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Abstract 

The Ediacaran-Cambrian transition is characterized by the evolution of complex eukaryotes and rapid diversification of 

metazoans. However, linkages between environmental triggers and evolutionary patterns remain unclear. Here, we present 

high-resolution records of carbon and nitrogen isotopic data (δ13C, δ15N) for a drill core extending from the early Ediacaran 

Doushantuo Formation to the early Cambrian Jiumenchong Formation, located on the slope of the Yangtze Block. Our data 

show that sedimentary bulk nitrogen isotope values (δ15Nbulk) decrease progressively from the early Ediacaran to the early 

Cambrian, broadly concurrent with nitrogen isotope data from other sections throughout the Yangtze Block. During the early 

Ediacaran, however, δ15Nbulk values from our study are higher (maximum 11.2‰) compared to those from more restricted 

coeval sections, suggesting a higher degree of denitrification in our slope section. The early Ediacaran δ15Nbulk data from the 

Yangtze Block may thus provide indirect evidence for an upwelling system that led to a shallower redoxcline in slope 

environments of the Upper Yangtze region. Widespread light δ15Nbulk values from the early Cambrian (minimum −7.5‰) 

paired with excess silicate-bound nitrogen throughout much of the Yangtze Block are most parsimoniously interpreted as 

non-quantitative assimilation of ammonium (NH4
+) with relatively high concentrations of NH4

+ accumulating in the deep 

basin. Overall, the spatial and temporal trends in nitrogen cycling across the Yangtze Block suggest that fixed nitrogen was 

more bioavailable in the Ediacaran-Cambrian Yangtze Basin compared to previously studied Mesoproterozoic sections, 

although nitrogen speciation in the photic zone may have varied with time. Environmental factors such as oxygen levels and 

nitrogen bioavailability may have shaped the evolutionary trajectory of life on the Yangtze Block and potentially elsewhere 

across the Ediacaran-Cambrian transition. 
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1. Introduction

The Ediacaran and Cambrian periods, 635 to 485 million years ago (Ma), witnessed the origination and diversification of 

animal phyla (Brasier, 1979; Shu et al., 2014) and were marked by unusual paleoenvironmental conditions (Brasier, 1992; 

Schröder and Grotzinger, 2007), including the aftermath of the last snowball Earth glaciation (Halverson et al., 2005; 

Halverson et al., 2007; Hoffman et al., 2017), and ongoing major tectonic reorganization with the generation of many shallow 

epeiric seas at low paleolatitudes (Campbell and Allen, 2008). This interval also left indications of increasing oxygen levels 

in the ocean and atmosphere commonly referred to as the Neoproterozoic Oxygenation Event (NOE; Canfield, 2005; Holland, 

2006; Och and Shields-Zhou, 2012). Rising oxygen levels in shallow waters could have facilitated major biological 

innovations through the expansion of stably oxygenated habitats (e.g., Berkner and Marshall, 1965; Catling et al., 2005) and 

feedbacks associated with nutrient cycling (e.g., Reinhard et al., 2016; Robbins et al., 2016). According to some studies, the 

deep ocean was ventilated for the first time in Earth history from the middle of the Ediacaran (~580 Ma) onwards (Fike et al., 

2006; Canfield et al., 2007; Johnston et al., 2012). However, other datasets suggest that ocean ventilation occurred transiently 

over short time scales and did not affect the entire ocean (Canfield et al., 2008; Kendall et al., 2015b; Sperling et al., 2015; 

Sahoo et al., 2016). Widespread ventilation of the deep ocean may not have occurred until later in the Paleozoic with the 

ecological expansion of land plants (Dahl et al., 2010; Saltzman et al., 2011; Sperling et al., 2015; Lenton et al., 2016; 

Wallace et al., 2017). 

While oxygen is an essential energy source in the metabolism of macroscopic metazoans (Catling et al., 2005), other 

nutrients would also have been required for the proliferation of complex life (Moore et al., 2013; Knoll, 2017). Experimental 

and modeling studies have suggested that an increase in nutrient availability, fixed nitrogen for instance, could have 

supported larger primary producers, such as eukaryotic algae (e.g. Ward et al., 2014), which could in turn have driven 

increasing ecosystem complexity (Knoll and Follows, 2016). Eukaryotic organisms, including algae and animals, are unable 

to metabolize atmospheric N2 and therefore depend on a constant supply of fixed nitrogen (Lindell and Post, 1995; Falkowski, 

1997; Tyrrell, 1999; Canfield et al., 2010). Assessing nitrogen bioavailability in Neoproterozoic habitats is therefore critical 

to understanding the drivers of early animal evolution. 



  

Nitrogen isotope data—expressed as δ15N = [(15N/14N)sample / (15N/14N)air – 1] x 1000—are the primary tool used for 

reconstructing nitrogen cycling in ancient and modern environments. These data can also contain information about local 

redox processes because nitrogen is a redox sensitive element. Multiple studies have investigated variations in bulk 

sedimentary nitrogen isotope values (δ15Nbulk) during the Ediacaran-early Cambrian transition, including in South China 

where a thick and relatively continuous succession across this time interval is preserved (Cremonese et al., 2013a; Cremonese 

et al., 2013b; Wang and Zhang, 2013; Ader et al., 2014; Kikumoto et al., 2014; Cai et al., 2015; Wang et al., 2015; 

Hammarlund et al., 2017; Wang et al., 2017; Wei et al., 2017; Zhang et al., 2017; Li et al., 2018; Wang et al., 2018a; Wang et 

al., 2018b; Xiang et al., 2018). In general, these studies show a decrease in δ15Nbulk values from the early Ediacaran to early 

Cambrian. High δ15Nbulk values in the Ediacaran have been interpreted to reflect incomplete denitrification (Cremonese et al., 

2013b; Kikumoto et al., 2014; Hammarlund et al., 2017; Wang et al., 2017; Wei et al., 2017; Xiang et al., 2018) and 

oxygenation of deep water (Ader et al., 2014; Wang et al., 2018a; Wang et al., 2018b), and the low average δ15Nbulk values in 

the early Cambrian have been interpreted as evidence of N2-fixation and non-quantitative ammonium (NH4
+) assimilation 

resulting from anoxia in the photic zone (Cremonese et al., 2013b; Cai et al., 2015; Wang et al., 2015; Wei et al., 2017; 

Zhang et al., 2017; Li et al., 2018; Wang et al., 2018a).

However, oxygenation of deep waters in the Yangtze basin during the Ediacaran-Cambrian transition seems contradictory to 

the local redox scenario posed by trace metal abundance and isotope data (e.g., Kendall et al., 2015a; Sahoo et al., 2016; Dahl 

et al., 2017; Xiang et al., 2017), iron speciation data (e.g., Canfield et al., 2008; Li et al., 2010; Sperling et al., 2015), and 

sulfur isotope data (e.g., Mcfadden et al., 2008; Feng et al., 2014), which suggest that while the deep ocean may have 

experienced temporary oxygenation events, the longer-term average conditions were characterized by predominantly anoxic 

and iron-rich (ferruginous) deep waters with sulfidic (euxinic) conditions present along productive margins. In order to 

reconcile these observations with the δ15N record, a high-resolution, spatially-resolved picture of basinal δ15N values is 

essential. To further our understanding, we have analyzed samples at high stratigraphic resolution from a drill core (zk2012) 

that provides a relatively continuous record of mid-slope depths on the Yangtze block from the basal Ediacaran through early 

Cambrian Stage 3 and report new organic carbon isotope (δ13Corg) and bulk δ15N values. In conjunction with published data, 

we explore spatial and temporal trends in nitrogen isotope values across the Yangtze Block to unravel possible links between 

nitrogen availability, water-column redox, and biological evolution during the Ediacaran and early Cambrian. 



  

2. Background

2.1. The oceanic nitrogen cycle

The most significant nitrogen reservoir at Earth’s surface and the ultimate source of nitrogen for the biosphere is atmospheric 

N2. The principal source of nitrogen to the ocean is biological N2-fixation, where atmospheric N2 is converted enzymatically 

to bioavailable NH4
+. The largest sinks for fixed nitrogen in the ocean are denitrification and anaerobic ammonium oxidation 

(anammox), which ultimately return nitrogen as N2 to the atmosphere (e.g. Sigman et al., 2009). Deposition of organic 

nitrogen into sediments is considered a minor sink for oceanic fixed nitrogen, which can be balanced by inputs from 

volcanism and weathering over geologic timescales (Mather et al., 2004; Berner, 2006; Canfield et al., 2010). The major 

chemical species of fixed nitrogen in seawater are nitrate (NO3
-) under oxic conditions and NH4

+ under anoxic conditions. 

