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Abstract  

The increasing growth of population and a rising number of vehicles, connected to an 

individual, demand new solutions to reduce traffic delays and enhance road safety. 

Autonomous Vehicles (AVs) have been considered as an optimal solution to overcome 

those problems. Despite the remarkable research and development progress in the 

area of (semi) AVs over the last decades, there is still concern that occupants may not 

feel safe and comfortable due to the robot-like driving behaviour of the current 

technology. In order to facilitate their rapid uptake and market penetration, ride comfort 

in AVs must be ensured. 

Braking behaviour has been identified to be a crucial factor in ride comfort. There is a 

dearth of research on which factors affect the braking behaviour and the comfort level 

while braking and which braking profiles make the occupants feel safe and 

comfortable. Therefore, the primary aim of this thesis is to model the deceleration 

events of drivers under normal driving conditions to guide comfortable braking design. 

The aim was achieved by exploiting naturalistic driving data from three projects: (1) 

the Pan-European TeleFOT (Field Operational Tests of Aftermarket and Nomadic 

Devices in Vehicles) project, (2) the Field Operational Test (FOT) conducted by 

Loughborough University and Original Equipment Manufacturer (OEM), and (3) the 

UDRIVE Naturalistic Driving Study. 

A total of about 35 million observations were examined from 86 different drivers and 

644 different trips resulting in almost 10,000 deceleration events for the braking 

features analysis and 21,600 deceleration events for the comfort level analysis. Since 

deceleration events are nested within trips and trips within drivers, multilevel mixed-

effects linear models were employed to develop relationships between deceleration 

value and duration and the factors influencing them. The examined factors were 

kinematics, situational, driver and trip characteristics with the first two categories to 

affect the most the deceleration features. More specifically, the initial speed and the 

reason for braking play a significant role, whereas the driver’s characteristics, i.e. the 

age and gender do not affect the deceleration features, except for driver’s experience 

which significantly affects the deceleration duration.  
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An algorithm was developed to calculate the braking profiles, indicating that the most 

used profile follows smooth braking at the beginning followed by a harder one. 

Moreover, comfort levels of drivers were analysed using the Mixed Multinomial Logit 

models to identify the effect of the explanatory factors on the comfort category of 

braking events. Kinematic factors and especially TTC and time headway (THW) were 

found to affect the most the comfort level. Particularly, when TTC or THW are 

increased by 1 second, the odds of the event to be “very comfortable” are respectively 

1.03 and 4.5 times higher than being “very uncomfortable”.  Moreover, the driver’s 

characteristic, i.e. age and gender affect significantly the comfort level of the 

deceleration event. Findings from this thesis can support vehicle manufacturers to 

ensure comfortable and safe braking operations of AVs. 
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1 Introduction 

1.1 General background 

The invention of the car in the late 19th century revolutionised transport systems. 

Vehicles have become an essential part of everyday life and the most popular mean 

of transport around the world, with their total number estimated to be 1.2 billion globally 

in 2014 (Voelcker, 2014). This number has grown rapidly, as in 2011 the estimated 

number of cars was 1 billion (Sousanis, 2011). Unfortunately, along with the increase 

in the number of cars, there has been an increase in road collisions. According to an 

estimate by the World Health Organization, 1.3 million people are killed and up to 50 

million people incur non-fatal injuries in road collisions every year (World Health 

Organization, 2015). Moreover, road traffic injuries are the leading cause of deaths 

among young people, i.e. 15-29 years old. A total of 1793 people were killed in 

reported traffic collisions in Great Britain in 2017, 0% change since 2016 and there 

were 24,831 seriously injured and 170,993 casualties of all severity in reported road 

traffic accidents (Department for Transport, 2018). Another consequence of road 

collision is the costs to individuals, property and society. According to the 2017 Annual 

Report of International Transport Forum, the total cost of all reported and unreported 

road collisions accumulated to around GBP 35.5 billion a year (the unreported injuries 

were included for the first time in the total cost and it was around GBP 20 billion a 

year). 

Previous studies identified human error as the dominant contributory factor to these 

collisions (Petridou and Moustaki, 2000; Lu et al., 2005; Elbanhawi et al., 2015). More 

specifically, the complex interactions between the driver, the vehicle and the 

environment are held responsible (Ungoren and Peng, 2005). According to the 

National Highway Traffic Safety Administration (NHTSA), human error is a contributing 

factor to 94% of the traffic collisions (Singh, 2015). Human errors are grouped by 

Umemura (2004) into three categories: cognitive errors (i.e. errors caused by 

oversights), judgment errors (e.g. misjudge the other’s vehicle speed or acceleration) 

and operation errors (e.g. failing to apply the brakes strongly enough in an 
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emergency). There are also other factors that can lead to a driver error and cause a 

collision such as distraction, fatigue, risk-taking attitudes, an overestimation of 

capabilities, as well as alcohol and drugs (Petridou, 2000). 

Vehicle automation aims to take the driver out of the driving task to eliminate human 

error. The basic objectives of this new disruptive technology are a reduction in traffic 

collisions, an increase in safety, a smoother traffic flow and an increase in driver 

comfort (Lay and Saxton, 2000). In fact, the road towards full automation has been 

opened for quite some time by technology such as anti-lock braking system (ABS) and 

electronic stability. The absolute goal is the development of fully AVs. To date, different 

systems from the fields of computer science and robotics have been applied to 

passenger cars, which have formulated the Advanced Driving Assistance Systems 

(ADAS). ADAS applications (e.g. emergency braking, lane-keeping assistance, 

adaptive cruise control) help to avoid collisions by assisting the driver in their driving 

task continuously either by warning the driver or taking control of the car. Apart from 

the increase of safety, ADAS also aims to improve the comfort and the efficiency of 

the cars (Lu et al., 2005). Nevertheless, there are still significant challenges in reaching 

the necessary safety integrity at an affordable cost. 

Autonomously driving cars (also known as robotic, autopilot, driverless or self-driving 

cars) have been the purpose of many robotics researchers (Petrovskaya and Thrun, 

2009). An autonomous car is an AV capable of fulfilling the transportation capabilities 

of a traditional car. It is fundamentally defined as a passenger vehicle that drives by 

itself (Forrest et al., 2007). Some of the possible advantages and limitations from the 

use of AVs can be summarised as follows. 

The possible benefits of AVs include the improvement of traffic safety by reducing 

collisions, more efficient traffic flow by reducing congestion and setting higher speed 

limits, increased highway capacity and reduction of the total number of cars through 

car sharing (Lay and Saxton, 2000; Forrest et al., 2007; Petrovskaya and Thrun, 2009; 

Stevens and Newman, 2013). Moreover, there are environmental and financial 

benefits since they will reduce vehicle emissions and fuel consumption and optimise 

fuel usage. Furthermore, they will provide extended mobility for elderly and disabled 

people and contribute to time-saving. 
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On the other hand, there are still many challenges regarding AVs use (Figure 1.1) 

(Stevens and Newman, 2013; Catapult Transport Systems, 2016; Barabás et al., 

2017; BSI and Catapult Transport Systems, 2017). Particularly, concerns about the 

liability for accidents with AVs and possible damage to them, the loss of driving-related 

jobs and the absence of adequate policy (Elbanhawi et al., 2015). There is a lack of 

international standards and common policy frameworks (Catapult Transport Systems, 

2016). Another challenge is the reliability of the software, the systems and the sensors 

used in AVs and their integration, as well as cybersecurity (Parasuraman et al., 2000; 

Stevens and Newman, 2013; Catapult Transport Systems, 2016). The high cost of 

manufacturing AVs, the integration of AVs with the existing transport systems and 

changing adequately the current road infrastructure are more limitations (Forrest et 

al., 2007). Moreover, modelling AVs and particularly in mixed traffic conditions could 

prove the impacts and the potential advantages of AVs, although there is a lack of 

data on system and human performance (Stevens and Newman, 2013). It might also 

create ethical problems, for example, when an AV cannot avoid a collision, which 

criteria should it take into consideration to plan its action (NHTSA, 2016). Finally, the 

user’s acceptance is one of the major challenges and it is connected to human factors 

(Stevens and Newman, 2013; BSI and Catapult Transport Systems, 2017). Those 

challenges are related to different stakeholders, i.e. cars manufacturers, researchers, 

legislators, regulators, insurers and drivers (Catapult Transport Systems, 2016). 

This research, on the one hand, approaches different challenges by investigating 

braking behaviour, such as human factors, standards, and system design. On the 

other hand, it also mitigates among different stakeholders, such as researchers, 

drivers, and car manufacturers. 



4 

 

 

Figure 1.1: Challenges that arise with autonomous vehicle use  

The challenges concerning human factors in relation to AVs must be overcome to 

ensure rapid market penetration. Winning the trust of people to allow a computer to 

drive a vehicle for them is one of the major challenges (Stevens and Newman, 2013) 

and it is closely connected with people feeling safe and comfortable inside AVs 

(Elbanhawi et al., 2015) (Figure 1.1). In general, if people believe that an automated 

system is untrustworthy, they may not accept it or use it even though it is actually 

reliable and safe (Parasuraman and Riley, 1997). People are reluctant to trust an 

autonomous system, for fear that it will go wrong, and they will be blamed for it 

(Parasuraman and Riley, 1997; Lee and See, 2004). By establishing common policy 

and international standards, that will clarify the legal liability, the trust of people on the 

new technology could increase. Previous research on human challenges has been 

conducted in the aviation field, showing that not only the lack of trust but also the 

overreliance on the system may cause problems, like the failure of monitoring 

(Majumdar et al., 2004; Young et al., 2007). Trust is closely connected with the user’s 

acceptance. However, while trust may be increased with greater familiarity, 

acceptance does not (Somers and Weeratunga, 2015). 
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In order for the wide acceptance of AVs and their market penetration to happen, it 

should be ensured that the passengers feel safe and comfortable inside them (Kraus 

et al., 2010). Research has shown that different levels of automation in vehicles lead 

to different human factors problems, such as loss of the driving skill, loss of situational 

awareness of the driver, high or too-low workload and insecurity as far as the 

responsibility of the vehicle is concerned (Toffetti et al., 2009). Particularly, semi-AVs 

seem to be more challenging in relation to human factors, since a safe and fast 

transition between autonomous and human function is necessary for their safe 

operation (Stevens and Newman, 2013). Furthermore, it is important to develop an 

appropriate Human Machine Interface (HMI) to inform passengers about AV’s actions 

(Reuschenbach et al., 2010). Finally, it is necessary to develop suitable human factor 

research tools i.e. the appropriate evaluation tools (e.g. simulators, vehicles) to 

evaluate the driver, the system and their interaction and to conduct research to 

overcome the abovementioned problems (Somers and Weeratunga, 2015). 

1.2 Problem statement 

Research on (semi-) AVs has attracted significant interest from the research 

community worldwide in recent years (Urmson et al., 2008; Silberg and Wallace, 2012; 

Wei et al., 2013; Le Vine and Polak, 2014; Lefèvre, Carvalho, and Borrelli, 2015). 

Fundamentally, vehicle automation aims to eliminate or decrease human 

involvements from the routine tasks of driving (Chiang et al., 2006). Some of the most 

challenging research issues in vehicle automation involve the need to understand 

human interactions with automation technologies, human needs and expectations to 

gain trust and acceptance (Lay and Saxton, 2000).  

Despite the remarkable research and development progress in the area of (semi-) AVs 

over the last decades, there is still concern that occupants may not feel comfortable 

due to: a) the unnatural driving performance of the current technology (Elbanhawi et 

al., 2015; Kuderer et al., 2015; Lefèvre, et al., 2015a; Scherer et al., 2015) and b) the 

feeling of uncertainty people have about whether the AV recognizes and evaluates the 

traffic situation correctly or whether a critical manoeuvre has to be performed (Kraus 

et al., 2010). Specifically, the problem is based on the fact that the kinematics of 

(semi-) AVs are likely to differ from human-driven vehicles and ignore diverse driving 
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styles due to the differences in perception, information processing, decision-making 

and actuation capabilities of humans and machines (Le Vine et al., 2015a). Therefore, 

there would be a mismatch between preferred driving style and the AV’s driving style 

effectively causing physical and mental discomfort. Hence, to ensure ride comfort for 

different users, it is essential to ensure that (semi-) AVs adopt a human-like driving 

performance, i.e. a driving style according to user preferences (Kraus et al., 2010; 

Scherer et al., 2015).  

Ride comfort is a subjective concept, which has been studied since early 1970, mostly 

concerning public transport (Gebhard, 1970; Hoberock, 1976; Constantin et al., 2014; 

Elbanhawi et al., 2015; Le Vine et al., 2015a). Ride comfort is a crucial factor since the 

acceptance of any transportation system is affected by the ride quality to which 

passengers are exposed. Accordingly, ride comfort is a major challenge for the 

development and acceptance of (semi-) AVs (Kraus et al., 2010; Kuderer et al., 2015; 

Lefèvre, et al., 2015a) and in general for the analysis of vehicle dynamics (Wu et al., 

2013). While under-designing a system with respect to ride comfort may make it 

unacceptable to the public, overdesigning can be extremely expensive (Smith et al., 

1978). Driver comfort is understood as a state which is achieved by the removal or 

absence of uneasiness and distress. For passengers not conducting any obligatory 

tasks, the ride discomfort can relate to general annoyance, inability to fall asleep, and 

difficulties for reading and writing (Marjanen, 2010). 

Moreover, the perception of comfort may vary considerably among drivers, which 

makes studying ride comfort more challenging (Kuderer et al., 2015). Research has 

proven that human drivers prefer different driving styles based on their personality, the 

age, the gender, the motivations and the emotions (Yusof and Karjanto, 2015). In 

general, driver behaviour is complicated due to heterogeneity among drivers 

(Elbanhawi et al., 2015): While some drivers might prefer a more aggressive driving 

style with high accelerations and decelerations, others might prefer a safer one 

(Kuderer et al., 2015). Therefore, individual driving style, which is the dynamic 

behaviour of a driver on the road (Murphey et al., 2009), may significantly affect the 

idea of comfort. 
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Even though the concept of comfort is not perfectly clear, researchers have 

traditionally investigated ergonomic factors such as seat vibrations. Although, the 

development of AVs would lead to the examination of other factors beyond in-car 

ergonomics such as vehicle control, motion sickness and safe distance keeping 

(Elbanhawi et al., 2015). Specifically, some factors that clearly affect the comfort inside 

a vehicle are temperature, vibration, acoustic sound, space headway, time headway 

(THW), time gap, TTC, longitudinal and lateral acceleration /deceleration, jerk (the first 

derivative of acceleration), seating type, the perceived personal security etc. (Els, 

2005; Chiang et al., 2006; Wu et al., 2009; Elbanhawi et al., 2015; Kuderer et al., 2015; 

Le Vine et al., 2015b). The literature has revealed that the most important factors for 

ride comfort are longitudinal acceleration and deceleration as well as the jerk (the 

derivative of acceleration). Occupants are subjected to accelerations in different 

directions because of vehicle vibration and road roughness, which makes them feel 

uncomfortable (Wu et al., 2013). Human reaction to vibration-braking depends on 

three factors (Marjanen, 2010): 1) characteristics of the vibration, 2) characteristics of 

the human and 3) characteristics of the environment. 

Specifically, braking makes people feel ‘uncomfortable’ and ‘scared’ since sharp 

deceleration is an accident surrogate (Bagdadi, 2013). Therefore, a (semi-) AV should 

decelerate in a manner avoiding mental discomfort to both, people inside and outside 

the vehicle. Regarding the braking performance, stress and nervousness are apparent 

(Kazumoto et al., 2006): 

▪ if the timing at which the vehicle automatically brakes differs from the driver’s 

own judgment, 

▪ whether the level of deceleration is greater than the driver’s expectation or 

▪ if the deceleration profile does not follow the one that the driver is used to. 

It is, therefore, considered important to fully understand drivers’ braking behaviour and 

the factors affecting it in different scenarios with respect to the level of braking (e.g. 

harsh/sharp, normal, conservative), the duration of braking as well as the level of 

comfort while braking. Despite valuable contributions in the literature so far about the 

kinematic, driver, and situational factors affecting deceleration, it is not entirely clear 

how all those factors, when cooccurring, influence the deceleration behaviour. The 
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question is: Could the resulting relationships be used to ensure comfort in braking 

systems by personalising it and choosing the appropriate deceleration threshold for 

each driving scenario?  

In the context of (semi-) AVs and generally braking systems, it is also considered 

important to identify the deceleration profiles (e.g. how the deceleration values change 

over time since the start of braking) in the context of normal driving. Up to date 

literature has focused on modelling the deceleration against speed. Can deceleration 

profiles that were developed from normal driving be used to reduce discomfort during 

braking? 

It should, however, be noted that safety always comes first, and hard deceleration is 

sometimes necessary in the case of an emergency situation in order to avoid a conflict 

or a collision. As a result, passenger tolerance to longitudinal deceleration will affect 

the design of the vehicle’s braking system (Hoberock, 1976). An efficient approach in 

designing (semi-) AVs would be to monitor and identify how human drivers perform 

the driving tasks and then analyse and characterise such behaviours with the aim of 

developing various thresholds to implement them into the system (Goodrich et al., 

1999). Vehicle automation with respect to braking is then possible to be designed 

emulating human behaviour. 

This research aims to thoroughly explore the deceleration behaviour of drivers using 

naturalistic driving data from two Field Operational Tests (FOT) and one Naturalistic 

Driving Study (NDS)1. Consequently, the braking events observed within normal 

driving will be analysed. The definition of normal driving is ‘subjective’ and there is no 

generic definition in the literature. Moreover, perceptions of normal driving differ from 

country to country. In this work, normal driving means that the drivers execute the 

driving tasks under ‘normal’ driving conditions i.e. the absence of any safety-critical 

events such as ‘near misses’ or ‘collisions’. In addition, this PhD research focuses on 

identifying acceptable thresholds and developing a statistical relationship between 

braking and related factors. The examined factors are human factors (i.e. age, gender 

 

1 A Field Operational Test is a large-scale testing experiment in real traffic conditions, whereas a 
Naturalistic Driving Study is undertaking using unconstructive observation when driving in a natural 
setting and without experimental control. 
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and driving miles per year), traffic factors (e.g. traffic density) and road network 

conditions. In addition, the deceleration profiles will be calculated. Furthermore, the 

comfort level of the deceleration events is decided using an adequate threshold and 

the factors affecting the comfort level are examined. Concluding, the last goal is to 

inform vehicle manufacturers about the results and suggest a way to implement those 

results into the design of an autonomous car to ensure that passenger presumes the 

braking operation as safe and comfortable. 

1.3 Research importance 

Vehicle automation research, including ADAS and AVs, is undertaken extensively 

nowadays as it seems promising and carries various possible benefits. However, a 

fundamental challenge is how to make these vehicles safe and trustworthy and 

persuade people to accept them. Feeling safe and comfortable inside a (semi-) AV is 

one crucial factor in addressing this challenge. Along with safety and efficiency, the 

increase in driver comfort is considered one of the main motivations for purchase 

(Hartwich et al., 2018). In these higher levels of automation, the driver is becoming a 

passenger, which is termed the loss of controllability (Elbanhawi et al., 2015; Hartwich 

et al., 2018). Therefore, when the passenger has little or no control of the car 

movements the autonomous system must generate movements that are perceived as 

pleasant (Erikson et al. 2015). This could be achieved by estimating the deceleration 

profiles that are generating from manual driving and then program the control 

mechanisms of AVs to follow those profiles. 

The comfort experience when being a passenger in a human-driven car is affected by 

the driver’s driving style. Similarly, the same applies to a (semi-) AV (Bellem et al., 

2016). Improving the implemented driving style is the key to influence experienced 

driving comfort inside a semi- or fully AV (Bellem et al., 2018). Generating different 

deceleration thresholds for different scenarios and different driving characteristics 

could aid the improvement of the implemented driving style. From a technologic 

perspective, the automated driving style is possible to mimic average human driving 

styles or to be constructed as an artificial one. In both cases researchers tried to 

discover the underlying factors determining a comfortable automated driving style, 

resulting in the majority in longitudinal and lateral acceleration and deceleration. This 
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PhD research is meaningful because it provides an in-depth analysis of the 

deceleration events. More specifically, it provides an estimation of deceleration profiles 

for different scenarios, qualitative results on the relationship of several contributory 

factors with deceleration values and with the level of comfort during a deceleration 

event. Braking is one of the most important factors related to discomfort. Without 

understanding deceleration and contributing influential factors and their cooccurrence, 

it is at least questionable whether (semi-) AVs will be able to perform braking that 

causes comparable feelings of comfort as manual braking while driving. Without 

feeling safe and comfortable inside an AV, humans will not trust and accept a computer 

to drive for them and this might make the transaction of manual vehicles to (semi-) 

AVs a more challenging task. 

1.4 Aim and Objectives 

The aim of this PhD research is to model the deceleration events of drivers under 

normal driving conditions to guide comfortable braking design. 

The aim will be accomplished through the following objectives: 

1. To identify factors affecting deceleration behaviour and ride comfort, 

2. To describe and validate data collection approaches for analysing deceleration 

behaviour, 

3. To investigate and refine the data to improve the analysis quality, 

4. To develop the deceleration profiles, 

5. To extract the underlying relationship between influencing factors and both, 

braking behaviour and comfort level, 

6. To recommend for comfortable braking design. 

1.5 Thesis outline 

This section provides an outline of each chapter of the thesis. The whole thesis 

consists of eight chapters: 

➢ In Chapter 2, an in-depth critical literature review in deceleration behaviour and 

ride comfort is conducted in order to understand why people may feel 
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uncomfortable during the driving tasks and which factors affect the deceleration 

behaviour and the comfort of vehicle’s passengers. 

