

x=17; stna x 1 stna x 2

st(&y,1,REL); stREL y 1 stREL y 2

Figure 5.9: Pipeline schedule of our running example with thread-local analysis and consid-
ering all atomic accesses as SC atomics (the different shades represent different
iterations).

independent message passing channels (a pair of atomic and non-atomic locations), by

writing to the non-atomic location first and then the atomic location (¶ then · and ¸

then ¹). T1 and T2 receive a message by reading from their atomic location and then their

non-atomic location (º then » and ¼ then ½). Since we must always write to the non-

atomic location before writing to the atomic location, the value loaded from the atomic

location cannot be larger than the value loaded from the non-atomic location, as enforced

by the program assertion.

In the next two subsections, we discuss how our loop pipelining extensions of our thread-

local and global analyses schedule T0. For all pipelined schedule, its iteration schedule and

latency is exactly the same as the non-pipelined case, since the intra-iteration constraints

do not change. The key to performance improvements is how our inter-iteration constraints

affects the II , which permits the overlapping of iterations.

5.5.1 Thread-local analysis with loop pipelining

Fig. 5.9 shows T0’s pipeline schedule for our thread-local analysis of SC atomics. Its

iteration schedule and latency is the same as in Fig. 3.9. However, our inter-iteration

constraints of mem-sc-pipe of (5.2) from 115 disallows any loop overlapping. In particular,

at9 -inter-iter does not allow the second iteration’s non-atomic store to a execute before

the first iteration’s atomic store to y. Consequently, this loop requires eight cycles to

execute regardless of loop pipelining, since the initiation interval and loop latency is the
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Cycle: 1 2 3 4 5

a=42; stna a 1 stna a 2

st(&b,1,REL); stREL b 1 stREL b 2

x=17; stna x 1 stna x 2

st(&y,1,REL); stREL y 1 stREL y 2

Figure 5.10: Pipeline schedule of our running example with thread-local analysis and con-
sidering the consistency modes of each atomic access (the different shades
represent different iterations).
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Figure 5.11: The new input set for loop pipelining, where we extend T0 to consider two
consecutive iterations and generate the canSync set based on two consecutive
iterations (red dashed arrows). The black solid arrows are the preserved ppo
edges (we omit the aliasing inter-iteration edges for clarity).

same.

Fig. 5.10 shows T0’s pipeline schedule for our thread-local analysis of weak atomics.

Again, the iteration latency schedule is the same as in Fig. 3.11. However, this time, our

inter-iteration constraints of mem-pipe of (5.3) from 115 permits iteration overlapping.

The critical restriction is rel-inter-iter enforces that the first iteration’s release store

of y must execute before the second iteration’s store of b, as shown by the arrow in

Fig. 5.10. Hence, an II of two cycles is achievable, compared to its latency of three

cycles. Consequently, this loop can complete execution in five cycles, instead of six in the

non-pipelined case.

5.5.2 Global analysis with loop pipelining

Fig. 5.11 shows how global analysis treats our running example to support loop pipelining.

We extend the inputs of T0 to consider two consecutive iterations, i and i+1, and add

po and nite edges between memory accesses in i and i+1. Then, we analyse canSync

set based on these new inputs, which spans across both iterations of T0, as shown by

the red dashed arrows. Next, we enumerated all paths that satisfy properties discussed
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Cycle: 1 2 3

¶a=42; stna a 1 stna a 2

·ast(&b,1,REL); stREL b 1 stREL b 2

¸x=17; stna x 1 stna x 2

¹ast(&y,1,REL); stREL y 1 stREL y 2

Figure 5.12: Pipeline schedule of global analysis for running example.

in §4.3.1. We see that our pipelining extension generates additional paths consisting of

inter-iteration constraints within T0. For example, global analysis identifies that there is

a path from the i-th iteration’s ¶ to i+1-th iteration’s · to º and finally to ». This

path involves an inter-iteration edge from ¶ to ·. We identify this edge as inter-iteration,

since it is also be related by nite.

Fig. 5.12 shows T0’s pipeline schedule for our global analysis. We can achieve the

same iteration schedule and latency of two cycles, just as in Fig. 4.6. However, the critical

behaviour that ensures correctness is that the atomic release store must not happen before

its corresponding non-atomic store within each iteration, which does not prevent the loop

iterations from overlapping. Therefore, an II of one is achievable and this loop only takes

three cycles to complete execution, instead of four in the non-pipelined case.

5.6 Ensuring correctness of our loop-pipelining support

As we described earlier in this chapter, the C memory model does not distinguish be-

tween memory events of different iterations. Memory events of different iterations are

simply related by po. Additionally, both our thread-local and global analyses only require

distinguishing between memory events of different iterations to employ the appropriate

HLS dependence distance. This dependence distance is irrelevant to our event signature

and hence does not need to be given special attention. Therefore, the verification of

our thread-local and global analyses of Chapter 3 and 4 also holds true for this chapter,

without necessitating the any extensions or modifications.

5.7 Implementing loop-pipelining in LegUp 5.1

Fig. 5.13 shows the different stages of LegUp flow involved when implementing loop-

pipelining. Modulo scheduling is implemented as a LLVM transformation pass in the opt

executable. After the source code is compiled by clang into LLVM IR, the entire program

is allocated and then each thread is given to the modulo scheduler individually within

the opt executable. Then, LegUp generates intra- and inter-iteration aliasing memory

constraints for the consideration of the modulo scheduler. The modulo scheduler is then
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Figure 5.13: Supporting loop-pipelining via LegUp 5.1 HLS tool flow via thread-local anal-
ysis, where we inject both our intra- and inter-iteration constraints within the
Modulo Scheduling step of each thread.
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Figure 5.14: Supporting loop-pipelining via LegUp 5.1 HLS tool flow via global analysis,
where we perform global analysis and then inject both our intra- and inter-
iteration constraints of each thread to their respective Modulo Scheduling
steps.

tasked to compute a valid pipeline schedule. If a valid schedule is found, several LLVM

metadata are included to the each IR including: 1) the loop latency, 2) the initiation

interval, 3) each operation’s pipeline stage and 4) each operation’s start time within the

pipeline stage. Finally, the RTL Generation stage in the llc utilises this metadata to

generate a pipeline schedule on hardware.

To implement our thread-local analysis of atomics in LegUp, we simply augment the

modulo scheduler to inject our additional intra- and inter-iteration memory constraints,

as described in §5.4.1. We provide constraints to each thread’s modulo scheduler based

on mem-pipe from (5.2) and mem-weak-pipe from (5.3) to support loop pipelining of SC

and weak atomics respectively.

Since our global analysis requires an LLVM pass that iterates over all LLVM func-

tions and global variables, we must introducing an additional LLVM pass before modulo

scheduling. Fig. 5.14 shows how we implement loop-pipelining via global analysis, where
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Table 5.1: Design points for evaluation of Chapter 5.

Short name Analysis Weak Pipelining Model Ref.

LocalSC Local No No mem-sc §3.5.2
LocalWeak Local Yes No mem-weak §3.5.3
GlobalSC Global No No ppo §4.3.1
GlobalWeak Global Yes No ppo §4.3.2
PipelinedLocalSC Local No Yes mem-sc-pipe §5.4.1.1
PipelinedLocalWeak Local Yes Yes mem-weak-pipe §5.4.1.2
PipelinedGlobalSC Global No Yes ppo-intra, ppo-inter §5.4.2
PipelinedGlobalWeak Global Yes Yes ppo-intra, ppo-inter §5.4.2

we implement our LLVM pass after the Allocation stage. Then, we provide the necessary

intra-iteration and inter-iteration constraints to individual threads, as shown by the dotted

arrows labelled as c0 to cN . Modulo scheduling of each thread is computed entirely based

on the constraints provided by global analysis, since our global analysis is standalone.

5.8 Evaluation

We evaluate our loop pipelining extensions of both thread-local and global analyses on

two sets of experiments: memory-dominant and compute-dominant experiments. We

described their differences thoroughly in §2.5.3.2 but, in essence, we want understand how

loop pipelining benefits programs that are memory-intensive but also compute-intensive.

In this section, we discuss the following:

• In §5.8.1, we first describe all the design points for evaluation.

• In §5.8.2, we discuss the runtime performance of our memory-dominant experiments.

• In §5.8.3, we discuss the runtime performance of our compute-dominant experiments.

• Finally, in §5.8.4, we discuss the resource utilisation overheads of loop pipelining.

5.8.1 Design points

In this chapter, we evaluate eight different design points, as summarised in Table 5.1. Four

design points are carried forward from Chapters 3 and 4, which are our thread-local and

global analyses without loop pipelining: LocalSC, LocalWeak, GlobalSC and GlobalWeak.

In this chapter, we treat these four design points as our baseline and then we enable

loop pipelining for all four of these design points: PipelinedLocalSC, PipelinedLocalWeak,

PipelinedGlobalSC and PipelinedGlobalWeak. PipelinedLocalSC and PipelinedLocalWeak

implement loop-pipelining via thread-local analysis, as in §5.4.1. PipelinedLocalSC treats

all atomic accesses as SC atomics and PipelinedLocalWeak is sensitive to weak atomics.

PipelinedGlobalSC and PipelinedGlobalWeak implement loop-pipelining via global analysis,
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as in §5.4.2. The only difference between PipelinedGlobalSC and PipelinedGlobalWeak

is their canSync definitions. The canSync definition of PipelinedGlobalSC considers all

atomics as SC atomics whereas PipelinedGlobalWeak supports weak atomics.

5.8.2 Runtime performance of memory-dominant experiments

First, we discuss the runtime performance of our eight design points on memory-dominant

experiments. This set of experiments consists of benchmarks transferring data atomically

without performing any computation on the data. This setup is best-fitted to understand

the benefit of our analysis in isolation. For this reason, we utilised these experiments

in previous chapters. Fig. 5.15 shows the runtime performance of our memory-dominant

experiments for all eight design points.

5.8.2.1 Loop pipelining generally improves performance

Enabling loop pipelining improves the performance of LocalWeak, GlobalWeak and Glob-

alSC, but worsens the performance of LocalSC. The key to these improvements is the

possibility of overlapping iterations.

PipelinedLocalSC versus LocalSC In most cases, our thread-local pipelining rules for

SC atomics enforces that all atomics in the current iteration must be executed before any

operations from the next iteration. Since our benchmarks typically end their loop bodies

with an atomic access, it is most likely that our rules prohibit any loop overlappings.

Hence, across all our experiments, we see that PipelinedLocalSC performs similarly to its

non-pipelined counterpart, LocalSC. On average, PipelinedLocalSC is only 2% faster than

LocalSC with a maximum of 35%. Additionally, PipelinedLocalSC can also be up to 20%

slower than LocalSC because enabling loop pipelining require additional control signals,

forming the critical path that reduces clock frequency.

PipelinedLocalWeak versus LocalWeak In contrast, our thread-local pipelining rules

of weak atomics are less restrictive compared to SC atomics. Our benchmarks typically

begin their loop bodies with an acquire atomic and end with a release atomic, which are

subject to fewer constraints than SC atomics. Hence, on average, PipelinedLocalWeak is

1.6× faster than LocalWeak with a maximum of 3.3×.

Global analysis with pipelining is better When loop pipelining is enabled, global

analysis always identifies that routines across iterations can be overlapped to a certain

extent without breaking program correctness. Hence, we see that, on average, Pipelined-

GlobalSC is 1.4× faster than its non-pipelined counterpart GlobalSC with a maximum of

1.9×. We also see that, on average, PipelinedGlobalWeak is 1.4× faster than the Global-

Weak with a maximum of 2.5×.
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Figure 5.15: Runtime performance of all our design points in Table 5.1 on our memory-
dominant experiments.
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5.8.2.2 Both global analysis and weak atomics maintain their influences

In the absence of loop pipelining, both global analysis and weak atomics individually

impacts performance and their impacts are similar when loop pipelining is enabled.

Discussing global analysis In the absence of loop pipelining, global analysis identifies

parallelism within and across routines. In the context of loop pipelining, global analysis

also identify parallelism across iteration of routines. Hence, we see that, on average,

PipelinedGlobalSC and PipelinedGlobalWeak is 3× and 1.4× faster than PipelinedLocalSC

and PipelinedLocalWeak respectively, with a maximum of 13× and 4.5×.

Discussing weak atomics Furthermore, weak atomics has a better influence on per-

formance when loop pipelining is enabled. In the context of loop pipelining, weak atomics

increases the scope of reorderings to consider operations of different iterations. We see that,

on average, PipelinedLocalWeak is 3.4× faster than PipelinedLocalSC with a maximum of

5.7×. In contrast, without loop pipelining, LocalWeak is only 1.6× faster than LocalSC

with a maximum of 4×. Also, we see that, on average, PipelinedGlobalWeak is 1.3× faster

than the PipelinedGlobalSC with a maximum of 2×. In contrast, without loop pipelining,

GlobalWeak is 1.2× faster than GlobalSC with a maximum of 1.5×.

5.8.2.3 Limitations of modulo scheduling

We also see that there is trend between the number of constraints and the likelihood

of LegUp’s modulo scheduler generating a pipeline schedule. Larger and more complex

benchmarks lead to higher RAM usage during modulo scheduling. This trend is most

evident for our queue experiments, as we run out of RAM quickly (6GB of RAM) de-

pending on design points. Each design point is required to generate 24 data points across

three graphs in Figures 5.15(g), 5.15(h) and 5.15(i). However, due to the difference in

the number of constraints per design point, we see that PipelinedLocalSC cannot gener-

ate any data points, PipelinedLocalWeak generates only 4 data points, PipelinedGlobalSC

generates only 20 data points and PipelinedGlobalWeak can generate all data points. Our

experiments show that the use of global analysis and weak atomics not only improves

runtime performance, but also improves the likelihood of generating a pipelined schedule

without exhausting memory.