The fixed nitrogen reservoir in the modern ocean is dominantly NO3
- with a δ15NNO3- value of ~5‰, an average concentration 

of ~30 μM at depth, and a residence time of slightly less than 2000 years—1.5 to 2 times greater than the mixing time of the 

oceans (Brandes and Devol, 2002; Sigman et al., 2009).

Biological N2-fixation, the assimilation of molecular N2 into organic matter, is an energetically costly process that is 

performed by a select group of prokaryotes (mainly cyanobacteria today). It dominates the ecosystem when bioavailable 

nitrogen limits primary production (Karl et al., 2002; Sohm et al., 2011). Nitrogen fixation (diazotrophy) with the most 

common nitrogenase enzyme (Nif, with Mo and Fe as cofactors) imparts a small isotopic fractionation of −1‰ on average 

(εproduct-reactant = −2‰ to 1‰), with an exception under Fe2+-rich conditions or in thermophilic cultures where fractionations 

can be as large as −4‰ (Zerkle et al., 2008; Nishizawa et al., 2014; Zhang et al., 2014). The Black Sea is a modern example 

where N2-fixation is the major pathway of nitrogen acquisition, and sedimentary δ15N values range from −2‰ to 1‰ (Fulton 

et al., 2012). Assuming that the isotopic composition of atmospheric N2 has remained close to 0‰ over Earth’s history (Sano 

and Pillinger, 2008), δ15N values between −4‰ and 1‰ in ancient sedimentary rocks (most commonly −2‰ to 1‰) are 

typically attributed to a nitrogen cycle dominated by anaerobic N2-fixation (Fig. 1). Alternative nitrogenase enzymes, using V 

and Fe as cofactors, can induce larger isotopic fractionations (−6‰ to −8‰; Zhang et al., 2014) (Fig. 1). Such light values, 

however, are rare in the geologic record, suggesting that the Mo-based enzyme has been the dominant means of N2-fixation 

throughout geological history (Stüeken et al., 2016). 



  

Other pathways for biological N acquisition are direct assimilation of NO3
- and NH4

+. Many prokaryotic and eukaryotic 

organisms can assimilate NH4
+, but incomplete assimilation imparts large nitrogen isotopic fractionations in resulting 

biomass, ranging from −4‰ to −27‰ depending on ambient NH4
+ concentrations (Hoch et al., 1992; Pennock et al., 1996; 

Vo et al., 2013) (Fig. 1). Nitrate assimilation can also result in fractionations of −5‰ to −10‰ (Fig. 1; Casciotti, 2009). 

However, neither of these fractionations is expressed during quantitative assimilation, which is the case in most of the 

modern ocean apart from high latitude eutrophic areas and the Pacific equatorial upwelling system (Altabet and Francois, 

1994; Sigman et al., 2009). Hence, the isotopic composition of sedimentary rocks containing ancient biomass is often 

assumed to approximate the isotopic composition of the major coeval nitrogen metabolite, except under very high nitrogen 

supplies (Sigman et al., 2009; Ader et al., 2016; Stüeken et al., 2016). 

When primary producers die, their bound N can be remineralized to NH4
+ with minimal fractionation (Prokopenko et al., 

2006). In the presence of free oxygen, NH4
+ is rapidly oxidized to nitrite (NO2

-) (ε = 14‰ to 38‰; Casciotti et al., 2003) and 

then NO3
- (ε = −13‰; Casciotti, 2009) through a process called nitrification (Fig. 1). Although individual steps in 

nitrification are associated with large fractionations, there is typically no net isotopic effect because nitrification is rapid even 

under micromolar levels of dissolved oxygen, and thus the process is typically quantitative (Lipschultz et al., 1990). In rare 

cases where nitrification does not go to completion, evidence for it can be expressed as large scatter of positive δ15N values in 

sediments (Granger et al., 2011). 

Denitrification and anammox are two major sinks for oceanic fixed nitrogen. Both processes are carried out under suboxic 

conditions and occur today mostly in oxygen minimum zones and sediment pore waters (Prokopenko et al., 2006; Lam et al., 

2009; Sigman et al., 2009). The isotopic fractionation effect of denitrification in water is around −25‰ with the residual NO3
- 

pool enriched in the heavier 15N, whereas in sediments the net isotopic effect is hardly discernable (Fig. 1; Sigman et al., 

2009; Devol, 2015). The isotopic fractionation of anammox, where denitrification is coupled to oxidation of NH4
+, is similar 

to that of denitrification in water (Fig. 1; Brunner et al., 2013). In oxygen minimum zones and sediments, NO3
- can also be 

reduced to NH4
+ instead of N2 via dissimilatory nitrate reduction to ammonium (DNRA; Sørensen, 1978; Kartal et al., 2007; 

Lam et al., 2009). The isotopic effect of DNRA is likely similar to denitrification and anammox, with residual NO3
- 

becoming isotopically heavier (Fig. 1; McCready et al., 1983). The NH4
+ that results from DNRA can then be subject to 

anammox, nitrification, biological assimilation, or adsorption onto clay particles. Importantly, all three NO3
--reducing 



  

pathways (denitrification, anammox, and DNRA) render the residual NO3
- pool isotopically heavy—a signature that can be 

preserved in biomass assimilating NO3
- if the reduction is non-quantitative.

2.2. Geological setting

The South China craton consists of the Yangtze and Cathaysia blocks. These two blocks merged around 870 Ma (Li et al., 

2008; Charvet, 2013). Beginning at ~800 Ma, with the breakup of Rodinia, a rift developed between the Yangtze and 

Cathaysia blocks, although the two remained close, merging once again in the early Paleozoic (Charvet, 2013). The South 

China craton as a whole broke free from Rodinia and, according to paleomagnetic studies, drifted from ~30°N in the mid-

Neoproterozoic to equatorial latitudes by the early Cambrian (Fig. 2A; Jiang et al., 2003; Zhang et al., 2015). During the mid-

late Neoproterozoic, the basin between the Yangtze Block and the Cathaysia Block evolved from active rifting to a passive 

continental margin (Wang and Li, 2003; Li et al., 2008). It can be inferred that the basin was connected to the open ocean 

from the mid-Neoproterozoic to the early Cambrian based on the presence of globally distributed marine fossils (Zhou et al., 

2007; Liu et al., 2013).

The Yangtze Block holds one of the world’s most complete records of Neoproterozoic through Ordovician strata. Over this 

time, sedimentation occurred broadly on rimmed shallow platforms to the present-day northwest and along a deep basin to 

the southeast (Chen et al., 2009; Jiang et al., 2011). The marginal zone of the Yangtze platform extended southwest-northeast, 

approximately along the trend of the earlier Jiangnan orogeny, as the basin was created largely through rifting of the Yangtze 

and Cathaysia blocks (Fig. 2B; Zheng et al., 2008; Jiang et al., 2011). During the early Cambrian, the carbonate platforms in 

the northwest portion of the block suffered widespread drowning as a consequence of rapid sea level rise (Goldberg et al., 

2007).

Our studied drill core (zk2012) was taken in the eastern portion of the Guizhou Province, South China. At the time of 

deposition, this location was situated on the slope of the Yangtze platform among multiple topographic highs and sub-basins 

(Fig. 2B). The studied core preserves a relatively continuous record from the early Ediacaran to Cambrian Series 2 (Fig. 2C). 

The drill core intersects, in ascending order, the Doushantuo, Liuchapo, and Jiumenchong formations. The Doushantuo 

Formation (~95 m) consists of four widely recognized members. The oldest of the four, Member I, is a ~5 m ‘cap carbonate’ 

that overlies the Nantuo glacial diamictite. The contact between the Nantuo and Doushantuo formations marks the end of the 



  

Cryogenian and the beginning of the Ediacaran period at ~635 Ma (Condon et al., 2005; Jiang et al., 2011; Zhou et al., 2019). 

Above the cap carbonate, Member II consists of laminated black shales with rare interbedded carbonates (~20 m). Thick 

bedded carbonates dominate Member III (~60 m). Member IV (~10 m) is defined by a return to shale deposition and is 

composed of organic rich, phosphatic shales that serve as an important regional marker bed in the Yangtze region (Zhu et al., 

2003). Some workers have identified a disconformity at the contact of members III and IV, although it is not clear that this 

hiatus was regional in extent or how much time may be missing (Zhu et al., 2007b; Jiang et al., 2011).

Member IV of the Doushantuo Formation is overlain by a thin (~0.4 m) phosphorite bed that marks the base of the Liuchapo 

Formation. The ~35-m-thick Liuchapo Formation is composed mainly of bedded cherty shale with phosphatic cherty shale 

and phosphate nodules present at the top. The overlying Jiumenchong Formation, the lower 45 m of which was sampled, is 

mainly composed of carbonaceous black shale. A horizon enriched in Ni–Mo–PGE, sulfide, and phosphate (~6 m) is present 

in the lower part of Jiumenchong Formation. The Ni–Mo–PGE-rich bed can be used as a correlation marker across the 

margin of the Yangtze platform (Zhu et al., 2003; Jiang et al., 2012). For this study, we targeted siliciclastic facies; pure 

carbonates were not sampled.

