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Abstract

Promyelocytic leukemia (PML) bodies are nuclear organelles implicated in intrinsic and

innate antiviral defense. The eponymous PML proteins, central to the self-organization of

PML bodies, and other restriction factors found in these organelles are common targets of

viral antagonism. The 72-kDa immediate-early protein 1 (IE1) is the principal antagonist of

PML bodies encoded by the human cytomegalovirus (hCMV). IE1 is believed to disrupt

PML bodies by inhibiting PML SUMOylation, while PML was proposed to act as an E3 ligase

for IE1 SUMOylation. PML targeting by IE1 is considered to be crucial for hCMV replication

at low multiplicities of infection, in part via counteracting antiviral gene induction linked to the

cellular interferon (IFN) response. However, current concepts of IE1-PML interaction are

largely derived from mutant IE1 proteins known or predicted to be metabolically unstable

and globally misfolded. We performed systematic clustered charge-to-alanine scanning

mutagenesis and identified a stable IE1 mutant protein (IE1cc172-176) with wild-type char-

acteristics except for neither interacting with PML proteins nor inhibiting PML SUMOylation.

Consequently, IE1cc172-176 does not associate with PML bodies and is selectively

impaired for disrupting these organelles. Surprisingly, functional analysis of IE1cc172-176

revealed that the protein is hypermodified by mixed SUMO chains and that IE1 SUMOyla-

tion depends on nucleosome rather than PML binding. Furthermore, a mutant hCMV

expressing IE1cc172-176 was only slightly attenuated compared to an IE1-null virus even at

low multiplicities of infection. Finally, hCMV-induced expression of cytokine and IFN-stimu-

lated genes turned out to be reduced rather than increased in the presence of IE1cc172-176

relative to wild-type IE1. Our findings challenge present views on the relationship of IE1 with

PML and the role of PML in hCMV replication. This study also provides initial evidence for
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the idea that disruption of PML bodies upon viral infection is linked to activation rather than

inhibition of innate immunity.

Author summary

Promyelocytic leukemia (PML) bodies are liquid droplet-like structures organized by the

eponymous PML proteins in the nuclei of our cells. PML bodies have been implicated in

the antiviral host cell response to infection. Consequently, viruses have evolved mecha-

nisms that target the proteins composing PML bodies. Immediate-early protein 1 (IE1) is

considered the principal antagonist of PML bodies produced by the human cytomegalovi-

rus, one of eight human herpesviruses. Previous work suggested that the interaction

between IE1 and PML and the consequent disruption of PML bodies serves a critical role

in viral replication by counteracting the cellular antiviral response. However, this picture

has emerged largely from studying mutant IE1 proteins known or predicted to be unsta-

ble. We systematically screened for stable IE1 variants and identified a mutant protein

selectively defective for PML interaction. Unexpectedly, the IE1 mutant supported viral

replication almost as efficiently as the wild-type protein. Moreover, lower instead of

higher (as expected) levels of antiviral gene expression were observed with the mutant

compared to the wild-type. These results suggest that disruption of PML bodies is linked

to the induction rather than inhibition of antiviral gene expression. Our findings chal-

lenge current views regarding the role of PML bodies in viral infection.

Introduction

Promyelocytic leukemia (PML) bodies, also known as nuclear domain 10, are membrane-less

nuclear organelles present in most cells (reviewed in [1, 2]). PML bodies are heterogeneous

and dynamic, ranging in size between 0.1 and 1.0 μm and typically displaying as five to 30

spherical structures per nucleus interspersed between chromatin. They are composed of the

eponymous PML proteins, also known as tripartite motif (TRIM) 19, that self-organize into a

shell-like scaffold. The PML scaffold forms, in part by phase separation, around an inner core

which sometimes contains nucleic acids [3–10]. Embedded in the scaffold or core are numer-

ous unrelated proteins, most of which associate with PML bodies in a conditional and tran-

sient manner [11, 12]. Proteins constitutively residing in PML bodies include the six nuclear

PML isoforms, the speckled 100 kDa (Sp100) nuclear antigens, the death domain-associated

protein (Daxx) and the small ubiquitin-like modifier (SUMO) family members SUMO1,

SUMO2, SUMO3 and SUMO5 [13, 14]. PML bodies are considered to be SUMOylation hubs,

and most proteins associated with these organelles are post-translationally modified by one or

more SUMO paralogs [12, 15]. While SUMO1 attaches only as a monomer, SUMO2, SUMO3

and SUMO5 can form polymeric chains on target proteins including PML [14, 16]. The bio-

genesis and integrity of functional PML bodies depends on oligomerization and poly-SUMOy-

lation of PML proteins at three major lysine residues. In the absence of SUMOylation, PML

proteins may condense into spherical structures unable to recruit other proteins [17, 18]. For

instance, aggregates referred to as mitotic accumulations of PML protein (MAPPs) are known

to form following PML de-SUMOylation and breakdown of PML bodies at the onset of mitosis

[19–23].
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Although any unifying biochemical function of PML bodies remains to be established, they

have been involved in a wide variety of biological processes (reviewed in [1, 24]). Some of

these processes relate to intrinsic immunity, the first intracellular line of defense against invad-

ing pathogens (reviewed in [25, 26]). PML bodies may confer intrinsic immunity as a whole by

entrapping viral genomes or capsids [8–10, 27, 28]. In addition, PML, Sp100, Daxx and other

proteins associated with PML bodies act individually as restriction factors for numerous RNA

and DNA viruses by several mechanisms including transcriptional repression (reviewed in

[26, 29]). Moreover, PML has been identified as a key regulator of cytokine responses and

innate immunity (reviewed in [29, 30]). Certain nuclear PML isoforms are positive regulators

of interferon (IFN) synthesis. In addition, PML proteins may directly promote induction of

some IFN-stimulated genes (ISGs) triggered by IFNβ or IFNγ [29, 31–34]. Conversely, the

PML gene and several other genes encoding constituents of PML bodies are bona fide ISGs

[35, 36]. More broadly, PML appears to facilitate innate immunity and inflammation by affect-

ing expression of cytokines beyond IFNs including tumor necrosis factor (TNF) and C-C

motif chemokine ligand 5 (CCL5) [37–39]. The mechanisms underlying positive regulation of

cytokine expression and signaling by PML have not been fully elucidated. However, PML was

shown to associate with transcription factors that control IFN and ISG expression and to facili-

tate their assembly on target gene promoters [32, 34, 40]. These findings demonstrate a key

role of PML in antiviral restriction as well as cytokine-induced antiviral and inflammatory

states.

Unsurprisingly, many viruses have evolved mechanisms to inactivate the antiviral proper-

ties associated with PML bodies and their restriction factors. Besides direct and sometimes

mutual effects between the cellular factors and viral antagonists, PML targeting usually leads to

structural changes in PML bodies or even a complete loss of organelle integrity. Disruption of

PML bodies is widely regarded as a mechanism by which viruses antagonize the intrinsic and

innate immune responses ascribed to these organelles or their proteins (reviewed in [24, 41]).

One of the best-studied viral ‘offenders’ of PML bodies is the immediate-early protein 1 (IE1)

encoded by the human cytomegalovirus (hCMV), an opportunistic pathogen of the herpesvi-

rus family (reviewed in [42, 43]).

The hCMV IE1 (UL123) and IE2 (UL122) proteins are translated from alternatively spliced

and polyadenylated mRNAs originating from the major immediate-early transcription unit.

They are the first viral gene products newly synthesized upon infection (reviewed in [43, 44]).

The main IE1 isoform (herein referred to as IE1) appears as a 72-kDa species in protein gels

and is composed of four structurally and functionally distinct regions. A short N-terminal

domain (amino acids 1 to 24) is predicted to be intrinsically disordered and contains one of at

least two nuclear localization signals [45–49]. The central region downstream from the N-ter-

minal part has been termed the core domain (amino acids 25 to 378). The core domain of the

IE1 ortholog from Rhesus cytomegalovirus, predicted to be conserved in hCMV, exhibits a

femur-like fold composed of 11 α-helices resembling the coiled-coil domain of TRIM family

members. This domain mediates binding to PML and other TRIM proteins as well as homo-

dimer formation [49, 50]. Beyond the core domain lies a region frequently referred to as ‘acidic

domain’ (amino acids 379 to 475). The acidic domain is believed to be intrinsically disordered

and contains four low complexity motifs termed acidic domain 1 (AD1), serine-proline-rich

(S/P), AD2 and AD3 based on their compositional bias [45, 51, 52]. Embedded between AD1

and S/P is a sequence (amino acids 410 to 420) that serves as a binding site for at least two

members of the signal transducer and activator of transcription (STAT) family of proteins,

STAT2 and STAT3 [45, 52, 53]. At lysine 450, located between AD2 and AD3, IE1 can undergo

conjugation to SUMO1 or SUMO3 [54–56]. It has been suggested that PML serves as an E3

ligase for SUMO modification of IE1, although protein inhibitor of activated STAT 1 (PIAS1)
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appears to enhance IE1 SUMOylation as well [57, 58]. Finally, C-terminal amino acids 476 to

491 represent the chromatin tethering domain (CTD) [48, 59]. This domain contains a nucleo-

some binding motif (NBM) that targets the acidic patch formed by histones H2A and H2B on

the nucleosome surface and thereby mediates association with both interphase and mitotic

chromatin [60–62]. The CTD peptide adopts an extended, v-shaped conformation with a short

α-helix at its C-terminus and has been implicated in regulation of higher-order chromatin

structure and viral genome maintenance during hCMV latency [62, 63]. In the context of high

passage hCMV strains, IE1 has been shown to be required for efficient viral replication in

fibroblasts under conditions of low but not high multiplicity of infection (MOI) [64–66]. How-

ever, low passage hCMV strains deficient in IE1 are substantially attenuated at both low and

high MOI in fibroblasts suggesting that the protein serves an even more important role in viral

replication than originally thought ([67] and this work).

Initially characterized as a promiscuous activator of transcription, IE1 has later emerged as

an antagonist of intrinsic and innate immune responses to hCMV infection (reviewed in [43,

68]). At least two distinct activities contribute to evasion of intrinsic and innate immunity by

IE1. First, the STAT binding motif in the viral protein confers complex formation with STAT2

[45, 52, 53, 69]. The IE1-STAT2 interaction results in diminished DNA binding of IFN-stimu-

lated gene factor 3, a trimeric complex of STAT1, STAT2 and IFN regulatory factor 9 required

for induction of type I ISGs many of which encode antiviral products. Consequently, IE1

inhibits type I ISG activation conferring relative resistance to the antiviral activities of IFNα
and IFNβ on hCMV [45, 53, 69]. In addition, the STAT binding motif mediates interaction

between IE1 and STAT3 resulting in decreased interleukin 6 (IL6)-induced gene expression

and increased expression of type II ISGs linked to STAT1 phosphorylation [52, 70–72]. Sec-

ondly, the IE1 core domain interacts with the coiled-coil domain of PML [49, 73]. Complex

formation between IE1 and PML results in transient co-localization of IE1 at PML bodies.

This interaction is followed by inhibited oligomerization of PML, reduced de novo PML

SUMOylation and disruption of PML bodies [56, 74–76]. PML targeting by IE1 is thought to

promote hCMV replication in at least two ways: by relieving viral transcription from repres-

sion mediated by PML proteins or PML bodies (intrinsic immunity) and by inhibiting PML-

dependent IFN and ISG expression triggered by viral infection (innate immunity) [34, 74, 77,

78]. Besides PML isoforms and SUMO paralogs, IE1 has also been shown to target two other

resident proteins of PML bodies, Daxx and Sp100A [51, 79, 80], most likely to antagonize anti-

viral restriction via transcriptional repression. While the IE1-Daxx interaction has not been

studied in detail, the viral protein was shown to reduce the SUMOylation of Sp100A and to

target the cellular protein for proteasomal degradation [51, 79].

Numerous studies have investigated how IE1-PML interaction and disruption of PML bod-

ies affect the hCMV productive cycle (reviewed in [42, 81]). It has been concluded that PML

targeting is a central activity by which IE1 antagonizes intrinsic and innate immunity to facili-

tate hCMV replication [34, 77, 78, 82]. However, most of these studies were merely of correla-

tive nature and involved IE1 mutants with disrupted core domains resulting in proteins

known to be metabolically unstable and predicted to be globally misfolded. For example, many

conclusions have relied on IE1 mutant proteins and viruses that replace leucine 174 with pro-

line (L174P) [56, 77, 83, 84]. To our knowledge, a mutation in IE1 that produces a metaboli-

cally stable protein and selectively abolishes PML binding without affecting other activities has

not been identified. Here we performed systematic clustered charge-to-alanine scanning of

IE1 to identify a mutant protein (IE1cc172-176) that fails to interact physically with PML, to

inhibit PML SUMOylation and to associate with PML bodies. However, IE1cc172-176 accu-

mulates to wild-type levels in host cell nuclei, and functions unrelated to PML are not affected

by the mutation. We utilized IE1cc172-176 to re-evaluate the contribution of PML targeting
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by IE1 to hCMV replication. Our findings challenge the predominant view that interaction

with PML is central to the function of IE1 and provide evidence for antiviral rather than provi-

ral effects of PML body disruption.

Results

Clustered charge-to-alanine scanning of IE1 identifies stable core domain

mutants

To identify stable mutant proteins that allow for conclusive discrimination between individual

activities of IE1, we performed systematic clustered charge-to-alanine mutagenesis across the

whole length of the viral protein. Charged residues clustered in the primary sequence are likely

to be located on the surface of the folded protein where they may facilitate interactions with

other proteins. Conversely, the replacement of clustered charged residues with alanine may

disrupt such interactions without significantly affecting the three-dimensional structure and

stability of the protein [85–90]. A clustered charge is commonly defined as two or more

charged residues in a window of five amino acids [87, 91]. According to this definition, 24

clustered charges were identified across the 491 amino acids of IE1 (Fig 1). Two to six charged

residues within each cluster, selected based on charge density, were changed to alanine by site-

directed mutagenesis (Fig 1B). The resulting 24 clustered charge mutants are referred to as

IE1cc6-8, IE1cc21-26, etc with numbers indicating the residues N- and C-terminal of the target

site. As expected, most residues targeted by clustered charge mutagenesis are predicted to

reside on the surface of the viral protein (Fig 1A). Following cloning and lentiviral transfer,

MRC-5-derived cell lines individually expressing the 24 IE1 mutants in a doxycycline (dox)-

inducible fashion (TetR-IE1 cells) were generated.

