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MXene (Ti2CTx) is exfoliated in a vortex fluidic device
(VFD), as a thin film microfluidic platform, under continuous
flow conditions, down to ca 3 nm thin multi-layered two-
dimensional (2D) material, as determined using AFM. The
optimized process, under an inert atmosphere of nitrogen
to avoid oxidation of the material, was established by
systematically exploring the operating parameters of the VFD,
along with the concentration of the dispersed starting material
and the choice of solvent, which was a 1 : 1 mixture of isopropyl
alcohol and water. There is also some fragmentation of the 2D
material into nanoparticles ca 68 nm in diameter.

1. Introduction
MXenes are a unique class of two-dimensional (2D) material, first
reported in 2011 [1]. They are transition metal carbides and
carbonitrides and have a number of potential applications,
including in biology [2–5], batteries [6–8], electronic devices [9,10]
and supercapacitors [10,11]. They are prepared from Mn+1AXn

phases via etching the A layers from the laminar material, where M
is a transition metal (Ti, Zr, Nb, V, Ta or Mo), A is a main group
element, mostly Al or Si, and X is C and/or N, and n is 1, 2
or 3. Substituting Al or Si with functional groups, T (−O, −OH, −F),
either side of the sheets (Mn+1XnTx) imparts greater application of
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the MXene relative to MAX phases [12]. The work function of MXene sheets and those functionalized with F,
OH and O groups have been studied using first-principles calculations [9]. The bandgap of MXene sheets are
ultra-low when the sheets are –OH functionalized [9,13]. There is also a work function dependence on the
transition metal and associated charge transfer between the functional groups and the substrate, and overall
changes in the total surface dipole moment [10].

The exfoliation (delamination) of MXenes provides unique material with different functional groups,
microstructure and morphology, which impacts on electrochemical response of the material. The
exfoliation of MXene requires harsh chemicals or surfactant in a number of different methods, as in
sonication [7,14], heating [15,16] or both sonication and heating [17], and the use of electric fields [18,19].
Interestingly, sonication can result in different shaped material [14,20] presumably arising from extreme
localized conditions associated with cavitation. In the present study, we explore the utility of the vortex
fluidic device (VFD), figure 1, for exfoliating Ti2CTx type MXene in the absence of harsh chemicals or
surfactant. The VFD microfluidic platform delivers mechanoenergy in the dynamic film. We
hypothesized that it would be effective in exfoliating the 2D material, based on its success in exfoliating
graphene and h-BN [21–23]. The resulting exfoliation is at room temperature as a single-step process in a
mixture of isopropyl alcohol (IPA) and water (ratio 1 : 1), under continuous flow conditions (see below),
and under an inert atmosphere of nitrogen gas to avoid oxidation of the MXene [17].

The vortex fluidic device (VFD) [21,24–26], figure 1, has a borosilicate glass tube (OD 20 mm, ID 17.5 mm
and19.5 cm in length) openat one end.Theoperatingparameters of thedevice are then systematicallyexplored
foroptimizing anyprocess. The tube is rotated at high speed (up to 9000 r.p.m.) and can be inclined at an angle,
θ, of−45° to 90° relative to the horizontal position,with +45° being optimal for a large number of applications,
including in thepresentstudy.TheVFDhastwo typesofprocessing—confinedmodeandcontinuous flow.The
confinedmode iswhereafinitevolumeof liquid isplaced in theglass tubewhich is tiltedat 45°andspunathigh
speed foradesignatedperiod, figure1b. Thismodeofoperationof theVFDhasproved invaluable inoptimizing
anyprocessing in translating it into continuous flowwhere liquid isdelivered to the insideof the rotating tubeat
acontrolled flowrate, figure 1c [27]. Theutilityofprocessing in theVFD,beyond the aforementionedexfoliation
of graphene from graphite and h-BN [21–23], covers scrolling graphene [23] and graphene oxide [28], protein
folding [29], enhancing enzymatic reactions [24], controlling organic synthesis [25,30], probing the structure of
self-organized systems [31], protein separation [32] and more [33–37].