5.8.3 Runtime performance of compute-dominant experiments

Next, we discuss the runtime performance of our eight points for our compute-dominant

experiments. We thoroughly discuss compute-dominant experiments in §2.5.3.2. This set

of experiments include long-latency division, making the workloads heavy on computation

rather than memory accesses, which is useful understand how our pipeline scheduling is
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Figure 5.16: Runtime performance of our design points in Table 5.1 on our compute-
dominant experiments.
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affected by computation. In particular, we shall see that II can be influenced by these

divisions. Fig. 5.16 shows the runtime performance of our compute-dominant experiments.

5.8.3.1 Speedups of thread-local analysis varies.

PipelinedLocalSC versus LocalSC The performance of PipelinedLocalSC is worse

than our memory-dominant experiments. The II of PipelinedLocalSC is similar to its

latency, just as in our memory-dominant experiments. However, compute-dominant ex-

periments have much larger latencies and it directly influences the II s. The larger the II ,

the larger the circuit area and the lower the clock frequencies. So, we obtain the worst-

case of no II improvements and lowered frequencies for PipelinedLocalSC. When the II

is small enough, this effect is contained, as we can see for all chaining experiments and

for experiments with lower thread counts. However, on average, PipelinedLocalSC is 1.5×
slower than LocalSC with a maximum of 4.1×.

PipelinedLocalWeak versus LocalWeak In contrast, thread-local analysis of weak

atomics provides speedups when enabling loop pipelining. On average, PipelinedLocalWeak

is 1.5× faster than LocalWeak with a maximum of 12×. However, the different data-flow

patterns produce different trends.

Chaining experiments For the buffer experiments, on average, PipelinedLocalWeak is

2× than LocalWeak, as seen in Fig. 5.16(a). However, for the stack experiments, Pipelined-

LocalWeak is about 30% slower than LocalWeak, as seen in Fig. 5.16(d). This is because

the stack’s routines are small and only consist of two different memory locations per data

structure. Hence there are many aliasing constraints which our analysis cannot avoid.

Reduction experiments The II on PipelinedLocalWeak is typically half its latency,

resulting in PipelinedLocalWeak producing half the cycle count of LocalWeak. However,

as the thread count grows, the latency of PipelinedLocalWeak also grows, which means

the II is also growing. Again, larger II s lead to lower frequencies. Hence, for higher

thread counts, the clock frequency penalties of PipelinedLocalWeak is more evident. In

particular, we see in Fig. 5.16(e) that PipelinedLocalWeak is 12× faster than LocalWeak

at two threads but becomes slower than LocalWeak by up to 2.4× at nine threads.

Distribution experiments Distribution experiments have a similar trend to the chain-

ing experiments. For the buffer experiments, PipelinedLocalWeak is 2× faster than Lo-

calWeak, as seen in Fig. 5.16(c). For the stack experiments, PipelinedLocalWeak perform

similarly to LocalWeak since stack routine is small and consists of many aliasing con-

straints, as seen in Fig. 5.16(f). For the queue experiments, PipelinedLocalWeak is 1.8×
slower than LocalWeak,, as seen in Fig. 5.16(i). Although their cycle counts are similar,

the former suffers from larger frequency penalties.
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5.8.3.2 Speedups of global analysis are consistently better.

Global analysis consistently produces better speedups for compute-dominant experiments,

compared to memory-dominant experiments, since the II s generated by global analysis

is typically unaffected by the loop latency. Global analysis produces similar II s for both

memory- and compute-dominant experiments, even though divisions increase the itera-

tion latency of most compute-dominant threads. Hence, the global analysis speedups of

compute-dominant experiments is far better than memory-dominant experiments. On

average, PipelinedGlobalSC is 4.8× faster than GlobalSC, with a maximum of 10×. In

contrast, PipelinedGlobalSC is only 1.4× faster than GlobalSC, with a maximum of 1.9×
for memory-dominant experiments. Additionally, on average, PipelinedGlobalWeak is 5.7×
faster than GlobalWeak, with a maximum of 15×. In contrast, PipelinedGlobalWeak is only

1.4× faster than GlobalWeak, with a maximum of 2.5× for memory-dominant experiments.

In very few cases, global analysis can be slower after enabling loop pipelining, which is

seen only with the distribution experiments, in Figures 5.16(f) and 5.16(i). The memory

access patterns of distribution prohibits iteration overlapping for both thread-local and

global analysis. Therefore, the cycle counts of the pipelined and non-pipelined circuits are

similar but the clock frequencies of the pipelined circuits are lower.

5.8.3.3 Missing data points

Even for the compute-dominant experiments, Legup’s modulo scheduler fails to generate

a pipeline schedule for some queue experiments. None of the PipelinedLocalSC could be

generated. Only 12 out of the 24 data points could be generated for PipelinedLocalWeak.

On the other hand, all data points for PipelinedGlobalSC and PipelinedGlobalWeak were

generated. This trend re-affirms that the queue experiments produce the largest number

of scheduling constraints, making the pipeline computation exponentially harder.

5.8.4 Resource utilisation

Fig. 5.17 shows the relative resource utilisation overheads when we enable loop pipelining

for both memory- and compute-dominant experiments. In most cases, loop pipelining

requires both additional LUTs and registers for all design points on both sets of exper-

iments. On average, memory-dominant experiments require additional 15% LUTs and

5% registers and compute-dominant experiments require additional 11% LUTs and 8%

register to implement loop pipelining.

LUT usage relies on the II . The larger the II , the larger the circuit area required to

implement loop pipelining. Hence, we see that enabling loop pipelining for PipelinedLo-

calSC consumes most relative LUTs. This is because PipelinedLocalSC struggles to overlap
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Figure 5.17: Relative resource utilisation overheads when enabling loop pipelining for both
our memory- and compute-dominant experiments.

loop iterations and therefore its II is large and similar to its loop latency. In contrast,

PipelinedLocalWeak require fewer LUTs to implement loop pipelining, since this design

point typically achieves II s that are half the loop latency. Finally, PipelinedGlobalSC and

PipelinedGlobalWeak require the smallest LUT usage to implement loop pipelining, since

their II s are often unaffected by the loop latency.

Furthermore, since the compute-dominant experiments have large latencies, its relative

LUT variations are higher than the memory-dominant experiments. The third quar-

tiles and maximums of PipelinedLocalSC and PipelinedLocalWeak are larger for compute-

dominant experiments in Fig. 5.17(c), compared to memory-dominant experiments in

Fig. 5.17(a). Sometimes loop pipelining can results in the usage of fewer LUTs, however

these cases are rare and often due to the variabilities in synthesis optimisation.

The relative register usage when implementing loop pipelining varies for different design

points and experiments, since both LegUp 5.1 and Quartus implement register duplication

when deemed fit.

130



LocalSC

LocalWeak

GlobalSC

GlobalWeak

PipelinedLocalSC

PipelinedLocalWeak

PipelinedGlobalSC

PipelinedGlobalWeak

1.0×

1.6×

1.4×

1.4×

(a) memory-dominant experiments

LocalSC

LocalWeak

GlobalSC

GlobalWeak

PipelinedLocalSC

PipelinedLocalWeak

PipelinedGlobalSC

PipelinedGlobalWeak

0.7×

1.5×

4.8×

5.7×

(b) compute-dominant experiments

Figure 5.18: Average speedups of design points in Table 5.1 for each set of experiments.

5.9 Conclusion

In this chapter, we extend our thread-local and global analyses from Chapter 3 and 4 to

support loop pipelining of fine-grained C concurrency. Our method is general applicable

to any programs with loops consisting of atomics. We do so by complementing our intra-

iteration scheduling constraints of Chapters 3 and 4 with the necessary inter-iteration

constraints to support loop pipelining correctly. For both thread-local and global analyses,

we can tailor our methods to be sensitive to weak atomics. We implement our methods

in the LegUp 5.1 and evaluate them on two set of experiments that are memory- and

compute-dominant respectively.

Fig. 5.18 recaps the key results from our evaluation. Enabling loop pipelining for thread-

local analysis of SC atomics (LocalSC) does not yield in performance improvements. In

contrast, enabling loop pipelining for thread-local analysis of weak atomics (LocalWeak)

yields speedups under 2× for both memory- and compute-dominant experiments, which

shows that this analysis generally produce II s that are half the loop latency. On average,

loop pipelining of global analysis yields performance of under 2× for memory-dominant

experiments, whereas yields performance of around 5× for compute-dominant experiments.

This is because the II s achieved by global analysis is the same regardless of memory- or

compute-dominant experiments. However, the compute-dominant experiments have larger

latencies and therefore our speedups are better for those experiments.

In the last two chapters, we presented methods to synthesise fine-grained C concurrency

with thread-local and global analyses. In this chapter, we present extensions to support

loop pipelining for fine-grained C concurrency for both these analyses. In the next chapter,

we present a real-world case study that showcases the benefits of all these analyses.
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6. Case study: Google’s PageRank

6.1 Introduction

In this chapter, we demonstrate the benefits of our analyses from previous chapters on a

real-world example. We transform Google’s PageRank algorithm to use lock-free streaming

and dynamic load-balancing via fine-grained atomics. PageRank was first devised by Brin

and Page [131] to improve web search engines in 1998. Prior to their work, web pages

were ranking based on academic citation analysis. Academic citation analysis, typically,

performs ranking based on a flat structure which works well for peer-reviewed academic

publications. However, this approach is ill-suited for webpage ranking since there is no

quality control associated with webpages. The key idea of PageRank is to rank web pages

based on the graph of the web, instead of a flat-structure ranking approach [131]. A

webpage is highly-ranked if the sum of the ranks of its backlinks (in-edges) is high.

PageRank is interesting as a case study because it is an important, well-known and

widely-adopted algorithm and it is a key component of Google’s search engine infrastruc-

ture [132]. Hence, it attracts a lot of hardware acceleration interests from both industry

and academia. Active research on accelerating PageRank is being conducted on a range of

hardware architectures. In particular, there are several works on accelerating PageRank

on GPUs [133, 134, 135, 136, 137].

PageRank has several interesting features that make it a good real-world example to

showcase our analyses. Firstly, the PageRank algorithm is in the form of a sparse-matrix

vector multiplication (SpMV), which has several implications. This SpMV pattern is ap-

plicable to wide range of graph algorithms, which makes it one of the important problems

to solve. Also, the SpMV access pattern is non-trivial, which means it is not easily pipelin-

able or optimised for HLS. It also means that PageRank workload is most unlikely to be

partitioned evenly across multiple threads, which makes it an irregular graph application.

Secondly, PageRank’s computation involves long-latency floating-point operations, such

as addition and division. Therefore, PageRank consists of both computation and data

transfer as part of the algorithm, which closely represents a real-world program. Finally,

PageRank consists of CAS operations. CASes cannot be synthesised by most HLS tools

but our work supports the synthesis of CAS operations via LegUp HLS.

Based on these reasons, we transform an HLS implementation of PageRank into an
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implementation that is pipelined, streamed and load-balanced to improve its performance.

We do so by incorporating lock-free streaming and work-stealing on PageRank. Then, we

apply our various analyses from previous chapters to synthesise these implementations

correctly and efficiently. In this chapter, we discuss the following:

• In §6.2, we discuss the PageRank algorithm in depth and its C implementation that

we compile to hardware via LegUp HLS .

• Then, in §6.3, we discuss how to turn this baseline implementation of PageRank into

a lock-free streaming implementation.

• Finally, in §6.4, we demonstrate evidence of workload imbalance for our parallelised

PageRank implementations and discuss how lock-free work-stealing improves the

workload distribution.

6.2 Google’s PageRank algorithm

First, we discuss the theory of PageRank in §6.2.1. Then, we discuss a C implementation

of PageRank from the Pannotia benchmark suite for GPUs [133], which is inspired by

Pregel’s description [138], in §6.2.2. Finally, we discuss a hardware realisation of this C

implementation in LegUp, which we regard as a baseline, in §6.2.3.

6.2.1 Theory

The simplified version of PageRank is defined as follows:

Rt+1(u)← 1− d
N

+ d
∑
v∈Bu

Rt(v)

Nv
(6.1)

Let u be a web page, Bu be the set of backlinks of u and N be the number of webpages

in the graph. Each webpage v that points to u contributes to its rank, Rt+1(u). We

individually divide the rank of each webpage v by the number of forward links it has, Nv.

Then we sum these contributions and multiply it by a damping factor d. This result is

then add it by 1−d
N to achieve the final rank of u. This rank computation of webpages

must be executed over multiple iterations to ensure the effects of individual ranks can

propagate across the entire graph before converging. d is the damping factor, which is

the probability of a random surfer continuing to click on links on the current web page.

Experimentally, it is shown that 0.85 is the right value of d for good convergence [132].

Also, typically, each rank R0(v) is initialised as 1
N .