Upon treatment of the TetR-IE1 cell lines with dox, all IE1 proteins mutated in the N- or C-

terminal parts outside the core domain accumulated to steady-state levels equal to or higher

than the wild-type protein. Likewise, several core domain mutants (IE1cc41-43, cc78-80,

cc172-176, cc196-199, cc210-217, cc244-245, cc326-327, cc332-334, cc359-362) produced pro-

tein levels comparable to wild-type IE1. However, other core domain mutants (IE1cc112-114,

cc134-138, cc161-165, cc258-263, cc286-292, cc307-310, cc318-319, cc340-342) were present

at substantially (~50–90%) reduced levels compared to the wild-type protein (Fig 2A). The

reduced levels observed for these IE1 mutants likely result from a shorter protein half-life due

to core domain misfolding or lack of homo-dimerization. However, some of these mutants

also exhibited decreased mRNA levels (Fig 2B, bars), possibly reflecting defective promoter

autoregulation, impaired mRNA stability or fewer lentiviral copies (Fig 2B, lines).

The clustered charge-to-alanine scanning indicates that even small mutations in surface

residues of the IE1 core domain tend to interfere with protein accumulation to normal levels.

Yet, this analysis identifies mutations both in- and outside the core domain that result in stable

proteins.

A subset of IE1 core domain mutants are defective for PML-related

activities during interphase and mitosis

Next, we conducted immunofluorescence microscopy to compare the intracellular localization

of wild-type IE1 and the 24 clustered charge mutants. All mutants except for IE1cc21-26

resembled the wild-type protein in localizing predominantly, if not exclusively, to the nucleus

(Fig 3A and 3B and S1 Fig). In a subset of cells, the wild-type and 15 of the mutant viral pro-

teins (IE1cc6-8, cc21-26, cc41-43, cc78-80, cc196-199, cc210-217, cc244-245, cc326-327,

cc332-334, cc359-362, cc379-382, cc432-437, cc463-467, cc478-481, cc486-490) co-localized
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Fig 1. Design of clustered charge-to-alanine IE1 mutants. (A) Tertiary protein structure of hCMV IE1 showing the core domain modelled on the orthologous domain

of rhCMV IE1 (PDB 4WID) [49] using Phyre2 and the C-terminal CTD (PDB 5E5A) [62]. The three-dimensional structures of the N-terminal domain and the ‘acidic

domain’ (both replaced by dotted lines) have not been determined but are predicted to be disordered. Residues substituted with alanine in the indicated 24 clustered

charge (‘cc’) mutants are shown in red. (B) Primary protein structure of hCMV IE1 showing charged residues (bold) and the 24 clustered charges (gray boxes). Residues

substituted with alanine in the clustered charge mutants are shown in red. The presumably disordered N-terminal domain, the 11 α-helices (predicted based on rhCMV

IE1) [49] composing the core domain, the low complexity motifs (AD1, S/P, AD2 and AD3) [45] of the presumably disordered ‘acidic domain’, the STAT binding motif

(SBM) [52] and the CTD [59] including the NBM [92] are indicated. The SUMOylation motif and SUMO attachment site (lysine 450) are marked as well.

https://doi.org/10.1371/journal.ppat.1008537.g001
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with the PML protein in nuclear dots (PML bodies) (Fig 3A). All of these 15 mutants were able

to disrupt PML bodies resulting in pan-nuclear staining of both PML and IE1 (Fig 3B and S1

Fig). However, nine mutants carrying substitutions between amino acids 112 and 342 either

localized to PML bodies less efficiently than the wild-type protein (IE1cc112-114, cc318-319,

cc340-342) or did not at all co-localize with the organelles (IE1cc134-138, cc161-165, cc172-

176, cc258-263, cc286-292, cc307-310). Although a subset of cells expressing IE1cc112-114,

cc134-138, cc161-165, cc172-176, cc286-292, cc307-310, cc318-319 or cc340-342 exhibited dif-

fuse PML staining, none of these mutants was able to disrupt PML bodies as efficiently as the

wild-type protein (Fig 3C and S1 Fig). For example, IE1cc172-176 induced disruption of PML

bodies in <20% of cells, while diffuse PML staining was observed in>95% of cells expressing

wild-type IE1. IE1cc258-263 failed to disrupt PML bodies in all cells examined.

While IE1 exhibits largely pan-nuclear staining in interphase cells, most of the protein is

found associated with condensed chromatin in mitotic cells [48, 59, 61, 92, 93]. Immunofluo-

rescence analyses of mitotic cells confirmed that all IE1 mutants except for IE1cc258-263,

cc478-481 and cc486-490 exhibited association with mitotic chromatin (Fig 4). IE1cc258-263

appears to be generally inactive for all examined activities, whereas IE1cc478-481 and cc486-

490 affect the NBM (amino acids 479–488) and are therefore predicted to be specifically
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Fig 2. Expression of clustered charge-to-alanine IE1 mutants. (A) TetR cells without (w/o) or with inducible expression of the indicated HA-tagged wild-type

(wt) or clustered charge mutant IE1 proteins were treated with dox for 96 h. Whole cell protein extracts were prepared and analyzed by immunoblotting for IE1

(mouse anti-HA) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). (B) TetR cells without (w/o) or with inducible expression of the indicated HA-

tagged wild-type (wt) or clustered charge mutant IE1 proteins were treated with dox for 96 h, and IE1 mRNA levels were determined by RT-qPCR. Results were

normalized to TUBB, and means and standard deviations of three experiments are shown in comparison to wt cells (set to 1). Lines represent relative levels of

human immunodeficiency virus type 1 (HIV-1) group-specific antigen DNA associated with cellular genomic DNA, determined by qPCR and normalized to

cellular ribonuclease P RNA component H1 (RPPH1).

https://doi.org/10.1371/journal.ppat.1008537.g002
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defective for chromatin association [92]. The physical interaction between IE1 and PML is

reflected by co-localization of the two proteins at mitotic chromatin [48, 73, 94, 95]. All

mutants exhibiting wild-type activity for targeting to and disrupting PML bodies co-localized

with PML at mitotic chromatin, except for the two NBM mutants (IE1cc478-481, cc486-490)

(Fig 4). Conversely, no co-staining at condensed chromatin was observed between PML and

IE1 mutants highly defective in PML body targeting (IE1cc134-136, cc161-165, cc172-176,

cc258-263, cc286-292, cc307-310, cc318-319). In the presence of these IE1 mutants, or in the

absence of IE1 proteins, PML formed complexes referred to as MAPPs across the mitotic cells

(reviewed in [96, 97]). These complexes were also observed in cells expressing IE2, but not

when wild-type IE1 was expressed.

These experiments identify residues in the IE1 core domain required for compromising the

integrity or preventing the formation of PML complexes during interphase and mitosis by

adversely affecting IE1 levels, PML interaction or both.

IE1cc172-176 encodes a stable protein selectively defective for physical and

functional interaction with PML

The immunofluorescence experiments described above identified eight IE1 mutant proteins

(IE1cc112-114, cc134-138, cc161-165, cc172-176, cc258-263, cc286-292, cc307-310, cc318-319)

that fail to co-localize with PML and are severely defective for PML body disruption as well as

inhibition of MAPP formation. However, only IE1cc172-176 produced normal protein levels

(Fig 2A) suggesting that the other seven mutations may impose general rather than PML-spe-

cific functional defects on IE1. Accordingly, only IE1cc172-176 but neither of the other

mutants with PML-related phenotypes were comparable to the wild-type protein in regulating

STAT signaling. This conclusion was drawn based on the induction of STAT1- and inhibition

of STAT2- or STAT3-stimulated host genes (S2 Fig).

To further characterize the IE1cc172-176 mutant, we compared this protein to previously

published IE1 mutants including IE1dl410-420, L174P, L130G/I132G/L133G (also known as

YL3) and Y315G/V316G/L317G (also known as YL4). IE1dl410-420 lacks 11 amino acids

from the ‘acidic domain’ that encompass the STAT binding motif, and is selectively inactive

for regulating IFN- and IL6-type signaling [52]. This deletion was also combined in a double

mutant with IE1cc172-176 (IE1cc172-176/dl410-420). The IE1 L174P core domain mutant is

broadly defective for all tested functions including PML binding and co-localization, inhibi-

tion of PML SUMOylation, PML body disruption and inhibition of PML-mediated transcrip-

tional repression [34, 56, 77, 83]. The core domain mutants IE1 L130G/I132G/L133G and

Y315G/V316G/L317G have both been shown to be defective in PML co-localization, PML

body disruption, inhibition of PML SUMOylation and functional complementation of infected

cell protein 0 (ICP0), a herpes simplex virus 1 protein that shares functional similarities with

IE1 [98, 99]. In addition, the core domain mutant IE1dl291-320 was included in the some of

Fig 3. Co-localization with PML and disruption of PML bodies by wild-type and mutant IE1. (A, B) MRC-5 cells were transfected with pCMV.TetO-

derived plasmids expressing only the HA tag (w/o) or HA-tagged forms of the indicated wild-type (wt) and clustered charge mutant IE1 proteins. Indirect

immunofluorescence staining was performed using mouse anti-HA and rabbit anti-PML combined with goat anti-mouse Alexa Fluor 488 and goat anti-

rabbit Alexa Fluor 594 antibodies. Images from interphase cells showing the typical localization of IE1 and PML are presented along with merge images

(Leica DMRX microscope, 63× objective). (C) TetR (w/o) and TetR-IE1 cells expressing the indicated wild-type (wt) or clustered charge mutant IE1

proteins were treated with dox for 24 h. Indirect immunofluorescence staining was performed using mouse anti-HA (IE1) and rabbit anti-PML combined

with goat anti-mouse Alexa Fluor 488 and goat anti-rabbit Alexa Fluor 594 antibodies. 40,6-diamidino-2-phenylindole (DAPI) was used to stain DNA.

Merge images were taken using a Keyence BZ-9000 microscope (40× objective). Representative images are shown in S1 Fig. The percentage of cells

exhibiting predominantly disrupted or intact PML bodies was determined from at least two fields of view (>100 cells) based on manual inspection aided by

ImageJ software (National Institutes of Health) [134].

https://doi.org/10.1371/journal.ppat.1008537.g003
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the assays. IE1dl291-320 is generally defective in both PML- and STAT-related functions (S3

Fig) [34, 73].

Immunofluorescence microscopy confirmed that all tested IE1 mutants localized to the

nucleus but only IE1dl410-420 was able to disrupt PML bodies like the wild-type protein (Fig

5A and S3C Fig). We further observed a less efficient reduction in high molecular weight PML

species compared to wild-type IE1 in all mutants other than IE1dl410-420 (Fig 5B). Finally,

binding to PML above background was exclusively observed for the wild-type and IE1dl410-420

proteins, but for none of the other mutants (Fig 5C). Out of all mutants defective in these assays,

only IE1cc172-176 and cc172-176/dl410-420 were present at levels comparable to the wild-type

protein, while the levels of IE1 L174P, L130G/I132G/L133G and Y315G/V316G/L317G were

substantially lower (Fig 5C). Relative comparison of metabolic stability by temporally controlled

IE1 expression further demonstrated that all tested mutants except for IE1cc172-176 exhibit

markedly accelerated turnover compared to the wild-type protein (S4 Fig).

To our knowledge, IE1cc172-176 is the first mutant suited to provide specific information

about the contribution of PML-related activities to IE1 function and hCMV replication, as it

fails to interact with PML but produces a stable protein fully active for other functions. We

therefore focused our further analyses on the phenotype of IE1cc172-176.

IE1 can undergo mixed SUMO chain formation and is SUMOylated at

nucleosomes independent of PML binding

It has been established that IE1 can undergo post-translational modification by covalent

attachment of a single SUMO1 or SUMO3 moiety to K450 [53–58, 83, 100, 101]. Furthermore,

a recent report concluded that PML acts as an E3 ligase for IE1 SUMOylation [58]. Thus, we

expected that IE1cc172-176 would exhibit reduced SUMOylation relative to the wild-type pro-

tein. However, increased levels of high molecular weight forms most likely corresponding to

mono-SUMOylated proteins were detected for IE1cc172-176 and cc172-176/dl410-420 com-

pared to wild-type IE1 (Fig 5B). Further analysis revealed that IE1cc172-176 and cc172-176/

dl410-420 are not only hyper-modified by SUMO monomers, but also form polymeric chains

that include SUMO1 and SUMO2 (Fig 5C). Hyper-SUMOylation appeared to result specifi-

cally from lack of PML binding, since it was not observed in IE1 proteins other than those car-

rying the cc172-176 mutation (Figs 5B, 5C and 6A). As expected, any detectable SUMO

conjugation to IE1 was abolished when K450 was replaced by arginine in either a single

mutant (IE1 K450R) or a double mutant (IE1cc172-176/K450R) (Fig 6A). However, unexpect-

edly, proteins lacking the CTD (IE1dl476-491, cc172-176/dl476-491) required for nucleosome

binding turned out to be SUMOylation-deficient as well. Consistent with a link between chro-

matin targeting and SUMO modification, IE1dl476-491 exhibited reduced localization to

chromatin, lack of PML binding (IE1cc172-176) resulted in enhanced chromatin association,

and an intermediate phenotype was observed for a double mutant (IE1cc172-176/dl476-491).

SUMOylated forms of IE1 were detected across all nuclear compartments including nucleo-

plasm, chromatin and nuclear matrix (Fig 6B).

These results reveal that SUMOylation of IE1 is nucleosome-based, occurs independent of

PML binding and can involve mixed polymeric chains.