 

➢ Chapter 3 begins with the literature review on the different data collection 

approaches used in driver behaviour analysis. Also, the data that have been 

used are illustrated thoroughly in this Chapter. They are demonstrated along 

with descriptive statistics for a better understanding of the samples 

 

➢ In Chapter 4 the methodology is presented. The chapter starts with the 

description of the algorithm that detects the deceleration events and estimates 

the braking profiles. Following are the statistical models that are employed, i.e. 

the multilevel model and the mixed logit discrete model as well as the 

classification and clustering methods. 

 

➢ Chapter 5 presents and explains the results of the estimated braking profiles, 

the clustering, and the statistical models revealing the relationship of the 

deceleration variables with their influencing factors. 

 

➢ The results of the ride comfort evaluation and modelling are displayed and 

interpreted in Chapter 6. 

 

➢ Chapter 7 discusses the results of this research and provides recommendations 

for applying them in braking design. 

 

➢ Finally, Chapter 8 summarises the research project, lays out the contribution to 

knowledge as well as its limitations. Following are suggestions for future 

research directions. 
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The outline of the thesis is shown below: 

 

Figure 1.2: Outline of the thesis 

  

Chapter 1: Introduction

Chapter 2: Literature Review of 
Deceleration Behaviour and Ride 

Comfort

Chapter 3: Data description and Pre-
processing

Chapter 4: Methodology

Chapter 5: Results of the analysis: 
Deceleration Events

Chapter 6: Results of Comfort 
Modelling

Chapter 7: Discussion and 
Recommendations

Chapter 8: Conclusions
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2 Literature Review of Deceleration Behaviour and Ride 

Comfort 

The idea behind the conducted research is to increase the naturality of (semi-) AVs 

and existing braking systems while braking and raise the level of comfort for the 

passengers. Therefore, the literature review begins with the human factor challenges 

regarding automation. Narrowing human factors down, the ride comfort problem is 

revised. Numerous factors contribute to braking behaviour and ride comfort. To fully 

comprehend the research problem, in-depth knowledge and an understanding of 

these factors are required. Starting from a more generic perspective to set the 

conducted research into context, driving behaviour is reviewed, before the braking 

behaviour is studied.  

Purposefully, the literature review consists of three main sections. The aim of each 

section is briefly presented below: 

1. Human factors: This section summarises the human factors regarding 

automation and specifically AVs along with the challenges that different levels 

of automation cause. 

2. Ride comfort: The second section is dealing with the ride comfort inside a 

vehicle, which is strongly connected with some challenges related to human 

factors i.e. acceptance and trust. The term is explained, and the influencing 

factors are displayed in detail. 

3. Driving behaviour: The third section of the literature review defines the driving 

behaviour and presents different studies that have dealt with the recognition 

and the implementation of various driving behaviour into AVs. Last but not least, 

the braking behaviour is described and specifically the appropriate thresholds 

and the braking behaviour’s influencing factors are presented. 

4. Research Gap: The last section describes the research gap, originating from a 

comprehensive understanding of the research environment. 
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2.1 Human Factors regarding vehicle automation 

Much of the literature on automation generally and AVs particularly pays attention to 

the concept of human factors, making it crucial to study and understand them. 

An AV is defined as a passenger car that is capable of driving by itself (Arora et al., 

2013; Kaur and Rampersad, 2018). Autonomous means having the power for self-

government and involves decision making. On the other hand, automation is the 

process of following predefined instructions (Elbanhawi et al., 2015). An AV is a 

vehicle capable of fulfilling the main transportation capabilities of a traditional car, 

specifically, sense its environment and navigate through a transport network without 

human input (Campbell et al., 2010; Arora et al., 2013). It is necessary here to clarify 

exactly what is meant by human factors: This is a scientific discipline concerned with 

the understanding of interactions among humans and other elements of a system, and 

the discipline that applies theory, principles, data and methods to design a system in 

a way that optimizes human well-being and overall system performance (Wogalter et 

al., 2012). 

One of the main goals in studying human factors is to prevent human errors in order 

to ensure safety since human error is the main reason for collisions in transportation 

(Shappell and Wiegmann, 2000). Two approaches to the problem of human fallibility 

exist, i.e. the person and the system. The person approach focuses on the unsafe 

acts-errors of individuals, (e.g. inattention, carelessness etc.), whereas the system 

approach concentrates on the conditions under which individuals work and tries to 

build defences to avert errors or mitigate their effects (Reason, 2000). A similar 

approach is followed by the Reason latent failure model of human error where the 

incident can be caused by both ‘active failures’ (caused by system operators) and 

‘latent failures’ (result from organization practices) (Majumdar et al., 2004). 

There are many human factors (e.g. user’s acceptance, overreliance on the system, 

HMI) affecting the use of automation. These factors need to be taken into 

consideration while designing and developing an automation system (Saffarian et al., 

2012). Muir and Moray (1996) dealt with the trust in automation resulting in more trust 

in an automated system that leads to more use but less monitoring. Analysing the 
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effect of trust in automation, Parasuraman and Riley (1997) presented some studies 

referring to the problems of use, misuse, disuse and abuse automation. In their study, 

the term ‘use’ meant the voluntary activation or disengagement of automation by a 

human. They defined ‘misuse’ as overreliance on automation (e.g. use it when they 

should not fail to monitor it effectively) and ‘disuse’ as the opposite i.e. as 

underutilisation of automation (e.g. ignoring or turning off automated alarms or safety 

systems). Finally, they described ‘abuse’ as the inappropriate application of 

automation by designers or managers and they proposed strategies to overcome 

those problems. Moreover, the out of the loop problem in automation was highlighted 

by Endsley and Kiris (1995), leading to loss of manual skills and loss of awareness 

about the state and the processes of the automated system. 

Many studies through the literature support that the research conducted considering 

human factors in aviation will be a great lesson for exploring the human factors 

challenges regarding autonomous driving (Lee and See, 2004; Majumdar et al., 2004; 

Merat and Lee, 2012; Young et al., 2007; Parasuraman and Wickens, 2008; Weyer et 

al., 2015). To begin with, Lee and See (2004) and Parasuraman and Wickens (2008) 

focused on the trust in automation, taking examples from aviation, where pilots failed 

to intervene and take the control when it was crucial (misuse). Lee and See (2004) 

supported that people are not always willing to trust automation (disuse) and that those 

behaviours result from the user’s feelings and attitudes, like trust. Whereas 

Parasuraman and Wickens (2008) analysed trust focusing on reliance and 

compliance. To guide the design of automated vehicles, Merat and Lee (2012) 

combined different research regarding driver interaction with automated vehicles 

acknowledging that the understanding of this interaction is largely based on the 

findings from aviation and process control research. Weyer et al. (2015) conducted an 

in-depth analysis of the loss of control phenomenon in smart cars using hypotheses 

based on the findings from aviation research. Moreover, the design philosophies of 

hard and soft automation, extracted from the aviation field, are discussed in terms of 

suitability for road vehicles in the work of Young et al. (2007). Hard automation 

employs the technology to prevent error (automation can override the user) while soft 

automation just aids the user in different functions. Last but not least, Majumdar et al. 

(2004) investigate the causation of the airspace incidents by using the Reason model 



16 

 

for human errors (active failures, local factors relating to the task and organisational 

factors) showing that there are more things than the individual user to be taken into 

consideration in accident prevention. 

In Table 2.1, the most important human factors challenges derived from the literature 

are displayed, along with their definitions and studies that have dealt with them. 

Table 2.1: Human factor challenges regarding Autonomous driving 

Human factor 
challenge 

Definition Associated studies 

Acceptance A wide concept that can be related to the 
utility and usefulness of the system from 
the driver’s point of view, the reliability 
of the system, and the trust by the driver. 

(Martens et al., 2007; Somers and 
Weeratunga, 2015) 

 

Comfort A state which is achieved by the removal 
or absence of uneasiness and distress. 

(Martens et al., 2007; Kuderer et 
al., 2015; Lefèvre, et al., 2015a) 

 

Overreliance 
(Complacency, 
Overtrust, 
Misuse) 

 

The situation where the driver trusts the 
automation too much, without 
questioning its performance or 
monitoring its status and hence fail to 
detect possible failures. 

(Parasuraman and Riley, 1997; 
Parasuraman et al., 2000; Lee and 
See, 2004; Parasuraman and 
Wickens, 2008; Saffarian et al., 
2012) 

Behaviour 
adaptation 

 

The unintended changes in the driver’s 
behaviour due to automation use. For 
example, the driver’s perceived risk might 
change resulting in higher speed or 
shorter headways.  

(Farida Saad, 2006; Martens et 
al., 2007; Saffarian et al., 2012) 

Mental workload 

 

Even if the aim of the automation is to 
decrease the driving workload, there is 
evidence that in unexpected situations 
the automation can increase the mental 
workload. 

(Parasuraman et al., 2000; 
Martens et al., 2007; Young et al., 
2007; Merat et al., 2012; 
Saffarian et al., 2012) 

Skill degradation 
(Loss of skills) 

Automation can result in degradation of 
the driving skills since the driver will use 
these skills to a minimum time. 

(Parasuraman et al., 2000; 
Martens et al., 2007; Saffarian et 
al., 2012) 

Situational 
awareness 

 

Situational awareness is referred to as 
the state of being aware, realizing and 
understanding the modus of the vehicle, 

(Parasuraman et al., 2000; 
Martens et al., 2007; Young et al., 
2007; Merat et al., 2012; 
Saffarian et al., 2012) 
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the driving environment and the 
dangerous events.  

Trust Trust is a social phycological concept that 
influences the actual, behavioural 
dependence on automation. It can be 
defined as one’s willingness to place 
himself/herself in a vulnerable position, 
regarding a technology. 

(Muir and Moray, 1996; Lee and 
See, 2004; Parasuraman and 
Wickens, 2008; Kaur and 
Rampersad, 2018) 

Underutilisation 
(Disuse) 

When the driver does not trust the 
automation even if it is reliable and it 
does not use it (when for example the 
driver ignores or turns off the safety 
alarms). 

(Parasuraman and Riley, 1997; 
Lee and See, 2004; Parasuraman 
and Wickens, 2008) 

Abuse The inappropriate application of 
automation by designers or managers. 

(Parasuraman and Riley, 1997) 

Loss-of-control 
(Out of the loop) 

High level of automation may raise the 
complexity and intransparency of vehicles 
leading to loss-of-control for the drivers. 

(Endsley and Kiris, 1995; 
Parasuraman et al., 2000; Weyer 
et al., 2015) 

Carsickness Carsickness is the motion sickness that is 
the result of the conflict between the 
visual sensory system and the movement 
of the human body. 

(Diels, 2014; Elbanhawi et al., 
2015; Diels and Bos, 2016) 

Narrowing it down, there has also been intense research on human factors regarding 

AVs. The transition from the conventional to the fully autonomous cars will not happen 

at once but gradually passing through different levels of automation. The US National 

Highway Transportation Safety Agency (NHTSA, 2016) has defined four levels of 

automation, 0 through 4 as depicted in Figure 2.1: 

No-Automation (Level 0): The driver controls the vehicle’s operations at all times: 

brake, steering, throttle, and motive power. 

Function-specific Automation (Level 1): Automation at this level involves one or 

more specific control functions. The vehicle automation assists the driver in some 

vehicle controls, such as braking in order to enable the driver to gain control or stop 

faster. 

Combined Function Automation (Level 2): This level involves automation of at least 

two primary control functions designed to work in unison to relieve the driver of control 
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of those functions. A combination of ACC (controls the brake and the throttle) and lane 

centering (controls the steering) is an example of level two automation. 

Limited Self-Driving Automation (Level 3): At this level of automation the vehicle 

has the full control of all safety-critical functions under certain traffic or environmental 

conditions and monitor all the time for changes in those conditions which may require 

transition back to driver control. So, the driver should be ready to take control when is 

needed, but with sufficiently comfortable transition time. An example of level 3 

automation is the Google car. 

Full Self-Driving Automation (Level 4): In the last level of automation the vehicle is 

designed to perform all safety-critical driving functions and monitor roadway conditions 

for an entire trip. The passenger (not the driver anymore) needs to provide destination 

or navigation input, but he is not expected to be available to take over the control of 

the car at any time during the trip. 

 

Figure 2.1: The levels of Vehicle Automation (NHTSA, 2013) 
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To date, different autonomous operations have been applied to conventional cars, 

allowing them to perform some functions (Level 1 and Level 2 of automation). Many 

challenges are related to human factors in every automation level and require a better 

understanding to ensure the development and the wide acceptance of AVs. Many 

studies focus on topics of transfer of control, loss of control, HMI design, trust, 

situational awareness, carsickness and user acceptance (Table 2.1). In the report of 

Martens et al. (2007), a number of human factors issues are underlined: behavioural 

adaptation, distraction, skill loss, driver’s acceptance, risk compensation, awareness 

of technology capabilities and limitations. Saffarian et al. (2012) also highlighted the 

problems of overreliance, behavioural adaption, skill degradation, reduced situation 

awareness, transition and driver-vehicle communication and suggested possible 

solutions, for example, shared control, new training methods, adaptive automation. 

Through the historical analysis undertaken by Kyriakidis et al. (2015) regarding railway 

accident caused by human error, it was found that distraction, familiarity, safety culture 

and workload contributed the most in those accidents. Through the literature, it has 

been widely supported that partial automation is more challenging than full automation 

since people have to interact intensively with the semi-AV and give and take control 

of the car when it is needed and at a specific transition time (Norman, 2014). However, 

the biggest problem is winning the trust of people to allow a computer to drive a vehicle 

for them in every level of AVs (Forrest et al., 2007). Inappropriate level of trust might 

lead to disuse (not enough trust in the automated system) or misuse (more trust in the 

system than appropriate) (Banks and Stanton, 2016).  

Trust is closely connected to the acceptability of new technology. Acceptability is 

defined as a person’s evaluation of technology without any prior interaction with it 

(Hartwich et al., 2018). According to Elbanhawi et al. (2015), this shift of the role from 

driver to passenger produces new-comfort-relevant issues, i.e. motion sickness, the 

effect of disturbances, naturalness of driving manoeuvres and apparent safety.  

One of the main problems in the acceptance of AVs is the loss of control, the transition 

from being a driver to being a passenger (Elbanhawi et al., 2015; Le Vine et al., 2015a; 

Bellem et al., 2016; Hartwich et al., 2018). The loss of control problem (i.e. if semi-

automation raises the complexity of driving was examined with self-reported 

statements by Weyer et al. (2015) who concluded that the satisfaction of the drivers 
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was high and they did not experience any severe problem. The problem that was 

underlined by Banks & Stanton, (2016) is that humans are not good at monitoring a 

task for a long period and then suddenly taking effective control. This also results in 

reduced situational awareness. According to Parasuraman et al. (2000), humans tend 

to be less aware of the driving environment, the state of the system and dangerous 

situations when another agent (in this case the automated system) is in charge. 

Parasuraman et al. (2000) proposed a guide to design automation that is based on 

human-automation interaction and takes into consideration the most important of the 

human factors’ challenges, i.e. skill degradation, complacency, mental workload and 

situational awareness. In addition, Merat et al. (2012) concluded that vehicle 

automation had a negative effect on the driver’s situational awareness because of 

overreliance on the system, lack of knowledge about the system’s capabilities and 

reduced monitoring. 

Several studies have been conducted to deal with the problem of interaction between 

the driver and the AV in different automation levels. Beggiato et al., (2015) conducted 

a study to investigate driver’s information needs at different levels of automation which 

suggested that partial automation was more exhausting and more difficult for the 

drivers. In two other studies, Merat and Jamson, (2008) and Merat et al., (2012) 

compared the effect on the driver's performance in manual and highly automated 

driving. Their results showed that driver’s response to all critical events was slower in 

the automated driving condition than in manual driving, which may be due to the 

reduction of the driver’s situational awareness or to overreliance on the system. All 

these studies suggested that partial automation is more challenging and demands full 

attention from the drivers almost as much as in normal driving. 

2.2 Ride comfort 

As mentioned in the previous section, comfort is one crucial human challenge for 

vehicle automation. To achieve high user-acceptance and market penetration in the 

domain of autonomous driving, the design of automated driving functions is crucial 

and should offer flexibility and adaptability (Griesche et al., 2016). The importance of 

driving comfort is highlighted by The European Road Transport Advisory Council 

(2017) next to safety and efficiency (Hartwich et al., 2018). However, there is still a 
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lack of knowledge about how the driver wants to be driven and which manoeuvres are 

perceived as uncomfortable (Scherer et al., 2015). 

Ride comfort is a major challenge in the development and acceptance of AVs (Kraus 

et al., 2010; Kuderer et al., 2015; Lefèvre, et al., 2015a). Ride comfort is a subjective 

concept understood as a state achieved by the removal or absence of uneasiness and 

distress. It is a subjective, pleasant state of relaxation given by confident and 

apparently safe vehicle operation (Constantin et al., 2014). A global definition including 

psychological aspects describes comfort as ‘a pleasant state of physiological, 

psychological and physical harmony between a human being and the environment’ 

(Hartwich et al., 2018). Although, when considering driver comfort, we must not omit 

safety precautions. Safety is far more important than comfort under any circumstance 

(Wu et al., 2009). 

Comfort may vary considerably among drivers since human drivers adopt different 

driving styles based on their personality, age, gender, etc. (Kuderer et al., 2015; Powell 

and Palacín, 2015). Nevertheless, there have been many attempts in the literature to 

evaluate it and discover which factors affect it. Some of these factors are noise, 

temperature, air quality, car seat and motion, i.e. vibrations (Martin and Litwhiler, 2008; 

Constantin et al., 2014; Elbanhawi et al., 2015). Those form the traditional ergonomics 

factors (Figure 2.2). Vibration has been widely studied as a comfort measurement. 

Vibrations can be transmitted through the seat surface, backrest and through the floor 

and can occur in all 3 axes (longitudinal, lateral and vertical) (Park and Subramaniyam, 

2013). There are 4 different standards throughout the world today designed to 

evaluate ride comfort with respect to human response to vibration. Those standards 

are the ISO 2631 standard, which is used mainly in Europe, the British Standard BS 

6841 used in the United Kingdom, VDI 2057 used in Germany and Austria and the 

Average Absorbed Power mainly used in the United States of America and their overall 

purpose is to evaluate the trip as a whole in respect to ride comfort (Els, 2005). In the 

work of Constantin et al. (2014), most of the traditional ergonomics factor were 

analysed and the seat, the space inside the car, climate and noise were found to be 

the most important ergonomic factors affecting the comfort. 
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Traditional ergonomic factors have been investigated a lot, although, with the 

development of AVs, factors beyond ergonomics such as naturality, disturbances, 

apparent safety and motion sickness will affect the comfort level (Figure 2.2). 

Naturality is connected to executing familiar to the passenger maneuverers by 

mimicking the human driving style. Apparent safety does not refer to the vehicle 

behaving in a safe manner but to the feeling of the passengers that it actually does. 

Regarding disturbances, they can result from vertical forces (road disturbances) or 

horizontal forces (load disturbances). Last but not least, motion sickness is apparent 

when what the passenger sees and expects does not agree with what the vehicle does 

(Elbanhawi et al., 2015). Therefore, a single subjective evaluation of ride comfort and 

investigation of traditional ergonomics factors are no longer considered an acceptable 

and competitive way to assess the passenger experience (Elbanhawi et al., 2015). 

 

Figure 2.2: Factors influencing ride comfort in autonomous cars  

Another approach to addressing comfort is to focus on manoeuvre-based analysis, 

instead of trip-based, which is the most common. If the AV executes manoeuvres 

familiar to the passenger, it would undoubtedly contribute to the passengers’ comfort 

enhancement, since they will not have the feeling of being driven by a robotic operator 

(Elbanhawi et al., 2015; Bellem et al., 2016, 2017, 2018). This would improve the factor 

naturality. The most common analysed manoeuvres are deceleration, acceleration 

and lane changing. As far as the apparent safety is concerned, it can be improved by 

suitable development of the driver-machine interface, to inform the driver early about 

the next movements and to reassure the driver that it detects a possible danger. 
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Moreover, executing the manoeuvers in a familiar way, especially the timing of the 

braking can help to raise apparent safety. Car sickness relates to the longitudinal and 

lateral acceleration, i.e. when driving at a constant speed, the possibility of 

experiencing car sickness is dropping. To prevent carsickness, the ability of the driver 

to anticipate the future motion plan should be maximized (Diels, 2014).  

Moreover, the types of disturbances that passengers are exposed to and play an 

important role in their comfort can be categorised into road and load disturbances. 

Driver’s control of braking, acceleration, and turning results in serious disturbances 

and belong to load disturbances whereas road disturbances mostly include vertical 

vibrations (Elbanhawi et al., 2015). It can be concluded that a manoeuvre-based 

analysis focused on the deceleration, acceleration and steering can help to solve some 

of the problems regarding comfort that have been arising due to autonomous driving. 