PageRank can also be stated in matrix form [131]. Let A be a square matrix with rows

and columns corresponding to the individual web pages. Let Au,v = 1
Nu

, if there is an

edge from u to v and zero otherwise. Let R be a rank vector over web pages. Then, we
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int row[NODES]; int col[EDGES];

float pagerank1[NODES]; atomic uint pagerank2[NODES];

1 for(int v = 0; v<NODES; v++) {
2 int start = row[v];

3 int end = row[v+1];

4 for(int edge=start; edge<end; end++) {
5 int u = col[edge];

6 add float atomic(&pagerank2[u],

7 pagerank1[v]/(float)(end-start));

}
}

Figure 6.1: Google’s Pagerank from Pannotia

have R = cAR. Thus, R is an eigenvector of A with eigenvalue c. Also since A is a sparse

matrix, PageRank is an SpMV problem and an irregular workload.

6.2.2 C Implementation

Fig. 6.1 shows a C implementation of the PageRank algorithm, which we adapted from

Pannotia [133]. Their original implementation was written in OpenCL. We transform their

implementation into a concurrent C implementation via pthreads with minimal modifica-

tions. The only changes we made to Pannotia implementation was to ensure it fits with

the pthreads execution and memory model:

• We use pthreads fork/join functions to parallelise PageRank computations, instead

of OpenCL work items within a mutli-dimensional index space [5, §3.2].

• We remove all OpenCL memory scoping of shared memory by placing all shared

memory as arrays synthesised on-chip [5, §3.3].

This pthreads implementation is our baseline implementation of PageRank. In future

sections, we further transform this pthread implementation to improve its performance

via the use of lock-free data structures.

Our baseline implementation focuses on computing the summation of the rank contri-

butions, which is the most time-consuming part of PageRank since each rank contribution

requires a floating-point division followed by floating-point addition. The performance of

the rank contributions are constant across iterations, because the compute and memory

access patterns are the same. Consequently, the interesting performance improvements

result from speeding up computation within an iteration.

C memory arrays PageRank consists of three input arrays and one output arrays.

pagerank1 is the input rank Rt and pagerank2 is the output rank Rt+1 respectively.

The row and col arrays are the input matrix A in the Compressed Sparse Row (CSR)
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1 void add float atomic(atomic uint *address, float inc) {
2 uint oldValUint = *address;

3 float oldVal = *((float*) &oldValUint);

4 bool success = false;

5 while(!success){
6 float newVal = oldVal + inc;

7 uint newValUint = *((uint*) &newVal);

8 success = atomic compare exchange strong( address,

&oldValUint, newValUint);

9 oldVal = *((float*) &oldValUint);

10 }
11 }

Figure 6.2: Atomic compare-and-swap on a floating-point memory location.

format [139, §11.5.1]. The CSR format reduces the storage space of sparse matrices by

only storing non-zero entries. The row array contains the starting index at which each

node must access the col array. The col array contains the forward links of each node. In

other words, the row array holds the col addresses that each node must access and hence

their sizes are given by the number of nodes and edges of the input graph respectively.

Pagerank’s loops The algorithm consists of two loops iterating over each node v and

each of its forward links (v,u) respectively (lines 1-4). We represent symbols u and v

in (6.1) as u and v in the C implementation. It is also important to note that (v,u) is not

only a forward link for v but also a backward link for u. Consequently, notice that this C

implementation computes PageRank over all forward links of v, rather than all backward

links of u as defined in (6.1). This is because the forward links of a webpage are known at

download time without requiring any additional processing, unlike acquiring its backward

links. Hence, we iterate over all forward links of v but our rank updates treats them

as a backward links of u. In practice, this method has one complication. In a parallel

implementation, several threads can be updating the same u simultaneously, which why

atomic additions are required, as seen in line 6 of Fig. 6.1.

Atomic floating-point addition Although the floating-point addition of PageRank

must be atomic, the C library does not support atomic accesses for floating-point numbers.

This issue is overcome with two decisions. Firstly, the output ranks are declared as atomic

unsigned integers, but the contents of these ranks are casted into and from floating-point.

Secondly, the addition itself is implemented with a CAS operation within a loop. This

ensures that the addition keeps spinning until it is successful, since a non-atomic addition

does not guarantee atomicity as the rank can be simultaneously updated by other threads.

Fig. 6.2 shows the implementation of add float atomic function, which consists of a

loop (line 5) spinning until a CAS operation is successful (line 8). The CAS operation

135



Fetch

row

col

FDiv
Spinning FAdd

with CAS

pagerank1

pagerank2

v

u

start

end

v

u

inc

Figure 6.3: Computation steps executed by PageRank, as described in Fig. 6.1, where
rectangles are hardware stages and circles are memory arrays.

is only successful if the floating-point contents of the pointed address is loaded, added

by inc and swapped by the CAS before any other updates to the same address happen.

This guarantees the atomicity of the floating-point addition. Lines 6 and 9 show the

casting of unsigned integers to floating-point numbers and vice versa to assist with the

implementation of a floating-point atomic addition.

6.2.3 Hardware realisation

Fig. 6.3 shows various hardware stages (rectangles) and memory arrays (circles) with the

memory access patterns (arrows between circles and rectangles) and data-flow between

stages (labelled arrows between rectangles and rectangles), when we synthesise this C

implementation of PageRank via LegUp HLS.

Hardware stages This baseline PageRank consists of three hardware stages that are

encapsulated within a single pthread (software thread). The first stage, Fetch, accesses

the CSR input matrices from the row and col arrays, which provides the node and edge

list information (line 2, 3 and 5 in Fig. 6.1). This stage generates a unique (v,u) pair, which

propagates through the different hardware stages. The next hardware stage, FDiv, perform

a floating-point division of the node u’s input rank and its number of forward links. The

final stage, Spinning with FAdd with CAS, performs the atomic floating-point addition,

described in Fig. 6.2.

Memory arrays Since we utilise LegUp’s pure-hardware flow, all four memory arrays

must be synthesised on-chip as block RAMs. This restriction constraints the sizes of our

memory arrays, which means it is not likely that we fit an entire graph on-chip. As a

workaround, we partition our input graph into a sub-graph that fit on-chip and test our

hardware performance based on this sub-graph. Our input graph is the DLBP co-author

database from the UCF sparse matrix collection [140] (Pannotia uses the same graph).

We partition the co-author graph by picking the first N authors (nodes) and preserving
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(a) The circular buffer, diagrammatically.

T0in out

(b) Streaming example where a thread T0

reads from in and writes to the out

(both of which are SPSC buffers).

Figure 6.4: Understanding the SPSC buffer and the context in which we use it.

all E relations between these N nodes. We can fit up to N = 8192 nodes and E = 75000

edges on-chip on a CycloneV FPGA.

6.3 Implementing lock-free streaming of PageRank

In this section, we transform the baseline PageRank implementation into an implementa-

tion capable of lock-free streaming. We do so in three parts:

• First, in §6.3.1, we identify an optimal coding template using single-producer-single-

consumer (SPSC) buffers to achieve one-to-one lock-free streaming with low initia-

tion intervals (II s).

• Then, in §6.3.2, we identify a pipelinable partitioning of the baseline PageRank that

utilises our coding template to achieve lock-streaming of PageRank.

• Finally, in §6.3.3, we synthesise this streaming implementation using our various

analyses from previous chapters and compare these results against the baseline.

6.3.1 One-to-one lock-free streaming via SPSC buffers

In this subsection, we describe a coding template to achieve high-performance one-to-one

streaming between threads using only SPSC buffers.

Recap of SPSC buffer We described SPSC buffers thoroughly in §2.5.1.1. This data

structures consists of two atomic pointers, head and tail pointers, and a non-atomic

array that holds the actual contents. Fig. 6.4(a) shows a semi-full buffer, with the tail

pointing to the next index to push to and head pointing to the next index to pop from.

Pushing and popping happens in a circular fashion and only one producer thread and one

consumer thread can call these respective routines.

Our context Fig. 6.4(b) shows the context in which these buffers are to be utilised. We

have one thread, T0 does the following actions in-order:

• reads new data from an input buffer, in,

• applies an arbitrary function, let’s say compute(), to the read data,
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• and, finally, writes its result to an output buffer, out.

We want to achieve this streaming pattern with two properties: 1) we can pipeline the

code in T0 and 2) our II must be independent of our compute function. The rest of this

subsection is dedicated to discussing the process of materialising these properties. First,

we show how a typical blocking implementation of T0, in §6.3.1.1. Then, we re-factor this

implementation to produce a non-blocking and pipelinable implementation, in §6.3.1.2.

Finally, we optimise this non-blocking implementation to achieve an implementation of T0

whose II is independent of its computation, in §6.3.1.3.

Variable conventions For the rest of this subsection, we implement the following vari-

able conventions for our code. We have two buffers (prefixed as in and out) with two

atomic variables (suffixed as Head or Tail) and one non-atomic array (suffixed as Array).

6.3.1.1 Blocking implementation

Fig. 6.5 shows a typical implementation of T0. In T0, we have two inner while-loops:

labelled as consume and produce. Additionally, the main while-loop (line 2) also has two

Boolean variables, that are conditions of the two inner while-loops (line 3), and two integer

variables data, which holds the data consumed from the in buffer (line 4), and result,

which holds the data to push to out buffer after computation (line 15).

Each inner while-loop is a blocking implementation of the push and pop routines respec-

tively. The consume loop attempts to pop data from the in buffer until it is successful

and the produce loop attempts to push result to the out buffer until it is successful.

Success is given by the fact that in buffer has an element to pop (notEmpty in line 9) or

the out buffer has a space to push to (notFull in line 20). However, these inner while-

loops suffer from one problem. Their termination depends on the runtime values of the

current iteration. Hence, this implementation of T0 leaves no room for loop-pipelining.

To overcome these issues, we propose another implementation of T0.

6.3.1.2 Naive non-blocking implementation

Fig. 6.6 shows a new implementation of T0, which overcomes the issue of the previous

version. Instead of a while-loop, we implement a for-loop (line 3) with a fixed number

of iterations (represented as ITER). In the loop body, we attempt one pop from the in

buffer and one push from the out buffer. We cannot execute these routines in strict

order, because we may end up losing data if the pop succeeds but the push fails. So, we

perform the notEmpty and notFull checks of the in and out buffer first (lines 4 to 7).

If both conditions are satisfied, then we can proceed with the rest of the pop and push

routines. Another way to visualise this implementation is that we are interleaving the

138



atomic int inHead = 0, inTail = 0; int inArray[SIZE];

atomic int outHead = 0, outTail = 0; int outArray[SIZE];

1 void T0(){
2 while(true){
3 bool notEmpty = notFull = false;

4 int data = 0;

5 consume: while(!notEmpty){
6 int cTail = atomic load explicit(&inTail, memory order acquire);

7 int cHead = atomic load explicit(&inHead, memory order relaxed);

8 int nextHead = (cHead+1) % SIZE;

9 notEmpty = cTail != cHead;

10 if(notEmpty) {
11 data = inArray[cHead];

12 atomic store explicit(&inHead, nextHead, memory order release);

13 }
14 }
15 int result = compute(data);

16 produce: while(!notFull){
17 int pHead = atomic load explicit(&outHead, memory order acquire);

18 int pTail = atomic load explicit(&outTail, memory order relaxed);

19 int nextTail = (pTail+1) % SIZE;

20 bool notFull = pHead != nextTail;

21 if(notFull) {
22 outArray[pTail] = result;

23 atomic store explicit(&outTail, nextTail, memory order release);

24 }
25 }
26 }
27 }

Figure 6.5: A blocking implementation of T0 in Fig. 6.4(b).

memory accesses of the pop and push routines of the in and out buffers in a way that

does not risk losing packets.

This transformation allows the non blocking loop to be pipelined, since its termination

conditions does not dependent on the loop body. This loop has a fixed number of iterations

and LegUp identifies i as an induction variable for loop-pipelining. Although this loop

is pipelinable, it still suffers from a reduced version of the same problem. The notFull

check of the i+1-th iteration (line 11) is dependent on the i-th iteration’s release store

of outHead (line 17). Since the notFull check directly impacts the compute function via

a control dependency (line 12), in practice, only two consecutive iterations can overlap

during runtime. Hence, its II is typically half of the compute function, which is a trend

we highlighted in Chapter 5 for some memory access patterns. To overcome this issue, we

must re-devise the memory access patterns of T0 carefully.
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atomic int inHead = inTail = 0; int inArray[SIZE];

atomic int outHead = outTail = 0; int outArray[SIZE];

1 void thread(){
2 while(true){
3 non blocking: for(int i=0; i < ITER; i++){
4 int cTail = atomic load explicit(&inTail, memory order acquire);

5 int cHead = atomic load explicit(&inHead, memory order relaxed);

6 int pHead = atomic load explicit(&outHead, memory order acquire);

7 int pTail = atomic load explicit(&outTail, memory order relaxed);

8 int nextHead = (cHead+1) % SIZE;

9 int nextTail = (pTail+1) % SIZE;

10 bool notEmpty = cTail != cHead;

11 bool notFull = pHead != nextTail;

12 if(notEmpty && notFull) {
13 int data = inArray[cTail];

14 int result = compute(data);

15 atomic store explicit(&inHead, nextHead, memory order release);

16 outArray[pTail] = result;

17 atomic store explicit(&outTail, nextTail, memory order release);

18 }
19 }
20 }
21 }

Figure 6.6: A non-blocking stream implementation of T0 in Fig. 6.4(b) to enable loop-
pipelining.