Fig 4. Recruitment of PML to mitotic chromatin and inhibition of MAPP formation by wild-type and mutant IE1. TetR (w/o), TetR-IE2

and TetR-IE1 cells expressing the indicated wild-type (wt) or clustered charge mutant IE1 proteins were treated with dox for 24 h. Indirect

immunofluorescence staining was performed using mouse anti-HA and rabbit anti-PML combined with goat anti-mouse Alexa Fluor 488 and

goat anti-rabbit Alexa Fluor 594 antibodies. DAPI was used to stain DNA. Images from mitotic cells showing the typical localization of IE1, IE2

and PML relative to DNA are presented along with merge images (Keyence BZ-9000 microscope, 100× objective).

https://doi.org/10.1371/journal.ppat.1008537.g004
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Fig 5. Lack of PML interaction and hyper-SUMOylation of IE1cc172-176. (A) TetOne cells expressing firefly luciferase and TetOne-

IE1 cells expressing the indicated HA-tagged wild-type (wt) or mutant IE1 proteins were treated with dox for 24 h. Indirect

immunofluorescence staining was performed using mouse anti-HA (IE1) and rabbit anti-PML combined with goat anti-mouse Alexa

Fluor 594 and goat anti-rabbit Alexa Fluor 488 antibodies. DAPI was used to stain DNA. Images from interphase cells showing the

typical localization of IE1 and PML relative to DNA are presented along with merge images (DeltaVision Restoration Microscope

System, 100× objective). (B) TetOne cells expressing firefly luciferase and TetOne-IE1 cells expressing the indicated HA-tagged wild-type

(wt) or mutant IE1 proteins were treated with dox for 72 h. Whole cell extracts were prepared in buffer (pH 7.2) with NEM and analyzed

by immunoblotting for PML, IE1 (mouse anti-HA) and GAPDH. (C) 293T cells were co-transfected with plasmids encoding PML and

firefly luciferase or the indicated HA-tagged wild-type (wt) or mutant IE1 proteins. Cells were fixed with formaldehyde at 48 h post

transfection, lysed in buffer (pH 7.2) with NEM and used for immunoprecipitation with anti-HA magnetic beads. Samples of lysates and

immunoprecipitates (IP: HA) were analyzed by immunoblotting for PML, IE1 (mouse anti-IE1/1B12), SUMO1 and SUMO2.

https://doi.org/10.1371/journal.ppat.1008537.g005
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IE1 targets PML and Sp100 via distinct activities

Besides PML and SUMO1-3, Sp100A is another constituent of PML bodies targeted by IE1. It

has been proposed that IE1 binds to Sp100A, interferes with Sp100A SUMOylation and targets

the protein for proteasomal degradation [51, 79, 102]. It is unclear whether the effects IE1

exerts on PML and Sp100A are linked or not. We performed immunofluorescence analyses to

monitor how wild-type and mutant IE1 proteins affect the localization and accumulation of

Sp100. Sp100 was predominantly identified as nuclear dots both in the absence of IE1 as well

as in the presence of mutants that accumulate to low levels and are thought to be broadly

defective (IE1 L174P, L130G/I132G/L133G or Y315G/V316G/L317G). In contrast, little Sp100

was detected when wild-type IE1, IE1cc172-176, dl410-420 or cc172-176/dl410-420 were

expressed (Fig 7A). Results consistent with these observations were obtained from immuno-

blotting. Reduced levels of Sp100 were detected in cells expressing wild-type IE1, IE1cc172-

176, dl410-420 or cc172-176/dl410-420, but not in those expressing IE1 L174P, L130G/I132G/

L133G or Y315G/V316G/L317G. The reduction in Sp100 levels appeared to affect preferen-

tially higher molecular weight (SUMOylated) forms of Sp100, most likely both Sp100A and

Sp100B (Fig 7B).

These results indicate that Sp100 targeting by IE1 is a distinct activity unrelated to PML or

STAT binding. Thus, IE1 targets the two major structural constituents of PML bodies via phys-

ically separable and functionally distinct mechanisms.

Fig 6. Link between chromatin association and SUMOylation of IE1. (A) TetOne cells expressing firefly luciferase

and TetOne-IE1 cells expressing the indicated HA-tagged wild-type (wt) or mutant IE1 proteins were treated with dox

for 48 h. Protein extracts prepared in buffer (pH 8.0) with IAA and NEM were used for immunoprecipitation with

anti-HA magnetic beads, and samples were analyzed by immunoblotting for IE1 (mouse anti-HA), SUMO1 and

SUMO2. (B) TetR-IE1 cells expressing the indicated HA-tagged wild-type (wt) or mutant IE1 proteins were treated

with dox for 48 h. Cell nuclei were isolated and fractionated into nucleoplasm, chromatin and matrix in buffers (pH

6.8–7.5) with IAA and NEM. Samples were analyzed by immunoblotting for IE1 (mouse anti-HA) and histone H3, and

by Coomassie Brilliant Blue staining for total protein.

https://doi.org/10.1371/journal.ppat.1008537.g006
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Fig 7. Distinction between Sp100 degradation and PML interaction by IE1. (A) TetR (w/o) and TetR-IE1 cells

expressing the indicated HA-tagged wild-type (wt) or mutant IE1 proteins were treated with dox for 24 h. Indirect

immunofluorescence staining was performed using mouse anti-HA (IE1) and rabbit anti-Sp100 combined with goat

anti-mouse Alexa Fluor 488 and goat anti-rabbit Alexa Fluor 594 antibodies. DAPI was used to stain DNA. Images

from interphase cells showing the typical staining pattern of IE1 and Sp100 relative to DNA are presented along with

merge images (Keyence BZ-9000 microscope, 100× objective). (B) TetR cells expressing firefly luciferase and TetR-IE1

cells expressing the indicated HA-tagged wild-type (wt) or mutant IE1 proteins were treated with dox for 48 h. Whole

cell extracts prepared in buffer (pH 8.0) with NEM were subjected to immunoblotting for Sp100, IE1 (mouse anti-HA)

and GAPDH.

https://doi.org/10.1371/journal.ppat.1008537.g007
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PML targeting by IE1 is dispensable for hCMV replication

The ability to counteract PML has been considered to be crucial for IE1 function and hCMV

replication in human fibroblasts, especially at low MOIs. As pointed out above, this perception

is largely based on the analysis of metabolically unstable and presumably misfolded mutant

proteins including IE1 L174P. To revisit the impact of PML targeting on hCMV replication,

TetR-IE1 cell lines expressing wild-type or mutant IE1 and IE1-negative control cells were

infected at two different MOIs (0.001 or 0.5 PFU/cell) with IE1-deficient hCMV (gTBdlIE1)

expressing the enhanced green fluorescent protein (EGFP). Infection was monitored by quan-

tifying extracellular viral DNA (Fig 8A) and imaging fluorescence emission from EGFP (Fig

8B). As expected, little (MOI = 0.5) or no (MOI = 0.001) replication by gTBdlIE1 was observed

in the absence of IE1, but replication was boosted by up to five logs in the presence of wild-

type IE1. IE1 L174P, L130G/I132G/L133G or Y315G/V316G/L317G failed to demonstrate any

compensatory effect on gTBdlIE1 replication at either MOI consistent with the low protein

Fig 8. Compensation by IE1cc172-176 for wild-type IE1 in hCMV replication. (A) TetOne cells (w/o) and TetOne-IE1 cells expressing

the indicated HA-tagged wild-type (wt) or mutant IE1 proteins were infected with gTBdlIE1 at an MOI of 0.001 PFU/cell (left panel) or 0.5

PFU/cell (right panel). Every 48 h, half of the culture media was replaced and viral replication was assessed by qPCR-based relative

quantification of hCMV DNA from culture supernatants with primers specific for UL86. Data are presented as means and standard

deviations from three independent infections. (B) TetOne cells (w/o) and TetOne-IE1 cells expressing the indicated HA-tagged wild-type

(wt) or mutant IE1 proteins were infected with gTBdlIE1 at an MOI of 0.5 PFU/cell as described in (A), and viral replication was assessed at

day 8 post infection by fluorescence microscopy (EVOS FL Cell Imaging System, 4× objective).

https://doi.org/10.1371/journal.ppat.1008537.g008
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levels and broad functional defects observed with these mutants. In contrast, attenuated

mutant virus replication was rescued to varying degrees by IE1cc172-176, dl410-420 or cc172-

176/dl410-420. In fact, gTBdlIE1 replication only modestly differed between cells expressing

wild-type IE1 or IE1cc172-176 with roughly one log difference at the lower and almost no dif-

ference at the higher MOI. The replication phenotypes linked to lack of PML binding

(IE1cc172-176) or STAT binding (IE1dl410-420) appeared to be additive in the double mutant

(IE1cc172-176/dl410-420). In contrast to the IE1-PML interaction, the IE1-STAT interaction

contributed more significantly to viral replication at the higher rather than the lower MOI.

The MOI-dependent phenotype of the IE1dl410-420 mutant may result from increased IFN

secretion when a larger number of cells are infected.

These findings indicate that the IE1-PML interaction aids hCMV replication to some extent

when cells are infected by single virus particles. However, PML targeting is neither crucial for

IE1 function nor for hCMV replication in human fibroblasts, not even at low MOIs.

PML targeting by IE1 is linked to activation rather than inhibition of

antiviral gene expression

Previous work established that IE1 inhibits type I IFN signaling and subsequent induction of

ISGs by targeting STAT2 [45, 53, 69]. More recent reports suggested that PML interaction con-

tributes to inhibition of type I IFN signaling and ISG induction by IE1 as well [34, 77]. How-

ever, the latter studies relied on IE1 L174P and mutants with large deletions (IE1 1–382,

IE1dl291-320) known or expected to produce proteins that are metabolically unstable, globally

misfolded, broadly inactive or all of the above (S4 Fig) [34, 49, 50, 77].

Our initial analysis of IE1cc172-176 in TetR-IE1 cells revealed that this mutant was at least

equally efficient as the wild-type protein in inhibiting the induction of OAS1, a prototypical

ISG, triggered by IFNα (S1 Fig). To expand on this observation, fibroblasts were induced to

express wild-type IE1, IE1cc172-176, dl410-420, cc172-176/dl410-420 or luciferase (control)

and infected with gTBdlIE1 for six hours (Fig 9). IE1cc172-176 expression resulted in signifi-

cantly reduced induction of transcripts from the IFNB1, IFNL1, CCL5 and TNF genes relative

to the wild-type protein following infection. Conversely, expression of IE1dl410-420 led to a

marked increase in infection-related induction of the IFNB1, IFNL1, CCL5, TNF and PML

genes. This increase was greatly diminished when PML and STAT binding was jointly abol-

ished (IE1cc172-176/dl410-420).

To investigate these findings further, mutant hCMV strains expressing IE1cc172-176

(TBIE1cc172-176 and gTBIE1cc172-176) were generated and compared with corresponding

wild-type and revertant viruses. As expected, IE1cc172-176 expressed from the mutant virus

did not co-localize with PML, neither at PML bodies nor at mitotic chromatin (Fig 10A), and

both TBIE1cc172-176 and gTBIE1cc172-176 were severely defective for PML body disruption

(S5 Fig). Consistent with the results from our trans-complementation assays, the replication

kinetics of gTBIE1cc172-176 were slightly delayed at low MOI (0.005 or 0.5 PFU/cell) com-

pared to the wild-type and revertant viruses, but only by a factor of less than three (Fig 10B

and S6 Fig). At a higher MOI (1 PFU/cell), the mutation had no significant effect on viral repli-

cation (Fig 10B). We subsequently compared the kinetics of transcript accumulation related to

IFNB1, the major type I IFN expressed in fibroblasts, and OAS1 in cells infected with

gTBIE1cc172-176 or a revertant virus for six to 24 hours. Again, IFNB1 and OAS1 mRNA lev-

els were lower in the mutant compared to the revertant virus infection at several time points

(Fig 10C).

These results confirm that the interaction between IE1 and PML is dispensable for hCMV

replication and demonstrate that efficient inhibition of ISG expression by IE1 does not depend
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on this interaction. Instead, the findings suggest that the IE1-PML interaction is linked to

enhanced rather than reduced expression of cytokines and ISGs. These observations are con-

sistent with the idea that the disruption of PML bodies by IE1 contributes to the antiviral and

proinflammatory response during hCMV infection.

Discussion

PML bodies have fascinated cell biologists and molecular virologists due to their beauty and

apparent involvement in many cellular processes including viral infection. Major evidence for

a role of PML bodies and their proteins in the cellular defense against viruses has come from

the identification and study of viral antagonists. The hCMV IE1 protein is one of the most

prominent antagonists of PML bodies and interacts with several constituents of these organ-

elles including isoforms of SUMO, Sp100 and PML. Binding to PML and disruption of PML

bodies have been considered pivotal to IE1 function and hCMV replication, at least upon low

MOI infection. However, this perception has relied largely on the analysis of mutant proteins

and viruses affecting the IE1 core domain. Given the disruptive and destabilizing nature of

many published IE1 mutants and the lack of mutants specifically targeting PML interaction,

we conducted systematic clustered charge-to-alanine scanning along the viral protein. To our

knowledge, this is a novel approach that has not been pursued before to explore IE1 function.

Phenotypic screening of the mutant library resulted in the identification of IE1cc172-176, a

stable protein selectively inactive for physical and functional interaction with PML. Further

investigation of IE1cc172-176 led to several unexpected new findings relevant to PML func-

tion, IE1 activity and hCMV replication with general implications for mechanisms of antiviral

defense including innate immune activation.

Deletions in the putatively disordered N-terminal domain (amino acids 1–24), encoded by

exon 2 of the major immediate gene, did not adversely affect IE1 protein accumulation in a
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https://doi.org/10.1371/journal.ppat.1008537.g009
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with hCMV TBwt or TBIE1cc172-176 at an MOI of 0.5 PFU/cell for 24 h. Indirect immunofluorescence staining was performed using

mouse anti-IE1 and rabbit anti-PML combined with goat anti-mouse Alexa Fluor 488 and goat anti-rabbit Alexa Fluor 594 antibodies.

DAPI was used to stain DNA. Images from interphase (left) or mitotic (right) cells showing the typical localization of IE1 and PML relative
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previous study [46]. Likewise, the clustered charge mutants IE1cc6-8 and IE1cc21-26 produced

slightly higher rather than lower protein levels (Fig 2A). Although the N-terminal domain con-

tains a nuclear localization signal (NLS) [46, 48], all IE1 mutants resembled the wild-type pro-

tein in localizing to the nucleus (Fig 3A and 3B). However, nuclear accumulation of IE1cc21-

26 but not IE1cc6-8 was less efficient compared to wild-type IE1. Three clustered charge muta-

tions (IE1cc326-327, cc332-334, cc340-342) coincide with a second NLS reported between

amino acids 326 and 342 in IE1 [47]. Of the three mutants, only IE1cc332-334 showed slightly

less efficient nuclear localization compared to the wild-type protein. These observations sug-

gest that basic residues K21, R24 and K332 may be critical for nuclear import of IE1. More-

over, the NBM we previously defined [103] may represent a nuclear retention signal adding to

what appear to be multiple mechanisms of IE1 nuclear localization. Many functional analyses

of the IE1 core domain (amino acids 25–378), encoded by exons 3 and 4 of the major immedi-

ate-early gene, have relied on mutants with relatively large deletions including IE1dl291-320

[46, 48, 56, 73, 103–105]. Other studies of this domain have involved the single but disruptive

amino acid substitution L174P [56, 77, 83, 84, 105]. In general, these mutant proteins proved

to be metabolically unstable and broadly non-functional, most likely due to global misfolding.