2. Experimental procedure
2.1. Materials
Ti2AlC powder precursor (MAX)was obtained commercially (Kanthal, Maxthal 211 Ti2AlC). The etching of
the aluminium from Ti2AlC was conducted in a 20% aqueous hydrofluoric acid (HF) solution (Sigma
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Figure 1. (a) Illustration of the VFD which houses a rapidly rotating borosilicate glass tube (20 mm OD, 17.5 mm ID), operating
under an inert atmosphere of nitrogen gas. Photograph of the solution obtained (b) under confined mode of operation of the VFD
(30 min) and (c) continuous flow, flow rate 0.5 ml min−1. Both modes were optimized at 4000 r.p.m., θ 45°, for a concentration of
MXene 0.5 mg ml−1 in a 1 : 1 ratio of IPA and water.
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Aldrich) for 24 h at room temperature. The resulting suspension was filtered and washed with deionized
water (DI) to reach a pH> 6 [14]. This as-prepared MXene was dispersed in distilled IPA purchased from
Sigma-Aldrich and Milli-Q water.

2.2. Synthesis of MXene nanoparticles and exfoliation of MXene
MXenewas dispersed in distilled IPA andMilli-Q water using sonication (25 min, 6 kHz). The mixture was
then transferred to an in-house developed magnetically stirred syringe, figure 2 [35,38]. The rapidly stirred
dispersion of MXene in IPA and water (0.5 mg ml−1) was then delivered using a jet feed to the base of the
rapidly rotating 20 mm OD glass tube in the VFD with another jet feed delivery a low flow rate of dry
nitrogen gas. The tube was inclined at 45° and spun at a pre-determined speed, which was optimized at
4000 r.p.m., with the optimized flow rate at 0.5 ml min−1, resulting in ca 7% exfoliated MXene and
fragmentation to nanoparticles, exiting the tube. We refer to the exfoliated MXene and MXene NPs
exiting the tube during continuous flow processing as ‘collected’. After 1 h of processing (30 ml passed
through the VFD), 3.5 ml remained in the tube which was added to 3 ml of a 1 : 1 mixture of IPA and
water. The mixture was centrifuged (700g) for 3 min to separate large MXene particles. The supernatant
afforded ca 8% exfoliated MXene sheets and MXene nanoparticles. This material which builds up in the
VFD during the continuous flow processing is referred to as ‘retained’ material.

2.3. Characterization
MXene sheets and MXene nanoparticles were characterized using scanning electron microscopy (SEM)
(Inspect FEI F50 SEM), atomic force microscopy (AFM—Nanoscope 8.10 tapping mode), Raman
spectroscopy (WiTec Alpha 300R λexc = 532 nm), XRD (Bruker D8 Advance Eco, Co–Kα, λ = 1.7889 Å),
ATR-FTIR Perkin Elmer Frontier, TEM (FEI Tecnai F20 operated at 120 kV), UV–Vis spectrophotometer
Varian Cary 50 EST 70772 and dynamic light scattering (DLS) (Zetasizer Nanoseries nano-zs, Malvern).