6.3.1.3 Optimised non-blocking implementation

Fig. 6.7 shows our final implementation of T0, which has several critical changes compared

to Fig. 6.6. The key bottleneck of the previous version was that the each iteration required

the most up-to-date information about whether out buffer is notFull. A simple work

around to this problem is to move the notFull check’s memory accesses out of the loop,

as in lines 3 and 4. However, this change is insufficient since we could be writing to an

out buffer that is already full and end up losing packets. To avoid over-optimising and

inducing this bug into our implementation, we introduce a harness for this scenario by

checking whether the out buffer has sufficient space before executing the loop. We do so

with a function from the SPSC buffer’s API, where details can be obtained in the Boost

documentation [115]. We ensure that the out buffer has as many as spaces as iterations

as our loop before executing the loop, as seen in lines 6 to 8.

With these changes, the II of our streaming loop is not dependent on the latency

of compute and hence we can overlap several consecutive iterations, instead of just two

iterations. This implementation of T0 can achieve an II of three for any compute function

that does not itself have inter-iteration aliasing memory dependencies. Moving forward,
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atomic int inHead = 0, inTail = 0; int inArray[SIZE];

atomic int outHead = 0, outTail = 0; int outArray[SIZE];

1 void thread(){
2 while(true){
3 int pHead = atomic load explicit(&outHead, memory order acquire);

4 int pTail = atomic load explicit(&outTail, memory order relaxed);

5 int nextTail = (pTail+1) % SIZE;

6 int spaceInBuffer = writeAvailable(pHead, pTail);

7 if(spaceInBuffer >= ITER) {
8 streaming loop: for(int i=0; i < ITER; i++){
9 int cTail = atomic load explicit(&inTail, memory order acquire);

10 int cHead = atomic load explicit(&inHead, memory order relaxed);

11 int nextHead = (cHead+1) % SIZE;

12 bool notEmpty = cTail != cHead;

13 if(notEmpty) {
14 int data = inArray[cTail];

15 atomic store explicit(&inHead, nextHead, memory order release);

16 outArray[pTail] = compute(data);

17 atomic store explicit(&outTail, nextTail, memory order release);

}
}
}
}
}

Figure 6.7: A non-blocking stream implementation of T0 in Fig. 6.4(b) with a pre-condition
check to improve loop-pipelining capabilities.

this code template can be utilised to implement lock-free streaming on any application

that can be partitioned into a streaming fashion, i.e. this coding template is generic for

any streaming application.

6.3.2 Partitioning PageRank into a streaming pipeline

Now that we have a general coding template of lock-free buffers that can achieve one-to-one

streaming with a low II , we can utilise this template to improve the runtime performance

of PageRank. We transform the baseline PageRank, in §6.2.3, into a streaming pipeline

based on the coding template of the previous section. We partition the baseline PageRank

into pipelinable hardware stages connected via SPSC buffers. This way we can produce a

lock-free streaming implementation of PageRank.

In Fig. 6.3, we discussed the three hardware stages generated by LegUp HLS from the C

implementation of PageRank. Of this three stages, the first and last stages are non-trivial

to pipeline. The first stage, Fetch, performs the memory accesses of the CSR matrices,

which are data-dependent and hence difficult to pipeline. The last stage, Spinning FAdd
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Figure 6.8: A streaming implementation of PageRank, where transparent rectangles with
labels are pthreads (which also corresponds to a hardware module), grey-
shaded rectangles are SPSC buffers and circles are memory elements.

with CAS, consists of the floating-point addition followed by a CAS operation, which im-

plements the atomic floating-point addition. This loop is also difficult to pipeline because

its termination condition depends on the CAS operation.

To achieve lock-free streaming, we must consider pipelining these two stages. The first

stage only consists of four memory operations. Hence, the latency of this stage is small

and comparable to the II we want to achieve. Consequently, we can avoid pipelining this

stage since it is unlikely to affect performance. The last stage is too complex to pipeline

and requires further partitioning into smaller stages. We split this stage into three stages:

• the FAdd stage, where we perform the floating-point addition;

• the CAS stage, where we perform the CAS operation;

• and, finally, the Merge stage, where we merge two buffer streams: 1) the stream from

the FDiv stage with new packets and 2) the stream from the CAS stage with packets

that failed their CAS.

Fig. 6.8 shows the streaming pipeline of PageRank that consists of five hardware stages.

The first two stages are existing stages from the baseline implementation and the next

three stages are the partitioned stages of the atomic floating-point addition. The grey-

shaded rectangles are the SPSC buffers and each stage uses the same coding template as

in Fig. 6.7, only with different compute functions. There is one key difference between

the baseline and streaming implementations. The baseline only consists of one pthread

and LegUp infers the three hardware stages automatically. In contrast, we must explicitly

partition our streaming implementations into five pthreads each to achieve streaming.

Packets can fail their CAS operation at the CAS stage. In this case, these packets need

to be fed back into the stream for retries. The Merge stage performs this task. At this

stage, we must consider an important scenario where packets can arrive from both the

FDiv stage and the feedback of the CAS stage simultaneously. To avoid deadlocks, we
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Table 6.1: Design points for evaluating our lock-free streaming PageRank implementa-
tions.

Short name Analysis Streaming Pipelining MCM Ref. Impl.

Baseline Global No No ppo §3.5.3 Fig. 6.3
LocalStreaming Local Yes No mem-weak §3.5.3 Fig. 6.8
GlobalStreaming Global Yes No ppo §5.4.2 Fig. 6.8
LocalStreamingPipe Local Yes Yes mem-weak-pipe §5.4.1.2 Fig. 6.8
GlobalStreamingPipe Global Yes Yes ppo-intra, ppo-inter §5.4.2 Fig. 6.8

must prioritise the feedback packets. If we do not process feedback packets immediately,

both the feedback buffer and the output buffer of the Merge stage can become full at the

same time. Once this happens, the stream will deadlock and never recover. We also do

not pipeline the Merge stage since it only consists of memory operations and therefore

its latency is small. In summary, we can achieve a lock-free streaming implementation of

PageRank by partitioning the baseline into five stages (also five pthreads) and using SPSC

buffers via our coding template.

6.3.3 Evaluating our streaming pipeline of PageRank

In this section, we evaluate our streaming implementation of PageRank against the baseline

implementation of PageRank given discussed in 6.2.3.

6.3.3.1 Design points

We implement five different design points, as tabulated in Table 6.1. Baseline is our the

Pannotia implementation of PageRank provided to LegUp, which discussed in Fig. 6.3.

Since this baseline implementation also consists of atomic operations, we analyse this

implementation via our global analysis. Then, we have LocalStreaming, GlobalStreaming,

LocalStreamingPipe and GlobalStreamingPipe that implement the streaming PageRank

implementation discussed in Fig. 6.8. The difference between these four design points is

the type of analyses we apply and whether we enable loop pipelining.

6.3.3.2 Experimental setup

Our experimental setup is as follows:

• We only focus on evaluating PageRank based on weak atomics, since, SC atomics is

generally slower than weak atomics;

• We set the SPSC buffer size (SIZE) as 128 and the number of iterations of the

for-loop (ITER) as 32 for our streaming design points;

• We evaluate a partitioned DBLP co-author graph, where we pick integer values of

nodes 2N for 3 ≤ N ≤ 13. Each N corresponds to a number of edges E and E
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Table 6.2: Schedule latency (L) and initiation interval (II) of the different hardware stages
(depicted in Fig. 6.8) for all design points in Table 6.1.

Stages Fetch FDiv Merge FAdd CAS

Metric L II L II L II L II L II

LocalStreaming 16 - 59 - 25 - 32 - 24 -
GlobalStreaming 16 - 58 - 23 - 32 - 23 -
LocalStreamingPipe 16 - 48 3 25 - 18 3 18 9
GlobalStreamingPipe 16 - 48 3 23 - 18 3 16 8
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Figure 6.9: Hardware performance of our various design points against the number of
edges, as we scale the number of nodes in the co-author graph.

increases monotonically as N increases. E dictates the size of the col array, which

is the largest array and dominates the block RAM usage.

6.3.3.3 Runtime Performance

Latencies and initiation intervals affect performance Tab. 6.2 shows the latencies

and initiation intervals of our four streaming design points. In comparison, the Baseline

has a latency of 72 cycles. There are three points to highlight from this table. Firstly,

LocalStreaming and GlobalStreaming have higher total latencies across the five hardware

stages (threads). This shows that our streaming template incur cycle overheads in terms

of total latency. Secondly, the difference in latencies between LocalStreaming and Global-

Streaming are minimal, which shows that global analysis does not have a significant effect

on latency. Thirdly, our loop pipelining extensions of thread-local and global analysis

achieves good II s. LocalStreamingPipe and GlobalStreamingPipe are able to pipeline the

FDiv, FAdd and CAS stages. The II s of FDiv and FAdd are the best achievable (three

cycles), whereas the II of CAS is dependent on compute function (eight/nine cycles).
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Figure 6.10: Average LUT and register usage for our design points in Tab. 6.1.

Overall runtimes Fig. 6.9 is a log-log plot that shows the runtime performance of

our five design points against the number of edges (E). All our design points achieve a

performance that is linear to the number of edges. However, there are significant offsets

between these linear lines that require discussion.

Comparing our streaming implementations to baseline On average, the perfor-

mance of LocalStreaming and GlobalStreaming is 1.2× faster than Baseline. Even though

the total latencies of LocalStreaming and GlobalStreaming are larger than Baseline, the

effects of partitioning and streaming PageRank boosts performance. In rare cases, these

streaming pipelines are slower than Baseline. GlobalStreaming can be 2% slower than

Baseline, but this is only due to clock frequency variations.

Enabling loop pipelining of our streaming implementations On average, Lo-

calStreamingPipe and GlobalStreamingPipe is 2.5× and 3× faster than Baseline. Loop

pipelining enables the stages with large latencies to overlap their iterations, as we see

in II column of Table 6.2. We also see that, global analysis extracts further memory

parallelism via loop pipelining. Hence, on average, GlobalStreamingPipe is 1.2× faster

than LocalStreamingPipe. The true bottleneck of PageRank now becomes the CAS stage,

rather than the FDiv and FAdd stages that are easily pipelinable.

6.3.3.4 Resource utilisation

LUT and register usage The LUT and register usage of our different design points do

not change with the increase in number of edges (E). Fig. 6.10 shows the average LUT and

register usage of all our design points. Baseline requires the least amount of LUTs and

registers to implement. This is because of all streaming design points require additional

hardware since the hardware stages are partitioned across five threads and these stages

must also interfacing with SPSC buffers. For instance, LocalStreamingPipe requires 1.6×
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Figure 6.11: Block RAM utilisation of our various design points against the number of
edges, as we scale the number of nodes in the co-author graph.

more LUTs and 1.9× more registers compared to Baseline. Additionally, the LUT and

register usage of global analysis is marginally smaller than thread-local analysis, since its

latencies and II s are smaller than thread-local analysis.

Block RAM utilisation Fig. 6.11 shows the block RAM utilisation of all our design

points, as we scale the number of edges. Firstly, we see that as the number of edges

increases, the block RAM utilisation also increases. The shape of curve itself is uninter-

esting since it is data-dependent and much smaller than the theoretical upper bound of

|N | ≤ |E|2. Secondly, the gap between the streaming design points and baseline is not

constant. We would expect it to be constant to account for RAM usage of the buffers.

However, this is not true because, for larger Es, Quartus decides to replicate the col array

of our streaming design points.

6.3.4 Parallelising our implementations

Our each data point in the previous section is a standalone unit capable of executing any

PageRank input graph, whether it is our baseline implementation with one pthread or

our streaming implementations with five pthreads and five SPSC buffers. We refer to a

collection of hardware capable of executing PageRank independently as a compute unit.

Thus far, we only evaluate PageRank on a single compute unit. In this subsection, we

replicate the number of compute units for all our implementations. To replicate compute

units, we simply need to replicate the hardware pipelines and share the input graph and

ranks with all compute units. There are several considerations during this replication

process:

• For streaming implementations, we replicate all software threads and SPSC buffers.
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Figure 6.12: Runtime performance of our design points in Table 6.1 as we scale the number
of compute units (P ) for each design point.

• Each node is an individual task and hence we block-partition the nodes evenly across

compute units and so we configure the Fetch stage of each compute unit appropri-

ately.

• The CSR matrices and input ranks are shared among all compute units.

• We replicate the output ranks to ensure the CAS operations not to compete across

compute units. Since each compute unit’s output rank only holds a partial sum, we

implement a highly-pipelined reduction after all compute units are joined. The time

taken for this reduction is very minimal, compared to the overall runtime.

6.3.5 Evaluating our parallel Pagerank implementations

Now, we evaluate our parallel implementations of all five design points, discussed in

Tab. 6.1. Our goal is to instantiate as many compute units as possible until we fill up

the FPGA chip. We evaluate them on the same co-author graph as the previous section.

We utilise the sub-graph with 1024 nodes and 5924 edges. We pick 1024 nodes instead of

8192 nodes, which is our maximum RAM capacity, to reduce the simulation time. As we

scale the number of compute units, P , the LUT capacity of our FPGA chip maximises

the fastest. Hence, Fig. 6.12 shows the runtime performance of our various design points

versus the FPGA LUT capacity. The left-most data point of each design point is carried

forward from §6.3.3, in which P = 1.