For example, the L174P mutation disrupts the structural integrity of IE1 and reduces the esti-

mated protein half-life from >30 to only 5 hours [77]. Accordingly, IE1 L174P exhibited

reduced protein accumulation, accelerated turnover and broad loss of function in our study

(Figs 5, 7 and 8 and S4 Fig). Even more subtle mutations in the IE1 core domain, such as the

L130G/I132G/L133G and Y315G/V316G/L317G substitutions described earlier [98, 99] and

examined in this study, produced proteins that behave similar to IE1 L174P in terms of accu-

mulation, stability and function (Figs 5, 7 and 8 and S4 Fig). Likewise, most of our own muta-

tions in the IE1 core domain were linked to diminished protein levels compared to the wild-

type, although clustered charge-to-alanine substitutions are not expected to disrupt overall

protein structure [85–90]. With one notable exception (IE1cc172-176), all clustered charge

mutations introduced between residues 112 and 319 reduced IE1 protein levels to some extent.

IE1cc112-114 and IE1cc134-138 affecting central or distal parts of predicted Helix3, respec-

tively, accumulated to substantially lower levels (Figs 1 and 2A). This finding is in line with

previous reports showing that deletion of amino acids 1 to 85 or substitution of residues

between positions 130 and 133 (IE1 L130G/I132G/L133G), both within predicted Helix3, lead

to diminished protein accumulation [46, 98, 99]. Likewise, clustered charge mutations affect-

ing predicted Helix5 (IE1cc161-165) as well as predicted Helix8 and Helix9 between residues

258 and 319, including Y315G/V316G/L317G, came with profoundly reduced protein levels

(Figs 1 and 2A). Our previous mutational analyses of IE1 have focused on the presumably dis-

ordered ‘acidic domain’ (amino acids 379–475), including the SBM and SUMOylation motif,

and on the CTD/NBM (amino acids 476–491) [45, 51, 52, 55, 92]. Small mutations in this C-

terminal quarter of IE1 generally produce stable proteins. Consequently, normal protein levels

were observed for all clustered charge IE1 mutants between amino acids 379 and 490 (Fig 2A).

In fact, none of the substitutions downstream of residue 325 adversely affected protein

to DNA are presented along with merge images (Keyence BZ-9000 microscope, 100× objective). (B) MRC-5 cells were infected with gTBwt,

gTBIE1cc172-176 or gTBrvIE1cc172-1176 at an MOI of 1 PFU/cell (left) or 0.005 PFU/cell (right). Virus replication was monitored every 4

days by measuring fluorescence intensity in a Tecan Infinite M200 PRO microplate reader. Mean values and standard deviations of three

(gTBwt, gTBrvIE1cc172-176) or six (gTBIE1cc172-176) infections are shown. (C) MRC-5 cells were infected with gTBrvIE1cc172-176 or

gTBIE1cc172-176 at an MOI of 2 PFUs/cell. At the indicated times post infection, relative mRNA levels were determined by RT-qPCR for

the IFNB1 and OAS1 genes. Results were normalized to TUBB, and means and standard deviations of three biological and two technical

replicates are shown in comparison to cells infected with gTBrvIE1cc172-176 for 6 h (set to 1). Statistical significance was assessed in Excel

using a two-tailed, unpaired T-test; ns, not significant; ��, p< 0.01; ���, p< 0.001.

https://doi.org/10.1371/journal.ppat.1008537.g010
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accumulation except for IE1cc340-342, suggesting that mutations in predicted Helix11 but not

Helix10 may be tolerated (Figs 1 and 2A).

The low protein levels observed for many of the IE1 core domain mutants may partly relate

to defects in promoter autoregulation or mRNA stability (Fig 2B). Some of the mutations,

especially those in Helix8 and Helix9, might interfere with homo-dimerization potentially

resulting in shortened protein half-lives in case IE1 dimers are more stable than monomers

[50]. However, many mutations likely cause disruption to the overall fold as illustrated by the

three-dimensional structure of the hCMV IE1 core modelled on the orthologous domain of

rhCMV IE1 [49, 106]. The 11 α-helices and other elements of the IE1 core domain are

arranged in coiled-coil bundles forming one single structural unit. Consequently, many muta-

tions targeting the core domain will generate misalignment of secondary structure elements

disrupting the fold. For example, L174 is located in the hydrophobic core within predicted

Helix5. This residue stabilizes the fold between Helix5, Helix9 and Helix10. Mutation to

proline is predicted to disrupt the stabilizing interactions and to induce helix redirection

explaining the broad functional defects linked to IE1 L174P. A similar situation applies to

IE1 L130G/I132G/L133G and Y315G/V316G/L317G. In contrast, the charged residues

(amino acids 172–173 and 175–176) replaced in IE1cc172-176 are expected to be on the pro-

tein surface and unlikely to participate in interactions between helices (Fig 11). Consequently,
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helices (H1-H11) including H5 involved in PML interaction (green) and CTD. Residues relevant to mutations examined in this study (blue and red), binding

sites for cellular proteins (PML, STAT2/STAT3, SUMO1-3, H2A-H2B) as well as two NLS and a putative nuclear retention signal (NRS) are shown alongside

these structural features and select amino acid positions. The segment of the IE1 core domain (H3-H9/H10) proposed to be particularly sensitive to protein
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IE1cc172-176 produces a metabolically stable and broadly active protein (Figs 2–10, S1 Fig

and S4 Fig).

PML-related activities are generally preserved in most C-terminal and some N-terminal

IE1 mutants, but not in mutants involving the core domain [48, 73, 77, 103]. Although the

IE1-PML interaction has been proposed to involve an extended interface across the core

domain [49, 106], our study identifies predicted Helix5 comprising 18 residues (amino acids

164–181, REMWMACIKELHDVSKGA) to be a critical structural element in the IE1-PML

interaction. To our knowledge, IE1cc172-176 is the only existing mutant that specifically

probes the interaction with PML. This mutant accumulates to normal steady-state levels (Fig

2A), localizes to the nucleus (Figs 3A, 3B, 5, 6B, 7A and 10A and S2 Fig), associates with chro-

matin (Figs 4, 6B and 10A), undergoes SUMOylation (Figs 5B, 5C, 6 and 7B) and retains the

ability to regulate STAT1-, STAT2- and STAT3-dependent gene expression differentially (S1

Fig). However, this mutant does not co-localize with PML, neither at PML bodies during inter-

phase nor at MAPPs and chromatin during mitosis (Figs 3A, 4 and 10A). Moreover, IE1cc172-

176 neither specifically binds to PML nor significantly inhibits PML SUMOylation (Fig 5B

and 5C). These observations strongly suggest that IE1cc172-176 lost any affinity for PML and

consequently lacks all PML-related functions. This conclusion seems to clash with the fact that

IE1cc172-176 is largely but not completely inactive for PML body disruption (Fig 3 and S2

Fig). Rather than implying residual PML binding by IE1cc172-176 below the detection limit of

our assays, we propose that IE1 employs at least two mechanisms for disrupting PML bodies.

The major mechanism depends on PML binding while some PML body disruption by IE1

does not seem to require this interaction. Whether degradation of Sp100 or more indirect

effects linked to IE1 expression result in the disruption of PML bodies in a subset of cells

remains to be determined.

Given the key role ascribed to PML in antiviral intrinsic immunity, it comes as a surprise

that replication of an IE1cc172-176 mutant is only slightly attenuated relative to the wild-type

virus (Figs 8 and 10B and S6 Fig). While the lack of mutant virus attenuation at MOIs�1 may

be due to saturation of the PML-based intrinsic repression system [9, 107], the minor replica-

tion defects at MOIs�0.5 are less readily explained. We propose that this finding reflects

redundant mechanisms employed by hCMV in dealing with PML bodies and their restriction

factors. In fact, a number of hCMV proteins other than IE1 including IE2, LUNA, pUL3,

pUL35, pUL80a, pUL82 (pp71), pUL83 (pp65), pUL97 and pUS32 have been shown to target

PML bodies [75, 108–117]. Having said that, our findings suggest that interactions with STAT

family members via the SBM contribute more significantly to IE1 function during productive

hCMV infection than PML interaction, especially at higher MOIs. This conclusion aligns with

the idea that the IE1-STAT2 interaction promotes hCMV replication by conferring resistance

to IFNα and IFNβ [45, 53, 69].

Besides mediating intrinsic immunity, PML has been implicated in activating innate immu-

nity (reviewed in [29, 30]). Certain nuclear PML isoforms are positive regulators of IFN syn-

thesis, and PML may directly promote induction of some ISGs [29, 31–34]. Moreover, it has

been proposed that IE1 inhibits ISG activation in part by interacting with PML [34, 77]. We

therefore expected that IE1cc172-176 would be deficient in inhibiting ISG expression com-

pared to wild-type IE1. However, we observed lower instead of higher levels of IFN, TNF and

ISG expression with the mutant relative to the wild-type protein upon hCMV infection (Figs 9

and 10). This finding is consistent with the idea that disruption of PML bodies is linked to acti-

vation rather than inhibition of antiviral gene expression. Activation of antiviral genes follow-

ing disruption of PML bodies might be mediated by PML isoforms redistributed from the

organelles into the nucleoplasm. Alternatively, viral genomes released from repression

imposed by PML bodies and physically liberated from these organelles might trigger the
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activation of nuclear DNA sensors such as IFN-inducible protein 16 (IFI16) or cyclic

GMP-AMP synthase (cGAS) to induce an antiviral response. However, these are merely

speculations at this point that need to be experimentally tested. Nonetheless, we propose that

disruption of PML bodies may link relief from intrinsic immunity to induction of innate

immunity.

IE1 has been identified in physical complexes with not only PML [73] but with at least four

other constituent proteins of PML bodies including Daxx [80], Sp100A [79], SUMO1 [56] and

SUMO3 [58]. Our results demonstrate that IE1 targets Sp100 irrespective of PML binding (Fig

7). Thus, proteasomal degradation of Sp100 is unlikely a consequence of PML body disruption

but rather presents a distinct IE1 activity that deserves further attention. Several groups have

reported that a proportion of IE1 is modified at residue K450 by single moieties of SUMO1 or

SUMO3, two of five known SUMO paralogs [53–58, 83, 94, 100]. We added SUMO2 to this

list (Figs 5C and 6A). SUMO2 and SUMO3 share around 95% sequence identity and are often

referred to jointly as SUMO2/3. SUMO2/3 forms poly-SUMO chains since residue K11 con-

fers conjugation to itself or other SUMO paralogs. SUMO1, which exhibits only around 50%

sequence identity with SUMO2/3, lacks K11 and is therefore conjugated only as a monomer or

as a terminator at the end of a poly-SUMO chain [16, 118]. Based on our immunoblotting

results (Figs 5C and 6A), we propose that mixed polymeric chains of SUMO2/3 terminated by

SUMO1 form at residue K450 of IE1cc172-176. Previous work has shown that SUMOylation

of IE1 interferes with binding to STAT2 [53]. It is tempting to speculate about differential

effects mono- and poly-SUMOylation may have on IE1 protein interactions beyond STAT2.

Although we cannot rule out that poly-SUMOylation is a feature specific to IE1cc172-176, the

chains likely exist on the wild-type protein as well but exceed the limit of detection only in the

hyper-SUMOylated mutant. Hyper-SUMOylation may result from a difference in subnuclear

localization between IE1cc172-176 and the wild-type protein. IE1 usually localizes across sev-

eral nuclear compartments including nucleoplasm, matrix and chromatin (Fig 6B). A dynamic

equilibrium likely exists between the nuclear locations of IE1, which may in part be deter-

mined by IE1-PML complex formation in the nucleoplasm and nucleosome binding at chro-

matin. In this scenario, chromatin association by IE1 would increase on disruption of PML

binding. This prediction is consistent with the results from our subnuclear fractionation analy-

sis demonstrating decreased nucleoplasmic and increased chromatin-associated localization of

IE1cc172-176 compared to wild-type IE1 (Fig 6B). In turn, increased chromatin association

correlates with enhanced SUMOylation and detection of SUMO chains on IE1cc172-176.

Conversely, IE1 exhibiting lack of nucleosome binding (IE1dl476-491) and decreased chroma-

tin association is not detectably SUMO-modified (Figs 5C and 6). These observations indicate

that SUMOylation of IE1 occurs mostly if not exclusively at nucleosomes. This conclusion is

consistent with previous findings suggesting that PML bodies are not the place of IE1 SUMOy-

lation [58] and imply a nucleosome-based E3 SUMO ligase for the viral protein. A previous

study concluded that PML serves as an E3 ligase for IE1 SUMOylation [58], and IE1 recruits

PML to chromatin (Figs 4 and 10A) [94, 95]. However, our findings challenge the idea that

PML is a major SUMO E3 ligase for IE1, since IE1cc172-176 exhibits increased rather than

decreased SUMOylation (Figs 5B, 5C, 6 and 7B). Thus, PIAS1 is a more likely SUMO E3 ligase

for IE1. PIAS1 has been shown to interact with IE1 and to enhance IE1 SUMOylation [57].

PIAS1 serves as a SUMO E3 ligase for numerous transcription factors and other chromatin-

associated proteins including high mobility group nucleosomal binding domain 2 (HMGN2)

[119]. SUMOylation by PIAS1 reduces the binding affinity of HMGN2 to nucleosome core

particles [119]. Given that both HMGN2 and IE1 target histones H2A-H2B on the nucleosome

surface, we are tempted to speculate that PIAS1-mediated SUMOylation might interfere with

chromatin association by the viral protein. In fact, our observation that SUMOylated IE1
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forms at nucleosomes but localizes throughout the nucleus (Fig 6B) implies a mechanism

releasing the viral protein from chromatin.

The findings presented in this study challenge predominant views about IE1, a pivotal viral

protein with a crucial function in hCMV replication and pathogenesis. Several of our conclu-

sions should also be more broadly relevant to cellular events beyond hCMV infection given

the versatile roles of PML and PML bodies in health and disease (reviewed in [120, 121]).

Materials and methods

Plasmids, mutagenesis and cloning

The eukaryotic expression and subcloning vector pCMV.TetO.HA-IE1 encodes wild-type

hCMV (Towne) IE1 linked to an N-terminal hemagglutinin (HA) epitope tag expressed from

a modified hCMV major immediate-early enhancer-promoter containing tetracycline opera-

tor (TetO) sequences [52]. Clustered charge-to-alanine scanning mutagenesis of the IE1

sequence in pCMV.TetO.HA-IE1 was performed using the QuikChange strategy with primers

listed in Table 1. QuikChange site-directed mutagenesis was also used to generate plasmids

pCMV.TetO.HA-IE1L174P, pCMV.TetO.HA-IE1L130G/I132G/L133G, pCMV.TetO.

HA-IE1Y315G/V316G/L317G and pCMV.TetO.HA-IE1K450R from template pCMV.TetO.