3. Results and discussion
The VFD is a flexible processing platform, with a number of operating parameters (rotational speed, tilt
angle, θ, (figure 1) and flow rates) to be systematically explored, along with the choice of solvent. The use
of a number of different solvents were investigated, namely water, NMP (N-methyl-2-pyrrolidone), IPA,
DMF (dimethylformamide), o-xylene, m-xylene and toluene. However, their use resulted in little or no
exfoliated MXene or resulted in the formation of nanoparticles. The same was also found for
combinations of solvents, in a 1 : 1 ratio, including NMP with water, DMF with o-xylene, DMF with
toluene, DMF with IPA, toluene with IPA, m-xylene with IPA, o-xylene with IPA and IPA with water, for
different speeds and different concentrations, electronic supplementary material, figures S1 and S2 [39].
Considering the use of co-solvents relates to their success in a number of process, including forming
graphene scrolls directly from graphite [23]. In addition, irradiating the material in situ in the VFD was
explored using a Nd:YAG pulsed laser operating at 1064 nm at different power settings, as another
parameter to enhance the exfoliation, using a mixture of IPA and water with a volume ratio of 1 : 1,
electronic supplementary material, figure S3. Varying the tilt angle θ was also explored, additional to the
common tilt angle of +45°, including 20°, −20° and −45°, while varying the rotational speed of the tube,
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Figure 2. (a) Normal syringe housing an unstable dispersion of MXene in IPA and water. (b) Syringe housing a magnetic stirrer
driven by an electric motor inside the plunger.
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electronic supplementarymaterial, figure S4.We note that−45° tilt anglewas effective in exfoliating h-BN in
water [22]. Varying the different operating parameters of the VFD led to determining the optimal conditions
for the exfoliation of MXene and the highest yield of material exiting (collected) the tube under continuous
flow. This was for a tilt angle of 45°, which is consistent with most optimized processes in the VFD.

Acolourchangewasobserved for the suspension ofMXene (fromdarkgrey toyellow) after processing in
the VFD in air, which is not surprising, given that the material is sensitive to air, being readily oxidized
[14,17]. Thus, all experiments were subsequently done under an inert atmosphere of nitrogen to
circumvent any oxidation arising from high uptake of molecular oxygen in the thin film in the VFD.
Electronic supplementary material, figures S5 and S6 summarize experiments done under N2 gas using
different solvents. These include water, DMF, ethanol and IPA, and mixtures of solvents, including IPA
and water, DMF and water, ethanol and water and DMF and o-xylene. IPA and water, volume ratio 1 : 1
was deemed to be the optimal solvent, and was used for subsequent experiments. The optimized
processing is with respect to the highest level of exfoliation and the yield of material exiting the tube,
electronic supplementary material, figure S14(a) [39].

We found that the confined mode of operation of the VFD gave little exfoliation of the MXene, unlike
continuous flow, and its use was adhered to for all subsequent experiments, electronic supplementary
material, figure S7. This included varying the rotational speed, flow rate and concentration of MXene in
the 1 : 1 mixture of IPA and water. We found 4000 r.p.m. gave the highest level of exfoliated MXene, with
some fragmentation into small nanoparticles of the material; the combined exfoliated MXene
and nanoparticles accounted for ca 7% of the starting material. The two materials were recalcitrant
towards separation by centrifugation. Rotational speeds of 5000, 6000, 7000 and 8000 r.p.m. gave little
exfoliation at the ubiquitous optimal 45° tilt angle, electronic supplementary material, figures S8, S9 and
S14(b). The optimal flow rate of MXene in IPA and water was 0.5 ml min−1, with a lower flow rate,
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Figure 3. Exfoliated MXene prepared using VFD processing under N2 gas, θ 45°, concentration 0.5 mg ml
−1 in IPA and water (1 : 1),

rotational speed 4000 r.p.m. and flow rate 0.5 ml min−1. (a) ATR-FTIR spectra, (b) Raman spectra, (c) PXRD and (d ) UV–Vis
spectroscopy.
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0.25 ml min−1, and a higher flow rate, 0.75 ml min−1, not as effective. For all these flow rates, the
concentrations of MXene in IPA and water (1 : 1) were varied, at 0.1, 0.25, 0.5 and 1.0 mg ml−1. The
optimal concentration was found to be 0.5 mg ml−1, with other concentrations resulting in lower yields,
electronic supplementary material, figure S14(c). Thus, the overall optimum processing parameters for
generating exfoliated MXene in a single pass in the VFD are a concentration of the material in a 1 : 1 ratio
of IPA and water at 0.5 mg ml−1, flow rate 0.5 ml min−1 and 4000 r.p.m. rotational speed. In addition,
after VFD processing under continuous flow for 1 h, an additional ca 8% of both exfoliated MXene and
MXene nanoparticles were collected from the tube (retained), electronic supplementary material, figure
S15. We initially used SEM images of drop cast material on silicon wafers to ascertain the effect of
varying the rotation speed, flow rate and tilt angle of the VFD, along with the choice of solvent, for the
highest degree of the exfoliation of MXene. We established the structure of MXene (retained) using ATR-
FTIR spectra, Raman spectroscopy, powder X-ray diffraction (PXRD) and UV–Vis spectroscopy, figure 3.