Scaling factor for design points are different The maximum P achievable vary

according the design point. Since Baseline’s compute unit uses the least amount of LUTs,

we can replicate it by 10 times. In contrast, we can only replicate LocalStreaming and
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GlobalStreaming by 6 times, since these design points require additional hardware to im-

plement hardware stages and buffer interfaces. Furthermore, loop pipelining incur more

LUTs. Hence, we can only replicate LocalStreamingPipe and GlobalStreamingPipe by 5

times.

The runtimes of non-pipelined streaming saturates In terms of runtime perfor-

mance, LocalStreaming and GlobalStreaming closely follow the performance of Baseline.

Until P = 3, LocalStreaming is up to 1.4× faster than Baseline. Until P = 4, Global-

Streaming is up to 1.5× faster than Baseline. After these points, Baseline performs better

since it becomes part of the Pareto-optimal curve. There are two reasons for this pattern.

Firstly, since Baseline is smaller in LUT usage, we are able to replicate more compute

units and eventually achieve better cycle counts than LocalStreaming and GlobalStream-

ing. Secondly, for similar P s, LocalStreaming and GlobalStreaming cycle counts are better

than Baseline, but these implementations suffer from higher clock frequency penalties.

The runtimes of pipelined streaming are high-performant When we enable loop-

pipelining, our runtime performance is much better than Baseline. For the same number

of compute units (P ), LocalStreamingPipe and GlobalStreamingPipe is up to 4.4× and 5.4×
faster than Baseline. Also, even though we are able to replicate more compute units for

Baseline, its performance is not as good as our loop-pipelined streaming implementations.

Hence, at maximum LUT capacity, LocalStreamingPipe is 2.2× than Baseline. Further-

more, global analysis provide additional speedups when utilised with loop pipelining. On

average, GlobalStreamingPipe is 1.3× better than LocalStreamingPipe.

Summary In summary, at maximum LUT capacity, our best streaming implementation

is at least 3× faster than any baseline implementation. It is also worth noting that our

global analysis can cope with large real-world programs. At P=5, GlobalStreamingPipe

has 25 pthreads (of which 15 threads require loop-pipelining), 25 lock-free buffers and 5

intermediate output ranks that are atomic arrays. Our analysis can generate the necessary

ordering constraints of the entire program within 9 seconds.

6.4 Dynamic load-balancing via work-stealing

6.4.1 Introduction

The runtime performance of some design points in the previous subsection tend to saturate,

as we scale the number of compute units. This suggests that the workload across the

different threads are imbalanced and that our performance is dictated by the slowest

thread. We investigate this hypothesis by characterising the input graph. All threads

are given an equal number of nodes to process, but each node visits a variable number of
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Figure 6.13: The distribution of edges to visit for each node of our input co-author graph,
where the box shows the median and first and third quartiles, the whiskers
extend the first and third quartiles by 1.5× of the inter-quartile range and
dots are outliers.

edges depending to the input graph. Fig. 6.13 shows the edge distribution for all nodes of

our input graph. Its median is four edges and its first and third quartiles have different

ranges from the median (two and seven edges respectively). These statistics establish that

our parallel implementations suffer from workload disparity. In fact, this disparity is more

severe than expected because the upper whisker is 14 edges per node and also we have

many outliers that are up to 68 edges. So it is hard to statically-partition an equal number

of edges to process per thread.

One approach to reduce workload disparity is via work-stealing [141]. Work-stealing can

perform dynamic load-balancing of irregular workloads, such as PageRank. In order for

work-stealing to impact performance, the application must have the following properties:

• we must be able to define a task for each computation;

• and, either the execution time of a task is dynamic or a task can dynamically spawn

new tasks, or both.

PageRank satisfies these properties because each node in the graph is a task and each

task’s execution time varies is dependent on the number of edges per task.

One of the first implementation of work-stealing on GPUs were by Cederman and Tsi-

gas [142]. They use lock-free double-ended queues (deques) by Arora et al. [143], via

OpenCL atomics, to load-balance a four-in-a-row game and an octree partitioner. We

take inspiration from their work to implement work-stealing on FPGAs via HLS. We use

a weakly consistent lock-free deque by Lê et al. [144] to improve the performance of our

parallel PageRank implementations. In this subsection, we discuss the following:

• First, in §6.4.2, we discuss the functionality of a deque, how we optimise Lê et

al.’s implementation to suit our purposes and how we implement work-stealing on

PageRank using these deques.

• Next, in §6.4.4, we evaluate our work-stealing implementations of PageRank against

our static-partitioned implementations.

• Finally, in §6.4.5, we also discuss some related works comparing this case study to

previous work on work-stealing on FPGAs.
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Figure 6.14: A sample execution of a deque.

6.4.2 Optimising the work-stealing deque for PageRank

6.4.2.1 Understanding the functionality of a deque

A double-ended qeuue (deque) consists of a non-atomic array protected by two atomic

pointers that point to the top and bottom of the queue. A deque has three routines:

push, pop and steal. The push and pop routines update the bottom pointer, whereas the

steal routine updates top pointer. Each deque must be owned by one thread. Only the

owner thread can push and pop tasks, which means it has exclusive write access to the

bottom pointer. All other threads can steal tasks via the top pointer.

Fig. 6.14 is a sample execution of a deque. First, the owner thread pushes three tasks

(W0, W1 and W2) to the deque via the bottom pointer, as in Fig. 6.14(a). Then, a different

thread steals a task (W0) from this deque via the top pointer, as in Fig. 6.14(b). Following

this steal, the owner thread pops a task (W2) from the deque, updating the bottom pointer,

as in Fig. 6.14(c). Finally, we are left with one task (W1) that can either be popped by the

owner thread or stolen by any other thread. This corner case requires a CAS operation

to achieve consensus, since both routines may be executed simultaneously by different

threads. Eventually, the deque is emptied, as in Fig. 6.14(d).

6.4.2.2 Special properties of PageRank

We adapt the weakly consistent deque proposed by Lê et al. [144] for this case study. Our

starting point is their original push, pop and steal routines, as in Fig. 1 of [144]. The full

details of their implementation can also be found in their paper.

PageRank has two properties that allow further optimisation of this deque:

• PageRank’s task is the node itself. The node index is sufficient to execute a task,

which means we can simply return the pointer values and eliminate the non-atomic

array all together. Eliminating the non-atomic array also means that we remove all

memory fences in the original routines.

• PageRank does not spawn new tasks, unlike applications such as tree-traversal. The

amount of tasks is fixed at compile time but each task’s execution time is dynamic.

Therefore, we can eliminate the push routine and simply pre-load these tasks.
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1.1 int pop(atomic int *top, atomic int *bottom){
1.2 int b = atomic load(bottom, memory order relaxed) - 1; ¶

1.3 atomic store(bottom, b, memory order release); ·

1.4 int t = atomic load(top,memory order acquire); ¸

1.5 int x = EMPTY;

1.6 if(t < b){
1.7 x = b;

1.8 } else {
1.9 atomic store(bottom, b+1, memory order release); ¹

1.10 }
1.11 return x;

1.12 }

(a) The pop routine.

2.1 int steal(atomic int *top, atomic int *bottom){
2.2 int t = atomic load(top, memory order acquire); º

2.3 int b = atomic load(bottom, memory order acquire); »

2.4 int x = EMPTY;

2.5 if(t < b){
2.6 x = t;

2.7 if(!atomic compare exchange strong explicit( top, &t, t + 1,

memory order release, memory order relaxed)); ¼

2.8 x=ABORT;

2.9 }
2.10 return x;

2.11 }

(b) The steal routine.

Figure 6.15: Simplified deque routines of Lê et al.

6.4.2.3 Tailoring the deque routines

Based on these special properties of PageRank, Fig. 6.15 shows our optimised pop and

steal routines. Only the owner thread can pop from a deque via updating bottom

pointer, whereas all other threads attempting to steal from this deque compete with each

other to update the top pointer. To guarantee this behaviour, the following release-acquire

synchronisation pairs are put in place:

• all updates to the bottom pointer by the pop routine of the owner thread must be

release stores, which are paired to the load acquire on the same location by the steal

routines of any other thread, i.e. · or ¹ synchronises with »;

• all updates to the top pointer by the steal routine of any thread must be a release

store, which is paired with two other load acquires on the same location. Firstly,

it is paired with a load acquire within the pop routine of the owner thread, i.e. ¼

can synchronises with º. Secondly, it paired with all load acquires within the steal
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routine of any other thread attempting to steal from the same deque, i.e. ¼ can

synchronises with º.x

The pop routine The pop routine, shown in Fig. 6.15(a), has the following sequence

of events. First, the latest bottom value is read and reserved by the owner thread via a

decrement and update, which is a release store. Then, the latest top value is read via a

load acquire (line 1.4). Finally, if the latest top value is larger than the latest bottom value

(line 1.6), then there is more one than one element in the deque and the latest bottom

value is returned (line 1.7 and 1.11). Otherwise, the reservation of the pop content is

reverted via a release store (line 1.9) and the deque is treated as if its empty (line 1.5

and 1.11). Note that we optimised away part of the original deque’s pop routine. As

discussed in our sample execution, in Fig. 6.14(c), the last element of a deque can either

be popped or stolen. To ensure correct behaviour, a CAS operation is required within

both these routines. However, we decided statically to allow the steal routine to always

win this duel. Hence, we can remove the CAS operation within the pop routine.

The steal routine The steal routine, shown in Fig. 6.15(b), has the following sequence

of events. First, the latest top and bottom values are read via load acquires (lines 2.2

and 2.3). Then, we check whether there are any elements in the deque (line 2.5). If so,

then attempt to steal the the top pointer via a CAS operation, which is a release CAS

(line 2.7). In the original deque routine, the CAS is attempted until it succeeds. Instead,

we only attempt the CAS once and simply return the ABORT signal if it fails. We use this

signal to perform other useful tasks within the thread, in the event of CAS failures.

6.4.3 Incorporating these deques into PageRank

In this previous subsection, we presented the functionality of a work-stealing deque and

how we optimise an original version of Lê et al.’s deque to suit our PageRank implemen-

tation. Now, we discuss how we use this simplified deque in our concurrent program that

implements PageRank. We discuss our work-stealing PageRank implementation with two

compute units (P = 2), which generalises to any P .

Fig. 6.16 shows how we implement our work-stealing PageRank implementation for

P = 2. For all our implementations, we only require extending the first hardware stage,

Fetch, to implement work-stealing. First, we instantiate a deque for each thread i.e.

every thread owns a deque. The ownership pattern for the atomic pointers is shown by

directional arrows in Fig. 6.16(b). Only FetchT0 can write to bottom0 and FetchT1 can

write to bottom1 respectively. We also do not require the task arrays, since PageRank

only requires the pointer values. For the same reason, we can pre-load each thread with

tasks via simple initialisation of the respective top and bottom pointers.
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atomic int bottom0 = 0; atomic int top0 = NODES/2;

atomic int bottom1 = NODES/2; atomic int top1 = NODES;

1.1 void FetchT0(){ 2.1 void FetchT1(){
1.2 while(true){ 2.2 while(true){
1.3 int i = pop(&top0, &bottom0); 2.3 int i = pop(&top1, &bottom1);

1.4 if(i==EMPTY) 2.4 if(i==EMPTY)

1.5 i = steal(&top1, &bottom1); 2.5 i = steal(&top0, &bottom0);

1.6 if(i==EMPTY||i==ABORT) break; 2.6 if(i==EMPTY||i==ABORT) break;

1.7 process(i); 2.7 process(i);

} }

(a) Psuedo-code

FetchT0 FetchT1row

col

top0bottom0 top1 bottom1

other

pipeline

stages

other

pipeline

stages

(b) Generated hardware

Figure 6.16: Work-stealing PageRank implementation for two compute units (P = 2).

For our case study, we block-partition PageRank, as seen in with the initialisation in

Fig. 6.16(a). Then, we set up each thread to first attempt a pop from its own deque

(lines 1.3 and 2.3). If that fails, then the thread attempts a steal from the other deque

(lines 1.5 and 2.5). For larger P s, we can generalise this pattern, where each thread to

attempt another steal to subsequent deques if the previous steal fails. This is the reason

we do not keep attempting CASes to the same deque in the steal routine of Fig. 6.15(b).

We simply decide to steal from another deque, since other deques may have more work

to do and also we ensure that the program is achieving overall progress. Finally, if a task

was acquired, then it is processed by the remaining hardware stages of the compute unit

(lines 1.7 and 2.7). Otherwise, the loop terminates (lines 1.6 and 2.6).

A final note about the Fetch stage is that we chose not partition this stage for loop

pipelining because it only consists of memory operations and had a small latency. This

decision fits well with our work-stealing implementation, though for a different reason.

Work-stealing introduces complex control structures within the loop and its loop termi-

nation is based on the dynamic memory values, which makes it very difficult to pipeline.

This stage, however, provides packets to the rest of the pipeline that is highly pipelined.

153



Table 6.3: Extending the design points in Table 6.1 to support work-stealing.

Short name Original implementation MCM Ref.
LocalStreamingWS LocalStreaming mem-weak §3.5.3
GlobalStreamingWS GlobalStreaming ppo §5.4.2
LocalStreamingPipeWS LocalStreamingPipe mem-weak-pipe §5.4.1.2
GlobalStreamingPipeWS GlobalStreamingPipe ppo-intra, ppo-inter §5.4.2
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Figure 6.17: Execution time versus hardware utilisation of all design points given in
Tab. 6.1 and 6.3, as we scale the number of parallel hardware units (P ).