2.3. Regional stratigraphic correlation

To correlate the regional stratigraphy across the Yangtze Block, biostratigraphy, carbon isotope stratigraphy, and 

lithostratigraphic markers such as the Ni–Mo–PGE sulfide layer and horizons of phosphatic nodules (described below) can be 

used in combination with geochronologic data. The strata of Ediacaran and early Cambrian age from the slope-basinal facies 

on the Yangtze Block contain few fossils (including our studied core), presenting a challenge for high-resolution 

biostratigraphic correlation (e.g. Yuan et al., 2014; Cai et al., 2015; Wang et al., 2015; Jin et al., 2016; Wang et al., 2018a). 

However, a broad correlation can be established with the use of shared marker beds, carbon isotope excursions and 

geochronologic data as presented by previous studies (e.g. Yuan et al., 2014; Cai et al., 2015; Chen et al., 2015a; Wang et al., 

2015; Jin et al., 2016; Wang et al., 2018a). Here, we have followed the same correlation principle and adopted the general 

stratigraphic correlation that has been employed by numerous previous studies (e.g. Yuan et al., 2014; Cai et al., 2015; Chen 

et al., 2015a; Wang et al., 2015; Jin et al., 2016; Wang et al., 2018a).

The Doushantuo Formation in the studied drill core is characterized by a cap carbonate at the bottom and a black shale 



  

succession at the top that serve as marker beds and can be correlated with equivalent units in the Yangtze Gorges area (Figs. 

3, and 5; Jiang et al., 2011; Zhou et al., 2019). The age of the Doushantuo Formation is constrained by radiometric dates of 

634.57 ± 0.88 Ma at the base of the formation (Zhou et al., 2019) and 551 ± 0.7 Ma at the top (Fig. 4; Condon et al., 2005), 

suggesting a duration of deposition on the order of ~84 Ma. The overlying Liuchapo Formation is generally considered to be 

a diachronous stratigraphic unit that includes the upper part of the Ediacaran and likely the lowest Cambrian in our core (Figs. 

3, 4, and 5; e.g. Chen et al., 2015a; Wang et al., 2018a). The shallow-water equivalents to the Ediacaran portion of the 

Liuchapo Formation are the carbonate deposits of the Dengying Formation (e.g. Jin et al., 2016), while the deep-water 

equivalents in the lower Yangtze region are the chert and shale deposits of the Piyuancun Formation (Figs. 4, and 5; Yang et 

al., 2003; Zhu et al., 2003; Yang et al., 2008). 

A U-Pb age of 541.00 ± 0.13 Ma—generally accepted as the base of the Cambrian—was obtained from Oman for the 

globally recognizable basal Cambrian negative carbon isotope excursion (BACE) (Bowring et al., 2007; Maloof et al., 2010). 

For sections deposited on the shallow Yangtze Platform, an unconformity and/or erosional event can be identified at the top 

of the Dengying Formations, which broadly corresponds to eustatic regression across the Ediacaran-Cambrian boundary 

(Jiang et al., 2012). Hence, on the basis of the appearance of small shelly fossil group 1 (e.g., Chen, 1984; Zhou et al., 1997; 

Li, 2004; Steiner et al., 2007; Guo et al., 2014), δ13C chemostratigraphy (BACE; e.g., Zhou et al., 1997; Yang et al., 2007; 

Kikumoto et al., 2014; Wang et al., 2015), and radiometric dating (e.g., Jiang et al., 2009; Zhu et al., 2009; Xu et al., 2011; 

Chen et al., 2015a), the Ediacaran-Cambrian boundary has been assigned to the contacts between the Dengying and overlying 

formations (Figs. 4, and 5). For sections deposited in deeper waters without significant occurrence of fossil markers or 

transformation of lithology, such as the Yuanjia, Yanjia, Lijiatuo, Longbizui, Huanglian/Daotuo sections, and our studied 

core, the Ediacaran-Cambrian boundary has been placed in the upper part of Liuchapo and Piyuancun formations on the basis 

of δ13Corg variations (BACE; Guo et al., 2007; Wang et al., 2012a; Cremonese et al., 2013b; Guo et al., 2013; Wang et al., 

2015; Wei et al., 2017; Wang et al., 2018a) and radiometric ages (Zhou et al., 2013; Chen et al., 2015a; Yang et al., 2017) 

(Figs. 3, 4, and 5). 

A distinctive Ni–Mo–PGE sulfide-rich phosphatic horizon is present at the base of the Jiumenchong Formation in the studied 

core and can be correlated with anomalous enrichments in Ni, Mo, and PGEs throughout much of the Yangtze platform and 

slope near the base of the Niutitang and correlative formations (Zhu et al., 2003; Jiang et al., 2012). Several dates obtained 



  

for the Ni–Mo–PGE horizon and the horizons immediately below it in other sections are within error of 522 Ma (Fig. 4; Xu 

et al., 2011; Wang et al., 2012b; Chen et al., 2015a), supporting the notion that distinct Ni–Mo–PGE deposits occurred 

synchronously across the Yangtze Block and are latest Cambrian Stage 2 in age (Figs. 4, and 5; Landing et al., 1998; Steiner 

et al., 2007; Gradstein et al., 2012). The age of this horizon is also consistent with U-Pb ages in the underlying upper 

Liuchapo Formation, of 536.3  5.5 Ma in western Hunan (Chen et al., 2009) and of 536  5 Ma in northeastern Guizhou 

(Figs. 4 and 5; Zhou et al., 2013). At the intrashelf Xiaotan section, the Ni–Mo–PGE sulfide-rich shales can be correlated 

with a Ni-rich layer in the upper Shiyantou Formation (Och et al., 2013), considering a U-Pb age of 526.5  1.1 Ma at the 

base of Shiyantou Formation at Meishucun section (Compston et al., 2008) (Figs. 4, and 5). The Ni–Mo–PGE-enriched layer 

in the Yangtze Gorges composite section is unapparent probably because of an unconformity of unknown duration at the top 

of Yanjiahe Formation but has been correlated to the base of Shuijingtuo Formation using small shelly fossils (Figs. 4, and 5; 

Chen, 1984; Steiner et al., 2007).

Given the date of ~522 Ma for Ni–Mo–PGE deposits, the stratigraphic intervals between the Edicaran-Cambrian boundary 

and the Ni–Mo–PGE deposits across the Yangtze Block belong to Cambrian Fortunian-late Stage 2 (Figs. 4, and 5). The 

strata from this interval on the slope are thinner than might be expected for ~20 myrs of deposition, including in the studied 

core where it is a mere ~3 m (Fig. 5). This suggests that there may have been periods of erosion or non-deposition during this 

interval (Zhu et al., 2003; Steiner et al., 2007; Jiang et al., 2012). 

The base of Cambrian Stage 3 is commonly placed at the base of the Yu’anshan Formation at Xiaotan and the base of the 

Shuijingtuo Formation in the Yangtze Gorges area based on small shelly fossil distributions (Figs. 4, and 5; Zhou et al., 1997; 

Steiner et al., 2007). Correlation of the base of Cambrian Stage 3 to other sections is difficult because of the lack of fossil 

markers and other indicators in these sections (Figs. 4, and 5). 

3. Materials and methods

3.1. Sample preparation

All sample preparation was carried out at the Biogeochemistry Lab at the University of California, Riverside (UCR). Prior to 

analyses, core samples were cut with a water-cooled saw to remove outer surfaces. Samples with visible veining and pyrite 

nodules were avoided. Dry unaltered sample pieces were then pulverized in an alumina ceramic puck mill cleaned with 10% 



  

HCl, methanol, and DI-H2O after each sample. All subsequent geochemical measurements were carried out on these powders. 

3.2. Measurement of total organic carbon, total nitrogen, δ13Corg, and δ15Nbulk

Total organic carbon (TOC) concentrations were calculated as the difference between total carbon (by combustion) and total 

inorganic carbon (TIC, by acidification) using standard methods on an Eltra CS-500 carbon/sulfur analyzer at UCR. The 

analytical reproducibility of TOC and TIC were less than ±0.2% based on repeated analyses of standard materials and 

samples. Additional determinations of TOC content were carried out along with total nitrogen (TN) analyses on decarbonated 

samples using methods described in Stüeken (2013) and agree well with values obtained from the Eltra C/S analyzer. In brief, 

a measured amount of each sample (~0.5 g) was decarbonated with 6M HCl for 2 days; the acid was refreshed each day. The 

decarbonated samples were then rinsed with DI-H2O to remove residual acid, dried, homogenized, and weighed. 