The shear stress in the VFD is effective in both exfoliating and fragmenting MXene. This is consistent
with other established top-down nanomaterials syntheses in the device, covering exfoliating [21,22] and
scrolling 2D materials [22,23,28], slicing carbon nanotubes [26,40] and more [33–35,41].

Figure 4f shows backscattering SEM to determine the elements present in the product relative to
the starting material, for different locations, figure 4g–i (collected) and electronic supplementary
material, figure S10(a–d) (retained). TEM images established the presence of some MXene nanoparticles,
figure 5a–d and electronic supplementary material, figure S11, with figure 6a,b providing additional TEM,
and SEM images, respectively, of nanospheres. AFM images provided additional information on the
shape of the nanospheres, in measuring their height. The results are in agreement with those from TEM
and SEM (figure 6c,e). DLS of solutions of MXene nanoparticles in IPA and water (1 : 1) generated in the
VFD after processing gave the average diameter of nanospheres as 68 nm, figure 6d. SEM images

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

10 m 1 m 1 m

2 m 2 m 1 m

3 m 10 m 20 m

Figure 4. SEM images for MXene (collected) drop cast on a silicon wafer, post-VFD processing under N2 gas, θ 45°, concentration
0.5 mg ml−1 in IPA and water (1 : 1), rotational speed 4000 r.p.m. and flow rate 0.5 ml min−1. (a) MXene as prepared, (b–e)
exfoliated MXene, ( f ) backscattering of MXene nanoparticles and (g–i) MXene nanoparticles.
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established the presence of exfoliated MXene, figure 4b–e, electronic supplementary material, figure
S10(e–l), with AFM images establishing the mean thickness of VFD-exfoliated MXene sheets as 3 nm,
figures 7 and 8c, electronic supplementary material, figure S12.

The TEM images were used to determine the size and number of MXene sheets generated using the
VFD processing, figure 5e–h, along with the size of the spheres, electronic supplementary material, figure
S8(a–e). However, the spheres were found to be unstable, with the drop cast spheres collapsing after 3
days. Interestingly, the spheres have holes in them, electronic supplementary material, figure S8( f,g),
but the origin of these is unclear.

ATR-FTIR forMXene has characteristic peaks, for material exiting the tube during processing in the VFD,
andmaterial retained in the tube, and as-preparedmaterial,withpeaks at 684 and 991 cm−1 for Ti–OandC–F,
respectively [42]. However, the VFD-processed MXene has a peak at 3674 and 1499 cm−1, corresponding to
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(e) ( f ) (g) (h)
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1 m500 nm200 nm100 nm

Figure 5. TEM images for MXene drop cast on grid, post-VFD processing under N2 gas, θ 45°, concentration 0.5 mg ml−1, in IPA
and water (1 : 1), rotational speed 4000 r.p.m. and flow rate 0.5 ml min−1.