There are many studies that focus on the comfort inside of Autonomous vehicles, 

which factors affect it and how can be achieved. One of the studies dealing with 

comfort in AVs was conducted by Yusof and Karjanto (2015). Its purpose was to make 

autonomous driving style comfortable for the passengers by discovering the 

relationship between two human driving styles (assertive and defensive) that were 

identified by questionnaires and three autonomous driving styles (light rail transit, 

assertive and defensive), which were tested in a field experiment in three different 

locations: junction, speed hump and roundabout. The comfort of the passengers is the 

main goal in the study of Dovgan et al. (2012) as well. They measured the comfort as 

the change of acceleration, i.e. the jerk and they developed a two-level multi-objective 

algorithm to optimise the control action with three objectives, i.e. travelling time, fuel 

consumption and comfort. They tested the algorithm on a real-world route. Comparing 

the results from the algorithm they developed with the ones from an algorithm which 

does not optimise the comfort, it was found that significant improvement on comfort 

can be made in control actions with low-fuel consumptions, but not with short travelling 

time. 

Having the same general aim, Scherer et al. (2015) presented two studies related to 

how to model driving styles in highly automated vehicles. The first one was a simulator 

study with the additional use of questionnaires and its goal was to detect which driving 
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parameters are essential for passengers to feel comfortable inside an autonomous 

car. It was revealed that the most frequently mentioned comfort parameters were the 

longitudinal safety margin, braking, velocity and acceleration proving that parameters 

of longitudinal control were affecting comfort the most. Therefore, those parameters, 

specifically braking and acceleration were examined in the second study which used 

real driving data.  

One of the most important and critical factors of perceived safety and comfort inside 

vehicles is braking. This is because sharp deceleration is closely connected to 

collisions. It should be noted that deceleration is only one dimension of passengers’ 

ride experience while braking; others include vibration and jerk (Le Vine et al., 2015b; 

Bellem et al., 2016). It is strongly supported through the literature that vehicle 

acceleration/deceleration and the time rate of change of acceleration, i.e. the jerk can 

have a significant impact on passenger’s comfort and safety (Martin and Litwhiler, 

2008; Wu et al., 2009; Jensen et al., 2011; Powell and Palacín, 2015). Those factors 

could result in excessive external forces applied to the passengers, which affect 

passenger’s stability and discomfort (Powell and Palacín, 2015). Table 2.2 presents 

the most common features that have been used through the literature to identify 

comfort during manoeuvre-based analyses. 

Table 2.2: Kinematic factors connecting to the disturbances 

Kinematic factors affecting the 
comfort 

Explanation Factorial Literature Review 
Evidence 

Acceleration and deceleration Describe the longitudinal 
control and are expressed 
as the change of speed. 

(Diels, 2014; Scherer et al., 
2015; Bellem et al., 2016, 2017) 

Jerk The rate of deceleration/ 
acceleration. 

(Dovgan et al., 2012; Bellem et 
al., 2016, 2017, 2018) 

TTC, Headway distance,  
TTMD (time to minimum 
distance) 

Factors connecting to 
following a car situation. 

(Bellem et al., 2016, 2017) 

Martin & Litwhiler (2008) support that accurate control of the braking profile can result 

in significant improvements in the safety and comfort of the passengers. In their work, 

Powell & Palacín (2015) found that there is considerable variation between the 

perceptions and stability of different individuals and therefore there are no precise 

limits for comfort longitudinal acceleration. This is further supported by the review of 
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Hoberock (1976) and Gebhard (1970a) on ground transportation vehicles, where they 

found that there is wide variability in passenger acceptance of any specific 

acceleration-jerk profile (Gebhard, 1970; Hoberock, 1976). However, it was concluded 

that the range 0.11g to 0.15g is considered comfortable deceleration for more studies 

and regarding the jerk, the value should not exceed 0.3g/s to be perceived as 

acceptable. For electric rapid transit cars in the U.S. normal braking is set from 0.12 g 

to 0.14 g and emergency braking from 0.14 g to 0.30 g (Hoberock, 1976). 

Le Vine et al. (2015a) used different scenarios in simulation to identify how AVs will 

influence the intersection capacity and level-of-service if they travel according to the 

maximum acceleration/deceleration rates of rail transport. Maximum typical rates of 

acceleration and deceleration during revenue service for light rail speed rail: 1.34 m/s2 

(Le Vine et al., 2015a). In another paper, the purpose is to identify metrics that enable 

the parameterisation of a safe, functional and comfort automated driving style (Bellem 

et al., 2016). They split the trip into manoeuvres and into highways or urban/rural 

scenarios, underlying the importance of a manoeuvre-based analysis. Bellem et al. 

(2016) concluded that acceleration, jerk, quickness and headway distance are the 

essential components to build a comfortable highly automated driving style. Trying to 

investigate how highly automated vehicles should drive to ensure driving comfort for 

the now passive drivers, Bellem et al. (2018) rated and analysed different variations 

of three central manoeuvres, i.e. lane change, acceleration and deceleration. The 

variations were configured by manipulating the longitudinal and lateral jerk in 

simulators studies. Also, personality traits, as well as the driver’s age and gender, 

resulted in having no effect on manoeuvres preferences. 

In automated or semi-automated vehicle networks, fast starts and stops will be 

necessary in order to merge vehicles into high-speed traffic at close headways. 

Passenger tolerances to longitudinal acceleration and jerk loads will thus affect not 

only the design of the vehicle propulsion and braking system, but also the central 

headway, speed, and scheduling controls for the entire network (Hoberock, 1976). The 

values for the comfort deceleration limits suggested for public transportation are 

smaller in absolute value than those found in motor cars in different studies. For 

instance, Shen et al. (2000) set the minimum acceleration at which a passenger feels 

discomfort at 0.25g and the acceleration at which a passenger cannot stand at 0.5g. 
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Moreover, it was reported by Abernethy et al. (1977) that 95% of the passengers were 

able to remain securely in their seats when the deceleration was less than 4.12 m/s2 

(=0.42g) (Abernethy et al., 1977). Also, they set the limit of emergency deceleration 

on 1.96 m/s2 (=0.2g). On the contrary, Wu et al. (2009) set that limit (2m/s2=0.204g) 

as a critical value for a comfortable longitudinal deceleration (Wu et al., 2009). 

Bogdanović and Ruškić (2013) defined normal vehicle acceleration as acceleration 

values from 0 to 3.5 m/s2. In two important projects, the EuroFOT and the 100-Car 

NDS, the limit of 4 m/s2 was used for the identification of “hard” braking, which is 

assumed to be perceived as uncomfortable. Comfortable decelerations on surface 

streets vary from 1.47 m/s2  to 4.12 m/s2 (0.15g to 0.4g) whereas on freeways where 

speeds are higher, decelerations from 0.98 m/s2 to 1.96 m/s2 (0.1g to 0.2g) can be 

considered high (McLaughlin et al., 2009). Nevertheless, in some naturalistic driving 

studies, braking at 5.88 m/s2 (=0.6g) or higher was common, based on the driver and 

the driving situation. 

Through the literature, there are different descriptors used to characterise deceleration 

and ride comfort. One example is: insensible, just sensible, noticeable, slightly 

uncomfortable, very uncomfortable. Interestingly, in a study by Urabe and Nomura,  

three correlated measures, i.e. perception, comfort and acceptability were used to 

address ride comfort during a deceleration event (Gebhard, 1970; Hoberock, 1976). 

2.3 Driving Behaviour 

In the last decades, the number of transport modes has increased dramatically and 

despite their improvement in the performance, they have worsened traffic congestion, 

especially in major cities (Constantinescu et al., 2010). This affects the city driver’s 

behaviour which has become aggressive and careless, reducing, therefore, traffic 

safety. To deal with that problem, it would be helpful to study and categorise the driving 

style. That categorisation could be done based on the driver’s behaviour, which can 

be described by means of various driving parameters (Sagberg et al., 2015). 

As stated in the introduction (Chapter 1- see page 4), AVs should not only be safe and 

reliable, they should also provide a comfortable user experience. However, an 

individual may perceive comfort differently (Kuderer et al., 2015). Comfort can be 



27 

 

influenced by various factors including driving style, age, driven experience. A (semi-) 

AV should adapt its driving behaviour according to user preferences in addition to 

maintaining safety, in order to be comfortable for different users. Different driving 

styles for an automated vehicle can be achieved by varying the model parameters of 

its motion planning algorithm and the parameters of the functions of its control system. 

It remains crucial to understand how driving behaviour and driving style are defined. 

Studying the literature review revealed different definitions of driving style. The 

definition by Murphey et al. (2009) differs considerably from most other definitions, in 

being almost equivalent to driving behaviour. According to their study, driving style is 

a dynamic behaviour of a driver on the road. Another definition of driving style can be 

found in the study of Saad (2004), where the driving style represents the choice of the 

driver about the driving way and so it is a relatively stable characteristic of the driver. 

Kuderer et al. (2015) characterised the driving style as a habit, i.e. the natural way a 

driver drives without forcing it. 

It is really important to clarify the distinction between driving style and driving 

behaviour in general. Meiring et al. (2015) define driving behaviour as a 

comprehensive term used to represent different concepts related to a driver’s actions 

and driving mannerisms. In addition, Sagberg et al. (2015) mention that the concept 

of driving behaviour includes all the actions a driver performs during driving and that 

driving behaviour varies systematically across different road, traffic, and driving 

conditions, such as traffic density, road geometry, weather, light conditions etc. in 

contrast with the driving style which is more consistent. 

There is also a large volume of published studies dealing with the recognition and 

classification of driving styles. A lot of attention has been paid to aggressive driving, 

so a common classification is aggressive versus normal driving (Dula and Geller, 

2003; Hamdar et al., 2008; American Automobile Association, 2009; Kaysi and Al-

naghi, 2011). Identifying aggressive driving is important from a safety point of view 

because aggressiveness has been shown to be a major cause of traffic collisions. 

Murphey et al. (2009) classify the driving style into calm, normal, aggressive and no 

speed by analysing the jerk profile i.e. how fast a driver accelerates and decelerates. 

Simons-Morton et al. (2011) and Guo & Fang (2013) dealt with risky driving behaviour. 
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There are also some more detailed classifications. One of them includes four types of 

driving styles namely, aggressive driving style, inattentive driving style, drunk driving 

style and “normal” or safe driving style (Meiring and Myburgh, 2015). Furthermore, 

Jeon (2015) referred to five driving styles, which are: angry driving, anxious driving, 

dissociative driving, distress-reduction driving and careful driving. 

Table 2.3: Information about Driving Behaviour 

In the literature, different kinematic factors have been used to identify the driver’s 

behaviour and style, for example, the speed, the acceleration and deceleration as well 

as the activity of the driver on the acceleration pedal (Table 2.3) (Scherer et al., 2015). 

In their study, Kuderer et al. (2015) concluded that the human’s driving style affects 

different features such as speed, acceleration, jerk and distance to other vehicles. 

Similarly, to create a model to represent car-following behaviour, speed, space 

headway, acceleration and the speed difference between the leading vehicle and the 

following vehicle were taken into consideration (Ma and Andréasson, 2008). To 

evaluate the driver risk, Miyajima et al., (2011) used the deceleration acceleration and 

steering measures. The features that were hypothesised to be indicative of driving 

behaviour in Quek & Ng (2013)’s study are the acceleration/ deceleration profile, 

speed and mileage. Furthermore, the risky drivers were identified by g-force events, 

specifically by hard braking, rapid starts and hard turns (Simons-Morton et al., 2011). 

To provide real-time behaviour detection, Carmona et al. (2015) took into account 

Measures from the car 
identifying the driving 
behaviour

•Speed

•Acceleration and 
deceleration (longitudinal 
and lateral)

•Time and space headway

•Tailgaiting

•Steering angle

•Violation of traffic signs 
and speed limits

•Lane change

•Time to collision

•Checking at mirrors

Factors that influence 
driving behaviour

•Roadways (Motorway, A-
class road, B-class road, 
minor road)

•Road configuration (e.g. 
roundabouts, junctions)

•Vehicle type

•Geo-graphical profile (the 
origin- destination profile)

•Socio demographics (e.g. 
age, gender, driving 
experience)

•Trip distance

•Traffic density

Data collection methods 
for studying driving 
behaviour

•Simulator studies

•Naturalistic driving studies 
(NDS)

•Field operational tests 
(FOT)

•Surveys/ Questionnaires/ 
Interviews

•Traffic data
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several parameters, i.e. velocity, steering wheel angle, brake frequency, throttle, 

acceleration. Finally, Murphey et al. (2009) classified the driver’s driving style into 

calm, normal aggressive and no speed by analysing the jerk profiles. Moreover, Wang 

et al. (2010) tried to classify the longitudinal driving behaviour by identifying 

measurable parameters and by using real-world car-following data. The parameters 

that were used are the THW, the inverse of TTC (TTCi), and the switch time from 

accelerator release to brake activation. 

Considering the aggressive driving style, many researchers study it in more detail. 

Characteristics that found to be affecting the aggressiveness at signalised 

intersections are the performance measures (the surrounding moving traffic and 

pedestrians), the intersection geometry (the intersection design features), and the 

impedance (the red timing and the presence of law enforcement figure) (Hamdar et 

al., 2008). In another study conducted by Paleti et al., (2010), a number of factors 

affecting driving aggressiveness were presented, i.e. driver characteristics (gender, 

age, seat belt usage, etc.), environmental and situational factors (time of day, weather, 

and company in the car), vehicle characteristics (type of vehicle), and roadway 

characteristics (speed limit). Finally, by formulating a model that predicts an 

aggressive manoeuvre at unsignalized junctions, Kaysi and Abbany (2007) concluded 

that age, car performance and speed were the main indicators of aggressive 

behaviour. 

The most used methods in order to collect data among the research on driving styles 

are self-report methods and observations of actual driving (Sagberg et al., 2015) 

(Table 2.3). Moreover, in some studies, a combination of those methods has been 

used. French et al. (1993) used a Driving Style Questionnaire (DSQ) in order to assess 

driving style to the 711 drivers who took part in the survey and then they conducted a 

multiple regression analysis trying to explain why some people have more accidents 

than others. In another study conducted by Taubman-Ben-Ari et al. (2004) 

questionnaires were used and the analysis revealed eight main factors (i.e. 

dissociative, anxious, risky, angry, high-velocity, distress reduction, patient, and 

careful), each one representing a specific driving style. Both studies concluded that 

there is a significant association between driving behaviour, on the one hand, and 

human factors, like gender, age, driving experience, personality anxiety and 
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neuroticism on the other (as presented in Table 2.3). Furthermore, the study of 

Ulleberg and Rundmo (2003) was based on a self-completion questionnaire, which 

included measures of risk perception, attitudes towards traffic safety and self-reported 

risk-taking in traffic and they concluded that only the risk-taking attitude and the 

altruism have a direct effect on risk-taking behaviour.  

In addition, Simons-Morton et al. (2011) and Guo and Fang (2013) used naturalistic 

data to determine the factors which affect the driving risk. Specifically, Simons-Morton 

et al. (2011) wanted to compare rates of risky driving among novice adolescent and 

adult drivers and the results revealed that novice adolescent drivers maintain a risky 

style of driving. In the investigation of the factors which affect the driver risk, Guo and 

Fang (2013) used data from the 100- NDS and concluded that age, personality and 

critical incident rate are the most significant factors. 

Taking into consideration the different driving behaviour, it can be useful for the design 

of (semi-) AVs. Designers can use different approaches and strategies for user 

experience, depending on different driving styles and driving scenarios. For example, 

when they must deal with anxious drivers, they can design the interface so that drivers 

can feel more controllability and vehicle systems serve as driver assistance. Also, the 

developers can program its function to mimic the different driving styles, in order for 

the passengers to feel totally comfortable and relaxed (Jeon et al., 2015). But it is 

really challenging to mathematically express the different behaviours and to find a way 

to introduce them into the AVs. 

Several attempts have been made to implement the different driving behaviours into 

the AV. Lefèvre et al. (2015b) used a combination of real data and simulation to 

evaluate the learning-based driver model that they developed and can represent 

human driving control strategies on the highway. They tested it in two applications, i.e. 

a Lane Keeping Assistance and an ACC, and the results showed that it was more 

effective and safer than the standard systems. In another study, Lefèvre, et al., 

(2015a) described a learning-based method for the longitudinal control of an AV on 

the highway, using learning-by-demonstration approach and predictive control 

method. The results indicated that the driver model could generate accelerations 

which replicate the behaviour of a human driver. Based on those accelerations and 
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some safety constraints, the controller selected the appropriate acceleration. Using a 

learning-based approach, Kuderer et al. (2015) also tried to include different driving 

styles to AVs. This approach allows the user to demonstrate the desired style by 

driving the car manually. Then the desired style was modelled in terms of a cost 

function by calculating some feature and applying it to the autonomous mode of the 

vehicle. 

2.3.1 Braking / Deceleration behaviour 

The analysis of the braking behaviour has gained some attention in the literature over 

the past decades. A braking event is normally described using the deceleration value, 

the speed at the beginning and at the end of the event, the perception/reaction time 

and the duration (Akçelik and Besley, 2002). The aim of this section is to synthesise 

existing studies on drivers’ braking behaviour and identify factors affecting the braking 

behaviour and thresholds related to comfortable braking performance. 

Braking behaviour was studied during the design and implementation of ACC. It is 

perhaps the most studied feature of advanced vehicle systems (Goodrich et al., 1999a; 

Goodrich et al., 1999b; Chiang et al., 2006). In both studies (Goodrich et al., 1999a; 

Goodrich et al.,1999b), the authors tried to identify the braking behaviour and apply 

the results to the design of ACC. In both, a driving simulator and a controlled test track 

were used. The braking behaviour was characterised by the perceptual trajectory 

using time-to-collision (TTC) versus THW. In their first study Goodrich et al. (1999a) 

conducted a series of experiments from which they concluded that in order to produce 

a comfortable performance, ACC designers need to develop controllers that emulate 

a trajectory, which does not violate the smooth counter-clockwise characteristics of 

the human-generated one. In the second study it was further postulated by Goodrich 

et al. (1999b) that in order to achieve a human interaction with the ACC system which 

results in safe and comfortable vehicle dynamics, the automated braking behaviour 

should match that of a skilled human operator. Consequently, the design and 

programming of the advanced vehicle system can benefit from a careful analysis of 

the human actions and the interaction between human and automation. 

On a more theoretical base, a categorisation of the factors that influence braking 

behaviour includes driver factors such as awareness, expected/ unexpected need of 
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action and experience; vehicle factors and situational factors such as external 

environment (i.e. other road users, weather and traffic conditions) (Young and Stanton, 

2007). Another classification relates to initiating and mediating factors (Xiong and 

Boyle, 2012). Initiating factors have an immediate effect on the driver’s comfort and 

are based on the driver’s direct interaction with the system, the environmental cues 

and the actual risk. On the other hand, mediating factors are more subjective, but they 

may have a greater influence on how the driver feels when the brake is applied. These 

factors emerge from exposure to a system in conjunction with perceived risks, 

motivational factors (e.g. willingness to use automation), attitudes/biases (e.g. driving 

styles, trust in automation, and overall system use) and experiences. 

Some studies have dealt with the factors which affect the braking behaviour (Haas et 

al. 2004; Kazumoto et al., 2006; El-Shawarby et al., 2007; Loeb et al., 2015). For 

instance, El-Shawarby et al. (2007) conducted a study to analyse field data and to 

characterise driver deceleration rates at the onset of a yellow-phase transition on high-

speed signalised intersection approaches. The study concluded that deceleration 

rates are sensitive to the roadway grade, the age and the gender of the driver. In 

contrast to El-Shawarby et al. (2007), who examined braking behaviour during normal 

driving, the study of Loeb et al. (2015) was conducted in a simulator and analysed the 

differences in emergency braking performance between novice teen drivers and 

experienced adult drivers. Their results showed significant differences both in 

performance and quality of braking between novice teens and experienced adults, with 

novice teens decelerating on average 50% less than experienced adults on the same 

scenarios, indicating a poor response.  

The purpose of the study conducted by Haas et al. (2004) was to evaluate driver 

deceleration and acceleration behaviour at stop sign-controlled intersections on rural 

highways in southern Michigan. Their results seemed to indicate that drivers showed 

wide variability in rates of acceleration and deceleration and that the initial speed had 

a strong and statistically significant dependence on the deceleration rate while the 

other examined factors (e.g. driver demographics and time-of-day) had not. Finally, 

Kazumoto et al. (2006) conducted a discriminant analysis on factors which influence 

the braking behaviour of drivers. The factors were: the speed of the following vehicle, 

the distance between the two examining vehicles, the relative velocity, the TTC  and 
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the rate of change of visual angle. They found that the rate of change of visual angle, 

which is the inverse of TTC, is the most closely related factor to a driver's judgment 

about when to apply the brakes. 

There are some studies focussing on modelling deceleration behaviours. For example, 

in the study by Bennett and Dunn (1995) the driver deceleration behaviour at the exit 

ramp on a motorway (freeway) in New Zealand was monitored. The deceleration rate 

was discovered to be proportional to the initial speed such that higher speed drivers 

decelerate harder over a short period of time. Therefore, they developed equations for 

predicting the deceleration behaviour of vehicles as a function of approach speed and 

cumulative time. In addition, Maurya and Bokare (2012)  have studied the deceleration 

behaviour of different types of vehicles and proposed different models for each type. 