Measurements of TOC and TN concentrations were carried out along with δ13C and δ15N in decarbonated samples at Virginia 

Tech using an Isoprime 100 isotope-ratio mass spectrometer (IRMS) coupled to an Elementar vario Isotope Cube elemental 

analyzer. Values for δ15Nbulk and δ13Corg are expressed in per mil notation relative to atmospheric N2 and Vienna PeeDee 

Belemnite, respectively. Reference materials—acetanilide, urea (Elemental Microanalysis), IAEA CH-6, and IAEA CH-7—

were used to calibrate TOC and δ13Corg, with precisions (±1σ) of ±0.1‰ for the latter. Based on the TN contents in the first 

run, a separate run was conducted to analyze for TN and δ15Nbulk with an adjusted sample load to obtain 0.04−0.06 mg 

nitrogen. Data from this run were calibrated against reference materials—acetanilide, urea (both Elemental Microanalysis), 

USGS-24, and USGS-26—with isotopic precisions within ±0.2‰.

4. Results

4.1. Core zk2012

Elemental abundances and isotopic data for the Doushantuo, Liuchapo, and Jiumenchong formations are summarized in Fig. 

3 and Supplementary Data S1. Concentrations of TOC range from less than 0.1 wt.% to 14.0 wt.%, with an average value for 

the whole succession of 3.5 ± 3.3 wt.% (n = 150). Two intervals stand out as being more strongly enriched in TOC: one in 

Member II of the Doushantuo Formation and another that spans the contact between the Liuchapo and Jiumenchong 

formations. Total nitrogen ranges from 0.0 wt.% to 0.4 wt.%, with an average of 0.1 ± 0.1 wt.% (n = 150), and displays a 

similar trend to that of TOC (positive correlation, R2 = 0.5 for Jiumenchong and Doushantuo formations, R2 = 0.4 for 

Liuchapo Formation; Fig. 6a). Atomic Corg/N ratios were calculated from TOC and TN concentrations and their respective 



  

molar masses and average 34.9 ± 24.3 (n = 150). Comparatively higher Corg/N values are found in the Doushantuo Formation 

and lower values in Jiumenchong Formation.

The isotopic composition of organic carbon ranges from −37.9‰ to −27.7‰ and averages −33.2 ± 2.0‰ (n = 149), with two 

conspicuous negative δ13Corg excursions: one in the upper Liuchapo Formation and the other in the middle of the 

Jiumenchong Formation. The isotopic composition of bulk nitrogen ranges from −2.4‰ to 11.2‰, with an average of 3.2 ± 

3.5‰ (n = 88). Average δ15Nbulk values decrease stepwise from the Doushantuo Formation (7.8 ± 2.1‰, n = 16) to the 

Liuchapo Formation (7.0 ± 1.6‰, n = 14) and again into the Jiumenchong Formation (−0.9 ± 1.6‰, n = 57). 

4.2. Nitrogen isotope data from the Yangtze Block

Based on the stratigraphic framework described above, a correlation of δ15Nbulk values across the Yangtze platform and slope 

is presented in Fig. 5 and Supplementary Data S2. The temporal evolution of δ15Nbulk values captured in the studied drill core 

and other sections throughout the Yangtze Block can be divided into four intervals (Figs. 5, and 7; Supplementary Data S2): 

the early Ediacaran, late Ediacaran, Fortunian to late Cambrian Stage 2, and latest Cambrian Stage 2 to Cambrian Stage 3. In 

general, δ15Nbulk values on the Yangtze Block decrease from the early Ediacaran to the early Cambrian. This regionally 

consistent pattern further substantiates that variation in δ15Nbulk reflects primary signals rather than post-depositional 

alteration.

When statistically averaged across the Yangtze Block, δ15Nbulk values are highest in the early Ediacaran, averaging 5.3 ± 1.5‰ 

(n = 222), and decrease in the late Ediacaran to 3.5 ± 2.7‰ (n = 55). Average δ15Nbulk values continue to decrease into the 

early Cambrian (Fortunian-late Stage 2; average 2.2 ± 2.1‰, n = 239) and again in latest Stage 2-Stage 3 to the lowest 

observed average value of 0.6 ± 1.9‰ (n = 267) (Figs. 5, and 7). In the early Ediacaran, δ15Nbulk values range from 2.3‰ to 

11.2‰ in the basin, with a 2.7‰ basinal gradient (calculated as the difference between facies averages) from the slope, 

represented by the studied drill core, to the more restricted waters of the intrashelf Yangtze Gorges composite and Lantian 

sections. The range of compiled δ15Nbulk values for the late Ediacaran decreases to −1.8‰ to 10.2‰, but a basinal gradient 

persists (3.0‰), with higher values in offshore sections and lower values on the platform (with the exception of the Yuanjia 

section). In the Fortunian-late Stage 2 interval, δ15Nbulk values range from −4.3‰ to 8.8‰ and the basinal gradient apparent 

throughout the Ediacaran was no longer present. In latest Stage 2-Stage 3, δ15Nbulk values begin consistently lower without a 



  

significant spatial gradient (in temporal proximity to the Ni–Mo enriched horizon) but return to relatively higher values 

upsection in several localities (ranging from −7.5‰ to 6.4‰; Figs. 5, and 7). 

5. Discussion

5.1. Evaluation of primary isotopes values

Terrestrial input, diagenesis, metamorphism, and metasomatism can all alter sedimentary δ15Nbulk signals. In order to make 

reliable biogeochemical interpretations, we first evaluate our data in terms of the processes that can alter δ15Nbulk and δ13Corg 

values. 

Contributions of terrestrial runoff to the sedimentary nitrogen reservoir should be minor because (1) terrestrial organic matter 

input was limited before the Devonian (Kenrick and Crane, 1997) and (2) our samples were deposited in a distal setting, far 

from land. Total nitrogen is well correlated with total organic carbon, indicating that most nitrogen came from marine organic 

matter (Fig. 6a). The positive intercept of 2000 ppm on the TN axis for the Jiumenchong Formation in Fig. 6a, which is not 

present for the other two formations, indicates the presence of some inorganic clay-bound nitrogen (Calvert, 2004; Bristow et 

al., 2009). This fraction may reflect detrital input but is probably to a large extent derived from anaerobic remineralization of 

biomass in sediments where organic carbon escaped as CO2, while organic nitrogen was trapped as NH4
+ (discussed further 

in Section 5.2.4) (Boatman and Murray, 1982; Schroeder and Mclain, 1998). Similar excess N has previously been reported 

from the Jiumenchong Formation and its stratigraphic equivalents across the Yangtze Block in sections such as Xiaotan, 

Yangtze Gorges, Sancha, Nangao, Daotuo, Longbizui, Lijiatuo, and Yuanjia (Cremonese et al., 2013a; Cremonese et al., 

2013b; Kikumoto et al., 2014; Wang et al., 2015; Wang et al., 2017; Wei et al., 2017; Zhang et al., 2017). A large detrital 

input of inorganic nitrogen is unlikely because the Jiumenchong Formation has high TOC compared to the other two 

formations (Fig. 3), and a detrital contribution would represent a larger fraction of the total nitrogen pool when TOC was low. 

Further, the magnitude of the positive N-intercepts for the Jiumenchong Formation and its stratigraphic equivalents does not 

change with distance from the continent, supporting the assertion that the excess nitrogen was not sourced from terrestrial 

runoff. 

Although some nitrogen and carbon were probably mobilized during diagenesis, significant isotopic alteration during this 

process would have been unlikely. Under oxic depositional conditions, δ15Nbulk values can increase by 3–5‰ during 



  

diagenesis (Robinson et al., 2012). Under anoxic diagenetic conditions, however, δ15Nbulk and δ13Corg values can decrease by 

up to 1‰ and 1.6‰, respectively (Altabet et al., 1999; Freudenthal et al., 2001; Lehmann et al., 2002). Based on substantial 

coeval Fe-speciation data published from sites throughout the Yangtze slope (e.g. Canfield et al., 2008; Wang et al., 2012a; 

Feng et al., 2014; Och et al., 2015), the investigated strata were most likely deposited under a persistently anoxic water 

column, suggesting that isotopic alteration during early diagenesis would have been minimal and that the large temporal and 

spatial variations in δ15Nbulk on the Yangtze Block (Fig. 5) cannot be explained by this process alone. 