CMV.HA-IE1 as well as plasmid pCMV.TetO.HA-IE1cc172-176/K450R from template

pCMV.TetO.HA-IE1cc172-176. The negative control vector pCMV.TetO.HA-2×Stop-IE1 was

constructed by replacing the first two triplets of the IE1 coding sequence with stop codons as

described [52]. To generate pCMV.TetO.HA-IE2 encoding the hCMV 86-kDa IE2 protein

linked to an N-terminal HA tag, the IE2 cDNA was PCR-amplified from plasmid pCGN-IE2

[122] with oligonucleotide primers #809 and #918 (Table 1) and ligated to HindIII- and

EcoRI-digested pCMV.TetO.cIE1 [72]. For each new pCMV.TetO.HA-IE1 or pCMV.TetO.

HA-IE2 construct, the entire insert sequence was verified by Sanger sequencing using primers

listed in Table 1. The lentiviral plasmid pLKOneo.CMV.EGFPnlsTetR encoding the tetracy-

cline repressor (TetR) linked to a nuclear localization signal (nls) and EGFP [123] was kindly

provided by Roger Everett (University of Glasgow). The lentiviral vector pLKO.DCMV.TetO.

HA-IE1 expressing HA-tagged wild-type IE1 under positive control of the EGFPnlsTetR pro-

tein negatively regulated by dox has been described, as has been plasmid pLKO.DCMV.TetO.

HA-IE1dl410-420 encoding a STAT-binding deficient HA-IE1 deletion mutant [52]. Variants

of these plasmids encoding HA-tagged IE1 point mutants or HA-IE2 were constructed by

replacing the fragment released by NdeI and EcoRI digestion from plasmid pLKO.DCMV.

TetO.cIE1 [72] with the corresponding DCMV-HA-IE1/2 sequence of the pCMV.TetO sub-

cloning vectors described above. Plasmid pLKO.DCMV.TetO.HA-IE1cc172-176/dl410-420

encoding an HA-tagged IE1 double mutant deficient for both PML and STAT binding was

generated by inserting the BclI fragment of pLKO.DCMV.TetO.HA-IE1dl410-420 into plas-

mid pLKO.DCMV.TetO.HA-IE1cc172-176. The single-plasmid, lentiviral vector pLVX-Te-

tOne-Puro which encodes the dox-activated Tet-On 3G transactivator protein and places the

gene of interest under the tight control of a TRE3G promoter was obtained from Clontech

alongside control vector pLVX-TetOne-Puro-Luc for dox-inducible expression of firefly lucif-

erase. Recombinant pLVX-TetOne-Puro plasmids encoding HA-tagged IE1 proteins were

generated by PCR amplification of insert DNA from pLKO.DCMV.TetO-HA-IE1 plasmids

with oligonucleotide primers #1175 and 1176 and inserted into the EcoRI- and BamHI-

digested parental vector pLVX-TetOne-Puro. Plasmids pLVX-TetOne-Puro-HA-IE1 and

pLVX-TetOne-Puro-HA-IE1dl410-420 have been described [124]. To generate pLVX-Te-

tOne-Puro constructs encoding C-terminally truncated IE1 proteins lacking the CTD

(HA-IE1dl476-491 and HA-IE1cc172-176/dl476-491) oligonucleotide #1177 was used as

PLOS PATHOGENS PML targeting by hCMV IE1 revisited

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008537 May 4, 2020 23 / 40

https://doi.org/10.1371/journal.ppat.1008537


T
a

b
le

1
.

O
li

g
o

n
u

cl
eo

ti
d

es
u

se
d

in
th

is
st

u
d

y
.

#
S

eq
u

en
ce

(5
‘!

3
‘)