They concluded that the vehicle type plays a significant role in deceleration behaviour, 

that higher maximum initial speed results in higher deceleration duration, higher 

deceleration values and higher deceleration distance and that during a deceleration 

event the jerk initially increases until it reaches its maximum value and then it 

decreases. Moreover, Chiang et al. (2006) presented a complete Longitudinal 

Automation System that accelerates and decelerates based on the recognized target 

distance from the detected leading vehicle. In their study, Wu et al. (2009) examined 

occupants’ comfort during longitudinal deceleration events. They generated a brake 

comfortable car-following model for longitudinal acceleration considering the friction 

coefficient between the car and the road surface. In 2012, Reschka et al. (2012) 

proposed that the longitudinal controller for acceleration and deceleration of the 

vehicle needs to perceive and calculate road and weather conditions in order to 

achieve safety and comfort. Hence, they developed a longitudinal control based on 

that. 

As mentioned above, one approach to the design of automated systems is to formulate 

human behaviour and then train the autonomous system to adopt it. For example, in 

two separate studies, Wada et al. (Wada et al., 2008, 2010) formulated mathematical 

models that closely mimic the deceleration patterns of an expert driver, as a proxy for 

comfortable braking patterns; the difference was that the second study specifically 

examined the last-second braking. Adopting a similar approach to Wada et al. (Wada 

et al., 2008, 2010), Lefèvre, et al., (2015a) developed a learning-based model for the 
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longitudinal control of an AV which goes a step further by reproducing different driving 

styles from different drivers. 

Table 2.4 summarizes the factors affecting the deceleration which were revealed from 

the literature review. 

Table 2.4: Factors affecting deceleration behaviour 

Category Factor Studies 

Driver factors Driver’s age (El-Shawarby et al., 2007; Loeb 
et al., 2015) 

 Driver’s gender (El-Shawarby et al., 2007) 

External environment factors Traffic conditions (Young and Stanton, 2007) 

 Weather conditions (Young and Stanton, 2007; 
Reschka et al., 2012) 

 Road conditions (El-Shawarby et al., 2007; 
Reschka et al., 2012) 

 Friction coefficient (Z. Wu et al., 2009) 

Trip factors Type of vehicle (Maurya and Bokare, 2012) 

Kinematic factors Initial speed (Bennett and Dunn, 1995; 
Haas et al., 2004; Maurya and 
Bokare, 2012) 

 TTC (Goodrich et al., 1999a; 
Goodrich et al.,1999b; 
Kazumoto et al., 2006) 

 THW (Goodrich et al., 1999a; 
Goodrich et al.,1999b) 

 Headway (Chiang et al., 2006; Kazumoto 
et al., 2006) 

2.4 Research Gap 

The research to date on AVs has tended to focus on the safety aspect rather than 

the comfort of the passengers. It is obvious that safety is the most important element 

and should always come first, however in order to facilitate their rapid uptake and 

deployment, AVs should ensure that occupants feel both safe and comfortable. As it 

was discussed previously, the comfort is a subjective term and is influenced by 

different factors. One of the most important factors is the deceleration behaviour. It is, 

however, unclear how deceleration profiles, values and durations affect the level of 

occupants’ comfort. 
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Through an in-depth literature review, the key points of the research gap were 

extracted: 

• Lack of examining situational factors and the co-occurrence of different 

affecting factors 

Previous studies of deceleration behaviour and comfort during braking have examined 

factors that are related either to the driver (Loeb et al., 2015),  i.e. age, gender and 

experience; or to the vehicle, i.e. kinematic factors such as the initial speed (Haas et 

al., 2004; Kazumoto et al., 2006). There is a lack of research in studying situational 

factors such as the reason for braking, and the traffic density at the moment of braking 

which still could play an important role in the driver’s decisions (apply and release the 

brake harder or softer; apply the brake for a longer or shorter period of time). In 

addition, no research has taken into consideration all those factors at once, which 

demands multilevel analysis. So far, this method has only been applied to social, 

education and medical sectors. Therefore, it is not clear yet the impact of all these 

factors (driver, kinematics, situational) on the deceleration behaviour and specifically 

on the deceleration profiles, values and durations and how they relate to different 

roadway infrastructure and traffic operational conditions. 

• Dearth in research on detecting deceleration events 

Moreover, through the literature, there have been different thresholds to evaluate 

passenger’s comfort during the driving task and to detect especially the braking events 

(Naito et al., 2009; Wu et al., 2009). So, an overall method and thresholds are needed 

to be established in order to detect and analyse deceleration events. 

Also, the need to apply thresholds that have been tested to passengers’ comfort and 

create the appropriate comfort levels is apparent. Establishing the passengers’ 

preferences is an important item for the future research agenda (Le Vine et al., 2015a). 

Moreover, it is important to examine which factors affect those comfort levels and 

increase the likelihood of an event to become very uncomfortable which might lead to 

dissatisfaction or even motion sickness for the passenger of the AV. 

• Use of naturalistic driving data to study deceleration behaviour 
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So far the methods that have been used the most in studying deceleration and general 

driver behaviour in order to obtain the necessary data are self-reported methods 

(French et al., 1993; Ulleberg and Rundmo, 2003; Taubman-Ben-Ari et al., 2004) and 

simulators (Goodrich et al., 1999b; Lefèvre, et al., 2015b; Yusof and Karjanto, 2015). 

Both of those methods can provide useful data but not so trustworthy since it is not 

certain to what degree people will be honest when completing a questionnaire or if 

they will behave exactly as they do in the real road environment when being in a 

simulator. On the contrary, studies on drivers’ braking behaviour observed in normal 

driving by using naturalistic data that can overcome the aforementioned 

disadvantages, are limited. 

Last but not least, a considerable amount of literature has been published on 

implementing the driving behaviour into AVs (Kuderer et al., 2015; Lefèvre, et al., 

2015b). Nevertheless, they did not suggest any general recommendation to the 

autonomous cars’ designers since these studies used mostly learning-based methods 

(learning from demonstration) for a specific driver or a specific situation. 

This study aims to fill in these knowledge gaps by analysing drivers’ braking behaviour 

from normal driving using naturalistic data in different scenarios (i.e. different road 

infrastructure and different road conditions). It will focus on discovering the relationship 

between the braking behaviour and its influencing factors by taking into consideration 

as many factors as possible, such as human factors, trip factors, situational and 

kinematics ones. In addition, the situational, kinematic and driver factors that may 

affect the comfort of the deceleration event will be examined and suggestions will be 

made to avoid the situations that increase the discomfort of the event. 
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3 Data Description and Pre-processing 

This work is a data-driven PhD project in which the availability of high-quality data is 

vital for ensuring both the validity and clarity of the study. Moreover, data quality is 

important in studying driver behaviour, especially in normal real-world driving 

conditions. The data should describe the situation while drivers are driving naturally 

without taking into consideration that they are monitored in order to be completely 

representative of normal driving. Therefore, this research uses naturalistic driving 

data. 

This chapter begins with a review of the data collection approaches used to analyse 

driving behaviour. Then, it describes the features of the datasets which were employed 

in the analysis. The three projects, from which the data were obtained, are described. 

Moreover, a part of the chapter is dedicated to the examination of the data. 

3.1 Review of Data Collection Approaches 

To date, various methods have been developed and introduced in order to collect the 

necessary data for studies in the fields of traffic automation and driving behaviour. In 

section 2.3 of the Literature review chapter different collection methods have been 

mentioned (e.g. simulator studies, questionnaires, naturalistic driving studies), 

however in this section those methods are presented in detail. 

To start with, a number of studies have obtained data from simulators (Goodrich et al., 

1999b; Lefèvre, et al., 2015b; Yusof and Karjanto, 2015). Simulator studies have 

several advantages for research of this nature. First, they can be used to test situations 

which would not be able to be tested in field studies, such as life-threatening situations, 

collisions etc. In addition, they can be used in really controlled experimental studies 

and ensure that only the effects of the variables of interest are taken into consideration. 

Finally, a lot of different scenarios can be easily examined in order to collect data 

(Stanton and Young, 1998). On the other hand, there are some important challenges, 

such as to what degree the simulated environment looks and behaves like the real 

environment. Moreover, there is a concern that people do not behave in the simulator 

as they do in reality, because they are influenced by the fact that they are monitored. 
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Another method which has been extensively used to collect data for studies on driving 

behaviour is a self-report method such as questionnaires (French et al., 1993; Ulleberg 

and Rundmo, 2003; Taubman-Ben-Ari et al., 2004). Apart from the conservative 

methods for collecting data some other more innovative methods have been also 

applied. For example, Paefgen et al. (2012) and Eren et al. (2012) utilize smartphone 

sensors, in order to design a car-independent system which does not need vehicle-

mounted sensors and to minimize the cost. On the other hand, Carmona et al. (2015) 

and Ly et al. (2013) collected the required data from the vehicle’s inertial sensors from 

the controller area network (CAN bus). 

However, a large and growing body of literature has investigated driving behaviour 

using naturalistic data, i.e. data that were obtained while drivers conduct the driving 

task normally in a car (Guo et al., 2010; Simons-Morton et al., 2011; Guo and Fang, 

2013). It seems that naturalistic data collection fills the gap in current data collection 

methods. There are two common methods to gather naturalistic driving data, namely 

NDS and FOTs and they will be described in the following sections. 

3.1.1 Naturalistic Driving Study 

Naturalistic driving, also known as naturalistic observations, is a traffic research 

method, pioneered by the Virginia Tech Transportation Institute (VTTI), in the United 

States (Regan et al., 2012). Specifically, the 100-Car NDS, conducted by the VTTI 

and sponsored by the National Highway Traffic Safety Admin (NHTSA), was a ground-

breaking work since it was the first instrumented vehicle study aiming to gather a large 

volume of naturalistic driving data from many drivers over a long period of time (Dingus 

et al., 2006). An NDS can be defined as “A study undertaken to provide insight into 

driver behaviour during everyday trips by recording details of the driver, the vehicle 

and the surroundings through unobtrusive data gathering equipment and without 

experimental control” (Eenink et al., 2014). Existing methods for collecting data on 

driver performance and behaviours such as questionnaires and controlled 

experiments are inferior to NDS because, in naturalistic driving studies, the data are a 

mixture of normal and safety-critical situations and are gathered in uncontrolled, thus 

natural, conditions (Regan et al., 2012). More research attention has focused on 



39 

 

studying not only safety-critical but also normal conditions (Baldanzini et al., 2010), 

making NDS a really valuable research method for data gathering. 

Typically, in a naturalistic observation study, passenger cars are equipped with 

devices, various data-logging instruments (e.g. radars, lidars, sensors, GPS, cameras, 

and accelerometers) that continuously monitor various aspects of driving behaviour 

including information about: 

• vehicle movements (acceleration, deceleration, speed) 

• the driver (eye, head and hand movements) 

• and the direct environment (traffic densities, THW, road and weather 

conditions) 

What gives NDS an advantage against other methods is that its purpose is to observe 

(individual) road user behaviour in the driver’s everyday driving life (Research., 2012). 

Specifically, the drivers are not affected at all from the study since they are not given 

any special instructions, no experimenter is present, and the data collection 

instrumentation is unobtrusive (Neale et al., 2005). Studies in the United States show 

that Naturalistic Driving provides very interesting information about the relationship 

between drivers, road, vehicle, and weather and traffic conditions. It is important to 

display other conventional methods of data collection and their advantage and 

disadvantage (Figure 3.1) in order to gain a deeper understanding of the benefits of 

the naturalistic driving data (Baldanzini et al., 2010; Regan et al., 2012; Research., 

2012). 

Specifically, controlled experiments, i.e. simulator studies and test tracks have the 

advantage to obtain large control on the examined variables and the traffic 

environment (SWOV Institute for Road Safety Research, Leidschendam, 2012) 

(Figure 3.1). For example, with these methods, researchers can focus on the variable 

of interest by changing it, conducting multiple experiments and comparing the results. 

On the other hand, there is concern that with these methods the drivers do not always 

drive as they do in real-world and simulators and test tracks cannot mimic exactly the 

combination of complex driving environments and driver behaviours (Regan et al., 

2012). By using questionnaires, information that is difficult accessible can be obtained, 
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especially for the driver’s personality and attitude, although the degree of truth is 

questionable (Baldanzini et al., 2010; SWOV Institute for Road Safety Research, 

Leidschendam, 2012) (Figure 3.1). Regarding the epidemiological research into 

crashes, it can provide a large amount of information about crashes which although 

doesn’t give sufficient insight and detail to reveal the factors affecting the crash 

(SWOV Institute for Road Safety Research, Leidschendam, 2012). 

 

Figure 3.1: Conventional methods for data collection in studying driving 

In summary, these data collection methods are limited with respect to the depth and 

quality of information they provide - especially information about human factors 

(Regan et al., 2012). The NDS method overcomes a range of those problems 

associated with traditional approaches to data collection as it provides information 

about normal behaviour and about all types of crashes and near-crashes, which were 

unreported with the other data collection methods (Regan et al., 2012; SWOV Institute 

for Road Safety Research, Leidschendam, 2012). Moreover, it allows for direct 

observation of driver behaviours and of the factors that result in different events, e.g. 

deceleration, acceleration, turning etc. 

However, there are also some challenges associated with the NDS method. First, it is 

very resource-demanding in terms of sample recruitment, data gathering, data storage 

and data analysis. Also, the same problem as in simulators may appear but in a 

smaller degree, i.e. the behaviour of the driver may be influenced by having in mind 

that there are cameras and other sensors monitoring every action. Furthermore, due 

•Large degree of control over the variables (+) 

•Difficult transfer of the results to actual traffic (-)
Controlled experiments

•Access to difficult accessible information (+)

•Doubt that the self-reported behaviour corresponds to 
actual behaviour  (-)

Questionnaires

•Valuable information about crashes  (+)

•It is solely derived from indirect sources, like the police 
data about crashes (-)

Epidemiological research 
into crashes
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to the fact that crashes are rare events, a very large sample size of traffic data is 

needed to obtain a sufficient number of crash-events (Regan et al., 2012). 

Some Naturalistic driving studies and their objectives are: 

✓ 100-Car NDS in the United States. A primary goal of this study was to provide 

vital exposure and pre-crash data in order to understand the causes of crashes, 

refine the crash avoidance countermeasures and use them to reduce crashes 

and their consequences. The most important outcome of this study was that in 

almost 80 per cent of all the crashes observed in this study, distraction or 

inattention played a role (Neale et al., 2005). 

✓ Strategic Highway Research Program 2 (SHRP2). SHRP 2 was created to find 

solutions to four strategic focus areas: the role of human behaviour in highway 

safety; rapid renewal of ageing highway infrastructure; congestion reduction 

through improved travel time reliability; and transportation planning that better 

integrates community, economic, and environmental considerations into new 

highway capacity. 

✓ INTERACTION project. Its main objective was to understand driver interactions 

with in-vehicle technologies. It studies why, how and when drivers use 

intelligent technologies in their vehicle and their effect on driving behaviour. The 

technologies that are studied are: cruise control, mobile phone, navigation 

systems and speed limiters. 

✓ PROLOGUE (PROmoting real Life Observations for Gaining Understanding of 

road user behaviour in Europe). PROLOGUE aims to assess the feasibility and 

usefulness of a large-scale European NDS and to create a market for this type 

of research. Benefits and feasibility are partly determined by five field studies 

focusing on various aspects of road safety, such as the everyday driving 

behaviour of novice drivers, cyclists and pedestrians (Research., 2012). 

✓ DaCoTA. It is intended to provide policymakers and other stakeholders in 

Europe regarding road safety and methods for data collection and processing. 

✓ 2-BE-SAFE project. The aim of the 2-BE-SAFE project was to design and 

implement a broad-ranging research program that produces fundamental 

knowledge on Powered Two-Wheeler (PTW) riding behaviour, performance, 

and safety, when being alone and when interacting with other road users. Also, 
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it aims in the development of a broad and integrated package of public policies 

for improving the safety of PTW riders in Europe. 

✓ UDRIVE (European naturalistic Driving and Riding for Infrastructure and 

Vehicle safety and Environment). UDRIVE is the first large-scale European 

NDS on cars, trucks and PTWs. The UDRIVE project builds further on the 

experience of the PROLOGUE feasibility study and various FOTs and follows 

the Field opErational teSt supporT Action (FESTA)-V methodology. This 57 

months project is funded under the 7th EU Framework Programme and the 

project partners are the SWOV (coordinator), BASt, CDV, CEESAR, CIDAUT, 

DLR, ERTICO, FIA, IBDIM, IFSTTAR, KFV, LAB,  Or Yarok, Loughborough 

University, SAFER, TNO, TU Chemnitz, University of Leeds and VOLVO. It 

aims to increase the understanding of road user behaviour in different 

European regions and in regular as well as (near-) crashes conditions. 

Moreover, it focuses on making road traffic safer and more sustainable by 

reducing fuel consumption and harmful emissions. The description and 

modelling of road user behaviour and specifically the effects of driving style, 

road network characteristics and traffic conditions is another objective of 

UDRIVE project. Last but not least, the UDRIVE project intents to provide data 

access to researchers from all over the world to assist with subsequent 

analyses regarding road safety (Eenink et al., 2014b; Barnard et al., 2016). 

3.1.2 Field Operational Tests 

Another method which is commonly used for data collection is FOTs. An FOT is a 

relatively new method, especially in Europe, for studying the impacts of functions on 

transport. FOTs are large-scale testing studies, which are used to collect naturalistic 

data and aim to examine the efficiency, quality, robustness and acceptance of the new 

technology solutions, such as navigation and ADAS, used for smarter, safer and more 

comfortable transport (FOT-Net, 2010). FOT, as defined by the EU project FESTA, 

(2008) is “A study undertaken to evaluate a function, or functions, under normal 

operating conditions in environments typically encountered by the host vehicle(s)”. 

Up to date, several FOTs have been conducted all over Europe, the United States and 

Asia. Some important European FOTs are (FOT-Net WIKI): 
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➢ euroFOT: Its main goal is the improvement of the quality of European road 

traffic by identifying and coordinating in-the-field testing of new Intelligent 

Vehicle Systems. This permitted assessing their effectiveness on actual roads 

while determining how they perform towards the intended objectives. 

➢ Dutch AOS FOT; It is a large-scale FOT to test accident prevention systems for 

Lorries. Five systems were tested: ACC, Lane Departure Warning, Forward 

Collision Warning, Directional Control and BlackBox Feed Back. 

➢ TeleFOT: It is the largest pan-European FOT that has been conducted to date 

and consists of functions provided by in-vehicle aftermarket and nomadic 

devices. It aims to assess the impacts of functions provided by these devices 

on several transport domains, including safety, efficiency, environment and 

mobility. 

However, conducting an FOT is not an easy task. The FESTA V, which is displayed in 

Figure 3.2 (FESTA Consortium, 2008), depicts the FOT Chain that covers the steps 

that need to be carried out during an FOT. The large arrows that form the “V” indicate 

the timeline. The FOT Implementation Plan takes up all the steps and integrates them 

into one big table which can be used as a reference when carrying out an FOT. The 

first steps include setting up the aim of the study and selecting a suitable research 

team. On the other hand, the last steps include an overall analysis of the systems and 

functions tested and the socio‐economic impact assessment. Both the first and the 

last steps deal with the more general aspects of an FOT and with the aggregation of 

the results. Then further down on FOT Chain V‐Shape the steps are located, the more 

they focus on aspects with a high level of detail, like which Performance Indicators to 

choose, or how to store the data in a database. The ethical and legal issues have the 

strongest impact on those high‐level aspects, where the actual contact with the 

participants and the data handling takes place (FESTA Consortium, 2008). 
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Figure 3.2: The necessary steps to conduct an FOT (FESTA Consortium, 2008) 

To be confident in the robustness of the results from the analysis of the data which 

were obtained from an FOT study, one must follow some strategic rules in the process 

of data analysis. There are five operations linked together in terms of data treatments: 

a data quality control, a data processing and mining operation, a performance indicator 

calculation, a testing of hypothesis and a global assessment (Figure 3.3) (Lassarre et 

al., 2008). As can be noted from Figure 3.3 each process takes as input the outputs 

of the previous operation. 
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Figure 3.3: Block diagram for the data analysis (Lassarre et al., 2008) 

3.1.3 Comparison 

Since both methods (NDSs and FOTs) can be used to obtain naturalistic data, it is 

useful to point out their similarities and their differences. These two types of studies 

use similar approaches to measure and record driver and vehicle behaviour in real-
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time since in both instrumented vehicles with the same equipment, such as GPS, 

accelerometer, cameras etc. are used to obtain the data. Moreover, they are both 

conducted in a natural driving environment and gather data in normal and safety-

critical driving conditions. However, they are slightly different in scope that: 

• NDSs observe the natural behaviour of a driver while interacting with the 

surrounding environment during driving tasks, and collect observational and 

performance data, while; 

• FOTs evaluate one or more functions (e.g., advanced driver assistance 

systems) under normal operating conditions in environments typically 

encountered by the vehicle. They seek to quantify the impact of functions on 

driver performance and safety and driver’s acceptance of them (Baldanzini et 

al., 2010). 

Several studies through the literature have used naturalistic driving data, obtained 

from NDS or FOT. There are two ways to do so: 1) Conduct a new NDS or FOT, which 

is a difficult and time-consuming task but offers data absolutely suitable for the study’s 

purpose, or 2) obtain the necessary data from an existing NDS/FOT (Guo et al., 2010; 

Simons-Morton et al., 2011; Xiong and Boyle, 2012; Loeb et al., 2015). 