6.4.4 Evaluating work-stealing on PageRank

We evaluate our work-stealing implementations against the previous implementations of

PageRank. Hence, we carry forward five design points from Table 6.1, which are statically-

partitioned. Then, the four streaming design points are extended to support work-stealing,

as shown in Table 6.3. Fig. 6.17 shows the performance of all our nine design points.

Again, our goal is to maximise LUT capacity of all design points via scaling the number

of compute units (P ).

Work-stealing always improves performance Work-stealing allows better workload

distribution, reducing workload disparity. Consequently, work-stealing improves the over-

all performance. LocalStreamingWS and GlobalStreamingWS are 1.5× faster than Local-

Streaming and GlobalStreaming respectively. Also, at higher values of P , the performance

of LocalStreamingWS and GlobalStreamingWS does not saturate or become worse than
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Figure 6.18: Workload distribution (forward links visited) across multiple compute units
for the näıve and work-stealing cases, where N = 1024 and E = 5924.

Baseline, unlike LocalStreaming and GlobalStreaming. Furthermore, work-stealing also

enhances the performance of our pipelined designs. Although the hardware stage in which

we implement work-stealing is not loop-pipelined, workload distribution improves overall

performance. On average, we see that LocalStreamingPipeWS and GlobalStreamingPipeWS

is 1.7× and 1.6× faster than LocalStreamingPipe and GlobalStreamingPipe.

Area overheads are higher for work-stealing but worthwhile Work-stealing al-

ways incurs additional area overheads. Hence, we can fit fewer compute units as we scale

P for work-stealing implementations. We can fit up to 6 compute units for LocalStreaming

and GlobalStreaming. In contrast, we only can fit 5 compute units for LocalStreamingWS

and GlobalStreamingWS. However, at maximum LUT capacity, both these design points

are 1.7× faster than LocalStreaming and GlobalStreaming respectively. Additionally, the

LUT utilisation of thread-local analysis is higher than global analysis. This is most evi-

dent because we cannot implement P = 5 for LocalStreamingPipeWS, but we can do so

for GlobalStreamingPipeWS.

Workload distribution demonstrates the capabilities of work-stealing Fig. 6.18

shows the workload distribution of our statically-partitioned and work-stealing implemen-

tations. We plot the coefficient-of-variation (CoV), which is the standard deviation divided

by the mean, versus the number of compute units (P ). The larger the CoV, the larger

the workload disparity is across threads. Work-stealing improves the CoV by two orders

of magnitude.

Summary Overall, we show that incorporating work-stealing improves PageRank’s per-

formance since we are able to distribute work more evenly across threads. We were able

to implement non-trivial memory synchronisation using atomics to share the PageRank

workload across threads with relatively small area overheads. At maximum LUT capacity,

GlobalStreamingPipeWS is the best-performing design point.
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Figure 6.19: Runtime performance of PageRank for all design points in Table 6.3 at max-
imum area capacity.

6.4.5 Related work

Work-stealing has been previously implemented on FPGAs by us [145]. The difference

between our case study in this thesis and our previous work is as follows:

• We implement work-stealing on the PageRank algorithm, instead of k-means clus-

tering (KMC). KMC is different to PageRank since it is a tree traversal, instead of

a graph application. From the point of view of work-stealing properties, PageRank

does not spawn new tasks, unlike KMC. Furthermore, KMC requires tracking of

various stacks and heaps via pointers. These pointers are part of its task description

and therefore we cannot remove the task array, as we do with PageRank.

• We use a work-stealing double-ended queue that supports weak atomics. This is was

not possible with our previous work, since Altera OpenCL does not support weak

atomics. This thesis is the first to enable synthesis of weak atomics.

• Our PageRank application is optimised to support streaming and loop-pipelining

whereas the KMC implementation was neither streamed nor loop-pipelined.

6.5 Conclusion

This chapter presents a case study to showcase the benefits of using fine-grained atomics

to improve the performance of an HLS implementation of Google’s PageRank algorithm.

We implement lock-free streaming and dynamic load-balancing on PageRank and then

apply our various analyses to further improve its performance. Fig. 6.19 recaps the per-

formance of our different implementations of PageRank at maximum LUT capacity. We
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see that converting the baseline implementation of PageRank (Baseline) into a stream-

ing implementation does not improve performance. LocalStreaming and GlobalStreaming

is 30% and 20% slower than Baseline. However, their performances improve when we

enable loop pipelining. LocalStreamingPipe and GlobalStreamingPipe is 2.2× and 2.9×
faster than Baseline. Independently, PageRank performance also improves when we im-

plement work-stealing since we can reduce workload disparity. LocalStreamingWS and

GlobalStreamingWS is 1.3× and 1.5× faster than Baseline. Overall, we achieve the best

performance when we enable both loop pipelining and work-stealing. LocalStreaming-

PipeWS and GlobalStreamingPipeWS is 3.8× and 4.4× faster than Baseline. It is also

worth noting that, at P = 5, our global analysis can generate the necessary ordering

constraints of GlobalStreamingPipeWS, which consists of 30 threads, within 12 seconds.
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7. Conclusion

7.1 Summary and key contributions

In this thesis, we have explored the possibility of synthesising fine-grained and weakly

consistent C concurrency via high-level synthesis (HLS). As the appeal of software con-

currency increases, HLS tools are beginning to adopt concurrency to expand their user

base and synthesisable code base. However, HLS tools still rely on the synthesis methods

of sequential C programs to synthesise concurrent C programs. Although this approach

makes the support for concurrent programs an incremental process, it can lead to sub-

optimal hardware architectures. One instance of such a problem is that memory scheduling

of each concurrent thread is executed independently based on the scheduling rules of a

sequential program. Within a sequential program, only aliasing memory orderings must

be preserved. Although this rule is sufficient for a sequential program, it is too weak

to support any form of memory synchronisation across threads of a concurrent program,

thereby introducing the need for locks. Locks ensure that shared memory resources are

only accessed by one thread at time. Even though locks ensure correct memory behaviour,

they tend to serialise shared memory accesses and are susceptible to deadlocks.

Instead of lock-based synchronisation, the C memory model describes the possibility of

lock-free synchronisation via fine-grained atomics. Atomics, when used in a race-free man-

ner, can support memory synchronisation across threads without locks, thereby avoiding

their memory serialisation effects. Despite the benefits of atomics, HLS tools either do not

support atomics at all or do so inefficiently whilst discouraging their use. The standard

approach of implementing atomics via HLS is to wrap locks around atomic accesses [8].

This approach, again, ensures correctness but re-introduces the drawbacks of using locks.

Instead, in this thesis, we proposed a HLS-friendly method of implementing atomics. Now,

we discuss our contributions and achievements of this thesis on per-chapter basis and how

they address our research questions discussed in page 21.

In Chapter 3, we demonstrated how current HLS memory models are too weak to sup-

port atomics. Then, we proposed treating the synthesis of atomics as a scheduling problem,

where we identify atomic accesses and subject them to additional scheduling rules within a

concurrent thread. These scheduling rules thereby generate additional intra-thread mem-

ory constraints that each atomic access must adhere to during memory scheduling. By
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doing so, we addressed RQ 1 whereby we devise a method that does not involve wrapping

locks around memory accesses to implement atomics. Our method achieved an average

speedup of 7.5×, compared to the state-of-the-art HLS method of synthesising atomics,

on our set of experiments. Since we implement atomics via scheduling constraints, we can

also tailor our scheduling rules to take into consideration the consistency mode of each

atomic access. By doing so, our method is the first method capable of synthesising weak

atomics via HLS directly onto hardware, which addresses RQ 2. Although weak atomics

are capable of improving memory parallelism, their implementation can be complex and

error-prone. Hence, we verified our implementation via automated model checking to

ensure that our hardware execute atomics correctly. We achieved a further 1.6× speedup

when our analysis is sensitive to weak atomics, for our set of experiments.

In Chapter 4, we first demonstrated how the current approach of generating memory

constraints for a concurrent thread only based its own memory accesses, i.e. thread-local

analysis, is conservative. Although thread-local analysis ensures that memory constraints

are intra-threaded, we argue that memory scheduling based on global analysis can also

generate intra-thread memory constraints and be more efficient. Hence, we proposed

a global analysis that analyses all memory accesses of a concurrent program, including

atomics, to generate the intra-thread memory constraints for memory scheduling of indi-

vidual threads, which addresses RQ 3. We take advantage of the fact that the C memory

model describes lock-free synchronisation globally to devise a method that enumerates all

possible execution paths of a given concurrent program. Since the number of executions of

a concurrent program can increase exponentially, depending on its memory accesses and

thread counts, we also proposed an optimisation to improve our analysis times, making

it more scalable and practical for reasonably-sized programs. We achieved an average

speedup of 3.4× using global analysis, compared to thread-local analysis, on our set of

experiments.

In Chapter 5, we explored the possibility of supporting atomics in the context of

loop pipelining. Since we synthesise atomics via HLS scheduling constraints, we argued

that supporting loop pipelining is possible since it is also implemented using scheduling

constraints. The intra-thread constraints we generate to support atomics can be extended

to also generate inter-iteration constraints required to support loop pipelining. Therefore,

we formalised the current support of loop pipelining for HLS memory models and showed

why they are too weak to support atomics. Accordingly, we proposed extensions to both

our thread-local and global analyses, of Chapters 3 and 4, to support loop pipelining

of program with atomics, which addresses RQ 4. We achieved an average speedup of

1.4× when enabling loop pipelining on our set of experiments. We also achieved an

average speedup of 5.7× when enabling loop pipelining on a set of compute-dominant
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experiments, which consists of both memory and compute workloads, demonstrating that

loop pipelining is better suited to programs with heavy computation.

Finally, in Chapter 6, we employed all our novel analyses of the previous chapters

to tackle a real-world example to showcase the benefits of our work. Hence, we chose

to optimise an HLS-based implementation of Google’s PageRank algorithm, which is an

important and well-known graph application. We optimise PageRank in two ways. Firstly,

we partitioned the application into small and lean hardware stages and implemented lock-

free streaming between these stages. We showed that a lock-free, streamed and pipelined

implementation of PageRank is 2.9× faster than its HLS baseline implementation, at

maximum chip capacity. Secondly, we implemented lock-free work-stealing to load-balance

PageRank’s workload evenly across the independent compute units. Since PageRank is

an irregular workload, it is hard to statically partition its workload evenly. Therefore,

we implemented a lock-free double-ended queue to enable work sharing via non-trivial

but inexpensive atomic synchronisation across threads. We showed that work-stealing

improves the performance of PageRank by 1.5×, at maximum chip capacity.

7.2 Limitations

Our work may suffers from several limitations.

Assumptions We assume that HLS tools compile all shared memory variables and ar-

rays as on-chip direct-mapped memories, which limits us in three ways. Firstly, we are

unable to explore the possibility that shared memories can be targeted to off-chip memory

technologies, such as DRAMs. Secondly, we are unable to understand how atomics can

be implemented if our on-chip memories co-exist and interact with hardened processor

cores that are connected to the FPGA fabric via high-performant and customised com-

munication buses. Thirdly, we are unable to explore memory subsystems with capabilities

to synthesise on-chip caches and write buffers, since we assume all shared memories are

directly mapped. In the future, these technologies may become part of HLS of concur-

rent programs thereby challenging our assumptions in many ways and requiring future

investigations to handle these complexities.

LegUp implementation We implemented our analyses in LegUp, which has its own

limitations. Since LegUp’s pure hardware flow enforces that shared memory can only be

targeted on-chip, we could only explore the implementation of atomics only via instruction

reorderings, and could not gain insights on off-chip accesses where the indivisibility of

atomic operations may not be guaranteed. In addition, LegUp also only executes one

basic block at a time, which means it does not take into account of the inter-basic block
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reorderings that our analyses may discover, limiting the achievable performance on the

hardware generated of our analyses.

Analyses and evaluation In terms of analyses, there are several observations that

may be weaknesses of our work. Firstly, the ordering constraints generated by thread-

local analysis, especially in the context of loop pipelining, may cause the underlying LP

solver of LegUp to run out of memory. Although our analyses can generate the necessary

constraints for these lock-free programs, in rare cases, the complexity and size of these

programs may exceeds the scheduling capabilities of current HLS tools. Secondly, our

global analysis still scales exponentially, in the worst case, as discussed in §4.7.4.1. The

scaling of our global analysis is not only reliant on the input program size, but also

its memory access pattern. Thirdly, since targeting lock-free data structures via HLS

is relatively new, we were unable to leverage on any existing FPGA-based benchmarks

to evaluate our work. Instead, we hand picked several data structures and tested their

performance on several commonly-used data transfer patterns.

7.3 Future work

There are several interesting directions that arise from our work, which we present in the

form of research questions:

• Can we further improve memory scheduling of lock-free programs? There

are many possible ways in which memory parallelism can be further exploited. For

example, we focus on memory scheduling based on the assumption that all basic

blocks are executed in program sequence. However, during runtime, not all basic

blocks will be executed and they can also take different control paths. Also, LegUp

executes basic blocks one at a time but, in practice, several basic blocks may executed

at the same time on different HLS tools. Furthermore, CAS operations have two

consistency modes: one if the CAS succeeds and another if it fails. We only consider

the succeeding case, but the failure case is generally weaker. Additionally, there is

also a weak version of CAS operations, which we did not consider implementing.

From these different perspectives, our scheduling constraints and runtime results

could be improved.