Metamorphism can increase Corg/N and δ15Nbulk to some extent, with an isotopic effect of 1–2‰ for greenschist facies and 3–

4‰ for amphibolite facies (Bebout and Fogel, 1992; Boyd and Philippot, 1998; Mingram and Bräuer, 2001; Thomazo and 

Papineau, 2013). However, high organic H/C ratios (0.3–1.8; Guo et al., 2007) and low vitrinite reflectance (Ro < 4%; Han et 

al., 2013; Tan et al., 2015) reported from other sections near our studied drill core suggest that the effects of regional 

metamorphism are unlikely to be significant (Hayes et al., 1983). Similarly, metamorphic overprints on δ13Corg are considered 

to be insignificant (< 3‰) below greenschist facies (Hayes et al., 1983). Additionally, we did not observe any petrologic 

features indicative of metamorphic or metasomatic processes in the core, such as the development of metamorphic fabrics, 

shearing, or significant veining. 

Additional lines of evidence argue against significant secondary alteration of δ15Nbulk and δ13Corg values in the studied 

samples. Thermal alteration due to metamorphism tends to result in a preferential loss of 14N and 12C and thus in positive 

covariance between δ15Nbulk and δ13Corg values (Hayes et al., 1983; Bebout and Fogel, 1992; Ader et al., 1998; Jia, 2006). 

Similarly, this process should result in covariation between δ15Nbulk and TN (or Corg⁄N). However, there is no obvious 

correlation in cross plots of δ15Nbulk versus TN and δ15Nbulk versus Corg⁄N for different lithologies and/or formations (Figs. 6b, 

and 6c). Also, cross plots of δ15Nbulk versus TOC and δ15Nbulk versus δ13Corg do not show significant correlation (Figs. 6d, and 

6e). The absence of covariance between any of these parameters argues against a significant metamorphic control on the data. 

Moreover, almost all the Corg/N ratios from the studied drill core are less than 100 (3.1–114; Fig. 3), consistent with the range 

of Proterozoic Corg/N ratios from other settings with little or no metamorphic overprint (Beaumont and Robert, 1999). 

Although Corg/N ratios generally increase in older, sub-greenschist rocks over geologic time, δ15Nbulk values do not increase 

correspondingly, suggesting that this gradual loss of N does not impart a significant isotopic fractionation if the metamorphic 

grade is low (Stüeken et al., 2016). In sum, measured δ13Corg and δ15Nbulk values are not likely to have been significantly 



  

altered by post-depositional processes and are likely within 3‰ and 1‰, respectively, of primary signals. 

5.2. Nitrogen cycling on the Yangtze Block during the Ediacaran-Cambrian transition

In the modern ocean, large-scale (>100 km) differences in seafloor δ15Nbulk values have been shown to reflect the dominant 

nitrogen metabolisms in the overlying water column (Tesdal et al., 2013). Over geologic time, sedimentary δ15Nbulk values 

should reflect the isotopic balance between different nitrogen sources to local biomass—biological N2-fixation and 

bioavailable nitrogen sourced through upwelling (NO3
- and NH4

+) (Fig. 1; Altabet et al., 2002; Sigman et al., 2009; Ader et 

al., 2016). Building from the biogeochemical pathways and associated fractionations discussed in Section 2.1, Table 1 

presents a summary of dominant nitrogen metabolisms for possible δ15Nbulk distributions in modern and ancient environments. 

Apart from the mechanism of NH3 volatilization that has been reported in modern and ancient alkaline lakes (Stüeken et al., 

2015; Stüeken et al., 2016), which are markedly different from the open marine environment represented by the Yangtze 

platform and basin (Fig. 2), various metabolic processes and their implications are considered in detail below.

5.2.1. The early Ediacaran

Compared to the younger units, δ15Nbulk values from the early Ediacaran on the Yangtze Block are on average the highest 

observed (5.3 ± 1.5‰; Figs. 5, and 7). Our data show for the first time that significantly higher values are present on the 

slope of Upper Yangtze during this interval (7.8 ± 2.1‰). Lower values are present in the intrashelf Yangtze Gorges (4.7 ± 

1.7‰; (Kikumoto et al., 2014) and Lower Yangtze Lantian sections (5.3 ± 1.1‰; (Wang et al., 2017). Such positive δ15Nbulk 

values (> 2‰) can be attributed to one of three processes in the marine nitrogen cycle (Table 1; Stüeken, 2013; Tesdal et al., 

2013; Ader et al., 2016; Stüeken et al., 2016): 

(i) Partial nitrification can produce heavy residual NH4
+ and light NO3

- in slightly oxygenated surface water. Quantitative 

assimilation of the isotopically enriched NH4
+ could then generate positive δ15Nbulk values in biomass and sediments as 

long as the isotopically light NO3
- is converted to N2 via complete denitrification (Thomazo et al., 2011). Today, 

nitrification goes to completion rapidly in the suboxic zone of the Black Sea and in OMZs along productive margins 

(Fuchsman et al., 2008; Fussel et al., 2012). Incomplete nitrification has only been reported from the Bering Sea due to 

seasonally variable oxygen concentrations and results in a large scatter of organic δ15N values from 2‰ to 18‰ 

(Granger et al., 2011; Morales et al., 2014). In this scenario, heavy NH4
+ can be returned to the water column through 



  

organic matter remineralization, resulting in further isotopic fractionation if partial nitrification continues (Stüeken, 

2013). This cycle can thus lead to an isotopic imbalance, generating very positive δ15Nbulk values (in excess of 20‰; 

Morales et al., 2014), which are not observed in the Ediacaran of South China. Assuming the fractionation of 

nitrification is 25‰, average δ15Nbulk values of 5‰ in the early Ediacaran on the Yangtze Block would suggest 

nitrification of ~24% of the dissolved NH4
+. The sink for the residual ~76% of isotopically enriched NH4

+ would then 

need to have been biological uptake, which represents a very small sink for fixed N in the modern ocean (Section 2.1).

Alternatively, if partial nitrification were followed by quantitative assimilation by biomass, both the isotopically 

enriched and depleted phases would be preserved. However no samples on the Yangtze Block exhibit δ15Nbulk values 

lighter than –2‰ (Kikumoto et al., 2014; Wang et al., 2018b) (Fig. 5). In sum, partial nitrification does not explain the 

Ediacaran δ15Nbulk from South China.

(ii) Incomplete assimilation of nitrogen (NO3
- and in particular NH4

+) may generate a heavy residual nitrogen pool (> 1‰) 

as biomass preferentially assimilates the light isotope (< –2‰) (Papineau et al., 2009). This process occurs today most 

conspicuously in high latitude settings and equatorial upwelling zones where the supply of NO3
- is very high (Tesdal et 

al., 2013). As the Yangtze Block moved towards the Equator during the Ediacaran (Fig. 2a), it is conceivable that 

upwelling could have delivered abundant nutrients to the euphotic zone, which could have led to partial uptake of 

nitrogen by primary producers. However, of the three early Ediacaran datasets, none contain δ15N values lower than that 

which could be attributed to N2-fixation (min. 2.3‰ in the more proximal Three Gorges section; Kikumoto et al., 2014). 

If partial assimilation generated the heavy δ15N values reported in our samples, a significant amount of 15N depleted 

NH4
+ would need to have been sequestered elsewhere in the basin. While it is not possible to entirely rule this out, we do 

not find it to be the most parsimonious interpretation. 

(iii) Incomplete denitrification, DNRA, or anammox can convert NO3
- into N2 or N2O at the oxic/suboxic interface in 

physically stratified systems or modern oxygen minimum zones, producing large isotopic fractionations (Kuypers et al., 

2003; Gaye-Haake et al., 2005; Kuypers et al., 2005; Sigman et al., 2009). This mechanism generates isotopically heavy 

NO3
- in the modern ocean, and the same process could have occurred in the redox-stratified ocean of the early Ediacaran 

(e.g., Bowyer et al., 2017), with one important difference being that NO3
- would have been present only in the oxic 



  

surface ocean and not in anoxic deeper waters (e.g., Fig. 1b in Ader et al., 2014) (Fig. 9). The NO3
- reservoir—

established by aerobic degradation of biomass in shallow waters—could have been subject to partial reduction through 

contact with upwelling anoxic waters. Biomass assimilating the residual NO3
- in the photic zone could have acquired the 

isotopic signature deriving from this partial NO3
- reduction. The NO3

- would not necessarily be completely depleted by 

denitrification or anammox if the chemocline was relatively deep, particularly below the photic zone—sources and sinks 

in the surface NO3
- reservoir could have been balanced, similar to conditions found today in the Cariaco Basin where the 

nitrate maximum is ~10-15 M in the surface water (Ho et al., 2004) and the redoxcline is situated at ~275 m (Thunell 

et al., 2004).