3.2 General data characteristics across projects 

Prior to the characterisation of the data that were used in this research, a short 

description of the ideal dataset will be presented. First, the naturalistic driving data is 

ideal for describing the driving behaviour, thus the deceleration behaviour too. A big 

naturalistic driving study with many participants conducting a lot of trips in different 

driving environments (i.e. motorway, rural, urban) would benefit the objectives of this 

research since it will provide enough information and variability to extract the 

influencing factors and their impact on deceleration behaviour. Moreover, the ideal 

dataset includes many variables regarding the braking events and those variables are 

easily accessible. Specifically, it should include trip characteristics, driver 

characteristics, kinematic variables, weather variables, information about the 

deceleration event i.e. the reason for braking, the traffic conditions and the 

surroundings. Finally, the dataset should not contain a lot of outliers or missing values. 
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The data that was used in this research was obtained from three projects: (1) the 

TeleFOT project, (2) a collaborative project of OEM and Loughborough University and 

(3) the UDRIVE project (Hrzic, 2017). All these three projects provide naturalistic 

driving data. The first two projects used the FOT approach and the UDRIVE project 

was an NDS. In these projects, the driving behaviour was monitored the whole time, 

using different in-vehicle sensors such as GPS, accelerometer, radar and cameras. 

The variables of our interest were obtained by extracting them directly from the time 

series data available for each trip, by calculating them via an algorithm developed in 

Matlab aided by manually viewing the recorded videos. 

The data from all the three projects share some common characteristics that aided in 

the selection of the applied methods and the performed analysis. The most important 

is that they follow a hierarchical structure (Figure 3.4). It is obvious that the 

deceleration events are nested into the trips since in every trip many deceleration 

events occur, and the trips are nested into the driver level because each driver 

executes multiple trips. Moreover, the variables that need to be taken into 

consideration can be categorised into these levels-categories: driver factors, factors 

related to the trip and factors related to the deceleration events and Table 3.1 displays 

some examples of this categorisation. The multilevel model that will be described in 

the Methodology chapter is suitable for the analyses of those data, since it takes into 

consideration the hierarchical structure of the data, explaining the dependencies 

between and across the drivers and the trips. The data should be formulated in a way 

that displays the nested structure in order to apply the multilevel modelling as shown 

in Table 3.2 (the rest of the explanatory variables are added on the right part of the 

table). 
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Figure 3.4: The hierarchical structure of the traffic data for the deceleration events 

Table 3.1: Examples of the categories of the variables 
Hierarchical level Example of Hierarchical Level Example Variables 

Level-3 Driver Level Gender 

  Age 

  Experience 

Level-2 Trip Level Trip duration 

  Trip distance 

Level-1 Event Level (Braking) Initial speed 

  Initial TTC 

  Cause of braking 

  Traffic density 

Table 3.2: Data structure for three-level linear models 

Classifications or levels Response Explanatory variables 

Driver ID Trip ID Event ID Deceleration 
Speed at the beginning of 

the event 
Best fit 

function 

1 1 1 -2.26 11.31 2 

1 1 2 -2.03 7.25 2 

1 1 3 -2.35 7.91 3 

1 2 4 -2.64 14.19 2 

1 2 5 -2.43 11.64 1 

1 2 6 -2.03 12.84 1 

1 2 7 -2.35 5.64 2 

1 2 8 -2.66 12.07 1 

1 2 9 -2.93 4.60 1 

1 2 10 -2.61 8.24 1 

1 2 11 -2.01 4.44 2 

2 1 1 -2.30 10.86 2 

2 1 2 -2.05 12.80 2 

2 1 3 -2.16 5.83 2 

2 1 4 -3.29 6.83 1 

2 2 5 -2.11 19.71 2 

2 2 6 -2.07 8.48 2 

2 2 7 -2.33 15.71 2 
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2 2 8 -2.19 14.73 2 

2 2 9 -2.09 12.52 2 

In the remaining chapter, the three projects are described in detail, and some 

descriptive statistics of the data are displayed to better understand them. 

3.3 TeleFOT project 

The first data set used in this PhD project was obtained from the TeleFOT project 

which is a large-scale collaborative European FOT funded under the seventh 

European Commission framework research programme. The objectives of the 

TeleFOT project were related to safety and mobility as well as economic/fuel-efficient 

driving and user-acceptance aspects of aftermarket and nomadic devices (e.g. 

SatNav, Speed Alert etc.) that can be introduced into the vehicle once it has ‘left the 

showroom’. 

As part of the experimental work in TeleFOT, the participants were asked to drive 

along a specific 16.5 km long route in the Leicestershire area of England, as depicted 

in Figure 3.5a, after driving for a couple of hours to familiarize with the instrumented 

car and their behaviour was captured, monitored and analysed using a software 

programme developed by  Race Technology Ltd. The route was carefully chosen to 

have a good mixture of different road elements such as roundabouts, T-junction, 

cross-junction, traffic light, mid-block crossings and the existence of dynamic 

obstacles (e.g. other vehicles, pedestrians, cyclists). This was to capture braking 

behaviours that significantly vary due to the road element. There were 44 trips 

conducted by 25 drivers in which data-logging occurred, as 19 of the drivers performed 

multiple trips. 

An instrumented vehicle capable of recording driver behaviour, vehicle kinematics and 

driving environment (e.g. traffic density, road elements) was employed. Since a single 

vehicle was used in the experiment, the influence of vehicle-related factors (e.g. 

engine size, vehicle power and braking performance) need not be considered. The 

vehicle was equipped with four video cameras (forward road view, driver face, 

backward road view, driver reaction from the passenger seat), GPS, speedometer and 

accelerometer (see Figure 3.5b). The sampling frequency was 100 Hz for the duration 
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of the entire trip with an average driving time of 30 minutes per trip. This resulted in a 

total of 10.8 million observations. The data was processed by software (with a built-in 

noise filter) developed by Race Technology (Figure 3.5) (Fruttaldo, 2011). 

 

Figure 3.5: The route of the field test (a), the view from the 4 cameras (b) and the 
acceleration-time and speed-time diagram for the whole trip from the Race Technology 

programme (c). 

In order to extract the data of interest from this project, the Race Technology V8.5 

software was used. For each of the trips, available time-variant variables were: time, 

longitudinal acceleration, speed of the car, travelling distance, the video frame and the 

GPS coordinates. Traffic characteristics data for the study area were not available 

from the traffic management centre. However, traffic density is an important variable 

that might affect driving behaviour along with other variables that were not included in 

the available time-series, such as the reason for braking, the existence of congestion 

etc. 

To obtain these variables that might play a significant role in the braking behaviour, 

the videos were watched, and the desired variables were extracted qualitatively. The 

procedure was as follows: first, the detection algorithm extracted all the deceleration 
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events of the dataset and saved in a different file the video frame number that 

corresponds to the beginning of each deceleration event. Then, the video of each trip 

was initiated and by tracking the video frame number of each event, the necessary 

variables were obtained. 

Specifically, the traffic density was measured by counting the number of vehicles and 

taking into account the length of the visible roads. Since it was calculated qualitatively, 

it was included in the models as a categorical variable (i.e. low, medium or high traffic 

density). Moreover, the situational factors (i.e. the reason for braking) were also 

determined qualitatively by viewing the videos related to the deceleration events 

(Table 3.3 and Table 3.4). The situational factors that were examined were: the 

presence of a traffic light, whether the car stops in car blocks, which indicates the 

existence of congestion and the cause for braking (i.e. if the car decelerates because 

it approaches a roundabout, a cross or T-junction, a pedestrian crossing or because 

of an obstacle like pedestrian, bicycle or road jump). In detail, by watching multiple 

times the video frame starting 5 seconds before the beginning of the deceleration 

event it was possible to recognise the most challenging variable, the reason for 

braking. 

Table 3.3: Percentage of deceleration events by reason for braking 

Reason for braking Deceleration event Percentage (%) 

Roundabout 16.86 

T junction 30.07 

Cross junction 8.37 

Pedestrian Crossing 5.20 

Dynamic Obstacle 39.50 

Existence of traffic light 15.33 

Table 3.4: Percentage of deceleration events by traffic density 

Traffic Density Deceleration event Percentage (%) 

Low 65.64 

Medium 27.85 

High 6.51 

The rest of the data that are important for the analysis were obtained by developing a 

data extraction algorithm which was implemented in Matlab. Specifically, the trip 
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duration, the maximum and the mean deceleration of the car during the event, the 

mean and the initial speed of the car during the event, the duration of the event and 

the travel distance during the event were calculated. Furthermore, the sample was 

composed of 25 drivers (14 males and 11 females) with an average age of 40 years, 

varying from 23 to 59 years old. Information on the driver (subject number, age, 

gender, driven miles per year) was reported in the summary sheet of the file. 

Table 3.5: Descriptive statistics of the variables during deceleration events 

Variable Mean SD Minimum Maximum 

Max deceleration (m/s2) -2.38 0.4 -4.885 -2.00 

Duration (sec) 4.26 1.98 0.74 14.95 

Mean deceleration (m/s2) -1.32 0.34 -3.46 -0.50 

Final speed (km/h) 13.57 11.84 0.00 78.49 

Initial speed (km/h) 34.66 14.99 4.10 107.51 

Mean speed (km/h) 24.71 12.75 1.88 88.2 

Distance covered (m) 2.31 2.27 0.8 18.52 

Trip duration (min) 33.02 4.70 22.58 43.05 

Given the range of data types captured by the instrumented vehicle, it was possible to 

analyse the deceleration events (i.e. the deceleration value and the duration) based 

on different influencing factors related to the driver (e.g. age, gender and experience), 

vehicle kinematics (e.g. the initial speed before the event), traffic (e.g. low, medium 

and high traffic density) and road infrastructure. Various descriptive statistics were 

generated to understand these factors (Table 3.5). The average max deceleration 

value was found to be -2.38 m/s2 and its absolute maximum value was -4.85 m/s2, 

while the average duration was 4.26 sec, with a maximum value of 14.95 sec. 

Most of the deceleration rates observed in this study are relatively low as can be seen 

in Figure 3.6(a) and this may be due to the nature of the FOT which reflects the driver’s 

normal braking and does not include any safety-critical events. Therefore, the 

threshold was set at 2m/s2 for this study, which is the lowest value found in the 

literature to detect deceleration events (Wu et al., 2009), as it was explained in the 

methodology section. 
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Figure 3.6: Characteristics of extracted deceleration events. 

The beginning and the end of the deceleration event are defined according to the 

threshold that was described in the Methodology chapter. The algorithm, that was 

developed in the Matlab software package R2016a to detect the deceleration events 

resulted in a total of 937 events. That algorithm also computes some essential 

parameters i.e. the duration (sec) of the deceleration event (see Figure 3.6b), the 

maximum and the mean deceleration rate (m/s2), the speed at the beginning and at 

the end of the event, the video frame of the start of the event in order to detect it in the 

videos and receive more information and the travelled distance (m) of each event. 

Moreover, the algorithm splits each event into two parts and calculates the best fitted 

braking function for each event, which is added as an explanatory variable. 

It should be noted that after detecting the deceleration event, a dataset that includes 

the dependent variables, i.e. the deceleration value and the deceleration duration, and 

all the explanatory factors that were obtained directly from the Race Technology V8.5 
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software, from the algorithm and from the videos was formatted as depicted in Table 

3.2. The next step was the detection and the deletion of any possible outliers, that 

might have resulted from the computational procedure or the data gathering 

procedure. Since, the deceleration events are of interest, univariate detection of 

outliers considering the duration of the event was performed. Specifically, the 

percentiles of the duration were calculated in SPSS and the upper and lower threshold 

were computed by these equations: 

Inter Quartile Range (IQR) = Q3 – Q1 

Upper Threshold (UT) = Q3 + 2.2 IQR 

Lower Threshold (LT) = Q1- 2.2 IQR 

Moreover, since the values of the duration were small, the lower threshold came out 

to be negative but a deceleration event with really small duration, for example, 0.3sec 

should not be taken into consideration since it is really short to be analysed and 

modelled, a lower limit of 0.5sec was set for the duration. The same procedure was 

following for the adjusted R2 of the fitted functions that were calculated. Therefore, the 

observations whose values are outside the limits were excluded from the database, 

resulting in 869 deceleration events. 

One more thing that should be taken into consideration in the pre-processing is the 

possibility of any two explanatory variables to be correlated. If there are two or more 

correlated variables, only one should be included in the statistical analysis. Therefore, 

the correlation table was computed using the SPSS software and if the Pearson-

correlation value was more than 0.8 indicating a high correlation between the 

variables, then only one of them was included in the model. For the TeleFOT data only 

the event_id, the trip_id and the driver_id were highly correlated.  

For the deceleration events, the average initial speed was 40 km/h (25 mph), with 80% 

of the events starting at speeds between 5 m/s (11 mph) and 15m/s (33 mph). The 

mean duration and mean deceleration value for different initial speeds are presented 

in Figure 3.6 and Table 3.6 and it can be concluded that the higher the initial speed 

the longer and harder the deceleration event. 
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Table 3.6: Average deceleration statistics based on different factors 

 Mean values 

 Maximum deceleration value (m/s2) Duration (sec) 

Gender:    

male -2.447 2.64 

female -2.423 2.83 

Initial speed:   

0-5 -2.385 0.94 

5-10 -2.379 2.08 

11-15 -2.442 3.04 

16-20 -2.399 4.48 

21-25 -2.570 6.01 

>25 -2.697 8.23 

Traffic density:     

low -2.426 2.70 

medium -2.422 3.17 

high -2.379 2.82 

Age:    

20 - 30 -2.490 2.48 

30 - 40 -2.486 2.39 

40 - 50 -2.374 2.91 

50+ -2.388 2.80 

Traffic light:   

Signalised -2.480 3.44 

Unsignalised -2.380 2.57 

Reason of braking:   
Roundabout -2.375 3.94 

T-junction -2.407 3.34 

Cross- junction -2.355 2.54 

Mid-block crossing -2.500 1.53 

Dynamic-obstacle -2.406 1.91 

As far as the traffic density is concerned, most of the deceleration events (66%) 

occurred in low traffic density conditions, 29% in medium traffic conditions and only 

5% in high-density conditions. The mean of the maximum deceleration values for 

different traffic densities (-2.43 m/s2 for low traffic density, -2.42 m/s2 for medium traffic 

density and -2.38 m/s2 for high traffic density) did not indicate that a relationship exists 

between the observed rates and the traffic density (see Table 3.6). Moreover, it can 

be noted that gender does not affect the deceleration value but affects the duration as 

males seem to decelerate in a shorter time than females. However, as can be seen in 
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Figure 3.7 the male drivers have a bigger percentage of hard deceleration events 

(deceleration value<-3m/s2) comparing to female drivers. 

 

Figure 3.7: Percentage of different deceleration values based on the gender of the driver. 

Also, younger drivers seem to decelerate in a harder way, both greater deceleration 

value and shorter duration. For example, drivers aged between 20-30 years old had a 

mean deceleration value of -2.49 m/s2, which is 5% lower than the deceleration value 

of the 40-50-year-old drivers and the deceleration event lasts on average 15% less. 

The deceleration events for each reason of braking are 143 in roundabouts, 255 in T-

junctions, 71 in cross-junctions, 44 in mid-block crossing and 335 for obstacles (Table 

3.6). As can be concluded from Table 3.6 the reason for braking affects slightly the 

deceleration value and more the duration of the event, with the durations for mid-block 

crossings and dynamic-obstacles being relatively shorter. Finally, some influence is 

noted between the deceleration event and the fact that a road element is signalised or 

not, which is that for signalised road elements the deceleration value is greater than 

for non-signalised (Figure 3.8). Moreover, the duration time of the deceleration event 

for the non-signalised elements is smaller indicating harder braking (see Table 3.6). 
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Figure 3.8: Percentage of different deceleration values based on signalised or non-
signalised road elements 

3.4 OEM project 

The second project from which data for the analysis was taken is an FOT conducted 

by Loughborough University for an OEM company. The purpose of that study was to 

find more about visual behaviour in relation to the vehicle instrument cluster (e.g. 

speed, RPM, fuel-level and Heating, Ventilation and Air-Conditioning (HVAC) controls) 

during normal driving in different road environments. 

In this PhD the data was used for a different purpose, i.e. to analyse the deceleration 

behaviour during normal driving in different scenarios (road environments) and 

therefore these data are adequate. The design of the study was different than the 

TeleFOT study. The sample consisted of 12 drivers (6 males and 6 females) from 23 

to 65 years old. Information on the driver (subject number, age band, gender) was 

reported in the summary sheet of the project (see Table 3.7). Three different 

make/models of vehicle were used in this project. Therefore, the influence of the 

vehicle can be examined to some extent by including the model of the car in the 

analysis. All the cars were equipped with Race Technology Ltd equipment, which 

comprises a GPS and accelerometer package linked and synchronised to a four-

channel video system (forward road view, driver face, backward road view, driver 

reaction from the passenger seat), and so they were capable of recording vehicle 

kinematics and driving environment features. The sampling frequency was 100 Hz and 

the data was processed by Race Technology V8.5 software. 
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The participants first spent a short period of dynamic familiarisation with all three cars; 

this step ensured that all drivers felt comfortable in what was likely to be an unfamiliar 

vehicle and then they were asked to drive along three specific routes in the 

Leicestershire county of England. Each route represented a different road type: 

motorway (“out and back” route using one junction of the M1), urban (Loughborough) 

and rural (around the forest area between Loughborough and Leicester) (see Figure 

3.9). The routes were chosen carefully to include different scenarios, different road 

elements (e.g. high-speed roads, dual carriageways, roundabouts, cross-junction, 

traffic light, mid-block crossings) in order to be possible to analyse and compare the 

deceleration behaviour in all those different scenarios. 

Table 3.7: Driver population by age and gender 

Age Band Male Female Total 

17-30 1 1 2 

31-40 1 1 2 

41-50 1 3 4 

51-60 2 1 3 

60+ 1 0 1 

Total 6 6 12 
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Figure 3.9: The three routes of the field test 

Each participant completed all three driving scenarios; the total trial driving time was 

approximately one hour, split between motorway (10-15 minutes), rural (20-25 

minutes) and urban (20-25 minutes). Each participant began from the same start point 

and ended at the same endpoint, however, to control for order/learning effects the 

order in which the segments are administered was randomized. It is also introduced 
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an extra trip, a fourth one which occurred during the night. So, each participant drove 

4 different scenarios (different car and day/night) each in three different road types, 

which lead to 130 trips in total (a few trips were missing, since 3 drivers withdraw after 

executing some trips and did not complete the tests). The sampling frequency was 

100 Hz for the duration of all trips so this yield over 15.3 million observations. 

Using the algorithm, described in the Methodology chapter, to detect the deceleration 

events, 1,785 events were identified. As in the TeleFOT project, the variables that 

were essential for the analysis were extracted from the Race Technology V8.5 

software or calculated from the data extraction algorithm or determined qualitatively 

by viewing the videos related to the deceleration events. Moreover, as with the 

TeleFOT dataset, the outliers were detected and excluded resulting in 95 outliers and 

1690 remaining deceleration events and the correlation between the explanatory 

variables was examined identifying correlation only between the Driver_id and the 

Trip_id. 

From the histogram of the deceleration rates (Figure 3.10), it can be observed that the 

deceleration values are relatively low since the data represent normal driving and did 

not include any collisions. More specifically the average deceleration value was found 

to be -2.57 m/s2 and the maximum value was -7.08 m/s2, while the average duration 

was 6.2 sec and the maximum duration was 33.06 sec. Various descriptive statistics 

were generated for the different factors to obtain a general picture and understand 

how the deceleration change in relation to specific manoeuvres (Table 3.8). 
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Figure 3.10: The distribution of the deceleration values (left) and of the duration(right) of 
the events 

As far as the initial speed is concerned, its average value was 45 km/h (12.5m/s), with 

60% of the events starting at speeds between 18 km/h (5 m/s) and 54 km/h (15 m/s). 

The mean duration and mean deceleration value for different initial speeds are 

presented in Figure 3.11 and it can be concluded that the higher the initial speed the 

longer and harder the deceleration event (see Table 3.8 too). 

 

Figure 3.11: Diagram of the initial speed vs the mean deceleration (left) and the mean 
duration (right) 
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Table 3.8: Deceleration features’ statistics based on different factors 

  Mean values 

 
Number of 

cases 
Maximum deceleration 

value (m/s2) 
Duration (sec) 

Gender:     

male 888 -2.59 6.26 

female 1216 -2.56 6.2 

Initial speed:       

0-5 169 -2.40 2.95 

5-10 564 -2.46 4.62 

11-15 743 -2.59 6.21 

16-20 417 -2.65 8.22 

21-25 166 -2.72 9.16 

>25 47 -2.81 9.49 

Traffic density:      

low 1175 -2.59 6.35 

medium 395 -2.54 6.61 

high 148 -2.53 6.17 

Age:     

17-30 322 -2.58 6.54 

31-40 349 -2.55 5.76 

41-50 697 -2.62 6.41 

51-60 580 -2.5 6.24 

60+ 156 -2.58 5.74 

Traffic light:    

Signalised 277 -2.52 6.56 

Unsignalised 1827 -2.58 6.17 

Reason of braking:    

Roundabout 306 -2.54 7.31 

T-junction 446 -2.52 6.12 

Cross- junction 250 -2.58 7.65 

Pedestrian crossing 40 -2.79 5.24 

Mid-block crossing 51 -2.5 5.24 

Dynamic-obstacle 918 -2.58 5.48 

End of the trial 93 -2.68 7.25 

Road Type:    

Motorway 275 -2.6 7.48 

Rural 994 -2.63 6.6 

Urban 835 -2.49 5.37 

Car model:    

Vehicle A 573 -2.52 5.22 

Vehicle B 845 -2.66 6.9 

Vehicle C 686 -2.5 6.16 

Most of the deceleration events (68.3%) occurred in low traffic density conditions, 23% 

in medium traffic conditions and only 8.7% in high-density conditions. The mean of the 

maximum deceleration values and of the duration for different traffic densities did not 
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indicate that a relationship exists between the observed rates and the traffic density 

(see Table 3.8). Regarding the road type, it can be concluded from the Table 3.8 that 

the deceleration value is almost the same on motorways and rural roads but it is 

smaller at urban roads which indicate a softer deceleration and also a shorter one. 