U
se

4
8

3
T

T
G

C
A

A
A

G
C

T
T

A
T

G
G

A
G

T
C

C
T

C
T

G
C

C
A

A
G

A
G

A
A

A
G

P
C

R
cl

o
n

in
g

IE
1

d
l2

9
1

-3
2

0

6
9

4
G

A
T

A
C

T
G

A
A

T
T

C
T

T
A

C
T

G
G

T
C

A
G

C
C

T
T

G
C

T
T

C
T

A
G

T
P

C
R

cl
o

n
in

g
IE

1
d

l2
9

1
-3

2
0

8
1

0
C

T
G

A
C

T
A

C
G

C
C

G
A

G
T

C
C

T
C

T
G

C
C

G
C

G
G

C
A

G
C

G
A

T
G

G
A

C
C

C
T

G
A

T
A

A
T

C
C

T
G

A
C

G
Q

u
ik

C
h

an
g

e
IE

1
cc

6
-8

8
1

1
C

G
T

C
A

G
G

A
T

T
A

T
C

A
G

G
G

T
C

C
A

T
C

G
C

T
G

C
C

G
C

G
G

C
A

G
A

G
G

A
C

T
C

G
G

C
G

T
A

G
T

C
A

G
Q

u
ik

C
h

an
g

e
IE

1
cc

6
-8

8
4

0
G

C
C

C
T

T
C

C
T

C
C

G
C

G
G

T
G

C
C

A
G

C
G

C
C

C
G

C
G

A
C

A
C

C
C

G
T

G
A

Q
u

ik
C

h
an

g
e

IE
1

cc
2

1
-2

6

8
4

1
T

C
A

C
G

G
G

T
G

T
C

G
C

G
G

G
C

G
C

T
G

G
C

A
C

C
G

C
G

G
A

G
G

A
A

G
G

G
C

Q
u

ik
C

h
an

g
e

IE
1

cc
2

1
-2

6

8
1

2
G

A
C

G
T

T
C

C
T

G
C

A
G

A
C

T
A

T
G

T
T

G
G

C
G

G
C

G
G

C
G

G
T

T
A

A
C

A
G

T
C

A
G

C
T

G
A

G
T

C
T

G
Q

u
ik

C
h

an
g

e
IE

1
cc

4
1

-4
3

8
1

3
C

A
G

A
C

T
C

A
G

C
T

G
A

C
T

G
T

T
A

A
C

C
G

C
C

G
C

C
G

C
C

A
A

C
A

T
A

G
T

C
T

G
C

A
G

G
A

A
C

G
T

C
Q

u
ik

C
h

an
g

e
IE

1
cc

4
1

-4
3

8
1

4
G

A
T

T
G

C
A

A
C

G
A

G
A

A
C

C
C

C
G

C
G

G
C

A
G

C
T

G
T

C
C

T
G

G
C

A
G

A
A

C
T

C
G

T
C

Q
u

ik
C

h
an

g
e

IE
1

cc
7

8
-8

0

8
1

5
G

A
C

G
A

G
T

T
C

T
G

C
C

A
G

G
A

C
A

G
C

T
G

C
C

G
C

G
G

G
G

T
T

C
T

C
G

T
T

G
C

A
A

T
C

Q
u

ik
C

h
an

g
e

IE
1

cc
7

8
-8

0

8
1

6
A

T
G

C
T

G
A

A
A

A
A

A
T

A
T

A
C

C
C

A
G

A
C

G
G

C
A

G
C

G
G

C
A

T
T

C
A

C
T

G
G

C
G

C
C

T
T

T
A

A
T

A
T

G
A

T
G

Q
u

ik
C

h
an

g
e

IE
1

cc
1

1
2

-1
1

4

8
1

7
C

A
T

C
A

T
A

T
T

A
A

A
G

G
C

G
C

C
A

G
T

G
A

A
T

G
C

C
G

C
T

G
C

C
G

T
C

T
G

G
G

T
A

T
A

T
T

T
T

T
T

C
A

G
C

A
T

Q
u

ik
C

h
an

g
e

IE
1

cc
1

1
2

-1
1

4

8
4

2
A

T
G

T
T

T
G

C
A

G
A

A
T

G
C

C
T

T
A

G
A

T
A

T
C

T
T

A
G

C
T

G
C

G
G

T
T

G
C

T
G

C
G

C
C

T
T

T
C

G
A

G
G

A
G

A
T

G
A

A
G

T
G

T
A

T
T

G
G

Q
u

ik
C

h
an

g
e

IE
1

cc
1

3
4

-1
3

8

8
4

3
C

C
A

A
T

A
C

A
C

T
T

C
A

T
C

T
C

C
T

C
G

A
A

A
G

G
C

G
C

A
G

C
A

A
C

C
G

C
A

G
C

T
A

A
G

A
T

A
T

C
T

A
A

G
G

C
A

T
T

C
T

G
C

A
A

A
C

A
T

Q
u

ik
C

h
an

g
e

IE
1

cc
1

3
4

-1
3

8

8
1

8
G

C
A

T
G

T
A

T
G

A
G

A
A

C
T

A
C

A
T

T
G

T
A

C
C

T
G

C
G

G
C

T
G

C
G

G
C

G
G

C
G

A
T

G
T

G
G

A
T

G
G

C
T

T
G

T
A

T
T

A
A

G
G

A
G

C
T

Q
u

ik
C

h
an

g
e

IE
1

cc
1

6
1

-1
6

5

8
1

9
A

G
C

T
C

C
T

T
A

A
T

A
C

A
A

G
C

C
A

T
C

C
A

C
A

T
C

G
C

C
G

C
C

G
C

A
G

C
C

G
C

A
G

G
T

A
C

A
A

T
G

T
A

G
T

T
C

T
C

A
T

A
C

A
T

G
C

Q
u

ik
C

h
an

g
e

IE
1

cc
1

6
1

-1
6

5

8
4

4
G

C
G

G
G

A
G

A
T

G
T

G
G

A
T

G
G

C
T

T
G

T
A

T
T

G
C

G
G

C
G

C
T

G
G

C
T

G
C

T
G

T
G

A
G

C
A

A
G

G
G

C
Q

u
ik

C
h

an
g

e
IE

1
cc

1
7

2
-1

7
6

8
4

5
G

C
C

C
T

T
G

C
T

C
A

C
A

G
C

A
G

C
C

A
G

C
G

C
C

G
C

A
A

T
A

C
A

A
G

C
C

A
T

C
C

A
C

A
T

C
T

C
C

C
G

C
Q

u
ik

C
h

an
g

e
IE

1
cc

1
7

2
-1

7
6

8
2

0
G

G
T

G
C

A
C

T
G

C
A

G
G

C
T

A
A

G
G

C
C

C
G

T
G

C
T

G
C

A
G

C
G

G
C

T
G

C
A

C
T

T
A

G
G

A
G

A
A

A
G

A
T

G
A

T
G

T
A

T
A

Q
u

ik
C

h
an

g
e

IE
1

cc
1

9
6

-1
9

9

8
2

1
T

A
T

A
C

A
T

C
A

T
C

T
T

T
C

T
C

C
T

A
A

G
T

G
C

A
G

C
C

G
C

T
G

C
A

G
C

A
C

G
G

G
C

C
T

T
A

G
C

C
T

G
C

A
G

T
G

C
A

C
C

Q
u

ik
C

h
an

g
e

IE
1

cc
1

9
6

-1
9

9

8
4

6
A

A
G

A
T

G
A

T
G

T
A

T
A

T
G

T
G

C
T

A
C

G
C

G
A

A
T

A
T

A
G

C
G

T
T

C
T

T
T

A
C

C
G

C
G

A
A

C
T

C
A

G
C

C
T

T
C

C
C

T
A

A
G

A
C

Q
u

ik
C

h
an

g
e

IE
1

cc
2

1
0

-2
1

7

8
4

7
G

T
C

T
T

A
G

G
G

A
A

G
G

C
T

G
A

G
T

T
C

G
C

G
G

T
A

A
A

G
A

A
C

G
C

T
A

T
A

T
T

C
G

C
G

T
A

G
C

A
C

A
T

A
T

A
C

A
T

C
A

T
C

T
T

Q
u

ik
C

h
an

g
e

IE
1

cc
2

1
0

-2
1

7

8
4

8
C

C
T

C
A

G
T

G
C

T
C

C
C

C
T

G
C

T
G

C
G

A
T

T
A

T
G

G
C

T
T

A
T

G
C

C
Q

u
ik

C
h

an
g

e
IE

1
cc

2
4

4
-2

4
5

8
4

9
G

G
C

A
T

A
A

G
C

C
A

T
A

A
T

C
G

C
A

G
C

A
G

G
G

G
A

G
C

A
C

T
G

A
G

G
Q

u
ik

C
h

an
g

e
IE

1
cc

2
4

4
-2

4
5

8
2

2
G

A
T

T
A

T
G

G
C

T
T

A
T

G
C

C
C

A
G

A
A

A
A

T
A

T
T

T
A

A
G

A
T

T
T

T
G

G
C

T
G

C
G

G
C

G
G

C
A

G
C

C
G

C
G

G
T

G
C

T
C

A
C

G
C

A
C

A
T

T
G

A
T

C
A

C
A

T
A

T
T

T
A

Q
u

ik
C

h
an

g
e

IE
1

cc
2

5
8

-2
6

3

8
2

3
T

A
A

A
T

A
T

G
T

G
A

T
C

A
A

T
G

T
G

C
G

T
G

A
G

C
A

C
C

G
C

G
G

C
T

G
C

C
G

C
C

G
C

A
G

C
C

A
A

A
A

T
C

T
T

A
A

A
T

A
T

T
T

T
C

T
G

G
G

C
A

T
A

A
G

C
C

A
T

A
A

T
C

Q
u

ik
C

h
an

g
e

IE
1

cc
2

5
8

-2
6

3

8
5

0
G

T
G

T
G

G
A

A
A

C
A

A
T

G
T

G
T

A
A

T
G

C
G

T
A

C
G

C
G

G
T

C
A

C
T

A
G

T
G

A
C

G
C

T
T

G
T

A
T

Q
u

ik
C

h
an

g
e

IE
1

cc
2

8
6

-2
9

2

8
5

1
A

T
A

C
A

A
G

C
G

T
C

A
C

T
A

G
T

G
A

C
C

G
C

G
T

A
C

G
C

A
T

T
A

C
A

C
A

T
T

G
T

T
T

C
C

A
C

A
C

Q
u

ik
C

h
an

g
e

IE
1

cc
2

8
6

-2
9

2

8
5

2
G

T
A

C
A

A
G

G
T

C
A

C
T

A
G

T
G

C
C

G
C

T
T

G
T

A
T

G
A

T
G

A
C

C
A

Q
u

ik
C

h
an

g
e

IE
1

cc
2

8
6

-2
9

2

8
5

3
T

G
G

T
C

A
T

C
A

T
A

C
A

A
G

C
G

G
C

A
C

T
A

G
T

G
A

C
C

T
T

G
T

A
C

Q
u

ik
C

h
an

g
e

IE
1

cc
2

8
6

-2
9

2

8
5

4
C

A
T

C
T

C
T

C
T

C
T

T
A

A
G

T
G

C
G

T
T

C
T

G
T

G
C

G
G

T
G

C
T

G
T

G
C

T
G

C
T

A
T

G
Q

u
ik

C
h

an
g

e
IE

1
cc

3
0

7
-3

1
0

8
5

5
C

A
T

A
G

C
A

G
C

A
C

A
G

C
A

C
C

G
C

A
C

A
G

A
A

C
G

C
A

C
T

T
A

A
G

A
G

A
G

A
G

A
T

G
Q

u
ik

C
h

an
g

e
IE

1
cc

3
0

7
-3

1
0

8
5

6
G

T
G

C
T

G
C

T
A

T
G

T
C

T
T

A
G

C
G

G
C

G
A

C
T

A
G

T
G

T
G

A
T

G
C

T
G

G
Q

u
ik

C
h

an
g

e
IE

1
cc

3
1

8
-3

1
9

8
5

7
C

C
A

G
C

A
T

C
A

C
A

C
T

A
G

T
C

G
C

C
G

C
T

A
A

G
A

C
A

T
A

G
C

A
G

C
A

C
Q

u
ik

C
h

an
g

e
IE

1
cc

3
1

8
-3

1
9

8
5

8
A

C
T

A
G

T
G

T
G

A
T

G
C

T
G

G
C

C
G

C
G

G
C

G
C

C
T

C
T

G
A

T
A

A
C

C
A

A
G

C
C

Q
u

ik
C

h
an

g
e

IE
1

cc
3

2
6

-3
2

7

8
5

9
G

G
C

T
T

G
G

T
T

A
T

C
A

G
A

G
G

C
G

C
C

G
C

G
G

C
C

A
G

C
A

T
C

A
C

A
C

T
A

G
T

Q
u

ik
C

h
an

g
e

IE
1

cc
3

2
6

-3
2

7

8
6

0
C

A
A

G
C

G
G

C
C

T
C

T
G

A
T

A
A

C
C

G
C

G
C

C
T

G
C

G
G

T
T

A
T

C
A

G
T

G
T

A
A

T
G

A
A

G
Q

u
ik

C
h

an
g

e
IE

1
cc

3
3

2
-3

3
4

8
6

1
C

T
T

C
A

T
T

A
C

A
C

T
G

A
T

A
A

C
C

G
C

A
G

G
C

G
C

G
G

T
T

A
T

C
A

G
A

G
G

C
C

G
C

T
T

G
Q

u
ik

C
h

an
g

e
IE

1
cc

3
3

2
-3

3
4

8
2

4
C

A
A

G
C

C
T

G
A

G
G

T
T

A
T

C
A

G
T

G
T

A
A

T
G

G
C

G
G

C
C

G
C

C
A

T
T

G
A

G
G

A
G

A
T

C
T

G
C

A
T

G
A

A
G

G
T

C
Q

u
ik

C
h

an
g

e
IE

1
cc

3
4

0
-3

4
2

8
2

5
G

A
C

C
T

T
C

A
T

G
C

A
G

A
T

C
T

C
C

T
C

A
A

T
G

G
C

G
G

C
C

G
C

C
A

T
T

A
C

A
C

T
G

A
T

A
A

C
C

T
C

A
G

G
C

T
T

G
Q

u
ik

C
h

an
g

e
IE

1
cc

3
4

0
-3

4
2

(C
on

tin
ue
d)

PLOS PATHOGENS PML targeting by hCMV IE1 revisited

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008537 May 4, 2020 24 / 40

https://doi.org/10.1371/journal.ppat.1008537


T
a

b
le

1
.

(C
o

n
ti

n
u

ed
)

#
S

eq
u

en
ce

(5
‘!

3
‘)

U
se

8
6

2
C

A
T

T
C

T
G

G
G

G
G

C
C

G
C

T
C

C
T

C
T

G
G

C
A

G
T

C
T

G
C

T
C

T
C

C
T

A
Q

u
ik

C
h

an
g

e
IE

1
cc

3
5

9
-3

6
2

8
6

3
T

A
G

G
A

G
A

G
C

A
G

A
C

T
G

C
C

A
G

A
G

G
A

G
C

G
G

C
C

C
C

C
A

G
A

A
T

G
Q

u
ik

C
h

an
g

e
IE

1
cc

3
5

9
-3

6
2

8
2

6
C

C
A

T
C

G
C

C
G

A
G

G
A

G
T

C
A

G
C

T
G

C
G

G
C

A
G

C
G

G
C

T
A

T
T

G
T

A
G

C
C

T
A

C
A

C
Q

u
ik

C
h

an
g

e
IE

1
cc

3
7

9
-3

8
2

8
2

7
G

T
G

T
A

G
G

C
T

A
C

A
A

T
A

G
C

C
G

C
T

G
C

C
G

C
A

G
C

T
G

A
C

T
C

C
T

C
G

G
C

G
A

T
G

G
Q

u
ik

C
h

an
g

e
IE

1
cc

3
7

9
-3

8
2

8
2

8
A

A
G

A
A

A
G

T
G

A
G

C
A

G
A

G
T

G
C

T
G

C
G

G
C

A
G

C
G

G
C

G
G

C
G

G
G

T
G

C
T

C
A

G
G

A
G

G
A

G
C

G
Q

u
ik

C
h

an
g

e
IE

1
cc

4
3

2
-4

3
7

8
2

9
C

G
C

T
C

C
T

C
C

T
G

A
G

C
A

C
C

C
G

C
C

G
C

C
G

C
T

G
C

C
G

C
A

G
C

A
C

T
C

T
G

C
T

C
A

C
T

T
T

C
T

T
Q

u
ik

C
h

an
g

e
IE

1
cc

4
3

2
-4

3
7

8
3

0
G

A
G

G
A

A
G

T
T

G
C

C
C

C
A

G
C

G
G

C
A

G
C

G
G

C
G

G
C

T
G

G
T

G
C

T
G

A
G

G
A

A
C

C
C

Q
u

ik
C

h
an

g
e

IE
1

cc
4

6
3

-4
6

7

8
3

1
G

G
G

T
T

C
C

T
C

A
G

C
A

C
C

A
G

C
C

G
C

C
G

C
T

G
C

C
G

C
T

G
G

G
G

C
A

A
C

T
T

C
C

T
C

Q
u

ik
C

h
an

g
e

IE
1

cc
4

6
3

-4
6

7

8
6

4
C

C
G

C
C

T
C

T
G

G
A

G
G

C
G

C
G

A
G

C
A

C
C

G
C

C
C

C
T

A
T

G
G

T
G

A
C

T
A

Q
u

ik
C

h
an

g
e

IE
1

cc
4

7
8

-4
8

1

8
6

5
T

A
G

T
C

A
C

C
A

T
A

G
G

G
G

C
G

G
T

G
C

T
C

G
C

G
C

C
T

C
C

A
G

A
G

G
C

G
G

Q
u

ik
C

h
an

g
e

IE
1

cc
4

7
8

-4
8

1

8
6

6
G

A
G

C
A

C
C

C
A

C
C

C
T

A
T

G
G

T
G

A
C

T
G

C
A

A
G

C
G

C
G

G
C

T
G

C
C

C
A

G
T

A
A

G
A

A
T

T
C

T
G

C
Q

u
ik

C
h

an
g

e
IE

1
cc

4
8

6
-4

9
0

8
6

7
G

C
A

G
A

A
T

T
C

T
T

A
C

T
G

G
G

C
A

G
C

C
G

C
G

C
T

T
G

C
A

G
T

C
A

C
C

A
T

A
G

G
G

T
G

G
G

T
G

C
T

C
Q

u
ik

C
h

an
g

e
IE

1
cc

4
8

6
-4

9
0

2
1

3
G

C
T

T
G

T
A

T
T

A
A

G
G

A
G

C
C

G
C

A
T

G
A

T
G

T
G

A
G

C
A

A
G

Q
u

ik
C

h
an

g
e

IE
1

L
1

7
4

P

2
1

4
C

T
T

G
C

T
C

A
C

A
T

C
A

T
G

C
G

G
C

T
C

C
T

T
A

A
T

A
C

A
A

G
C

Q
u

ik
C

h
an

g
e

IE
1

L
1

7
4

P

1
0

3
7

C
T

C
C

T
C

G
A

A
A

G
G

C
T

C
A

T
G

A
A

C
C

T
T

A
T

C
T

C
C

G
C

C
A

T
C

T
C

C
G

G
C

A
T

T
C

T
G

C
A

A
A

C
A

T
C

C
T

C
C

C
A

T
C

A
T

A
Q

u
ik

C
h

an
g

e

IE
1

L
1

3
0

G
/I

1
3

2
G

/L
1

3
3

G

1
0

3
8

T
A

T
G

A
T

G
G

G
A

G
G

A
T

G
T

T
T

G
C

A
G

A
A

T
G

C
C

G
G

A
G

A
T

G
G

C
G

G
A

G
A

T
A

A
G

G
T

T
C

A
T

G
A

G
C

C
T

T
T

C
G

A
G

G
A

G
Q

u
ik

C
h

an
g

e

IE
1

L
1

3
0

G
/I

1
3

2
G

/L
1

3
3

G

1
0

3
9

G
T

T
C

T
G

T
C

G
G

G
T

G
C

T
G

T
G

C
T

G
C

G
G

T
G

G
C

G
G

A
G

A
G

G
A

G
A

C
T

A
G

T
G

T
G

A
T

G
C

T
G

Q
u

ik
C

h
an

g
e

IE
1

Y
3

1
5

G
/V

3
1

6
G

/L
3

1
7

G

1
0

4
0

C
A

G
C

A
T

C
A

C
A

C
T

A
G

T
C

T
C

C
T

C
T

C
C

G
C

C
A

C
C

G
C

A
G

C
A

C
A

G
C

A
C

C
C

G
A

C
A

G
A

A
C

Q
u

ik
C

h
an

g
e

IE
1

Y
3

1
5

G
/V

3
1

6
G

/L
3

1
7

G

3
2

0
G

T
G

T
C

T
G

T
C

C
G

G
T

C
T

G
A

G
C

C
A

G
T

G
T

C
T

G
A

G
A

T
A

G
Q

u
ik

C
h

an
g

e
IE

1
K

4
5

0
R

3
2

1
T

G
G

C
T

C
A

G
A

C
C

G
G

A
C

A
G

A
C

A
C

A
G

T
G

T
C

C
T

C
C

C
G

C
Q

u
ik

C
h

an
g

e
IE

1
K

4
5

0
R

8
0

9
G

A
T

A
C

T
A

A
G

C
T

T
G

C
C

A
C

C
A

T
G

T
A

T
C

C
T

T
A

C
G

A
C

G
T

G
C

C
T

G
A

C
T

A
C

G
C

C
G

A
G

T
C

C
T

C
T

G
C

C
A

A
G

A
G

A
A

A
G

A
T

G
P

C
R

cl
o

n
in

g
H

A
-I

E
2

9
1

8
G

A
T

A
C

T
G

A
A

T
T

C
T

T
A

C
T

G
A

G
A

C
T

T
G

T
T

C
C

T
C

A
G

G
T

C
P

C
R

cl
o

n
in

g
H

A
-I

E
2

1
1

7
5

G
A

T
A

C
T

G
A

A
T

T
C

G
C

C
A

C
C

A
T

G
T

A
T

C
C

T
T

A
C

G
A

C
G

T
G

C
C

T
G

A
C

T
A

C
G

C
C

G
A

G
T

C
C

T
C

T
G

C
C

A
A

G
A

G
A

A
A

G
A

T
G

P
C

R
cl

o
n

in
g

H
A

-I
E

1

1
1

7
6

G
A

T
A

C
T

G
G

A
T

C
C

T
T

A
C

T
G

G
T

C
A

G
C

C
T

T
G

C
T

T
C

T
A

G
T

P
C

R
cl

o
n

in
g

H
A

-I
E

1

1
1

7
7

G
A

T
A

C
T

G
G

A
T

C
C

T
T

A
A

G
A

G
G

C
G

G
T

G
G

G
T

T
C

C
T

C
A

G
C

A
C

C
P

C
R

cl
o

n
in

g

H
A

-I
E

1
d

l4
7

6
-4

9
1

7
0

1
C

A
G

A
G

C
T

C
T

C
C

C
T

A
T

C
A

G
T

S
eq

u
en

ci
n

g
p

C
M

V
.T

et
O

1
0

4
6

G
T

G
G

T
A

T
G

G
C

T
G

A
T

T
A

T
G

A
T

C
S

eq
u

en
ci

n
g

p
C

M
V

.T
et

O

1
2

2
5

A
T

G
T

A
A

A
C

C
A

G
G

G
C

G
C

C
T

A
T

S
eq

u
en

ci
n

g

p
L

V
X

-T
et

O
n

e-
P

u
ro

1
2

2
4

C
C

T
C

C
T

G
T

C
T

T
A

G
G

T
T

A
G

T
G

S
eq

u
en

ci
n

g

p
L

V
X

-T
et

O
n

e-
P

u
ro

5
2

7
T

G
G

C
A

G
A

A
C

T
C

G
G

T
A

A
G

T
C

T
G

T
T

G
A

C
A

T
G

T
A

T
G

T
G

A
T

A
T

A
T

A
C

T
C

T
A

T
A

T
T

A
T

A
C

T
C

T
A

T
A

G
G

A
T

G
A

C
G

A
C

G
A

T
A

A
G

T
A

G
G

G
En

pa
ss
an

tm
u

ta
g

en
es

is
g

T
B

d
lI

E
1

5
2

8
G

T
A

G
G

A
T

T
A

C
A

G
A

G
T

A
T

A
A

C
A

T
A

G
A

G
T

A
T

A
A

T
A

T
A

G
A

G
T

A
T

A
T

A
T

C
A

C
A

T
A

C
A

T
G

T
C

A
A

C
C

A
A

C
C

A
A

T
T

A
A

C
C

A
A

T
T

C
T

G
A

T
T

A
G

En
pa
ss
an

tm
u

ta
g

en
es

is
g

T
B

d
lI

E
1

1
1

1
5

G
A

T
A

A
G

C
G

G
G

A
G

A
T

G
T

G
G

A
T

G
G

C
T

T
G

T
A

T
T

G
C

G
G

C
G

C
T

G
G

C
T

G
C

T
G

T
G

A
C

C
A

A
G

G
G

C
G

C
C

G
C

T
A

T
A

G
G

G
A

T
A

A
C

A
G

G
G

T
A

A
T

C
G

A
T

T
T

En
pa
ss
an

tm
u

ta
g

en
es

is
(g

)

T
B

IE
1

cc
1

7
2

-1
7

6

1
1

1
6

C
C

T
A

A
C

T
T

G
T

T
A

G
C

G
G

C
G

C
C

C
T

T
G

G
T

C
A

C
A

G
C

A
G

C
C

A
G

C
G

C
C

G
C

A
A

T
A

C
A

A
G

C
C

A
T

C
C

A
C

A
T

C
T

G
C

C
A

G
T

G
T

T
A

C
A

A
C

C
A

A
T

T
A

A
C

C
En

pa
ss
an

tm
u

ta
g

en
es

is
(g

)

T
B

IE
1

cc
1

7
2

-1
7

6

(C
on

tin
ue
d)

PLOS PATHOGENS PML targeting by hCMV IE1 revisited

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008537 May 4, 2020 25 / 40

https://doi.org/10.1371/journal.ppat.1008537


T
a

b
le

1
.