In modern oxygen minimum zones, where a significant amount of fixed nitrogen is lost via denitrification and anammox 

(Lam et al., 2009; Dalsgaard et al., 2012), the highest δ15Nbulk values occur in the core of the OMZ where the degree of 

NO3
- reduction is highest (Sigman et al., 2009; Tesdal et al., 2013). A similar scenario could explain the strong basinal 

heterogeneity in sedimentary δ15Nbulk values in the early Ediacaran of the Yangtze Block (Figs. 5, 7a, and 9), although 

NO3
- would have been sourced from the surface rather than from upwelling anoxic deep waters. Specifically, the 

extremely high δ15Nbulk values (up to 11.2‰) on the slope of the Upper Yangtze, compared to the more “normal-marine” 

δ15Nbulk values in the intrashelf basin and Lower Yangtze region, may reflect an upwelling system and more intense 

denitrification on the slope—the surface NO3
- reservoir being most strongly depleted there due to reaction with 

upwelling reductants. It is also possible that upwelling along the slope supplied nutrients locally and resulted in higher 

primary and export production compared to the intrashelf basin and Lower Yangtze. This would have also contributed to 

an elevated redoxcline and a higher degree of NO3
- reduction. Higher TOC values on the slope support this possibility 

(Fig. 3) (Kikumoto et al., 2014). 

However, even with intense denitrification leading to severe loss of fixed nitrogen, the preservation of high δ15Nbulk in 

sediments implies that there was still sufficient NO3
- left in the photic zone for NO3

--assimilating organisms, otherwise 

N2-fixation would have prevailed and δ15Nbulk values would reflect this process (Hood et al., 2004). Assuming a 

fractionation in denitrification of 15‰ to 25‰ (Sigman et al., 2009; Kritee et al., 2012; Devol, 2015), we estimate 

around 30–45% reduction of NO3
- at the studied location. This fraction would be higher if the isotopically heavy 

biomass of NO3
- assimilators was mixed with isotopically light biomass of N2-fixers. 



  

To summarize, when compared to previously published results, our data show that δ15Nbulk values were not uniform 

throughout the Yangtze basin during the early Ediacaran, with significantly higher δ15Nbulk values occurring on the slope as 

compared to the more restricted sites at Yangtze Gorges and Lantian. We attribute these high values to a higher degree of 

denitrification in those settings where the surface NO3
- reservoir would have been partially reduced through reaction with 

upwelling anoxic deep waters (Fig. 9). This inference is consistent with an overall redox-stratified scenario as supported by 

published iron-speciation data (e.g., Bowyer et al., 2017) and redox-sensitive trace metal abundances (e.g., Sahoo et al., 

2016) from the Yangtze Block and provides a more detailed picture of spatial variation in the depth of the redoxcline across 

the Yangtze Block. This interpretation does not preclude the possibility of multiple short-lived oxygenation events in the 

early Ediacaran (e.g., Sahoo et al., 2016; Bowyer et al., 2017; Wang et al., 2018b), as sedimentary nitrogen isotope values 

alone may not be sensitive to temporal variation in the depth of redoxcline when it is below the photic zone.

5.2.2. The late Ediacaran

Average δ15Nbulk values on the Yangtze Block decrease from the early to late Ediacaran (Fig. 7b); however, the trend of 

heavier values in slope sections (excluding the Yuanjia section) and a decreasing shoreward gradient persist (Fig. 5, and 7). 

The lightest δ15Nbulk values, around 0‰, in the intrashelf basin are best explained by biological N2-fixation using Mo-based 

nitrogenase (e.g. Zerkle et al., 2008). In the late Ediacaran, water depths across the Yangtze platform were likely shallower 

compared to the early Ediacaran and early Cambrian, as indicated by platform-wide carbonate deposition during this time 

(Fig. 2B; Zhu et al., 2003; Zhu et al., 2007b; Jiang et al., 2011). In light of this local sea-level variation and a complex 

paleotopographic landscape (Fig. 2B), it is possible that more proximal settings became restricted from the open ocean during 

the late Ediacaran, such that less fixed nitrogen was available to the photic zone and N2-fixation dominated the ecosystem—

similar to what is observed in the modern Black Sea, Baltic Sea, and Cariaco Basin (Haug et al., 1998; Wasmund et al., 2001; 

Fulton et al., 2012). 

The lateral distribution of δ15Nbulk values on the Yangtze Block would then reflect the variance of nitrogen speciation and its 

availability in the photic zone. In this way, bioavailable NO3
- appears to have been more abundant in offshore sections and 

decreased shoreward. Assuming that the offshore locations continued to share a strong connection with the open ocean, the 

nitrogen cycle there would likely have been broadly similar to that of the early Ediacaran, where the nutrient supply and 



  

productivity were fueled by upwelling (Fig. 9). The higher δ15Nbulk values in the deep-water sections, compared to the 

intrashelf basin, may reflect a decreasing influence of N2-fixation basinward (Figs. 5, and 7a). Lower δ15Nbulk values in the 

late Ediacaran present in the Yuanjia section may have resulted from N2-fixation because of significant distance from the 

zone of upwelling. The decrease in average δ15Nbulk values in slope settings from the early to late Ediacaran could reflect a 

decrease in the degree of denitrification in local subsurface waters resulting from a decrease in productivity and/or deepening 

of the redoxcline, an increase in the influence of N2-fixation because less NO3
- was delivered from shallower waters as the 

basin became more restricted and nutrient starved, or some combination of these (Fig. 9). 

5.2.3. Fortunian and late Stage 2

Average δ15Nbulk data across the Yangtze Block from the Cambrian Fortunian-late Stage 2 are lower than those from the late 

Ediacaran but still higher than those from the latest Stage 2-Stage 3, and overall there is large variability in δ15Nbulk across the 

Yangtze Block (−4.3‰ to 8.8‰; Figs. 5, and 7a). The nitrogen cycle during this time was likely in a transitional stage 

between the late Ediacaran and Cambrian Stage 3 caused by locally fluctuating redox conditions. As mentioned above, 

however, this interval could reflect significant periods of non-deposition or erosion. For this reason, a high-resolution 

correlation is difficult and signals of changing nutrient dynamics could be obscured.

5.2.4. The latest Stage 2 and Stage 3

The δ15Nbulk values across the Yangtze Block during the latest Stage 2-Stage 3 decrease to the lowest average values observed 

in our compilation (ranging from −7.5‰ to 6.4‰). Most sections preserve an average δ15Nbulk value lower than 1‰ in 

stratigraphic proximity to the Ni–Mo–PGE horizons. Above that, δ15Nbulk values increase in some sections (Figs. 5, and 7a).

Light δ15Nbulk values, less than −2‰ as present in sections from the platform, slope, and basin can be explained by two 

mechanisms. First, ecosystems dominated by N2-fixation using alternative nitrogenases with V or Fe can generate δ15Nbiomass 

values between −6‰ and −8‰ (Zhang et al., 2014). However, the Mo limitation that would have favored these pathways can 

probably be ruled out. Even in the Mo-depleted, Fe-rich Archean and Proterozoic oceans, there is no convincing evidence to 

suggest that alternative nitrogenases with V (Vnf) or Fe (Anf) ever dominated N2-fixation (Stüeken et al., 2016). There is no 

a priori reason to expect that molybdenum availability was lower during the early Cambrian compared to Archean-

Proterozoic oceans (Siebert et al., 2005; Kendall et al., 2006; Wille et al., 2007; Scott et al., 2008).



  

Alternatively, non-quantitative assimilation of NH4
+ by organisms can impart large fractionations of −4‰ to −27‰ 

depending on the ambient NH4
+ concentration, yielding δ15Nbiomass values below −2‰ (Pennock et al., 1996). This scenario 

has been invoked to explain low δ15Nbulk values associated with Cretaceous oceanic anoxic events and in the late 

Paleoproterozoic (Papineau et al., 2009; Higgins et al., 2012), and it is a reasonable interpretation for the data in this part of 

the succession (Fig. 9). Light δ15Nbulk values would have been preserved where incomplete assimilation of NH4
+ occurred in 

the photic zone, and a complementary 15N enriched reservoir may have been captured elsewhere (Stüeken et al., 2016). 

Previous studies have noted that light δ15Nbulk values are widespread on the Yangtze Block during the early Cambrian and 

suggested that these low values may indicate a shallow redoxcline accompanied by photic zone anoxia, possibly due to strong 

influx of NH4
+-rich anoxic waters from below followed by incomplete NH4

+ utilization by phytoplankton (Cremonese et al., 

2013a; Cremonese et al., 2013b; Wang et al., 2015; Wei et al., 2017; Wang et al., 2018a). Our preferred interpretation is 

consistent with overwhelmingly anoxic deep waters as evidenced by other geochemical proxies such as iron-speciation (e.g., 

Li et al., 2017) and redox-sensitive trace element data for late Cambrian Stage 2 (e.g., Xiang et al., 2017). Considering that 

the most negative δ15Nbulk value observed in our compilation is −7.5‰, the NH4
+ concentrations in deep waters were 

probably equal to or lower than modern NO3
- concentrations (~30 μM), as non-quantitative assimilation of NH4

+ under 

conditions of NH4
+ >20 μM can lead to much larger fractionations (Hoch et al., 1992). Such non-quantitative assimilation 

could also reflect a limitation by other nutrients in the photic zone (Moore et al., 2013), leading to incomplete utilization of 

NH4
+. 