Moving onto the driver factors it can be noted that age affects neither the deceleration 

value nor the deceleration duration. The gender seems to have some influence in the 

deceleration value as males seem to decelerate harder than females, but the 

deceleration duration is really similar. 

In addition, the deceleration value and duration seem to differ depending on the 

vehicle model. More specifically the biggest deceleration value and the longest 

duration was observed to happen when the participants were driving Vehicle B and 

the smallest and shortest when they were driving Vehicle C. 

Last but not least, the situational factors will be discussed. The deceleration events for 

each reason of braking are 306 for roundabouts, 1446 for T-junctions, 25 for cross-

junctions, 40 for pedestrian crossings, 51 for stopping at car blocks, 918 for obstacles 

and 98 to stop because the trial is over. As can be seen from Table 3.8 the reason for 

braking affects the deceleration behaviour: hard braking due to the pedestrian 

crossing, both big deceleration value and short duration, can be observed. Also, the 

braking behaviour is quite similar for the roundabouts, the cross and T-junctions. 

Finally, some influence is noted between the deceleration event and the fact that a 

road element is signalised or not, which is that for non-signalised road elements the 

braking is harder since the deceleration value is greater than for signalised roads and 

the duration is shorter. 

3.5 Combining the OEM and TELEFOT project 

To ensure that the results are not driven by the specific project that the data were 

obtained from and are widely valid, data from the two projects were then combined 

into one dataset. The summary of the participants’ information for both projects is 

presented in Table 3.9: 
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Table 3.9: Driver’s information for the combination dataset 

age category male female total 

17-30 3 3 6 

31-40 6 3 9 

41-50 3 7 10 

51-60 6 4 10 

61+ 2 0 2 

total 20 17 37 

As a result, a total of about 28 million observations (sampling frequency 100Hz) were 

examined and around 2,700 deceleration events (2635 after the exception of the 

outliers) from 37 different drivers and 174 different trips were identified and analysed. 

The histograms of the deceleration event factors, i.e. the max deceleration value and 

the duration are presented in Figure 3.12. 

 

Figure 3.12: Histogram of the deceleration values and the duration for the combination 
dataset 

3.6 UDRIVE Data 

The third source of data for this work was obtained from UDRIVE (“European 

naturalistic Driving and Infrastructure & Vehicle safety and Environment”) project. 

UDRIVE is the first large-scale European NDS on cars, trucks and PTW, organised all 

over Europe as a collaborative project. Naturalistic Driving meaning that the behaviour 

of road users during everyday trips is observed unobtrusively in a natural setting 

without experimental control by recording details of the driver, the vehicle and the 

surroundings (Eenink et al., 2014a; Bärgman, J. et al., 2017). 
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The main objective of UDRIVE data is to increase our understanding of road user 

behaviour. Its objective is two-fold: the first focuses on identifying well-founded 

measures to improve road safety up to Horizon 2020 and the second is to make road 

traffic more sustainable by reducing harmful emissions and fuel consumption. More 

specifically, it aims at describing and identifying road user behaviour in different 

European countries addressing 5 different scopes: (i) collision causation and risk, (ii) 

normal-everyday driving, (iii) distraction and inattention, (iv) interaction with vulnerable 

road users and (v) eco-driving. This will be achieved by providing recommendations 

for safety and sustainability measures linked with driver awareness, road design, 

regulation and driver training. The project started in 2012 and lasted for 4 years. 

UDRIVE project roughly follows the steps of the FESTA-V methodology as presented 

below: 

• Study design 

• Data management 

• Data collection 

• Data analysis 

• Impact 

It has derived its subprojects (SP) according to FESTA V shape as it can be seen in 

Figure 3.13 (Lai et al., 2013; Barnard et al., 2016). 

 

Figure 3.13: FESTA V-Shape steps followed by UDRIVE project 
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The UDRIVE project involves a large-scale field trial across seven countries and three 

types of vehicles (Table 3.10). The country of interest for this work is the United 

Kingdom since the aim is to compare the results from this analysis with the results of 

the analysis of the 2 other projects that took place in the UK. In order to investigate 

driver deceleration behaviour under different braking scenarios, as recorded for the 

UDRIVE participants, it was first necessary to select the trips that will be examined. 

All the drivers from the UK (i.e. 49 drivers, one driver had dropped out) were examined 

and 10 trips from each driver were selected almost randomly across the data. The only 

criterion for a trip to be selected is to have duration more than 1200sec (equals to 20 

minutes) so as to contain many deceleration events, resulting in at 470 trips. All 10 Hz 

and 1 Hz data were analysed in order to obtain the necessary information for each 

deceleration event. 

Table 3.10: Distribution of vehicles for the UDRIVE project 

Type of vehicle Country Number of participants 

Car France 50 

Germany 50 

Poland 50 

UK 50 

PTW Austria 15 

Spain 25 

Truck Netherlands 75 

The sample of drivers consists of 24 males and 26 females aged 19-65 years old 

(Table 3.11). 

Table 3.11: Drivers’ characteristics in UDRIVE project 
Age Male Female Total 

20-29 3 4 7 

30-49 10 13 23 

50-65 11 9 20 

Total 24 26 50 

Three different types of cars were selected since this is the minimum required number 

to observe behavioural differences due to vehicle types. These cars are: 

• Small car: Renault Clio 3 

• Medium-sized family car: Renault Megane 3/ Scenic 

• Premium car: Volvo S60/XC60/XC90 
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The data were stored in a dedicated tool developed in UDRIVE project, called SALSA 

(Smart Application for Large Scale Analysis). This tool is integrated within MATLAB 

and enabled researchers to develop their own algorithm for calculating derived 

measured, events etc. Therefore, for each driver, all logged records were processed 

in order to obtain as many variables as possible and were extracted by developing an 

algorithm in the MATLAB software. The extracted time series from the 10 Hz and the 

1Hz datasets can be viewed in Table 3.12. Then the dataset was analysed using a 

variety of tools and specifically SPSS, R, MS Excel, and MATLAB. 

Table 3.12: The extracted time series in UDRIVE dataset 

Time series Frequency 

GPS latitude 1 Hz 

GPS Longitude 1 Hz 

Speed limit 1 Hz 

One direction road 1 Hz 

Direction 1 Hz 

Number of lanes positive 1 Hz 

Number of lanes negative 1 Hz 

Speed 10 Hz 

Acceleration 10 Hz 

Time 10 Hz 

Distance 10 Hz 

Steering_angle 10 Hz 

Jerk 10 Hz 

TTC 10 Hz 

THW 10 Hz 

Headway 10 Hz 

Lead vehicle speed 10 Hz 

Traffic congestion 1 Hz 

Pedestrian 1 Hz 

Cyclist 1 Hz 

Ptw 1 Hz 

Following a car 1 Hz 

Intersection 1 Hz 

Arrive at traffic congestion 1 Hz 

After obtaining these time series data, it was possible to detect and analyse the 

deceleration events based on different factors related to the driver, vehicle kinematics, 

road infrastructure and trip factors. The detection of the deceleration events was 

accomplished using the procedure described in the Methodology Chapter and resulted 

at 7163 deceleration events without any outliers (deceleration limit -2 m/s2). The 

variables that will be used for the analysis and consist of the available variables for the 
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drivers and the obtained variables for the trip and the event are presented in Table 

3.13: 

Table 3.13: The available explanatory factors in the UDRIVE dataset 

Variable Level Variable name 

driver Driver driver_id 

gender Driver gender 

age categories Driver age_1 

age_2 

age_3 

Arnett Inventory of Sensation Seeking (AISS) Driver AISS_total 

Driver behaviour Questionnaire (DBQ) Driver DBQ_total 

DBQ_aggressive_violations 

trip Trip trip_id 

Car model Trip car_model 

Duration of the trip Trip trip_duration 

Type of road Trip rural 

GPS latitude Event GPS_lat 

GPS longitude Event GPS_long 

Speed limit Event speed_0_30 

speed_30_40 

speed_40_50 

speed_50_60 

Speed_60 

Direction Event direction 

Number of lanes positive Event 1_nu_of_lanes_pos 

Number of lanes negative Event 1_nu_of_lanes_neg 

One direction road Event one_direction_road 

Speed Event 
 

min_speed 

max_speed 

mean_speed 

Acceleration Event 
 

max_deceleration 

mean_deceleration  

Time Event duration 

Covered distance Event distance 

Maximum steering angle Event max_steering_angle 

Jerk Event max_jerk 

max_jerk_position 

TTC Event min_ttc 

initial_ttc 

THW Event min_thw 

initial_thw 

Headway Event min_headway 

initial_headway 

Lead vehicle speed Event max_lead_vehicle_speed 

min_lead_vehicle_speed 

mean_lead_vehicle_speed 
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Traffic congestion Event traffic_congestion 

Pedestrian Event pedestrian 

Cyclist Event cyclist 

Ptw Event ptw 

Following a car Event Following_a_ car 

Intersection Event intersection 

Arrive at traffic congestion Event Arrive_at_traffic_congestion 

The correlation of these explanatory variables was explored, and it was concluded that 

some of the variables are highly correlated. Therefore, in the statistical analysis, only 

one of the correlated variables was included, testing different ones each time to gain 

the best results. In detail, the correlated variables were the min_THW with the 

initial_THW, the max_speed with the distance, the min_speed with the 

mean_lead_vehicle_speed, the mean_speed with the min_speed, the max_speed and 

the mean_lead_vehicle_speed and finally the mean_lead_vehicle_speed with the min 

and max_lead_vehicle_speed. 

Two of the variables displayed in Table 3.13, i.e. the AISS and the DBQ indexes 

(DBQ_total and DBQ_agressive_violations), resulted from behaviour questionnaires 

that drivers filled to reveal their driving personality. A higher overall AISS score 

denotes a higher level of sensation seeking and a higher DBQ violation score indicates 

a greater propensity to commit violations. Moreover, the age categories that were 

given from the report were: 20-29, 30-39, 40-49 and 50-65 but after applying the 

statistical model, using different age categories, it was concluded that the best 

classification was young (20-29), middle-aged (30-49) and old (50-65) drivers. 

Furthermore, the variable speed limit was used in the analysis in two ways; as a 

categorical variable that shows the speed limit and as an indicator of the road type, 

i.e. motorway, rural or urban. Specifically, if the speed limit was 113km/h (70mph), it 

was labelled as motorway (even if this limit exists in motorways and dual 

carriageways). If the speed limit was more and equal to 80km/h (50mph) or equal to 

97km/h (60mph), then it was labelled as rural (single carriageways). Finally, it was 

considered urban if the speed limit was less or equal than 48km/h (30mph). 
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Table 3.14: Descriptive statistics of important variables in UDRIVE dataset 

Variable Mean Std. Deviation Min. Max. 

Initial speed (km/h) 46.87 19.6 4.16 128.85 

Max_deceleration (m/s2) -2.59 0.59 -11.3 -2.0 

Duration (s) 7.58 4.1 0.1 28.4 

Min speed (km/h) 14.06 17.03 0 119.9 

Max_jerk (m/s3) -1.4 0.68 -9.63 -0.1 

Min_TTC (s) 23.256 27.67 1.41 78.21 

Min_THW (s) 2.157 1.54 0.29 13.16 

Min_HW (m) 13.28 16.01 0.78 111.25 

From the histogram of the deceleration rates (Figure 3.14), it can be observed that 

they are relatively low since the data represent normal driving. More specifically the 

average deceleration value was found to be -2.59 m/s2 and the maximum value was -

11.3 m/s2, while the average duration was 7.58 sec and the maximum duration was 

28.4 sec. Various descriptive statistics were generated for the different factors to get 

a general picture and are presented in Table 3.14. 

 

Figure 3.14: Histograms of different variables from the UDRIVE dataset 
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Figure 3.15: Cumulative frequency distribution for the max deceleration and the jerk 

It is really interesting to observe the importance of the threshold of the deceleration 

event. In Figure 3.16 it is shown the frequency of deceleration events, detected with 

different thresholds for 10 random drivers. It can be observed that by changing the 

threshold, the order of the drivers conducting more deceleration events is changing 

too. 

 

Figure 3.16: Frequency of the deceleration event per driver based on different thresholds 
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Another variable that was calculated indirectly, was the speed violation. Meaning that 

if the speed at the beginning of the deceleration event was larger than the speed limit, 

then it was marked as speed violation. The relationship between the frequency of 

speed violations and the frequency of harder acceleration was examined and it can be 

observed from Figure 3.17 that there is such relationship and that the more speed 

violations a driver has, the harder decelerations he makes. 

 

Figure 3.17: Plot of the frequency of driver’s speed violations against the amount of the 
deceleration events 

3.6.1 UDRIVE Comfort Modelling 

As it was described in the Methodology Chapter, the UDRIVE dataset will be used for 

the comfort modelling analysis. First, following the described procedure for the 

detection of the deceleration events for the comfort analysis, 21,600 deceleration 

events (deceleration limit -1 m/s2) were identified and will be used for the modelling. 

The cumulative frequency of both the deceleration value and the jerk, which are the 

variables that set the limits for the comfort categorisation are displayed in Figure 3.18. 

It can be observed that 99% of the deceleration events have maximum deceleration 

value smaller than 3.9m/s2 in absolute value and jerk bigger than -3m/s3. 
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Figure 3.18: Cumulative Frequency of the deceleration value and the jerk 

For the modelling, the dependent variable is the comfort level, which is a categorical 

variable. As it was described in Chapter 3, different classifications of the deceleration 

events regarding comfort level took place. The first classification had four categories, 

the second has three and the third has only two categories (i.e. binary). The frequency 

of the deceleration events that belong to each of the four comfort categories is 

presented in Table 3.15. It can be noticed that only 4.4% of the events were perceived 

as very uncomfortable whereas 45.2% of the events were slightly comfortable. 

Table 3.15: Frequency of the deceleration events of classification A 

 Frequency Per cent Cumulative Percent 

Very comfortable 8094 33.8 33.8 

Slightly comfortable 10813 45.2 79.0 

Slightly 

uncomfortable 

3966 16.6 95.6 

Very uncomfortable 1060 4.4 100.0 

Total 23933 100.0  

The frequency of the deceleration events to each category for Classification B and C 

are presented in Table 3.16 and Table 3.17 respectively. 

Table 3.16: Frequency of the deceleration events of classification B 

 Frequency Per cent Cumulative Percent 

 Comfortable 8094 33.8 33.8 

Neutral 11882 49.6 83.4 

Uncomfortable 3957 16.6 100.0 

Total 23933 100.0  
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Table 3.17: Frequency of the deceleration events of classification C 
 Frequency Per cent Cumulative Percent 

 Comfortable 11908 49.8 49.8 

Uncomfortable 12025 50.2 100.0 

Total 23933 100.0  

Moreover, the explanatory variables that were examined are presented in Table 3.18. 

It can be observed that the variables can be categorised at the event level variables 

and the driver level ones. 

Table 3.18: Explanatory variables used in the logit modelling 

Code name Explanation Variable type 

Initial speed The speed that the vehicle has at the 

beginning of the deceleration event. 

Continuous Variable 

TTC The time to collision (TTC) from the 

leading car at the beginning of the 

event. 

Continuous Variable 

THW The THW at the moment that the 

deceleration event starts. 

Continuous Variable 

HW The space headway at the moment 

that the deceleration event starts. 

Continuous Variable 

Traffic congestion If there is traffic congestion when 

the deceleration event is taking 

place. 

Categorical Variable (0-> no 

traffic congestion) 

Motorway If the event is happening in a 

motorway. 

Categorical Variable (0-> the 

event is not happening in a 

motorway) 

Rural (reference 
variable) 

If the event is happening in a rural 

area (single carriageway roads or 

dual carriageways). 

Categorical Variable (0-> the 

event is not happening in a 

rural area) 

Urban  If the event is happening in an urban 

area. 

Categorical Variable (0-> the 

event is not happening in an 

urban area) 

Intersection If the reason for braking is 

approaching an intersection. 

Categorical Variable (0->there 

is no intersection) 

Pedestrian If the reason for braking is a 

pedestrian. 

Categorical Variable (0->there 

is no pedestrian) 

PTW If there is braking because of a PTW. Categorical Variable (0->there 

is no ptw) 

Cyclist If the reason for braking is a cyclist. Categorical Variable (0->there 

is no cyclist) 
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One_lane If the deceleration event is 

happening on a one-lane road. 

Categorical Variable (1->one 

lane road) 

Male Driver’s gender Categorical Variable (0->if the 

driver is a woman) 

Age 18-30 Driver’s age Categorical Variable (1->if the 

driver belongs to the specific 

age category) 

Age 31-50 

Age >50 (Reference 
variable) 

AISS_total Arnett Inventory of Sensation 

seeking 

Continuous Variable 

DBQ_all_violations Driver behaviour Questionnaire Continuous Variable 

Some non-parametric tests were performed to depict if there are differences for the 

independent variables in each comfort category. In Figure 3.19, two examples of 

boxplots of two variables (initial TTC and initial THW) against comfort categories are 

presented. It can be seen that THW has some extreme values for every category. 

Also, for each comfort category, both TTC and THW seem to have different values 

and that might indicate that they have a significant effect on the comfort level of the 

deceleration event. 

 

Figure 3.19: Boxplot of initial TTC and the initial THW for each comfort category 

Last but not least, it should be noted that two statistical analyses will be undertaken; 

If all the variables are included, then fewer observations can be considered at the 

models since some explanatory variables are not available for all the observations 

(e.g. the TTC, THW and space headway are available only if there is a vehicle in front 

of the examined car when it is braking). Therefore, in the first one (Statistical Analysis 
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I), all the explanatory variables from Table 3.18 were included, leading to fewer 

observations. Specifically, from 23,933 deceleration events that were identified, 5,843 

events were included in the model. Many events happened without the existence of a 

leading vehicle and so, the variables TTC, THW, headway do not exist. Also, not all 

drivers have completed the questionnaire. In the second analyses (Statistical Analysis 

II) all the observations were included by taking out the variables that were mentioned 

before. 

3.7 Summary 

This chapter started with a review of the data collection methods used in driving 

behaviour analysis. Moreover, it presented the datasets that will be employed to 

conduct statistical and cluster analysis. The purpose of this work required naturalistic 

driving data, so the data were obtained from two FOT and an NDS. The data that were 

employed represented normal driving, i.e. absence of emergency events and were 

representing different scenarios, considering the road type, the reason for braking, the 

traffic situation, the initial kinematics and the drivers. Comparing the ideal dataset 

described in Section 3.2 with the datasets that were used in this research and were 

described in detail in this Chapter, it is concluded that all the dataset are satisfactory. 

To begin with, they provide naturalistic driving data and are consist of many drivers 

having conducted many trips. Moreover, most of the kinematic, driver, trip, event 

variables are available except for weather and light conditions and some driver 

variables, such as education level, income, sentimental state. However, not all the 

variables were easily accessible since to obtain some of them, complicated calculation 

or time-consuming processes (i.e. the examination of the trip videos) were essential. 

Finally, outliers and missing values were included in the datasets, which were detected 

and excluded. 

In more detail, the TeleFOT project consist of 25 drivers conducting 44 trips in different 

conditions, the OEM had 12 drivers undertaking 130 trips and finally, from the UDRIVE 

NDS, 49 UK drivers were selected conducting 470 trips (Table 3.20). The deceleration 

events detection algorithm for the analysis of the braking characteristics had as 

outcome almost 10000 deceleration events, 869 for the TeleFOT project, 1690 for the 

OEM project and 7162 for the UDRIVE. However, the detection algorithm for the ride 
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comfort analysis resulted in 21600 deceleration events. The datasets that were 

developed for each project consists of as many observations as the deceleration 

events and includes the deceleration characteristics, the kinematic values at the 

beginning and during the event, the driver characteristics, the trip characteristics and 

the situational factors that were obtained from the videos and from the developed 

algorithm in MATLAB. Analytically, the variables that were extracted and imported in 

the models along with their availability for each dataset are presented in Table 3.19. 