(C
o

n
ti

n
u

ed
)

#
S

eq
u

en
ce

(5
‘!

3
‘)

U
se

1
1

1
7

G
A

T
A

A
G

C
G

G
G

A
G

A
T

G
T

G
G

A
T

G
G

C
T

T
G

T
A

T
T

A
A

G
G

A
G

C
T

G
C

A
T

G
A

T
G

T
G

A
C

C
A

A
G

G
G

C
G

C
C

G
C

T
A

T
A

G
G

G
A

T
A

A
C

A
G

G
G

T
A

A
T

C
G

A
T

T
T

En
pa
ss
an

tm
u

ta
g

en
es

is

g
T

B
rv

IE
1

cc
1

7
2

-1
7

6

1
1

1
8

C
C

T
A

A
C

T
T

G
T

T
A

G
C

G
G

C
G

C
C

C
T

T
G

G
T

C
A

C
A

T
C

A
T

G
C

A
G

C
T

C
C

T
T

A
A

T
A

C
A

A
G

C
C

A
T

C
C

A
C

A
T

C
T

G
C

C
A

G
T

G
T

T
A

C
A

A
C

C
A

A
T

T
A

A
C

C
En

pa
ss
an

tm
u

ta
g

en
es

is

g
T

B
rv

IE
1

cc
1

7
2

-1
7

6

7
4

0
G

G
A

G
C

T
A

G
A

A
C

G
A

T
T

C
G

C
A

G
T

T
A

q
P

C
R

H
IV

-1
G

ag

7
3

9
G

G
T

T
G

T
A

G
C

T
G

T
C

C
C

A
G

T
A

T
T

T
G

T
C

q
P

C
R

H
IV

-1
G

ag

7
5

9
C

A
G

C
G

A
A

G
T

G
A

G
T

T
C

A
A

T
G

G
q

P
C

R
R

P
P

H
1

7
6

5
A

A
T

G
G

G
C

G
G

A
G

G
A

G
A

G
T

A
G

T
q

P
C

R
R

P
P

H
1

8
7

2
G

C
G

T
T

T
A

A
T

G
T

C
G

T
C

G
C

T
C

A
A

q
P

C
R

h
C

M
V

U
L

8
6

8
7

3
C

A
G

C
C

T
A

C
C

C
G

T
A

C
C

T
T

T
C

C
A

q
P

C
R

h
C

M
V

U
L

8
6

4
7

1
T

C
C

C
T

A
A

G
A

C
C

A
C

C
A

A
T

G
R

T
-q

P
C

R
h

C
M

V
IE

1

4
7

2
G

A
G

C
A

C
T

G
A

G
G

C
A

A
G

T
T

C
R

T
-q

P
C

R
h

C
M

V
IE

1

3
6

3
T

A
T

C
A

G
C

A
G

T
A

C
C

A
G

G
A

T
G

C
R

T
-q

P
C

R
T

U
B

B

3
6

4
T

G
A

G
A

A
G

C
C

T
G

A
G

G
T

G
A

T
G

R
T

-q
P

C
R

T
U

B
B

5
3

3
T

C
C

A
C

G
T

G
T

T
G

A
G

A
T

C
A

T
T

G
C

R
T

-q
P

C
R

C
X

C
L

1
0

5
3

4
T

C
T

T
G

A
T

G
G

C
C

T
T

C
G

A
T

T
C

T
G

R
T

-q
P

C
R

C
X

C
L

1
0

6
8

8
C

T
G

G
C

G
G

C
T

A
T

A
A

A
C

C
T

A
A

C
C

R
T

-q
P

C
R

O
A

S
1

6
8

9
G

T
T

C
T

G
T

G
A

A
G

C
A

G
G

T
G

G
A

G
A

R
T

-q
P

C
R

O
A

S
1

7
4

9
G

G
C

C
A

C
T

C
T

T
C

A
G

C
A

T
C

T
C

R
T

-q
P

C
R

S
O

C
S

3

7
5

0
A

T
C

G
T

A
C

T
G

G
T

C
C

A
G

G
A

A
C

T
C

R
T

-q
P

C
R

S
O

C
S

3

1
1

3
G

A
C

A
T

C
C

C
T

G
A

G
G

A
G

A
T

T
A

A
G

R
T

-q
P

C
R

IF
N

B
1

1
1

4
A

T
G

T
T

C
T

G
G

A
G

C
A

T
C

T
C

A
T

A
G

R
T

-q
P

C
R

IF
N

B
1

1
3

9
8

A
C

A
T

T
G

G
C

A
G

G
T

T
C

A
A

A
T

C
T

C
R

T
-q

P
C

R
IF

N
L

1

1
3

9
9

T
G

A
G

T
G

A
C

T
C

T
T

C
C

A
A

G
G

C
R

T
-q

P
C

R
IF

N
L

1

1
6

0
3

T
A

T
T

C
C

T
C

G
G

A
C

A
C

C
A

C
A

C
R

T
-q

P
C

R
C

C
L

5

1
6

0
4

G
T

G
A

C
A

A
A

G
A

C
G

A
C

T
G

C
T

G
R

T
-q

P
C

R
C

C
L

5

1
6

0
1

G
A

A
A

G
C

A
T

G
A

T
C

C
G

G
G

A
C

G
T

G
R

T
-q

P
C

R
T

N
F

1
6

0
2

G
A

T
G

G
C

A
G

A
G

A
G

G
A

G
G

T
T

G
A

C
R

T
-q

P
C

R
T

N
F

1
1

1
G

C
T

A
T

G
C

A
T

G
G

A
C

C
T

C
T

G
R

T
-q

P
C

R
P

M
L

1
1

2
A

T
G

G
T

G
G

C
T

T
G

A
A

T
C

T
C

A
G

R
T

-q
P

C
R

P
M

L

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

p
at

.1
0
0
8
5
3
7
.t
0
0
1

PLOS PATHOGENS PML targeting by hCMV IE1 revisited

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008537 May 4, 2020 26 / 40

https://doi.org/10.1371/journal.ppat.1008537.t001
https://doi.org/10.1371/journal.ppat.1008537


reverse primer for PCR amplification. For pLVX-TetOne-Puro-HA-IE1dl291-320, the

sequence encoding IE1dl291-320 was PCR-amplified from template pSG5-HA-IE1(dl291-320)

[105], kindly provided by Jin-Hyun Ahn (Sungkyunkwan University), using primers #483 and

694, and inserted into pCMV.TetO.cIE1 via HindIII and EcoRI. The IE1dl291-320 sequence

was PCR-amplified from the resulting plasmid using primers #1175 and #1176, and ligated to

BamHI- and EcoRI-digested pLVX-TetOne-Puro. For each new construct, the entire IE1-spe-

cific sequence was verified by Sanger sequencing. The pMD2.G and psPAX2 packaging vectors

for lentivirus production were obtained from Addgene (plasmids #12259 and #12260,

respectively).

Plasmid pCMV-PML encoding human PML isoform VI under the control of the CMV

major immediate-early promoter-enhancer has been described [125]. Plasmid template

pLAY2 used for generation of mutant and revertant hCMV TB40/E BACs by en passant muta-

genesis [126] was kindly provided by Karsten Tischer (Freie Universität Berlin).

Antibodies

The following primary antibodies were used in this study: rabbit anti-GAPDH (Abcam,

ab9485), mouse anti-HA clone 16B12 (Covance, MMS-101P), rat anti-HA clone 3F10 (Roche,

11867423001), mouse anti-histone H3 (Diagenode, C15200011-10), mouse anti-IE1 clone

1B12 [122], rabbit anti-PML (Abcam, ab72137), rabbit anti-Sp100 (Chemicon, Ab1380 for

immunofluorescence and GeneTex, GTX131569 for immunoblotting), rabbit anti-SUMO1

(Epitomics, 1563–1), rabbit anti-SUMO2 (Zymed, 51–9100) and mouse anti-TUBA clone

DM1A (Cell Signaling Technology, 3873).

The following secondary antibodies were used for immunoblotting: peroxidase-conjugated

goat anti-mouse immunoglobulin G (IgG) (Dianova, 115-035-166), peroxidase-conjugated

goat anti-rabbit IgG (Dianova, 111-035-144), IRDye 800CW-conjugated goat anti-mouse IgG

(LI-COR, 925–32210), IRDye 800CW-conjugated goat anti-rabbit IgG (LI-COR, 925–32211),

IRDye 800CW-conjugated goat anti-rat IgG (LI-COR, 925–32219), IRDye 680RD-conjugated

goat anti-mouse IgG (LI-COR, 925–68070) and IRDye 680RD-conjugated goat anti-rabbit IgG

(LI-COR, 925–68071).

The following secondary antibodies were used for immunofluorescence: Alexa Fluor

488-conjugated goat anti-mouse IgG (Thermo Fisher, A-11001), Alexa Fluor 488-conjugated

goat anti-rabbit IgG (Thermo Fisher, A-11034), Alexa Fluor 594-conjugated goat anti-rabbit

IgG (Thermo Fisher, A-11037) and Alexa Fluor 594-conjugated goat anti-rat IgG (Thermo

Fisher, A-11007).

Cells and lentiviruses

MRC-5 human embryonic lung fibroblasts (American Type Culture Collection, CCL-171)

were maintained in Dulbecco’s Modified Eagle’s Medium (Sigma-Aldrich, D7777) containing

4.5 g/l glucose, 3.7 g/l sodium bicarbonate, 1 mM sodium pyruvate, 10% [v/v] fetal calf serum,

100 units/ml penicillin and 100 μg/ml streptomycin. The human embryonic kidney cell line

293T (GenHunter, Q401) was cultured in the same medium in the presence of 400 μg/ml

G418 sulfate. All cultures were regularly screened for Mycoplasma sp. using a PCR assay [127].

Production of replication-deficient lentiviral particles, lentivirus infections and selection of

stable cell lines were performed as described [52, 72]. To generate luciferase and HA-IE1

expressing cells using the Lenti-X TetOne inducible expression system (Clontech), low-passage

MRC-5 cells were transduced twice for 4 h with pLVX-TetOne-Puro-derived lentiviruses and

selected with 1 μg/ml puromycin dihydrochloride (Sigma-Aldrich, P8833). To induce IE1

expression, cells were treated with dox (Clontech, 631311) at a final concentration of 1 μg/ml.
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Where indicated, cells were treated with 1,000 U/ml recombinant human IFNα A/D (R&D

Systems, 11200) for 24 h.

hCMV mutagenesis and infection

Wild-type virus of the low passage hCMV strain TB40/E (TBwt) was derived from the bacterial

artificial chromosome (BAC) TB40-BAC4 [128]. A modified version of this BAC with an

SV40-EGFP-BGH PolyA cassette inserted between the US34 and TRS1 genes [129] was used

to generate the EGFP expressing TB40/E wild-type virus gTBwt. Mutant BACs encoding no

IE1 (gTBdlIE1) or IE1 with amino acids 172, 173, 175 and 176 changed to alanine

(pTBIE1cc172-176 and pgTBIE1cc172-176) and the revertant BAC pgTBrvIE1cc172-176 were

generated by markerless en passant mutagenesis as described [130] using plasmid pLAY2 and

oligonucleotide primers listed in Table 1. The identity and integrity of each BAC were verified

by Sanger sequencing of the modified region and restriction fragment length analysis follow-

ing digestion with EcoRI. Viruses were reconstituted and virus stocks produced upon electro-

poration of MRC-5 cells with BAC DNA following standard protocols. Viruses (g)TBwt, (g)

TBIE1cc172-176 and gTBrvIE1cc172-176 were grown on normal MRC-5 fibroblasts while

gTBdlIE1 was produced on MRC-5 cells with constitutive expression of wild-type IE1 follow-

ing transduction with pLKO.DCMV.TetO.cIE1-derived lentivirus [72].

Titers of wild-type and revertant virus preparations were determined by plaque assay on

MRC-5 cells in 6-well plates. For plaque assays, infections were performed in triplicates for 16

h with 800 μl inoculum before cells were overlayed with 4 ml Dulbecco’s Modified Eagle’s

Medium supplemented with 3.7 g/l sodium hydrogen carbonate, 1% [w/v] methyl cellulose

(Sigma-Aldrich, M0262), 2% [v/v] fetal calf serum, 100 units/ml penicillin and 100 μg/ml

streptomycin. Plaques of EGFP-positive viruses were counted at day 9 post infection using an

EVOS FL Cell Imaging System (Thermo Fisher) with Plan Achromat 4× Objective and EVOS

Light Cube for GFP. Foci of three or more fluorescent cells were counted as plaques. Plaques

formed by EGFP-negative viruses were counted at day 12 post infection in phase contrast

mode after staining of cell monolayers with 0.5% [w/v] methylene blue in 70% [v/v] methanol.

For quantification of infectious viral genome equivalents, 5 × 105 MRC-5 cells were seeded

onto 6-well dishes and infected 40 h later in triplicates with 800 μl 1:10-diluted virus stock in

growth medium supplemented with 50 U/ml benzonase nuclease (Sigma-Aldrich, E1014) to

remove free viral DNA. Plates were incubated for 1 h at 37˚C with occasional rocking before

the virus inoculum was removed and cells were washed in 5 ml phosphate-buffered saline

(PBS) with 10 mM ethylenediaminetetraacetic acid (EDTA). Cells were dislodged and extracel-

lular virus was removed by treatment with 500 μl trypsin (0.5 g/l) and EDTA (0.5 mM) solu-

tion for 5 min at 37˚C. Cells were transferred to 2-ml tubes using 1.3 ml PBS/EDTA and

collected by centrifugation for 5 min at 800 g. Cell pellets were subjected to an additional wash-

ing step with 1.8 ml PBS/EDTA before the supernatant was removed and cells were resus-

pended in 200 μl PBS/EDTA and transferred to 1.5-ml tubes for DNA isolation and qPCR

analysis.