• Can we implement fine-grained C concurrency in the context of caches?

A key assumption of our work, which we established in the Introduction chapter,

is that we assume that C shared memory constructs are synthesised directly to

on-chip memories without caches or write buffers. As of now, this is the current

standard practice of HLS tools that support concurrent C programs. However, it is

an interesting and open question as to how to support fine-grained atomics in the
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context of HLS tools that can generate architectures with caches and buffers, which

would require ensuring both the atomicity and ordering properties of atomics in a

efficient and high-performance manner.

• Can we improve our correctness guarantees? Since HLS compilers have access

to the entire program at compile-time, unlike software compilers, it may be possible

to check the correctness of our scheduling rules for particular program instances.

Currently, our scheduling rules are general and this forces our model checking tool

to find counter-examples amongst all programs for a bounded number of memory

events. This formulation can have a large search space. Instead, could we provide

Alloy with the specific memory access patterns of a program to reduce the state

exponentiation?

• Can we improve global analysis to tackle worst-case behaviour? We propose

an optimisation to improve the scalability of our global analysis in §4.4. Although

this optimisation improves analysis times of realistic programs, our analysis still may

not be able to cope with certain worst-case behaviours, such as the ones described

in §4.7.4.1. It remains an open question as to whether we can improve our analysis

times by eliminating all possible worst-case behaviours that leads to exponential path

enumeration. In particular, there may be an interesting trade-off between analysis

times and memory parallelism for worst-case behaviours.

7.4 Final remarks

In summary, our work on synthesising fine-grained and weakly consistent C atomics via

HLS broadens the horizon of applications that can be targeted to reconfigurable architec-

tures. Our work opens up the possibilities of synthesising generic lock-free programs, such

as our case study whereby an HLS-based implementation of PageRank can be streamed,

pipelined and load-balanced via the use of lock-free data structures. As software applica-

tions grow in complexity and the appeal for fine-grained concurrency increases, we hope

that our work can be an avenue to compile the latest advances and applications of lock-free

programming directly onto hardware.
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A. Data structure operations

Listing A.1: buffer

1 void push(bool *success, int elem, int * array, atomic_int *tail, atomic_int *

head){

2 int current_tail = atomic_load_explicit(tail, relaxed); ¶

3 int current_head = atomic_load_explicit(head, acquire); ·

4 int next_tail = increment(current_tail);

5

6 //Checking if buffer not full, before pushing elem and updating tail.

7 *success = (next_tail != current_head)

8 if(*success){

9 array[current_tail] = elem; ¸

10 atomic_store_explicit(tail, next_tail, release); ¹

11 }

12 }

13

14 void pop(bool *success, int *elem, int *array, atomic_int *tail, atomic_int *head

){

15 int current_head = atomic_load_explicit(head, relaxed); º

16 int current_tail = atomic_load_explicit(tail, acquire); »

17 int next_head = increment(current_head);

18

19 // Checking if buffer is not empty, before popping elem and updating head.

20 *success = (current_head != current_tail);

21 if(*success) {

22 *elem = array[current_head]; ¼

23 atomic_store_explicit(head, next_head, release); ½

24 }

25 }
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Listing A.2: stack

1 void push(bool *success, unsigned int node, unsigned int val,

2 pointer_t* top, pointer_t *nodes_next, volatile unsigned *nodes_value) {

3 pointer oldTop, newTop;

4 oldTop = atomic_load_explicit(top, acquire); ¶

5 nodes_value[node] = val; ·

6 atomic_store_explicit(&nodes_next[node], oldTop, relaxed); ¸

7 newTop = MAKE_POINTER(node, (get_count(oldTop) + 1));

8 *success = atomic_compare_exchange_strong_explicit(top, &oldTop, newTop,

release, relaxed); ¹

9 }

10

11 void pop(bool *success, unsigned int *retVal, pointer_t* top,

12 pointer_t *nodes_next, volatile unsigned *nodes_value) {

13 pointer oldTop, newTop, next;

14 oldTop = atomic_load_explicit(top, acquire); º

15 next = atomic_load_explicit(&nodes_next[get_ptr(oldTop)], relaxed); »

16 if (get_ptr(oldTop) != 0){

17 newTop = MAKE_POINTER(get_ptr(next), (get_count(oldTop) + 1));

18 *success = atomic_compare_exchange_strong_explicit(top, &oldTop, newTop,

release, relaxed); ¼

19 if(*success){

20 *retVal = nodes_value[get_ptr(oldTop)]; ½

21 }

22 }

23 }
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Listing A.3: queue

1 void enqueue(unsigned int val, bool *success, unsigned int node, pointer_t* head,

pointer_t* tail, pointer_t* nodes_next, volatile unsigned int * nodes_value)

{

2 pointer enq_tail, next, tmp;

3 *success = false;

4

5 //Allocating new node

6 nodes_value[node] = val;

7 tmp = atomic_load_explicit(&nodes_next[node], relaxed);

8 set_ptr(&tmp, 0); // NULL

9 atomic_store_explicit(&nodes_next[node], tmp, relaxed);

10

11 // check if tail is consistent

12 enq_tail = atomic_load_explicit(tail, acquire); ¶

13 next = atomic_load_explicit(&nodes_next[get_ptr(enq_tail)], acquire);·

14 // Check if tail and next are consistent

15 bool consistent_tail = enq_tail==atomic_load_explicit(tail, relaxed);¸

16

17 if(consistent_tail){

18 // Was tail pointing to last node?

19 if (get_ptr(next) == 0) {

20 // Try o link node at the end of the linked list

21 pointer value = MAKE_POINTER(node, (get_count(next) + 1));

22 *success = atomic_compare_exchange_strong_explicit( &nodes_next[get_ptr(

enq_tail)], &next, value, release, release);¹

23 }

24 else {

25 // Swing tail to next node

26 unsigned int ptr = get_ptr(atomic_load_explicit(&nodes_next[get_ptr(

enq_tail)], acquire));º

27 pointer value = MAKE_POINTER(ptr, (get_count(enq_tail) + 1));

28 atomic_compare_exchange_strong_explicit(tail, &enq_tail, value, release,

release);»

29 }

30 }

31 // Swing tail to inserted node.

32 if(*success){

33 atomic_compare_exchange_strong_explicit(tail, &enq_tail, MAKE_POINTER(node, (

get_count(enq_tail) + 1)), release, release);¼

34 }

35 }
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36 void dequeue(unsigned int *retVal, bool *success, pointer* free, pointer_t* head,

pointer_t* tail, pointer_t *nodes_next, volatile unsigned int * nodes_value)

{

37 pointer deq_head, deq_tail, next, val;

38

39 *success = false;

40 deq_head = atomic_load_explicit(head, acquire);½

41 next = atomic_load_explicit(&nodes_next[get_ptr(deq_head)], acquire);¾

42 bool consistent_head = atomic_load_explicit(head, relaxed) == deq_head;¿

43

44 // Is head consistent?

45 if(consistent_head){

46 // Is queue empty or falling behind?

47 deq_tail = atomic_load_explicit(tail, relaxed); v11
48 if(get_ptr(deq_tail) == get_ptr(deq_head)){

49 // Is queue not empty?

50 if(get_ptr(next) != 0){

51 atomic_compare_exchange_strong_explicit(tail, &deq_tail, MAKE_POINTER(

get_ptr(next), (get_count(deq_tail) + 1)), release, release); v12
52 }

53 }

54 else {

55 // Try to swing Head to next node

56 val = nodes_value[get_ptr(next)]; v13
57 pointer value = MAKE_POINTER(get_ptr(next), (get_count(deq_head)+1));

58 *success = atomic_compare_exchange_strong_explicit(head, &deq_head, value,

release, release); v14
59 }

60 }

61 }
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B. Alloy model files

We present our Alloy model file used to verify our methods of Chapters 3 and 4 to ensure

their correctness, since our methods need to support weak atomics that are known to be

complex and to give rise to subtle bugs.

Listing B.1: Alloy model file for our constraints of Chapters 3 and 4

1 ////////////////////////////

2 // Relational expressions //

3 ////////////////////////////

4 open util/relation

5

6 sig E {} // events

7

8 pred is_empty[r : E -> E] { no r }

9

10 pred is_acyclic[r : E -> E] { acyclic[r, E] }

11

12 fun sq[s : set E] : E -> E { s -> s }

13

14 fun imm[r : E -> E] : E -> E { r - (r.^r) }

15

16 // reflexive closure (the ?-operator in Herd)

17 fun rc[r : E -> E] : E -> E { r + (E <: iden) }

18

19 // lift a set to a relation (the [_] operator in Herd)

20 fun stor[s : set E] : E -> E { s <: iden }

21

22 pred is_equivalence[r : E -> E, s : set E] {

23 equivalence[r,s]

24 r in s->s

25 }

26 pred strict_partial_order[r:E->E] {

27 is_acyclic[r]

28 transitive[r]

29 }
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30 ////////////////////

31 // C11 executions //

32 ////////////////////

33 sig Exec {

34 EV : set E, // domain of all events

35 W, R, F : set E, // writes, reads, fences

36 A : set E, // atomic events

37 Acq, Rel, SC : set E, // acquire, release, sc events

38 po : E -> E, // program order (aka sequenced-before)

39 cd : E -> E, // control dependencies

40 rmw : E -> E, // linking the read and write of an RMW

41 sthd : E -> E, // same thread (E.R.)

42 sloc : E -> E, // same location (partial E.R.)

43 }{

44 // EV captures all and only the events involved

45 W + R + F = EV

46

47 // fence, read, and write events are disjoint

48 disj [W, R, F]

49

50 // A subset of the events are ’atomic’

51 A in EV

52

53 // acquires, releases, and SC operations are all atomic

54 Acq + Rel + SC in A

55

56 // Fences are atomic

57 F in A

58

59 // The components of an RMW operation are both atomic

60 rmw in A->A

61

62 // SC reads also have acquire semantics

63 (R & SC) in Acq

64

65 // Only reads and fences can acquire

66 Acq in (R + F)

67

68 // SC writes also have release semantics

69 (W & SC) in Rel

70

71 // only writes and fences can release
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72 Rel in (W + F)

73

74 // SC fences can acquire and release

75 (F & SC) in (Acq & Rel)

76

77 // RMW operations cannot be SC+nonSC

78 no rmw & (((EV-SC) -> SC) + (SC -> (EV-SC)))

79

80 // program-order is intra-thread

81 po in sthd

82

83 // control dependencies are from reads

84 cd in po & (R -> EV)

85

86 // program-order is acyclic and transitive

87 strict_partial_order[po]

88

89 // Assume po is total within each thread

90 sthd - iden in po + ~po

91

92 // rmw links a read to a write, in immediate program order, on the same

location

93 rmw in (R -> W) & imm[po] & sloc

94

95 // sthd is an equivalence relation among all events

96 is_equivalence[sthd, EV]

97

98 // sloc is an equivalence relation among reads and writes

99 is_equivalence[sloc, R + W]

100

101 }

102 // this predicate holds if (X,rf,co) is a well-formed execution

103 pred wf_exec[X:Exec, rf,mo:E->E] {

104

105 // reads-from connects writes to reads, with each read corresponding

106 // to at most one write

107 rf in X.W lone -> X.R

108

109 // reads-from connects events on the same location

110 rf in X.sloc

111

112 // modification-order is acyclic and transitive

182



113 strict_partial_order[mo]

114

115 // mo is a union, over all locations x, of strict total orders

116 // on writes to x

117 (mo + ~mo) = (X.W -> X.W) & X.sloc - iden

118 }

119

120 //////////////////////////////////////////////////////////

121 // The C11 memory model, following Lahav et al. PLDI’17 //

122 //////////////////////////////////////////////////////////

123 fun fpo [X:Exec, rf,mo:E->E] : E->E {

124

125 (stor[X.F]) . (X.po)

126 }

127 fun pof [X:Exec, rf,mo:E->E] : E->E {

128 (X.po) . (stor[X.F])

129 }

130 fun rb [X:Exec, rf,mo:E->E] : E->E {

131 let allRW = (stor[X.R]) . (X.sloc) . (stor[X.W]) |

132 allRW - ~rf.*~mo

133 }

134 fun eco [X:Exec, rf,mo:E->E] : E->E {

135 ^(rf + mo + rb[X,rf,mo])

136 }

137 fun rs [X:Exec, rf,mo:E->E] : E->E {

138 (stor[X.W]) . (rc[X.po & X.sloc]) . (stor[X.W & X.A]) . *(rf . (X.rmw))

139 }

140 fun sw [X:Exec, rf,mo:E->E] : E->E {

141 (stor[X.Rel]) . (rc[fpo[X,rf,mo]]) . (rs[X,rf,mo]) . rf . (stor[X.R & X.A]) . (

rc[pof[X,rf,mo]]) . (stor[X.Acq])

142 }

143 fun hb [X:Exec, rf,mo:E->E] : E->E {

144 ^(X.po + sw[X,rf,mo])

145 }

146 fun hbloc [X:Exec, rf,mo:E->E] : E->E {

147 hb[X,rf,mo] & X.sloc

148 }

149 fun fhb [X:Exec, rf,mo:E->E] : E->E {

150 (stor[X.F]) . (hb[X,rf,mo])

151 }

152 fun hbf [X:Exec, rf,mo:E->E] : E->E {

153 (hb[X,rf,mo]) . (stor[X.F])
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154 }