Table 3.19: The extracted variables for each dataset 

Variable 
category 

Variable TeleFOT OEM UDRIVE 

Driver level 

driver ID X X X 

gender X X X 

age categories X X X 

Arnett Inventory of 
Sensation Seeking (AISS)     X 

Driver behaviour 
Questionnaire (DBQ)     X 

Trip level 

Trip ID X X X 

Trip duration (min) X X X 

Trip distance (km) X X X 

Car_model   X X 

Trip level 
Road Type (rural, urban, 
motorway) 

X X X 

Event level 

Initial speed X X X 

GPS latitude X X X 

GPS longitude X X X 

Speed limit     X 

Traffic density X X   

Traffic light X X   

Time X X X 

Covered distance X X X 

Driver's reaction X X   

Traffic congestion     X 

Arrive at traffic 
congestion/ stops at car 
block X X X 

Reason for braking:       

Roundabout X X   

T-junction X X   

Cross- junction X X   

Intersection X X X 

Pedestrian crossing X X X 
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Dynamic-obstacle X X   

Other X X X 

Cyclist     X 

Ptw     X 

Direction     X 

Number of lanes positive     X 

Number of lanes negative     X 

One direction road     X 

Maximum steering angle     X 

Jerk     X 

TTC     X 

THW     X 

Headway     X 

Lead vehicle speed     X 

Following a car     X 

Finally, Table 3.20 summarizes the characteristics of the three datasets. Specifically, 

the number of drivers, trips and events is outlined for each dataset along with the 

drivers’ characteristics. It can be concluded that the UDRIVE data gives a bigger 

number of different drivers and trips comparing to the other two datasets. Moreover, a 

balance regarding the gender of the drivers can be observed which doesn’t happen in 

the age since the younger age group has only 8 drivers in comparison with 42 for the 

middle and 32 for the old age group. Moreover, the statistical values (average, 

standard deviation, minimum and maximum) of some important variables are 

displayed in Table 3.20 and some differences along the datasets can be observed. 

First, in the TeleFOT dataset, the deceleration value was smaller in absolute value 

than in the other datasets, indicating softer braking. The average duration, as well as 

the standard deviation of the duration, shows a significantly shorter duration of the 

braking events in the TeleFOT dataset. Finally, as far as the speed is concerned, 

higher initial and final speed (both average and maximum values) are observed in the 

OEM and UDRIVE datasets. The lower speed values of the TeleFOT dataset might 

be due to the low percentage of observations happening in a motorway (only 7.5%). 

Regarding the frequency of the variables in the observation, it should be noticed that 

there is a satisfactory percentage for almost all the variables. The pedestrian and the 

motorway are the exceptions. Only in the UDRIVE dataset, there is a big percentage 

of observations happening in a motorway and braking occurring due to the presence 

of a pedestrian. Furthermore, only in 6.5% and 8.1% of the observations in the 



78 

 

TeleFOT and OEM datasets respectively there is high traffic density, which might 

undervalue the effect of high traffic density in the braking event. Accordingly, the 

results of the modelling might be influenced by the lack of observations in some 

variables. 
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Table 3.20: Comparison of the characteristics of the three datasets 

  TeleFOT OEM UDRIVE 

Drivers 25 12 49 

Trips 44 130 470 

Events 869 1690 7163 

Age 

young middle old young middle old young middle old 

4 13 8 2 6 4 7 23 20 

Gender 

male female male female male female 

14 11 6 6 24 26 

Variable Mean SD Minimum Maximum Mean SD Minimum Maximum Mean SD Minimum Maximum 

Max deceleration (m/s2) -2.38 0.40 -4.89 -2.00 -2.62 0.52 -7.08 -2.00 -2.59 0.59 -11.30 -2.00 

Duration (sec) 4.26 1.98 0.74 14.95 8.65 4.80 0.85 24.80 7.58 4.10 0.10 28.40 

Final speed (km/h) 13.57 11.84 0.00 78.49 16.16 17.99 0.00 116.00 14.06 17.03 0.00 119.90 

Initial speed (km/h) 34.66 14.99 4.10 107.51 49.25 19.72 2.60 142.03 46.87 19.60 4.16 128.85 

  Frequency (Percentage) Frequency (Percentage) Frequency (Percentage) 

intersection 38.4 37.3 57.0 

Pedestrian 5.2 2.2 16.0 

arrive at traffic congestion 11.1 12.3 10.3 

road typo: urban 44.8 40.5 57.4 

rural 47.6 44.4 22.1 

motorway 7.5 15.1 20.5 

Traffic density: low 65.6 68.0   

medium 27.9 23.8   

high 6.5 8.1   
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4 Methodology 

According to the literature review, it is really important for the wide acceptance of 

(semi) AVs that passengers feel safe and comfortable inside them. Moreover, 

deceleration events are crucial for comfort and should be carried out in a way that 

resembles human behaviour. Therefore, this study focuses on the analysis of the 

deceleration events observed within normal driving with the aim of identifying 

acceptable thresholds and relationships with different factors associated with braking 

behaviour under different driving and operational conditions. The factors that will be 

tested are human factors (i.e. age, gender, driven miles per year and driver behaviour 

indices from questionnaire), traffic (e.g. traffic density), situational (e.g. reason for 

braking) and kinematic factors (i.e. speed, TTC, THW, headway at the beginning of 

the event) and road network conditions. The purpose of this analysis is to identify and 

explain the affecting factors at a deceleration event, i.e. the factors that influence the 

maximum deceleration and the duration of the event. Moreover, the comfort level of 

the deceleration events is analysed, using different thresholds, to determine which 

thresholds best explain the comfort level and to recognise the comfort influencing 

factors. All this information is useful for informing vehicle manufacturers about the 

deceleration behaviour observed during normal driving and suggesting how this could 

be transformed into (semi) AVs so as to ensure comfortable and safe braking 

operations. 

4.1 Research Design 

This PhD study was divided into six objectives as described in the Introduction chapter. 

Table 4.1 illustrates the objectives and the methods utilized to accomplish that aim. 

Table 4.1: The research design of this PhD 

Objective 
ID 

Objectives Methods Chapter 

1 
To identify factors affecting deceleration 
behaviour and ride comfort. 

Literature review 2 

2 
To describe and validate data collection 
approaches for analysing deceleration 
behaviour. 

An in-depth critical 
review of literature 

3 



81 

 

3 
To investigate and refine the data to improve the 
analysis quality. 

Utilization and analyses 
of naturalistic driving 
data from FOTs and 
NDS 

3 

4 
To develop the deceleration profiles which are 
perceived natural and comfortable. 

Algorithm 
development in Matlab 

4, 5 

5 
To extract the underlying relationship between 
influencing factors and both, braking behaviour 
and comfort level. 

Statistical analyses -> 
Multilevel regression 
models and 
Multinomial Logistic 
models 

4, 5, 6 

6 To recommend for comfortable braking design. 
Outcomes from this 
work and comparison 
with the literature 

7 

Objective 1 has been discussed earlier in the Literature review section, whereas 

objective 2 and 3 will be explained in the Data chapter and objective 6 in the 

Discussion and Recommendations Chapter (Chapter 7). In the next section, the 

methods used to approach the rest of the objectives will be reviewed. Specifically, the 

methodology used to detect the deceleration events and estimate the most 

comfortable deceleration profiles (objective 4) is described in the subsection 4.2. The 

one part of the objective 5, i.e. to extract the underlying relationships between the 

influencing factors and the braking event will be achieved by the methods presenting 

in the subsections 4.3 and 4.4. To accomplish the other part of objective 5, i.e. to 

reveal the relationships between the affecting factors and the comfort level, the 

identification of the comfort level as well as multinomial logistic models will be used 

and are described in detail in the subsection 4.5. 

Finally, the next figure presents a flowchart of the methodology that was followed in 

this PhD to achieve the abovementioned objectives. 
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Figure 4.1: The flowchart of the research design 

4.2 Deceleration Events and Deceleration Profiles 

4.2.1  Detection of the deceleration events 

One of the challenges of this research was to correctly detect deceleration events from 

a large volume of traffic data (25 million observations for the TeleFOT and OEM 

projects with observation frequency 100Hz and 7 million observations from the 

UDRIVE project with frequency 10Hz) that were obtained from the projects that were 

used. More specifically, it was difficult to choose an appropriate threshold which will 

indicate the occurrence of a deceleration event within normal driving conditions. 

Studies documented in the literature show that most drivers decelerate at a rate 

greater than 4.5 m/s2 when confronted with the need to stop for an unexpected object 

in the roadway (AASHTO, 2004). Such deceleration is within the driver’s capability to 
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stay within the driving lane and maintain steering control during the braking 

manoeuvre. 

Many studies through the literature have used different thresholds for describing a 

deceleration event depending on the purpose of each study and on the nature of the 

available data. For example, Naito et al. (2009) and Miyajima et al. (2011) applied a 

high threshold rate: i.e. 0.3g (i.e. 2.94 m/s2), for describing and categorising 

deceleration events because the purpose of their study was to evaluate the driver’s 

risk judging the way the driver brakes in emergency situations. On the other hand, Wu 

et al. (2009) focused on normal driving and therefore set a lower threshold value of 2 

m/s2 for comfortable longitudinal deceleration. These thresholds are between the limits 

of the thresholds using in Japan for detecting deceleration events, which are between 

1.96 m/s2 and 3.92 m/s2 (Naito et al., 2009). Different thresholds were suggested by 

the Institution of Transportation Engineers (3.0 m/s2) and by the American Association 

of State Highway and Transportation Officials (AASHTO) (3.4 m/s2) (Maurya and 

Bokare, 2012). 

Most of the deceleration rates observed in all projects in this work are relatively low 

and this may be due to the nature of naturalistic driving data, from the two FOTs and 

the UDRIVE NDS, which reflects driver’s normal braking and does not include many 

safety-critical events. Therefore, the threshold was set at 2m/s2, which is the lowest 

value found in the literature to detect deceleration events. This forms the first criterion 

in the detection of deceleration events. 

Apart from the criterion in order to consider something as a deceleration event and 

detect it, the definition of the beginning and the end of a deceleration event plays an 

important role. Therefore, it was essential to set some more criteria. The beginning of 

the deceleration event is defined from the time onwards where absolute deceleration 

values are greater or equal to 0.1 m/s2. In addition, the deceleration event ends when 

the absolute deceleration values are greater or equal to 0.1m/s2 (criterion 2). That 

threshold was defined in order to exclude random noise to the actual event, since a 

deceleration rate which is less than -0.1 m/s2 may just be part of normal driving and 

not of a deceleration event. By having only these thresholds two different problems 

arise: the first has to do with braking following by not fully releasing the brake and then 
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decelerating again (Figure 4.2-a) and the other has to do with keeping a really small, 

(but still greater than 0.1 m/s2) constant deceleration either before the braking or after 

which should not be included in the deceleration event in order to correctly calculate 

the deceleration profiles (Figure 4.2-b). 

 

Figure 4.2: Examples of the problems during defining the deceleration events 

These problems were solved by using another threshold-criterion. This threshold had 

to do with the rate of change of the acceleration-deceleration, i.e. jerk. Therefore, if 

the absolute value of the time derivative of the deceleration was smaller than 0.1 m/s3 

continuously for 0.5 sec then this will demarcate the end of the event or from this point 

and onwards the beginning of it (criterion 3). The values for the last threshold were 

obtained empirically from some of the detected deceleration events and their 

problematic profiles. Furthermore, this threshold agrees with the one that Murphey et 

al. (2009) have used to classify the driver’s style using the jerk and specifically they 

used this threshold to specify calm from normal drivers. So, by combining the criteria 

2 and 3 (Table 4.2), the start and the end of the deceleration event are defined. 

Having the criteria clarified, an algorithm for the detection of the deceleration events, 

which satisfies those criteria (Table 4.2), was developed and was implemented 

through the Matlab software package. The steps that the algorithm follows are: 

1. First, the algorithm detects in the dataset a deceleration event by applying the 

criterion 1. 



85 

 

2. Then, starting from the point specified from criterion 1 (i.e. a=-2 m/s2), the 

algorithm searches the dataset backwards and by simultaneously applying both 

criteria 2 and 3, it sets the beginning of the deceleration event. 

3. Finally, to define the end of the deceleration event, the algorithm finds again 

the point specified from criterion 1 (i.e. a=-2 m/s2) and this times it moves 

forward in the dataset until the concurrent satisfaction of the criteria 2 and 3. 

In addition, the algorithm computes the duration of braking events, the maximum 

deceleration rate (m/s2) and the travelled distance (m) of each event. 

Table 4.2: The criteria for the detection of the deceleration events 

 Criterion Purpose 

1 𝑎 ≤ −2 𝑚/𝑠2  Detection of the deceleration event. 

2 𝑎 ≤ −0.1 𝑚/𝑠2 
Set the beginning and the end of the 
event and exclude the noise. 

3 
𝑑𝑎

𝑑𝑡
≤ 0.1 𝑚/𝑠3  𝑓𝑜𝑟  𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0.5 𝑠𝑒𝑐, (𝑑𝑡

= 0.1𝑠) 

Set the beginning and the end of the 
event and deal with the problematic 
profiles. 

This procedure was followed to detect the deceleration events from normal driving in 

order to analyse them and reveal the influencing factors. Although, to analyse the 

comfort level of each deceleration event for the UDRIVE project, a different threshold 

for the maximum deceleration was set. Specifically, the first criterion changed to 𝑎 ≤

−1 𝑚/𝑠2, whereas the other two criteria remained the same. The purpose of reducing 

the threshold is that more soft braking events needed to be included in order to 

represent the most comfortable ones. The selection of the threshold for comfort 

analyses is explained thoroughly in Section 4.5.1. 

4.2.2 Estimation of the deceleration profiles 

One of the objectives of this research is to estimate the deceleration profiles in different 

scenarios (e.g. in different road types or in different elements). The literature review 

yields a variety of deceleration models (from really simple, constant deceleration to 

more complex linear and polynomial models (Akçelik and Besley, 2002). Deceleration 
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value, distance and duration, together with the initial and final speeds of the event are 

necessary for modelling the deceleration of vehicles. 

Within this PhD, three different functions are tested to represent the deceleration 

profile for each event, which can be assumed as typical braking patterns. For the better 

fit and interpretation of the functions, the deceleration event is split into two parts 

(Regime I and Regime II). The first part starts with the beginning of the deceleration 

event as was defined in the previous section and ends when the maximum 

deceleration occurs and in real life; this is the part where the driver presses the brake 

or releases the throttle. The second part begins from the maximum deceleration of the 

event and ends with the end of the event and depicts the release of the brake from the 

driver or the repress of the throttle. 

The split is performed by the algorithm that was developed and implemented in Matlab. 

So, after the algorithm has detected the deceleration event as described in the 

previous section and has saved every event separately in a different file, it calculates 

the maximum deceleration of the event. Then, starting from the first observation of the 

event, it runs through the file till it meets the deceleration value that equals to the 

maximum one and marks that as the end of the first part of the event and the beginning 

of the second one. Finally, it saves each part in a different file in order to later estimate 

the profile for each of them. An example is shown in Figure 4.3 below. 
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Figure 4.3: Example of the separation of the deceleration event 

The next step is the estimation of the deceleration profiles. Hence, a curve fitting 

algorithm was developed. Three functions are tested for both parts of the deceleration 

events since it is of interest to understand the whole picture of the braking, i.e. how 

the driver press and release the brake or the throttle. The first function is the simplest 

and has a linear relationship between deceleration value (a) and elapsed deceleration 

time (t). The function is  𝑎 = 𝑝1 ×  𝑡 + 𝑝2 (linear equation), where p1 and p2 are the 

coefficients of the equation. In real traffic, this reflects the driver braking gradually and 

releasing the brake gradually too. The second function is 𝑎 = 𝑝1 × 𝑡2 + 𝑝2 × 𝑡 + 𝑝3 

(Parabola 1-red colour in Figure 4.4) where 𝑝1 is negative for the first part and positive 

for the second one. In real traffic, Parabola 1 represents for the first part of the 

deceleration event the situation where the driver brakes smoothly at the beginning 

considering enough space to stop the vehicle, though this is followed with a harder 

brake due to lack of space and time; for the second part it depicts that the driver 
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presses the brake hard for some more time and after he releases it slowly. Finally, the 

last function is 𝑎 = 𝑝1 × 𝑠𝑞𝑟𝑡(𝑡) + 𝑝2 (Parabola 2-green colour in Figure 4.4) and 

represents a firm brake at the beginning of the event due to a sudden obstacle 

appearing, followed by gradually smoother braking since there is plenty of space to 

stop. As far as the releasing of the brake concerns, it illustrates that the driver releases 

the brake firmly. The hard press or release of the brake may also indicate that the 

driver obtains an aggressive driving style (Figure 4.4). 

 
Figure 4.4: Tested functions for the first part (above diagram) and the second part (below 

diagram) of the deceleration event 
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The next step is to obtain the reference function from the tested functions described 

above. To judge which of the three abovementioned functions fits best to each 

deceleration event, the algorithm calculates the appropriate coefficients and the 

adjusted R square by fitting each function to the deceleration data of each event. The 

adjusted R2 is a goodness of fit measure that takes into consideration the number of 

predictors, making it more reliable than R2. However, to calculate the adjusted R2, the 

R2 should be found first. The R2 is a ratio between the regression variance and the 

total variance of the data and is estimated by: 

 
𝑅2 = 1 −

∑ (𝑦𝑖 − �̂�𝑖)
2𝑁

𝑛=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑛=1

 
(4.1) 

where 𝑦𝑖 is the actual observation; �̅� is the mean value of the observations and �̂�𝑖 is 

the predicted value. 

Then, the adjusted R2 (�̅�2) is calculated by: 

 
�̅�2 = 1 − (1 − 𝑅2) [

𝑛 − 1

𝑛 − (𝑘 + 1)
] 

(4.2) 

where n is the sample size and k the number of independent variables in the 

regression equation. 

Therefore, by comparing the adjusted R squared, the function with the maximum value 

is the most appropriate to represent the deceleration profile of that event and is saved 

as a new variable. 

Up to this point, the best-fit deceleration functions for all the deceleration events have 

been obtained, but there is one different function for every deceleration event. Since 

the aim is to achieve deceleration reference functions that could describe the 

deceleration events in general for different scenarios, it is essential to calculate an 

average one for each function (i.e. linear, parabola 1 and parabola 2). Using the 

average of the coefficients of each event for the best-fitted function will lead to an 

average reference function. Aiming to explore in-depth those profiles and since the 
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duration plays an important role, a cluster analysis was performed in SPSS for each 

function concluding in equations for long, medium and short deceleration events. 

4.3 Multilevel modelling 

4.3.1 Introduction 

Many data, used in different sectors (e.g. education, social, medical, transportation) 

(Woltman, 2012), have a nested or clustered structure and are described as 

hierarchical data (Figure 4.5). Well- known form of nested data can be found in meta-

analytic research, (e.g. subjects, procedures, and results data are nested within each 

experiment in the analysis) or in repeated measures research, where data (panel 

data), collected at different times and/or under different conditions, are embedded 

within each study participant (Osborne, 2000). More specific examples of nested data 

that have been studied through the literature are: 

• Children within classrooms within schools; 

• Patients in a medical study grouped within doctors within different clinics; 

• Children within families within communities; 

• Employees within departments within business locations; 

• Airline passengers within flights within airports; 

• Traffic measurements (speed, acceleration etc.) within trips within drivers; 

• Accidents within geographic regions; 

• Pilots are nested within crews which are nested within fleets. 

A

I II III

1.....N 1.....N 1.....NLEVEL 1

LEVEL 2

LEVEL 3 B

I II III

1.....N 1.....N 1.....N

C

I II III

1.....N 1.....N 1.....N
 

Figure 4.5: Structure of three-level hierarchical data 
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The analysis of hierarchical data is really challenging in the sense of selecting the 

most appropriate methodological approach (O’Connell and McCoach, 2004). The 

underlying reason is that there is a correlation among the data that belong to the same 

group; they seem to be more similar to each other and share some common 

characteristics. Therefore, nested data are not statistically independent. Most 

statistical analyses techniques require independence of observations as a primary 

assumption, making them inappropriate to analyse data with a hierarchical structure. 

If nevertheless, one of these methods is used, it will produce standard errors that are 

too small, which leads to a higher probability of rejection of a null hypothesis (Beaubien 

et al., 2001; O’Connell and McCoach, 2004). 

The above-mentioned limitation of traditional approaches to analysing nested data can 

be overcome by applying multilevel models. Multilevel regression, also called 

hierarchical linear regression is designed for application to multilevel (hierarchical) 

data structures as it accounts for the statistical dependence among sequential 

observations in the same group (Goldstein, 2003). Moreover, multilevel models can 

handle unbalanced data as well as measurement occasions that in practice often vary 

across individuals. It is an extension of regression with the difference that the 

parameters are given a probability model, i.e. are allowed to vary, and it is allowed to 

include random effects other than those associated with the overall error term. The 

two key parts of a multilevel model are varying coefficients, and a model for those 

varying coefficients (Gelman and Hill, 2007). 

Since its inception in the 1970s, multilevel regression has been widely used for 

analysing hierarchical data and has been developed simultaneously across many 

fields. Therefore, it has come to be known by several names, including hierarchical-, 

multilevel-, mixed level-, mixed linear-, mixed effects-, random effects-, random 

coefficient (regression)-, and (complex) covariance components-modelling. Multilevel 

regression, as mentioned above, can be used to handle clustered, grouped or data in 

which the measurement vary from subject to subject. It simultaneously investigates 

relationships within (within-group variation, e.g. the variance due to the differences of 

individuals in the same group) and between (between-group variance, e.g. the 

variance due to the differences between the observations from one group to another) 

hierarchical levels of grouped data. Consequently, it is more efficient in accounting for 
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variance among variables at different levels than other existing analyses methods 

(Woltman, 2012). 