Excess NH4
+ is further supported by the TN versus TOC relationships for this interval (Fig. 6a). As mentioned in Section 5.1, 

linear regression yields a positive intercept on the TN-axis for the early Cambrian Jiumenchong Formation and its 

stratigraphic equivalents across the Yangtze Block, indicating excess, silicate-bound nitrogen. This silicate-bound nitrogen is 

unlikely to have been sourced from terrestrial runoff, because the Jiumenchong Formation and its stratigraphic equivalents 

have higher TOC than the other two formations in the studied core, for which a prominent positive intercept is not present. It 

is also unlikely that the nitrogen excess was controlled by lithology, as aluminum contents in the late Stage 2-Stage 3 interval 

in sections from an intrashelf basin (Jiulongwan section; Ling et al., 2013), the upper slope (Daotuo section; Zhai et al., 2016), 

and the slope (Wuhe section; Sahoo et al., 2016) are similar to those in the early Ediacaran, but clay contents in the late Stage 

2-Stage 3 are actually lower (Zhai et al., 2018). Further, a cross-plot of TN versus TOC of different lithologies for the 



  

Jiumenchong Formation in the studied core (Fig. 8) contain this positive N-intercept even in samples with higher carbonate 

content. The consistent appearance of the positive N-intercept for shales deposited during latest Stage 2-Stage 3 across the 

Yangtze Block, with a maximum in the lower slope (e.g., Kikumoto et al., 2014, and references therein), and the absence of 

the positive N-intercept from Ediacaran shales (Ader et al., 2014; Kikumoto et al., 2014) argues against significant control by 

the relative abundance of clay minerals in these samples. 

Concentrations of NH4
+ can be high when large proportions of organic matter are remineralized through microbial sulfate 

reduction and/or methanogenesis, as organic carbon is converted to CO2 or CH4, and organic nitrogen is converted to NH4
+. 

Under most circumstances, sulfate is not a strong enough oxidant to oxidize NH4
+, such that it can accumulate in localized 

euxinic settings and anoxic pore waters (Stüeken et al., 2016). Through this mechanism, NH4
+ can reach high 

concentrations—particularly in restricted, density-stratified environments where NH4
+ is not transported efficiently upward to 

the photic zone where it can be reutilized. The modern Black Sea is such a setting, with NH4
+ concentration of ~100 μM at 

depth (Murray et al., 2005; Fulton et al., 2012). Additional NH4
+ can be produced via DNRA coupled to Fe2+ or organic 

matter oxidation (Kartal et al., 2007; Lam et al., 2009; Michiels et al., 2017), although the importance of this process remains 

largely unexplored. In modern water masses like the Black Sea and the Benguela upwelling system, ammonium is mostly 

sourced from the remineralization of organic matter rather than DNRA (Kuypers et al., 2005; Murray et al., 2005). The 

ammonium in the water column or sediments could then be captured by illite and montmorillonite (Fig. 1; Boatman and 

Murray, 1982). Consistent with this scenario, data from the Black Sea contain a significant positive N-intercept when plotted 

versus TOC (570 ppm; Fulton et al., 2012), while data from open marine sediments exhibit much smaller N-intercepts 

(40−50 ppm; Muzuka and Hillaire-Marcel, 1999; Li and Bebout, 2005). 

Total organic carbon values in our studied core are generally high when δ15Nbulk values are negative. This suggests a high 

flux of export production and commensurately high deep-water respiratory demand. This could have also resulted in 

widespread water-column sulfate reduction, as suggested by high FeP/FeHR ratios indicating the development of euxinia on 

the outer shelf and slope of Yangtze Block during this time (e.g. Canfield et al., 2008; Feng et al., 2014). The resulting excess 

NH4
+ in the anoxic water column and sediment pore waters could then be adsorbed by clay minerals, leading to the observed 

positive N-intercepts. Overall, this scenario of excess NH4
+ further supports the proposition of non-quantitative NH4

+ 

assimilation by organisms in stratigraphic proximity to the negative δ15Nbulk horizons, and is also consistent with the majority 



  

of previously published interpretations of the redox state of basinal waters at this time.

5.3. Implications for life

The distribution of δ15Nbulk values on the Yangtze Block across the Ediacaran-Cambrian transition implies broadly that the 

supply of fixed nitrogen may have been higher, at least in this basin, than is suggested by earlier Mesoproterozoic records 

(Stüeken, 2013; Koehler et al., 2016). Restriction of positive δ15Nbulk to shallow facies in the Mesoproterozoic Belt 

Supergroup (~1.4 Ga; Stüeken, 2013), Bangemall Supergroup (~1.5 Ga; Stüeken, 2013), and Roper Group (~1.4−1.5 Ga; 

Koehler et al., 2016) indicates a largely anaerobic nitrogen cycle in offshore environments and an aerobic nitrogen cycle with 

NO3
- restricted to the photic zone in nearshore settings. This was not the case during the Ediacaran and early Cambrian in the 

Yangtze Block. A significant aerobic nitrogen cycle appears to have been present in the Ediacaran of South China, with 

abundant NO3
- available in surface waters. Abundant nitrate could have contributed to the evolution of macroscopic 

multicellular algae in the Ediacaran (Zhu et al., 2007a; Zhu, 2010). Although data from one basin cannot capture global 

trends in marine nitrogen cycling, it is conceivable that they may in part reflect global biogeochemical trends—eukaryotic 

algae rising to ecological prominence in the Cryogenian, evidenced by molecular fossil records (Brocks et al., 2017), could 

have significantly changed the architecture of the biological pump, allowing for more fixed nitrogen to accumulate in deeper 

waters.

Additionally, our analysis provides supporting evidence for a temporal change in the position of the redoxcline on the 

Yangtze Block during the Proterozoic-Phanerozoic transition. High δ15Nbulk values combined with other redox proxies in the 

Ediacaran (e.g., Bowyer et al., 2017) probably reflect a relatively deep chemocline (likely near the base of the photic zone) 

with some spatial heterogeneity. This deeper redoxcline could have provided niches in shallow marine environments for 

metazoans with relatively high metabolic oxygen demands, consistent with the presence of some Ediacaran metazoan fauna 

on the Yangtze Block (e.g. Zhu et al., 2007a; Zhu et al., 2008; Zhu, 2010; Jiang et al., 2011). In the latest Cambrian Stage 2, 

an overall shallower redoxcline (probably within photic zone) suggested by low δ15Nbulk values, is consistent with scenarios 

that have been proposed for extinctions of small shelly fossils (Zhu et al., 2007a; Zhu, 2010; Wang et al., 2018a). Such a 

shallow chemocline in the early Cambrian could have been linked to higher primary and export production, consistent with 

high observed TOC values (Fig. 3).



  

6. Conclusions

Our geochemical study of early Ediacaran to early Cambrian strata preserved in a drill core taken from the slope of the 

Yangtze Block, combined with previously reported δ15Nbulk data from other sections at different paleo-water depths, confirm 

that average δ15Nbulk values decreased from the early Ediacaran to early Cambrian across the Yangtze Block. This suggests a 

systematic transition in the regional nitrogen cycle across this interval. In the early Ediacaran, δ15Nbulk values reflect a basinal 

gradient, with the highest values occurring in the slope section of the Upper Yangtze, and a declining trend toward more 

restricted profiles (Yangtze Gorges and Lantian regions), suggesting that more intense denitrification was occurring in open 

slope settings. These data may reflect upwelling of anoxic deep water along the slope and a shoaling of the redoxcline near 

our studied location. High δ15Nbulk values on the slope decrease in the late Ediacaran, and nearshore δ15Nbulk values from this 

time are near 0‰, indicating N2-fixation dominated nearshore environments. This temporary dearth in nitrogen availability 

could have been caused by decreasing water depth and isolation of intra-shelf settings in the late Ediacaran. However, 

offshore sections show high δ15Nbulk values at this time, implying the presence of significant fixed nitrogen (likely in the form 

of NO3
-) in the photic zone. During the following Cambrian Fortunian to late Stage 2, highly variable δ15Nbulk values indicate 

the nitrogen cycle was likely in a transitional state. 