155 fun podloc [X:Exec, rf,mo:E->E] : E->E {

156 X.po - X.sloc

157 }

158 fun scb [X:Exec, rf,mo:E->E] : E->E {

159 X.po + ((podloc[X,rf,mo]) . (hb[X,rf,mo]) . (podloc[X,rf,mo])) +

160 hbloc[X,rf,mo] + mo + rb[X,rf,mo]

161 }

162 fun pscb [X:Exec, rf,mo:E->E] : E->E {

163 (stor[X.SC]) . (rc[fhb[X,rf,mo]]) . (scb[X,rf,mo]) . (rc[hbf[X,rf,mo]]) . (stor

[X.SC])

164 }

165 fun pscf [X:Exec, rf,mo:E->E] : E->E {

166 (stor[X.SC & X.F]) . (hb[X,rf,mo] + ((hb[X,rf,mo]) . (eco[X,rf,mo]) . (hb[X,rf,

mo]))) . (stor[X.SC & X.F])

167 }

168 fun psc [X:Exec, rf,mo:E->E] : E->E {

169 pscb[X,rf,mo] + pscf[X,rf,mo]

170 }

171 pred Coherence [X:Exec, rf,mo:E->E] {

172 irreflexive[(hb[X,rf,mo]) . (rc[eco[X,rf,mo]])]

173 }

174 pred Atomicity [X:Exec, rf,mo:E->E] {

175 is_empty[X.rmw & ((rb[X,rf,mo]) . mo)]

176 }

177 pred SeqCst [X:Exec, rf,mo:E->E] {

178 is_acyclic[psc[X,rf,mo]]

179 }

180 pred NoThinAir [X:Exec, rf,mo:E->E] {

181 is_acyclic[X.po + rf]

182 }

183 fun cnf [X:Exec, rf,mo:E->E] : E->E {

184 ((X.W -> X.R) + (X.R -> X.W) + (X.W -> X.W)) & X.sloc - iden

185 }

186 fun dr [X:Exec, rf,mo:E->E] : E->E {

187 cnf[X,rf,mo] - (X.A -> X.A) - hb[X,rf,mo] - ~(hb[X,rf,mo])

188 }

189 pred DataRace [X:Exec, rf,mo:E->E] {

190 is_empty[dr[X,rf,mo]]

191 }

192 pred Forced_Mo[X:Exec, rf,mo:E->E] {

193 (imm[mo]) . (imm[mo]) . ~(imm[mo]) in
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194 (rc[rf]) . (rc[(X.po) . (rc[~(rf)])])

195 }

196 fun cde [X:Exec, rf,mo:E->E] : E->E {

197 (*((rf - X.sthd) + X.cd)) . (X.cd)

198 }

199 fun drs [X:Exec, rf,mo:E->E] : E->E {

200 (rs[X,rf,mo]) - ((stor[X.R]) . ((X.EV -> X.EV) - (cde[X,rf,mo])))

201 }

202 fun dsw [X:Exec, rf,mo:E->E] : E->E {

203 (sw[X,rf,mo]) &

204 ((((rc[fpo[X,rf,mo]]) . (stor[X.Rel]) . (rc[drs[X,rf,mo]])) -

205 (((X.EV -> X.EV) - X.cd) . ((X.EV -> X.EV) - cde[X,rf,mo]))) . rf)

206 }

207 fun dhb [X:Exec, rf,mo:E->E] : E->E {

208 (rc[X.po]) . *( (dsw[X,rf,mo]) . (X.cd) )

209 }

210 fun pdr [X:Exec, rf,mo:E->E] : E->E {

211 cnf[X,rf,mo] - (X.A -> X.A)

212 }

213 pred Dead_Pdr [X:Exec, rf,mo:E->E] {

214 pdr[X,rf,mo] in dhb[X,rf,mo] + ~(dhb[X,rf,mo])

215 }

216 pred consistent[X:Exec, rf,mo:E->E] {

217 Coherence[X,rf,mo]

218 Atomicity[X,rf,mo]

219 SeqCst[X,rf,mo]

220 //NoThinAir[X,rf,mo] // omit this unofficial axiom for now

221 }

222 pred racefree[X:Exec, rf,mo:E->E] {

223 DataRace[X,rf,mo]

224 }

225 pred dead[X:Exec, rf,mo:E->E] {

226 Forced_Mo[X,rf,mo]

227 Dead_Pdr[X,rf,mo]

228 }

229

230 // this predicate holds if (X,rf,mo) is forbidden by C11

231 pred forbidden_by_C11[X:Exec, rf,mo:E->E] {

232

233 // execution is dead (so its litmus test is not racy)

234 dead[X,rf,mo]

235
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236 // execution is inconsistent in C11 memory model

237 not(consistent[X,rf,mo])

238 }

239

240 /////////////////////////////////////////////////////////////

241 // Our constraints for Chapter 3 //

242 /////////////////////////////////////////////////////////////

243

244 fun rules_chap3[X:Exec] : E->E {

245 // same-location WAR, WAW, and RAW, plus RAR for atomics

246 ((X.po & X.sloc) - ((X.R -> X.R) - (X.A -> X.A)))

247 +

248 // acquires can’t move later

249 (stor[(X.Acq + X.SC) & (X.R + X.W)]) . (X.po) . (stor[X.R + X.W])

250 +

251 // releases can’t move earlier

252 (stor[(X.R + X.W)]) . (X.po) . (stor[(X.Rel + X.SC) & (X.R + X.W)])

253 +

254 // a read cannot switch with a later read/write if they are

255 // separated by an acquire-fence

256 (stor[X.R]) . (X.po) . (stor[X.Acq & X.F]) . (X.po) . (stor[X.R + X.W])

257 +

258 // a write cannot switch with an earlier read/write if they are

259 // separated by a release-fence

260 (stor[X.R + X.W]) . (X.po) . (stor[X.Rel & X.F]) . (X.po) . (stor[X.W])

261 +

262 / a read/write cannot switch with another read/write if they are

263 // separated by an SC fence

264 (stor[X.R + X.W]) . (X.po) . (stor[X.SC & X.F]) . (X.po) . (stor[X.R + X.W])

265 }

266

267 pred wf_ppo_chap3[X:Exec, mem_weak_fence: E->E] {

268 all e1,e2 : E |

269 (e1->e2) in rules_chap3[X] and

270 (e1->e2) in mem_weak_fence

271 }

272

273 pred find_bug_chap3 [X:Exec, mem_weak_fence:E->E] {

274 // ppo includes (at least) all the edges that our algorithm says it must

275 wf_ppo_chap3[X,mem_weak_fence]

276

277 some rf,mo : E->E {
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278 //rf and mo are valid reads-from and modification orders

279 wf_exec[X,rf,mo]

280

281 // Execution is forbidden in software...

282 forbidden_by_C11[X,rf,mo]

283

284 // ... but is nonetheless allowed by a valid schedule.

285 is_acyclic[rf + mo + rb[X,rf,mo] + mem_weak_fence + X.cd]

286 Atomicity[X,rf,mo]

287 }

288 }

289 run find_bug_chap3 for exactly 1 Exec, 3 E expect 0 // 170 ms

290 run find_bug_chap3 for exactly 1 Exec, 10 E expect 0 // 769 ms

291 run find_bug_chap3 for exactly 1 Exec, 20 E expect 0 // 5472 ms

292 run find_bug_chap3 for exactly 1 Exec, 30 E expect 0 // 17752 ms

293 run find_bug_chap3 for exactly 1 Exec, 40 E expect 0 // 57027 ms

294 run find_bug_chap3 for exactly 1 Exec, 50 E expect 0 // 135798 ms

295 run find_bug_chap3 for exactly 1 Exec, 60 E expect 0 // 280650 ms

296 run find_bug_chap3 for exactly 1 Exec, 70 E expect 0 // 623231 ms

297

298 /////////////////////////////////////////////////////////////

299 // Our constraints for Chapter 4 //

300 /////////////////////////////////////////////////////////////

301

302 // Given an event-type s, this function returns all the

303 // s-events plus all the events that are preceded by an s-fence

304 fun pre_fence[X:Exec, s:Exec -> set E] : set E {

305 X.s + (X.s & X.F) . (X.po)

306 }

307

308 // Given an event-type s, this function returns all the

309 // s-events plus all the events that are followed by an s-fence

310 fun post_fence[X:Exec, s:Exec -> set E] : set E {

311 X.s + (X.po) . (X.s & X.F)

312 }

313

314 // Event A can synchronise with event B if ...

315 fun can_sync[X:Exec] : E->E {

316 // ... A is a release and B is an acquire ...

317 ((pre_fence[X,Rel] -> post_fence[X,Acq]) +

318 // ... or A is a seq-cst and B is any atomic ...

319 (pre_fence[X,SC] -> X.A ) +
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320 // ... or A is any atomic and B is a seq-cst ...

321 (X.A -> post_fence[X,SC]))

322 // ... and A and B are on the same location ...

323 & X.sloc

324 // ... but in different threads.

325 - X.sthd

326 }

327

328 // this predicate holds if (spo,scs) is a valid path

329 pred valid_path [X:Exec, spo,scs:E->E] {

330 // a path is made of po-edges and can_sync-edges

331 spo in X.po

332 scs in can_sync[X]

333

334 // no can_sync edge in the path is secondary.

335 no (scs & (X.po) . (can_sync[X]) )

336 no (scs & (can_sync[X]) . (X.po))

337 no (scs & (X.po) . (can_sync[X]) . (X.po))

338

339 // there are no consecutive spo-edges in the path

340 no spo.spo

341

342 // there are no consecutive scs-edges in the path

343 no scs.scs

344

345 // there are no forks or joins in the path

346 scs.~scs in iden

347 ~scs.scs in iden

348 spo.~spo in iden

349 ~spo.spo in iden

350

351 // every scs-edge is preceded and followed by a po-edge

352 dom[scs] in ran[spo]

353 ran[scs] in dom[spo]

354

355 // the path never returns to a previously-visited thread

356 no ((scs . *(scs + X.po)) & X.sthd)

357

358 let source = dom[spo] - ran[scs] |

359 let sink = ran[spo] - dom[scs] {

360

361 // the path has exactly one source and exactly one sink
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362 one source

363 one sink

364

365 // the source and the sink share a location

366 (source -> sink) in X.sloc

367

368 // if the source and sink are both reads, they are both atomic

369 source+sink in X.R implies source+sink in X.A

370 }

371 }

372

373 // this predicate holds if ppo contains *at least* the program order

374 // edges that our analysis says must be preserved

375 pred wf_ppo_chap4 [X:Exec, ppo:E->E] {

376 ppo in X.po

377

378 // NB: using the "when" clause here seems to speed things up nicely.

379 all spo, scs : E->E when valid_path[X,spo,scs] |

380 spo in ppo and

381 all c,d,e,f : E | (

382 (c -> f) in spo and

383 (c -> d) in rc[ X.po & ~scs . *~(X.po) . (can_sync[X]) ] and

384 (e -> f) in rc[ X.po & (can_sync[X]) . *~(X.po) . ~scs ] and

385 (d -> e) in X.po

386 ) implies (d -> e) in ppo

387 }

388

389 ///////////////////////////////////

390 // Top level problem statements //

391 //////////////////////////////////

392

393 // this predicate holds if ppo contains all the edges that it is

394 // supposed to contain (maybe some more besides), but the execution

395 // is nonetheless disallowed by C11

396 pred find_bug_chap4 [X:Exec, ppo:E->E] {

397 // ppo includes (at least) all the edges that our algorithm says it must

398 wf_ppo_chap4[X,ppo]

399

400 // ignore fences

401 some rf,mo : E->E {

402

403 //rf and mo are valid reads-from and modification orders
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404 wf_exec[X,rf,mo]

405

406 // Execution is forbidden in software...

407 forbidden_by_C11[X,rf,mo]

408

409 // ... but is nonetheless allowed by a valid schedule.

410 is_acyclic[rf + mo + rb[X,rf,mo] + ppo + X.cd]

411 Atomicity[X,rf,mo]

412 }

413 }

414 run find_bug_chap4 for exactly 1 Exec, 3 E expect 0 // 678ms

415 run find_bug_chap4 for exactly 1 Exec, 4 E expect 0 // 2395ms

416 run find_bug_chap4 for exactly 1 Exec, 5 E expect 0 // 58432ms (58s)

417 run find_bug_chap4 for exactly 1 Exec, 6 E expect 0 //4402077ms (73m)

418

419 pred check_against_chap3[X:Exec] {

420 // There is an edge ...

421 some e1, e2 : E |

422

423 // ... that must be preserved under our global analysis ...

424 (some spo, scs : E->E | valid_path[X,spo,scs] and (e1 -> e2) in spo)

425

426 // ... but needn’t be preserved under the thread-local analysis.

427 and (e1 -> e2 not in rules_chap3[X])

428 }

429 // our analysis is sometimes stronger than thread-local analysis...

430 run check_against_chap3 for exactly 1 Exec, 4 E expect 1

431

432 pred check_against_chap3_restricted[X:Exec] {

433 check_against_chap3[X]

434

435 // no location is accessed by both an SC atomic and a non-SC atomic

436 no X.SC <: X.sloc :> (X.A - X.SC)

437

438 // ignore fences

439 no X.F

440

441 }

442 // ... but not if we ignore fences and assume that no location is

443 // accessed by both an SC atomic and a non-SC atomic.

444 run check_against_chap3_restricted for exactly 1 Exec, 30 E expect 0 // 763 ms
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