(a) (b) (c)

25
20
15
10
5
0

68 nm

220 nm

0 200 400 600 800 1000 1200
diameter (nm)

MXene in IPA + water

40

20

0

nm

0.2 0.4 0.6 0.8 1.0 1.2 1.4 m

nu
m

be
r 

(%
)

500 nm 2 m 6.3 m

58.10 nm
43.59 nm 67.21 nm

60.12 nm

54.88 nm

46.98 nm 51.38 nm

73.50 nm
56.85 nm

65.16 nm

62.20 nm

48.57 nm56.64 nm

53.64 nm

44.78 nm

(d) (e)

Figure 6. MXene nanoparticles formed during VFD processing under N2 gas, with θ 45°, concentration 0.5 mg ml−1 in IPA and
water (1 : 1), rotational speed 4000 r.p.m. and flow rate 0.5 ml min−1. (a) TEM image of MXene nanoparticles drop cast on a grid.
(b) SEM image of MXene nanoparticles drop cast on a silicon wafer. (c) AFM image of MXene nanoparticles drop cast on a silicon wafer.
(d ) DLS of exfoliated MXene generated in IPA and water (1 : 1). (e) Height of MXene nanoparticles as determined using AFM images.
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O–H, respectively, of solvent, figure 3a [43–45]. Raman spectra ofMXene as prepared have three peaks at 259,
421 and 607 cm−1. The material exiting the VFD tube has peaks at 263, 419 and 613 cm−1, and retained in the
tube at 250, 405 and 613 cm−1. The slight shift of Raman peaks for exiting and retained material presumably
relates to the presence of nanospheres, along with the exfoliated MXene, only for material exiting the tube,
figure 3b [14,46]. Powder XRD of MXene confirms the presence of Ti2CTx MXenes, which has hexagonal
P63/mmc symmetry with a lattice constant a≈ 0.3 nm [47,48]. The 2θ peaks (Co–Kα, λ = 1.7889 Å) of
MXene as prepared were 29.4°, 40.6°, 42.4° and 72.4°, with corresponding values for material exiting the
tube 29.4°, 40.6°, 42.4° and 72.4°, figure 3c [49,50]. The small shift after VFD processing is associated with a
reduction in the thickness of the MXene sheets along with fragmentation. Finally, the UV–Vis spectra of
MXene as prepared and the materials produced herein are similar, figure 3d [51].
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Figure 7. AFM images for MXene drop cast on silicon wafers, post-VFD processing under N2 gas, θ 45°, concentration 0.5 mg ml−1

in IPA and water (1 : 1), rotational speed 4000 r.p.m. and flow rate 0.5 ml min−1.

100 nm 500 nm 1.8 m

20

15

10

5

0

pe
rc

en
ta

ge
 (

%
)

1.
5

2.
5

3.
5

4.
5

5.
5

6.
5

7.
5

8.
5

9.
5

10
.5

11
.5

thickness of MXene sheets (nm)

3

1

–1

nm 50 100 150 200 nm

(a) (b) (c)

(d) (e)

(a) (b) (c)

100 nm 500 nm 1.8 mm

Figure 8. Exfoliated MXene generated during VFD processing under N2 gas, θ 45°, concentration 0.5 mg ml−1 in IPA and water
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MXene sheets from AFM images. (e) Height of MXene sheets from AFM images.
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4. Conclusion
We have developed a continuous process for exfoliating 2D-MXene into multi-layered sheets ca 3 nm thick,
driven by the mechanoenergy in the dynamic thin film in the VFD. During this processing, we also
established that the VFD can fragment the laminar MXene into nanoparticles (average diameter 68 nm).
The optimized parameters for processing the MXene under an inert atmosphere of nitrogen gas were for
a concentration of MXene at 0.5 mg ml−1 in a 1 : 1 mixture of IPA and water, with a rotational speed of
4000 r.p.m. and flow rate of 0.5 ml min−1. The exfoliated material and nanoparticles of the material have
potential in applications such as environmental remediation [45], biological application [2–5], electronic
devices [9,10], supercapacitors [10,11] and next generation of batteries. [6,7] Understanding the complex
fluid dynamics in the thin film in the VFD is a major challenge currently being tackled. The choice of a
single solvent or mixed solvent system depends on the application, as does the effect of different
operating parameters of the device (tilt angle, rotation speed and flow rate of solvent), which need to be
systematically explored.
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