During the latest Stage 2-Stage 3, δ15Nbulk values decrease to near 0‰ or lower in all settings across the Yangtze Block in 

stratigraphic proximity to the Ni–Mo deposits. These light values are most parsimoniously interpreted as evidence of 

widespread partial uptake of NH4
+. The TN versus TOC relationships further substantiate that NH4

+ concentrations were high 

throughout most of the basin at this time, potentially linked to large amounts of organic matter remineralization by sulfate 

reduction under euxinic conditions. The redoxcline could have been fairly shallow at the time, such that abundant NH4
+ was 

delivered to surface waters. 

Overall, our study suggests that nitrogen—either in the form of NO3
- or NH4

+—was more bioavailable during the Ediacaran 

and early Cambrian than during the Mesoproterozoic. In the modern ocean, environmental factors such as nutrient and 

oxidant availability play a first order role in dictating ecosystem structure and complexity. In turn, the availability, 

distribution, and temporal stability of habit space are critical factors in directing evolutionary trends. These influences should 

be given due consideration with respect to the Phanerozoic transition, particularly in light of substantial evidence for 

dynamically changing conditions.
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Figure Captions

Figure 1. The biogeochemical nitrogen cycle (adapted from Ader et al., 2016; Sigman et al., 2009; and Stüeken et al., 2016). 

Elements in parentheses are used as co-factors in enzymes and ε is the fractionation factor (‰) related to the metabolic 

process (ε  δ15Nproduct – δ15Nreactant). 

Figure 2. Geological background and stratigraphic column for the studied drill core zk2012. A: Global paleogeographic map 

at 635–510 Ma (revised from Zhang et al., 2013, 2015). B: Paleogeographic map of Yangtze Block during the Ediacaran-

Cambrian transition (after Yeasmin et al., 2016). Numbers in the maps indicate the locations of drill core zk2012 (No.7) and 

other reported sections discussed in the paper. C: Lithological column of the studied drill core zk2012. F-2 = Fortunian-

Stage2 and NT = Nantuo Formation. 

Figure 3. Chemostratigraphic profiles of TOC, TN, Corg/N, δ13Corg and δ15Nbulk for the studied drill core zk2012. The vertical 



  

dashed line in the Corg/N profile denotes the Redfield ratio (C/N = 6.6). The horizontal dashed lines represent the bottom 

boundaries of Member I of Doushantuo Formation, Member II of Doushantuo Formation, Member III of Doushantuo 

Formation, Liuchapo Formation, early Cambrian, and Jiumenchong Formation, in ascending order.

Figure 4. A summary of regional chronostratigraphy, lithostratigraphy, biostratigraphy and the corresponding stratigraphic 

correlation in South China (revised from Steiner et al. 2007; Chen et al. 2015b; and Zhu et al. 2019). Radiometric ages are 

from previous studies (Condon et al., 2005; Compston et al., 2008; Chen et al., 2009; Jiang et al., 2009; Zhu et al., 2009; Xu 

et al., 2011; Wang et al., 2012b; Zhou et al., 2013; Chen et al., 2015a; Yang et al., 2017; Zhou et al., 2019). Fm. = Formation. 

Mb. = Member. Ass. = Assemblage.

Figure 5. Chemostratigraphic δ15Nbulk profiles across the Yangtze Block during the Ediacaran-Cambrian transition. For the 

Yangtze Gorges composite section, the gray and black data are derived from Cremonese et al. (2013b) and Kikumoto et al. 

(2014), respectively. The three horizontal dashed lines represent lower boundaries of the late Ediacaran, Cambrian Fortunian, 

and Cambrian Stage 3 in ascending order. The red dashed line denotes the Ni–Mo–PGE-rich horizon. The simplified cross 

section of the Yangtze Block is based on the paleogeographic map in Fig. 2B. Sources of litho- and bio-stratigraphic data: 1) 

Xiaotan (XT): Intrashelf Basin (Zhou et al., 1997; Li, 2004; Steiner et al., 2007; Cremonese et al., 2013a; Och et al., 2013; 

Yang et al., 2014); 2) Yangtze-Gorges (YG): Intrashelf Basin (Chen, 1984; Steiner et al., 2007; Cremonese et al., 2013b; Guo 

et al., 2014; Kikumoto et al., 2014); 3) Zhongnan (ZN): Rimmed carbonate Platform (Steiner et al., 2005; Cremonese et al., 

2013b; Och et al., 2013; Zhang et al., 2017); 4) Sancha (SC): Rimmed carbonate platform (Zhu et al., 2003; Steiner et al., 

2005; Steiner et al., 2007; Li et al., 2012); 5) Nangao (NG): Slope (Yang et al., 2007; Zhang et al., 2017); 6) 

Huanglian/Daotuo (HL/DT): Slope (Zhu et al., 2003; Cremonese et al., 2013b; Wei et al., 2017); 7) zk2012: Slope (This 

study); 8) Longbizui (LBZ): Lower slope (Wang et al., 2012a; Cremonese et al., 2013b; Guo et al., 2013; Guo et al., 2016); 9) 

Lijiatuo (LJT): Lower slope (Guo et al., 2007; Cremonese et al., 2013b); 10) Yanjia/Lantian (YaJ/LT): Lower slope (Wang et 

al., 2017; Wang et al., 2018a); 11) Yuanjia (YuJ): Basin (Wang et al., 2015).

Figure 6. Cross plots of (a) TOC versus TN, (b) δ15Nbulk versus TN, (c) δ15Nbulk versus Corg/N, (d) δ15Nbulk versus TOC, (e) 

δ15Nbulk versus δ13Corg, and (f) δ13Corg versus TOC. Trend lines and correlation coefficients are presented for each 

formation/lithology in each cross plot. 



  

Figure 7. a. Distribution of nitrogen isotope data from drill core zk2012 and previous studied sections (Cremonese et al., 

2013a; Cremonese et al., 2013b; Ader et al., 2014; Kikumoto et al., 2014; Wang et al., 2015; Wang et al., 2017; Wei et al., 

2017; Zhang et al., 2017; Wang et al., 2018a) deposited on the Yangtze Block during the Ediacaran-Cambrian transitional 

period. The gray horizontal bars represent the range of δ15Nbulk generated by Mo-contained N2-fixation. b. Statistical analysis 

of δ15Nbulk (‰) in Yangtze Block for four time bins (635Ma–551Ma; 551Ma–541Ma; 541Ma–522Ma; 522Ma–514Ma). The 

distribution of δ15Nbulk is represented by the average values (red diamond) and standard deviations (± 1σ). Ed = Ediacaran, 2 

= Stage 2, 3 = Stage 3.

Figure 8. Scatter plot of TOC versus TN for upper Liuchapo and Jiumenchong formations in zk2012 studied drill core.

Figure 9. Schematic representations of different N-cycles from the early Ediacaran to early Cambrian on the Yangtze Block. 

The red dashed lines represent the redoxcline.
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Table 1 Possible interpretations for sedimentary δ15N values in the geological record 

δ15N Dominant metabolism in seawater Examples

> 2‰ 1. Assimilation of upwelled NO3
- that 

experienced non-quantitative denitrification, 

Anammox or DNRA in the water column.

2. Assimilation of upwelled NH4
+ that 

experienced non-quantitative nitrification.

3. Non-quantitative assimilation of upwelled 

NO3
- or NH4

+.

4. Assimilation of NH4
+ that experienced partial 

NH3 volatilization at high pH.

1. Eastern Tropical North Pacific (ETNP) 

(1); Eastern Tropical South Pacific 

(ETSP) (2); Arabian Sea (1).

2. Bering Sea (3); late Archean lakes (4).

3. Southern Ocean (5); Equatorial Pacific 

(6); no examples for NH4
+ assimilation.

4. alkaline Lake Bosumtwi (7); late 

Archean alkaline lakes (8).

–2‰ ~ 

1‰

1. Biological N2-fixation with Mo-based 

nitrogenase.

2. Assimilation of NO3
- from a wholly 

oxygenated ocean with denitrification only in 

sediments.

1. much of the open ocean (9); Black Sea 

(10); Cariaco Basin (11).

2. no examples.

< –2‰ 1. Biological N2-fixation with V- or Fe-based 

nitrogenases. 

2. Non-quantitative assimilation of upwelled 

NH4
+.

1. Cretaceous Oceanic Anoxic Events 

(OAEs) (12).

2. OAEs (13); late Paleoproterozoic (14).

Note: Ref. (1) Brandes et al. (1998), (2) Ward et al. (2009), (3) Morales et al. (2014), (4) Thomazo et al. (2011), (5) Sigman et al. (2000), 

(6) Somes et al. (2010), (7) Talbot and Johannessen (1992), (8) Stüeken et al. (2015), (9) Altabet (1988), (10) Fulton et al. (2012), (11) Haug 

et al. (1998), (12) Kuypers et al. (2004), (13) Higgins et al. (2012), (14) Papineau et al. (2009).