To monitor replication of gTBdlIE1 on trans-complementing cell lines, confluent MRC-5

cultures on 12-well dishes were infected at the indicated MOI by applying 300 μl virus dilution

supplemented with dox. At 16 h (day 1) after infection, the inoculum was removed, cells were

washed twice with 2 ml growth medium and further incubated in 1 ml growth medium with

dox. On day 2 post infection and every other day thereafter, half of the growth medium was

replaced and viral replication was assessed by qPCR-based relative quantification of hCMV

DNA from culture supernatants. To compare replication of wild-type, mutant and revertant

gTB viruses, 2.5 × 104 MRC-5 cells were seeded in a volume of 100 μl onto 96-well plates and
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infected 24 h later at the indicated MOI by adding 100 μl virus dilution. EGFP fluorescence

was measured in a Tecan Infinite M200 PRO microplate reader immediately after virus addi-

tion and at day 4, 8, 12 and 16 post infection. The following instrument settings were used:

measurement mode, fluorescence intensity bottom; excitation wavelength, 483 nm; excitation

bandwidth, 9 nm; emission wavelength, 535 nm; emission bandwidth, 20 nm; gain, 80; integra-

tion time, 20 μs; flashes, 4 × 7. The signal at day 0 was considered background and was sub-

tracted from all other measurements. For RNA analyses, 2.5 × 105 MRC-5 cells were seeded

onto 12-well dishes and infected 72 h later at the indicated MOI by applying 300 μl virus dilu-

tion. After 2 h, 700 μl pre-warmed growth medium was added and the cells were harvested at

the indicated times post infection. For immunocytochemistry, 5 × 105 MRC-5 cells were

seeded in 6-well dishes and infected 16 h later at the indicated MOI by applying 800 μl virus

dilution. After 2 h, 2 ml 37˚C growth medium was added and cells were fixed at the indicated

times post infection.

DNA and RNA analyses

To determine steady-state mRNA levels by RT-qPCR, total RNA was isolated from fibroblasts

cultured in 12-well dishes using the RNeasy Mini Plus Kit according to Qiagen’s instructions.

First-strand cDNA was synthesized at 50˚C using the AffinityScript Multiple Temperature

cDNA Synthesis Kit and oligo(dT) primers (Agilent Technologies). First-strand cDNA was

diluted 10-fold in sterile ultrapure water, and 5 μl was used for real-time PCR as described in

detail in previous publications [52, 124]. The sequences of oligonucleotide primers used for

RT-qPCR are shown in Table 1.

For viral genome quantification, total DNA was extracted from cells grown in 6-well dishes

or from 200 μl pre-spun (4000 g, 10 min) culture supernatant using a DNeasy Blood & Tissue

Kit (Qiagen) according to the manufacturer’s spin-column protocol for animal blood and

cells. DNA was released from the column in two consecutive steps with 100 μl (supernatant

samples) or 200 μl (cell samples) elution buffer. DNA from infected cells was diluted 10-fold,

and 5-μl samples were subjected to real-time PCR with primers shown in Table 1.

Protein analyses

For indirect immunofluorescence microscopy, cells were grown on precision cover glasses

(Marienfeld Superior, No. 1.5H), fixed with pre-chilled methanol for 20 min at -20˚C and pro-

cessed as described [52, 72].

Whole cell lysates were prepared in 10 mM PIPES-NaOH, pH 7.2 or 50 mM Tris-HCl, pH

8.0 buffer with 150 mM NaCl, 0.1% [w/v] sodium dodecyl sulfate (SDS), 1% [v/v] Igepal CA-

630, 0.5% [w/v] sodium deoxycholate and 1% [v/v] protease inhibitor cocktail (Merck,

539134). Where indicated, cell lysis buffer was supplemented with 20 mM iodoacetamide

(IAA) and 20 mM N-ethylmaleimide (NEM) from freshly prepared 0.5 M IAA and 1 M NEM

stock solutions in water and methanol, respectively. Cell extracts were combined with an equal

volume of 2 × protein sample buffer (100 mM Tris-HCl, pH 6.8, 4% [w/v], SDS, 20% [v/v]

glycerol, 0.2% [w/v] orange G, 200 mM beta-mercaptoethanol), heated for 5 min at 95˚C,

cooled on ice and sonicated in a Bioruptor UCD-200 (Diagenode) in high intensity mode for

15 min (30 sec ON/30 sec OFF) to maximize protein solubilization and shear chromatin. Insol-

uble material was removed by centrifugation at 20,000 × g, 4˚C for 10 min, and equal sample

volumes were used for SDS polyacrylamide gel electrophoresis and immunoblotting as

described [45, 52, 55, 124].

For co-immunoprecipitation experiments, 5 x 106 293T cells were seeded onto 10-cm

dishes and transfected 24 h later with 10 μg pCMV-PML and 10 μg pLKO.DCMV.TetO IE1
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expression plasmid or empty vector using the calcium-phosphate co-precipitation technique

[131]. At 48 h post transfection, cells were cross-linked by treatment with 1% [v/v] formalde-

hyde for 10 min at room temperature. To stop cross-linking, glycine was added to a final con-

centration of 125 mM, and samples were incubated for another 5 min at room temperature.

Cells were washed and harvested with 10 ml ice-cold PBS and lysed in 500 μl 10 mM PIPES-

NaOH, pH 7.2 buffer with 150 mM NaCl, 0.1% [w/v] sodium dodecyl sulfate (SDS), 1% [v/v]

Igepal CA-630, 0.5% [w/v] sodium deoxycholate, 1% [v/v] protease inhibitor cocktail and 20

mM NEM for 15 min on ice. Extracts were sonicated in a Bioruptor UCD-200 in high intensity

mode for 15 min (30 sec ON/30 sec OFF) and cleared by centrifugation at 20,000 × g, 4˚C for

30 min. The supernatant (475 μl) was combined with 20 μl pre-washed anti-HA magnetic

bead slurry (Thermo Fisher, 88837) and incubated for 2 h at 4˚C with gentle rotation. Immune

complexes were washed with 1 ml cell lysis and 1 ml nuclease reaction buffer (50 mM Tris-

HCl pH 8.0, 2 mM MgCl2) before incubation with 25 U benzonase nuclease in 100 μl nuclease

reaction buffer for 30 min at 4˚C. After four additional washing steps with 1 ml cell lysis buffer,

proteins were eluted by addition of 30 μl 1× protein sample buffer and incubation for 10 min

at 99˚C.

For SUMOylation analysis, about 5×106 MRC-5 cells were lysed for 15 min on ice in 600 μl

50 mM Tris-HCl, pH 8.0 buffer containing 150 mM NaCl, 2 mM MgCl2, 1% [v/v] Triton X-

100, 1% [v/v] protease inhibitor cocktail, 2% [v/v] phosphatase inhibitor cocktail II (Merck,

524625), 20 mM IAA, 20 mM NEM, and 25 U/ml benzonase nuclease. After sonification in a

Bioruptor Pico (Diagenode) for three cycles (30 sec ON/30 sec OFF), EDTA was added to a

final concentration of 20 mM and lysates were cleared by centrifugation at 20,000 × g, 4˚C for

10 min. From the supernatant, 500 μl was added to 20 μl pre-washed anti-HA magnetic beads,

and samples were incubated for 90 min at 4˚C with gentle rotation. Immune complexes were

washed four times with 1 ml 50 mM Tris-HCl, pH 8.0 buffer containing 150 mM NaCl, 1 mM

EDTA, 1% [v/v] Triton X-100, 1% [v/v] protease inhibitor cocktail, 20 mM IAA and 20 mM

NEM, and proteins were eluted by addition of 60 μl 2× protein sample buffer and incubation

for 5 min at 95˚C.

For subnuclear fractionation, approximately 5×106 MRC-5 cells were gently resuspended in

200 μl freshly prepared CSK buffer (10 mM PIPES-NaOH, pH 6.8, 100 mM NaCl, 300 mM

sucrose, 3 mM MgCl2, 1% [v/v] protease inhibitor cocktail, 20 mM IAA, 20 mM NEM) with

0.1% [v/v] Igepal CA-630. Nuclei were spun down at 1,300 × g, 4˚C for 1 min, and the superna-

tant was collected as cytoplasm fraction. The pellet was washed with 300 μl detergent-free CSK

buffer before the nucleoplasm was isolated with 200 μl CSK buffer containing 0.5% [v/v] Tri-

ton X-100. The nuclear pellet remaining after another 1-min spinning step at 1,300 × g, 4˚C

was washed with 300 μl 50 mM Tris-HCl, pH 7.5, 5 mM CaCl2 and resuspended in 200 μl of

the same buffer containing 100 units micrococcal nuclease (Thermo Fisher, 88216) to solubi-

lize chromatin. Samples were sonicated for 10 sec in a Bioruptor Pico to improve the accessi-

bility of chromatin for the enzyme before tubes were incubated for 10 min at 30˚C with

shaking. After that, samples were supplemented with 0.5% [v/v] Triton X-100 and sonicated

again for 3 min (30 sec ON/30 sec OFF). The soluble chromatin fraction was removed after

spinning at 10,000 × g, 4˚C for 5 min, and the insoluble pellet material was washed once with

200 μl CSK buffer containing 0.5% [v/v] Triton X-100 before it was resuspended as matrix

fraction in 200 μl 2× protein sample buffer.

Protein modeling and structure visualization

The Normal Modelling Mode provided with the Protein Homology/analogY Recognition

Engine 2.0 (Phyre2) [132] was used to model the three-dimensional structure of the hCMV
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(Towne) IE1 protein (GenBank AAR31448). 70% of the sequence, corresponding to the IE1

core domain (amino acids 25 to 378), were modelled with 100% confidence by RhCMV IE1/

rhUL123 (PDB 4WID) [49], the single highest scoring template. Protein structures were ren-

dered and annotated using UCSF Chimera 1.13.1 (Resource for Biocomputing, Visualization,

and Informatics) [133].

Supporting information

S1 Fig. Subcellular localization and disruption of PML bodies by wild-type and mutant

IE1. (A) TetR (w/o), TetR-IE2 and TetR-IE1 cells expressing the indicated HA-tagged wild-

type (wt) or mutant IE1 proteins were treated with dox for 24 h. Indirect immunofluorescence

staining was performed using mouse anti-HA and rabbit anti-PML combined with goat anti-

mouse Alexa Fluor 488 and goat anti-rabbit Alexa Fluor 594 antibodies. DAPI was used to

stain DNA. Representative merge images from cells showing the localization of IE1, IE2 and

PML relative to DNA are presented (Keyence BZ-9000 microscope, 40× objective). The per-

centage of cells exhibiting predominantly disrupted or intact PML bodies is shown in Fig 3C.

(TIF)

S2 Fig. Regulation of STAT signaling by wild-type IE1 and clustered charge mutants defec-

tive in PML targeting. TetR (w/o) and TetR-IE1 cells expressing the indicated wild-type (wt)

or clustered charge mutant IE1 proteins were treated with dox for 96 h and solvent or IFNα
for 24 h. Relative mRNA levels were determined by RT-qPCR for typical STAT1- (CXCL10),

STAT2- (OAS1) and STAT3- (SOCS3) responsive genes and normalized to TUBB. For

CXCL10 and SOCS3, results from solvent-treated cells are shown relative to cells without IE1

(set to 1). For OAS1, the fold increase in the presence of IFNα was calculated, and results are

presented relative to wt cells (set to 1).

(EPS)

S3 Fig. Regulation of STAT signaling and interaction with PML bodies by wild-type and

mutant IE1 proteins. Growth-arrested TetR (w/o) and TetR-IE1 cells expressing the indicated

wild-type (wt) or mutant IE1 proteins were treated with dox for 72 h. (A) Relative mRNA lev-

els were determined by RT-qPCR for IE1 and typical STAT1- and STAT3-responsive genes

(CXCL10 and SOCS3, respectively) and normalized to TUBB. Data presented are means and

standard deviations of two biological and two technical replicates. (B) Cells were treated with

IFNα for 24 h. Relative mRNA levels were determined by RT-qPCR for IE1 and a typical STA-

T2-responsive gene (OAS1) and normalized to TUBB. Data presented are means and standard

deviations of two biological and two technical replicates. (C) Indirect immunofluorescence

staining was performed using mouse anti-IE1 and rabbit anti-PML combined with goat anti-

mouse Alexa Fluor 594 and goat anti-rabbit Alexa Fluor 488 antibodies. DAPI was used to

stain DNA. Individual and merge images were taken using a Keyence BZ-9000 microscope

(40× objective).

(EPS)

S4 Fig. Metabolic stability of wild-type and mutant IE1 proteins. TetOne-IE1 cells with

tightly controlled inducible expression of the indicated HA-tagged wild-type (wt) or mutant

IE1 proteins were treated with dox (1 μg/ml) for 12 h. Cells were then either collected (0 h) or

washed three times with prewarmed growth medium and incubated for another 12, 24, 36, 48

or 60 h in the absence of dox. Whole cell protein extracts were prepared and analyzed by quan-

titative immunoblotting using rat anti-HA and mouse anti-TUBA combined with goat anti-rat

IRDye 800CW (green) and goat anti-mouse IRDye 680RD (red) antibodies.

(EPS)
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S5 Fig. Disruption of PML bodies in cells infected with IE1cc172-176 mutant hCMV. (A)

MRC-5 cells were infected with gTBdlIE1, gTBwt, gTBIE1cc172-176 or gTBIE1rv172-176 at

an MOI of 2 PFUs/cell for 16 h. Indirect immunofluorescence staining was performed using

mouse anti-IE1 and rabbit anti-PML combined with goat anti-mouse Alexa Fluor 488 and

goat anti-rabbit Alexa Fluor 594 antibodies. DAPI was used to stain DNA. Individual and

merge images were taken using a Keyence BZ-9000 microscope (40× objective). (B) MRC-5

cells were infected with TBdlIE1, TBwt or TBIE1cc172-176 at an MOI of 2 PFUs/cell for 16 h.

Indirect immunofluorescence staining was performed using mouse anti-IE1 and rabbit anti-

PML combined with goat anti-mouse Alexa Fluor 488 and goat anti-rabbit Alexa Fluor 594

antibodies. DAPI was used to stain DNA. Images were taken using a Keyence BZ-9000 micro-

scope (40× objective). (C) The percentage of nuclei exhibiting predominantly disrupted or

undisrupted PML bodies was determined for at least 100 cells using images acquired as

described in (B).

(TIF)

S6 Fig. Replication of IE1cc172-176 mutant compared to wild-type and revertant hCMV.

MRC-5 cells were infected with gTBwt, gTBIE1cc172-176 or gTBrvIE1cc172-176 at an MOI of

0.5 PFU/cell. Every 48 h, half of the culture medium was replaced and viral replication was

assessed by qPCR-based relative quantification of hCMV DNA from culture supernatants with

primers specific for UL86. Data presented are means and standard deviations of three biologi-

cal and two technical replicates.

(EPS)
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