Other approaches to deal with the analyses of hierarchical data are: the 

disaggregation of data, the aggregation of data and the inclusion of dummy variables 

to a single level model and are presented at Table 4.3 along with their challenges 

(Beaubien et al., 2001; Goldstein, 2003; O’Connell and McCoach, 2004; Gelman and 

Hill, 2007; Woltman, 2012). Disaggregation of data deals with hierarchical data issues 

by ignoring the structure and considering all relationships between variables to be 

situated at level-1 of the hierarchy (i.e. at the individual level). By bringing level 2 data 

down to level 1, disaggregation ignores the presence of possible between-group 

variation. On the other hand, aggregation of data deals with the issues of hierarchical 

data analysis differently than disaggregation. Instead of ignoring higher-level group 

differences, aggregation ignores lower-level individual differences. In aggregated 

statistical models, within-group variation is ignored, and individuals are treated as 

homogenous entities by using the average for each group. 

Table 4.3: Strategies to deal with nested data 

Strategy Consequences 

Fit a single-level model and 
ignore structure 
(disaggregation) 

• the importance of context will not be measured; 

• too small standard errors-> incorrect inferences  

Include a set of dummy 
variables for groups (a 
fixed-effects model)  

• large number of groups-> large number of 
additional parameters to estimate; 

• the effects of group-level predictors cannot be 
estimated simultaneously with group residuals.  

Fit a single-level model with 
group-level predictors 
(aggregation) 

• standard errors of coefficients of group-level 
predictors may be severely underestimated; 

• no estimate of the between-group variance that 
remains unaccounted 

Multilevel modelling 
(random effects)  

• correct standard errors and an estimate of 
between-group variance.  
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From the Table above, it is notable that the other strategies have a lot of difficulties in 

dealing with nested data. Multilevel modelling is more suitable for this type of data, but 

this does not come without disadvantages. The motivations for using this method are: 

✓ It provides the possibility for one variable to have an effect that varies. In many 

applications, it is not an overall effect of x that is of interest, but how this effect 

varies in the population; 

✓ it can overtake the assumptions of traditional statistical models (i.e. 

independence of error, homogeneity of regression slopes) since it allows within 

and between-subject heterogeneity; 

✓ the prediction is more accurate when the data vary by group. If a model ignores 

group effects (classical regression), it will tend to understate the error in 

predictions for new groups; 

✓ it does not require same data structure for each level component and so it can 

handle better missing and unbalanced data; and 

✓ it makes use of data for each and every observation or time point, increasing 

the power of analysis. 

On the other hand, there are some difficulties in using multilevel modelling: 

✓ It is a time-consuming method. It can accommodate any number of hierarchical 

levels, but the workload increases exponentially with each added level; 

✓ it requires a different understanding of how the data are structured; 

✓ some procedures may require specialized software; and 

✓ the outcome variable(s) of interest must be situated at the lowest level of 

analysis. 

As far as this research is concerned, the objective is to use a statistical model which 

can explain the relationship between the deceleration events under normal driving 

conditions and the factors affecting them. Three types of factors are considered: (1) 

driver factors (e.g. age, gender and driving miles per year), (2) factors relating to the 

trip (e.g. trip duration, car type, road type) and (3) factors related to the deceleration 

event (e.g. cause of braking, traffic density at this specific point). Since each driver in 

the used datasets had several trips and each trip had multiple deceleration events, it 

is obvious that the data have a hierarchical structure (the deceleration events are 
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nested within the trips and the trips are nested within the drivers). Therefore, the 

deceleration behaviour can be modelled using three-level analyses i.e. the driver level, 

the trip level and the event level as can be seen in Figure 4.6. 

 

Figure 4.6: The hierarchical structure of the data of this work 

Deceleration events from the same driver may have some common characteristics, 

for instance, if a driver is aggressive it is more possible to decelerate hard and jerkily 

(large deceleration value and short duration). In addition, the deceleration events are 

nested within trips, which may indicate some correlation among the events from the 

same trip (i.e. within-cluster correlation). On the other hand, there might be a variation 

between deceleration events from different drivers or/and different trips (i.e. between-

cluster variation). Therefore, a statistical model is needed to jointly control both within- 

and between-cluster variations. As described above the more suitable model to 

overcome these problems is the multilevel mixed-effects linear regression model, and 

specifically a three-level random-intercept and random-coefficient model, which will be 

described in detail in the following section. 

The multilevel model offers a more comprehensive use and a more appropriate and 

powerful analysis of the specific datasets than simple regression models. The mixed 

model allows for the full exploitation of the data that were acquired from three different 

studies, providing the opportunity to make use of the structure of the data and to 

explore as many factors as possible. It allows for dependency of deceleration 

characteristics for the same driver and within the same trip and examines the variation 

of deceleration characteristics for different drivers and different trips conducted by the 

same drivers. Also, it deals with the problem of consistency due to the fact that not all 

drivers have executed the same number of trips and not every trip has the same 

Driver 1 Driver 2 ….

Trip 1 Trip 2 Trip 1 Trip 2 Trip 1

Driver j

…..

Deceleration 
event 1

Deceleration 
event 2

Deceleration 
event 1

….. …..
Deceleration 

event 2
….. …..….. …..
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number of deceleration events. However, it is much more demanding in terms of 

software and statistical knowledge. Regarding this work, the multilevel modelling was 

applied using the STATA software for the two Field operational projects and the R 

programming language and software for the UDRIVE project. 

4.3.2 Description of the model 

In order to explain the multilevel model (Woltman, 2012; StataCorp, 2013), the 

simplest possible regression model (i.e. a model only for the mean of the dependent 

variable with no explanatory variables) would be described and by building up this 

model, it will end up at the multilevel model. So, the equation which represents the 

simplest regression model is: 

 𝑦𝑖 = 𝛽0 + 𝑒𝑖 (4.3) 

where:  

𝑦𝑖= dependent variable; 

𝛽0= the mean of y; 

𝑒𝑖= the residuals, i.e. the difference between an individual’s y value and the population 

mean; 

Moving to the simplest two-level random effect model (equation (4.4)), the residuals 

are split into two components: the group-level residuals or group random effects (uj) 

and the individual residuals eij. 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢𝑗 + 𝑒𝑖𝑗 

𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2),      𝑢𝑗~𝑁(0, 𝜎𝑢

2) 

 

(4.4) 

where:  

𝛽0= the overall mean of y; 
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𝑢𝑗= the difference between group j’s mean and the overall mean; 

𝑒𝑖𝑗= the difference between y value for the ith individual and the individual’s group 

mean; 

Residuals at both levels are assumed to follow normal distributions with zero means. 

The total variance is therefore partitioned into two components: the between-group 

variance 𝜎𝑢
2 , based on the deviation of group means from the overall mean, and the 

within-group between-individual variance 𝜎𝑒
2 , based on individual differences from the 

group means. 

4.3.2.1 Testing for group effects 

It is really important to test for group effects, i.e. to test if a multilevel model is more 

suitable to describe the data. The method that is used for this purpose is the likelihood 

ratio (LR) test, which is a statistical test used generally for comparing the goodness of 

fit of two models (the null model and the alternative one). By conducting the LR test to 

the models, described by the equations (4.3) and (4.4), the null hypothesis that there 

are no group effects: H0 : 𝜎𝑢
2=0 can be tested (i.e. H0: single-level model is true vs. HA: 

multilevel model is true). The test statistic is twice the difference in the log-likelihoods: 

𝐿𝑅 = 2 × (𝑙𝑜𝑔𝑙𝑖𝑘𝑒ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙 − 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙) 

In this case, the alternative model is the multilevel model and the null, the single-level 

one. The test statistic LR is compared with a chi-squared distribution with degrees of 

freedom equal to the number of extra parameters in the more complex model. The 

multilevel model (equation (4.4) has one additional parameter, the between-group 

variance 𝜎𝑢
2, so there is 1 degree of freedom. Rejection of the null hypothesis implies 

that there are ‘real’ group differences, in which case the multilevel model is preferred 

over the single-level model. On the other hand, if the null hypothesis cannot be 

rejected, further exploration is still needed in order to fit a single-level model, since 

between-group differences may be revealed after adding explanatory variables. 
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4.3.2.2 Interpret variance components 

There are two coefficients that describe the variance that is due to the hierarchical 

structure of the data: the Variance Partition Coefficients (VPCs) and the Intraclass 

Correlation Coefficients (ICCs). The ICC measures the correlation (i.e. similarity or 

homogeneity) of the observations within a given cluster: 

 
𝐼𝐶𝐶 =

𝜎u
2

𝜎𝑢
2+𝜎𝑒

2
 (4.5) 

The more common characteristics have the observations in the same cluster the larger 

the ICC. Whereas the variance partition coefficient reports the proportion of the 

observed response variation that lies at each level of the model hierarchy and so is 

due to the differences between groups. It allows establishing the relative importance 

of each level to the variation of the observations: 

 𝑉𝑃𝐶𝑢 =
𝜎u

2

𝜎𝑢
2+𝜎𝑒

2 . for level 2 

𝑉𝑃𝐶𝑒 =
𝜎e

2

𝜎𝑢
2+𝜎𝑒

2 , for level 1 

 

(4.6) 

If the observations do not statistically differ from one group to another, then the VPC 

equals to 0. It is noticeable that for the two-level model VPC and ICC are equivalent, 

but this changes in more complex models (e.g. for level 2 in a three-level model: 

𝑉𝑃𝐶𝑠 =
𝜎u

2

𝜎v
2+𝜎𝑢

2+𝜎𝑒
2, 𝐼𝐶𝐶𝑠 =

𝜎v
2+𝜎u

2

𝜎v
2+𝜎𝑢

2+𝜎𝑒
2). 

4.3.2.3 Random intercept model 

Following the description of the model, the next step is to add an explanatory variable 

defined at level 1 and denoted by 𝑥𝑖𝑗. The equation becomes: 

 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽10 × 𝑥𝑖𝑗 + 𝑒𝑖𝑗 (4.7) 
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 𝛽0𝑗 = 𝛾00 + 𝑢𝑜𝑗                𝐿𝑒𝑣𝑒𝑙 2 (4.8) 

By replacing 𝛽0𝑗 in the equation (4.7) with the equation (4.8), the resulting equation is 

the following: 

 𝑦𝑖𝑗 = 𝛾00 + 𝛽10 × 𝑥𝑖𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗        (4.9) 

 𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2),      𝑢𝑗~𝑁(0, 𝜎𝑢

2) (4.10) 

This model is called a random intercept model because the intercept of the group 

regression lines is allowed to vary randomly across groups. The overall relationship 

between the dependent variable y and the explanatory variable x is represented by a 

straight line with intercept 𝛾00 and slope 𝛽10. A multilevel model can be thought of as 

consisting of two components: a fixed part which specifies the relationship between 

the mean of y and explanatory variables, and a random part that contains the level 1 

and 2 residuals. The fixed and the random parts of this model are shown in equation 

(4.9). The fixed part is extended by adding more predictors, while the random part is 

extended by allowing the effect of one or more predictor to vary across groups or by 

allowing the within-group variance to depend on explanatory variables. 

As it was mentioned above the intercept may vary from group to group, but the slope 

of the line 𝛽10 remains the same for all the groups. So, the predicted regression lines 

for all the different groups will be parallel as shown in Figure 4.7. 

Fixed part Random 

part 

Fixed part Random part 
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Figure 4.7: Prediction lines from a random intercept model for 4 different groups 

4.3.2.4 Random Intercepts and Slopes Model (Two-level random effect multilevel 

model) 

Sometimes the effect of the explanatory variable may differ from group to group. A 

random slope model allows each group line to have a different slope. 

 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗 × 𝑥𝑖𝑗 + 𝑒𝑖𝑗                   𝑒𝑖𝑗~𝑁(0, 𝜎𝜀
2)        𝐿𝑒𝑣𝑒𝑙 1 (4.11) 

 𝛽0𝑗 = 𝛾00 + 𝑢𝑜𝑗                𝐿𝑒𝑣𝑒𝑙 2 (4.12) 

 𝛽1𝑗 = 𝛾10 + 𝑢1𝑗               𝐿𝑒𝑣𝑒𝑙 2 (4.13) 

where:  

𝑦𝑖𝑗= dependent variable measured for ith level-1 unit nested within the jth level-2 unit; 

𝑥𝑖𝑗= value on the level-1 predictor; 
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𝛽0𝑗= intercept for the jth level-2 unit; 

𝛽1𝑗= regression coefficient associated with for the jth level-2 unit; 

𝑒𝑖𝑗= random error associated with the ith level-1 unit nested within the jth level-2 unit; 

𝛾00= overall mean intercept; 

𝛾10= overall mean slope; 

𝑢𝑜𝑗= random effects of the jth level-2 unit adjusted for 𝑥𝑖𝑗 on the intercept; 

𝑢1𝑗= random effects of the jth level-2 unit adjusted for 𝑥𝑖𝑗 on the slope 

Now the slope of the average regression line is 𝛾10 and the slope of the line for group 

j is 𝛾10 + 𝑢1𝑗. By replacing 𝛽0𝑗and 𝛽1𝑗 from the equations (4.12) and (4.13), the 

equation (4.11) is becoming: 

 

 𝑦𝑖𝑗 = 𝛾00 + 𝛾10 × 𝑥𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗 × 𝑥𝑖𝑗 + 𝑒0𝑖𝑗           𝑒𝑖𝑗~𝑁(0, 𝜎𝑒0
2 ),   (4.14) 

 
[
𝑢0𝑗

𝑢1𝑗
] ~𝑁(0, 𝛺𝑢),      𝛺𝑢 = [

𝜎𝑢0
2  

𝜎𝑢01 𝜎𝑢1
2 ] 

(4.15) 

Figure 4.8: shows the prediction lines (the average regression line and the prediction 

lines for four different groups) from a random slope and random intercept model. 

Fixed part Random part 
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Figure 4.8: Prediction lines from a random intercept and random slope model for 4 
different groups 

A level 2 explanatory variable (Gj) can be included in a multilevel model in the same 

way as a level 1 variable. The composite equation can be expressed as: 

 𝑌𝑖𝑗 = 𝛾00 + 𝛾10 × 𝑥𝑖𝑗 + 𝛾10 × 𝐺𝑗 + 𝛾11 × 𝐺𝑗 × 𝑥𝑖𝑗 + 𝑢1𝑗 × 𝑥𝑖𝑗 + 𝑢0𝑗 + 𝑒𝑖𝑗 (4.16) 

 

 

4.3.2.5 Three-level random effect multilevel model 

Last but not least, the equations of a three-level mixed effect model will be displayed, 

so as to present how the previous equations for two-level modelling can be expanded 

for more levels. As mentioned above this model will be used for the two datasets. 

Therefore, a three-level random-effects linear regression model can be developed for 

a single explanatory variable (x) as (StataCorp, 2013): 

Level-1 

predictor 

Level-2 

predictor 

Cross-

level term 
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 𝑌𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝛽1𝑗𝑘𝑥𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘                                       𝐿𝑒𝑣𝑒𝑙 1 (4.17) 

 𝛽0𝑗𝑘 = 𝛿00𝑘 + 𝑢0𝑗𝑘;      𝛽1𝑗𝑘 = 𝛿10𝑘 + 𝑢1𝑗𝑘               𝐿𝑒𝑣𝑒𝑙 2 (4.18) 

 𝛿00𝑘 = 𝛾000 + 𝜗00𝑘;    𝛿10𝑘 = 𝛾100 + 𝜗10𝑘               𝐿𝑒𝑣𝑒𝑙 3 (4.19) 

The composite equation can be expressed as: 

 𝑌𝑖𝑗𝑘 = 𝛾000 + (𝛾100 + 𝑢1𝑗𝑘 + 𝜗10𝑘)𝑥𝑖𝑗𝑘 + 𝜗00𝑘 + 𝑢0𝑗𝑘 + 𝑒𝑖𝑗𝑘 (4.20) 

In which 𝑌𝑖𝑗𝑘 is the dependent variable for ith level-1 unit nested within the jth level-2 

unit nested within the kth level-3 unit,  𝛾000 is the final model intercept, 𝑢0𝑗𝑘 is the 

random trip-level intercept, 𝜗00𝑘 is the driver-level random intercept, 𝑒𝑖𝑗𝑘 is the event-

level residual, Level-1 (event) variance of 𝑒𝑖𝑗𝑘 is 𝜎𝑒
2, Level-2 (trip) variance of 𝑢0𝑗𝑘 is 

𝜎𝑢0
2  and Level-3 (driver) variance of 𝜗00𝑘 is 𝜎𝜗00

2 , 𝛾100 is the fixed slope coefficient for 

the explanatory variable x, 𝑢1𝑗𝑘 is the random trip-level slope coefficient for x, and 𝜗10𝑘 

is the random driver-level slope coefficient for x. All random components are assumed 

to follow a normal distribution with a mean of zero and a constant standard deviation. 

Equation (4.20) represents a three-level random-effects linear regression model for a 

single explanatory variable but this can be similarly extended for multiple explanatory 

variables. 

As far as this work is concerned, both three-level and two-level mixed effect models 

are used to describe the data and find the relationship between the deceleration event, 

more specifically the deceleration value and deceleration duration and its influencing 

factors. The data will be described in more detail in the Data chapter. 

4.4 Cluster analysis 

The next step is the creation of different scenarios based on human factors, to reflect 

the differences among the drivers and on the braking pattern. To accomplish that, 
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cluster analysis will be employed. Cluster analysis is a convenient method for 

identifying homogenous groups of objects, sharing some common characteristics that 

are called clusters (Sarstedt and Mooi, 2011). The two most-used clustering 

techniques are hierarchical clustering and K-mean clustering, which use the 

hierarchical and the partitioning algorithms respectively. The hierarchical algorithm 

forms the clusters successively, it is a stepwise algorithm which at each step merges 

two objects with the least dissimilarity. On the other hand, the partitioning algorithms 

determine all the clusters at the same time, building different partitions. The two 

methods are explained in more detail in the next paragraphs. 

Hierarchical clustering is one of the most straightforward clustering methods (Norušis, 

2011). Most hierarchical techniques fall into a category called agglomerative 

clustering, which starts with each object representing an individual cluster. Then, the 

next step is to merge the two most similar clusters to form a new one at the bottom of 

the hierarchy and so on until all the objects are in one big cluster. A cluster hierarchy 

can also be formed with the opposite procedure (divisive clustering), i.e. all the 

observations form one cluster at the beginning and then they gradually split up 

according to their similarity till every object belongs to individual clusters (Norušis, 

2011; Sarstedt and Mooi, 2011). When using hierarchical clustering, the number of 

clusters should be decided by the user, but it is not required before the clustering. 

Moreover, it can be concluded that even if it is a straightforward method, it is not 

suitable for a large dataset, since a distance/ similarity matrix between all pair of cases 

is required, i.e. the distances between all pair of cases should be calculated. 

The K-mean algorithm, on the other hand, can be classified as a partitioning method 

and is one of the most popular clustering algorithms (Wang, 2012). It is 

computationally simple and can deal with large datasets. This algorithm measures 

dissimilarity between two objects and then assign them into k pre-decided clusters. 

This is one of the disadvantages of K-mean clustering method, i.e. that the number of 

the clusters is required before the clustering. To express (dis)similarity between 

objects, there have been used different measures. The most well-known one is the 

square of the Euclidian distance, which is the square of the straight line between them. 

Other distances are the Angular and Mahalanobis distance (Sarstedt and Mooi, 2011). 

The procedure of the algorithm conducts expectation and maximisation steps until it 
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is converged to one solution. In the first step, the algorithm assigns all objects to k 

clusters whose centroids are closest to each object and in the next step, the algorithm 

calculates the point for each cluster that minimises the sum of the distances between 

this point and the objects in the cluster, which becomes the centroid for each cluster. 

Next, it reclassifies all cases based on the new set of means and so on. Therefore, 

one object can belong to a different cluster at each step, which is one more difference 

from the hierarchical method. This procedure is repeating until the cluster centroids do 

not change much between successive steps (Norušis, 2011; Jung, 2012). 

Generally, K-means clustering has some advantages comparing to the hierarchical 

clustering; it is influenced less by outliers and irrelevant clustering variables. 

Furthermore, as it was mentioned earlier, K-mean clustering can handle very large-

dataset in contrast to hierarchical one, since the procedure is less computationally 

demanding. On the other hand, K-mean algorithm can handle mostly continuous 

variables (interval or ratio scaled data), due to the use of the Euclidian distance. 

Finally, the pre-decision of the number of clusters can be challenging. 

To overcome the aforementioned disadvantages, the Two-step cluster analysis was 

developed by Chiu et al. (2001). So, the 2-step clustering method is a scalable cluster 

analysis algorithm designed to handle very large datasets. It can overcome the 

difficulties of the other classic clustering techniques. First, it can handle both 

categorical and continuous variables, since it is based on the likelihood distance 

measure assuming that all the variables are independent. In addition, all continuous 

variables are assumed to follow a normal distribution and categorical variables a 

multinomial one (SPSS Inc., 2001; Şchiopu, 2010; Norušis, 2011). Moreover, this 

method can automatically determine the optimal number of clusters by calculating and 

comparing measures of fit such as Akaike’s Information Criterion (AIC) or Bayes 

Information Criterion (BIC); the smaller value the better fit. 

As its name reveals, this clustering technique consists of two steps: the pre-clustering 

step, and the clustering step (SPSS Inc., 2001; Şchiopu, 2010; Norušis, 2011; Sarstedt 

and Mooi, 2011). In the first stage, the algorithm aims in creating pre-clusters by 

undertaking a procedure where it checks if the current record should merge an existing 

cluster or form a new one (similar to K-mean clustering procedure). This is 
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accomplished by the construction of a Cluster Features (CF) Tree, where the first case 

is being placed at the root of the tree in a leaf node that contains useful information 

about that case. Then, other cases are added to an existing node or are forming a new 

one, based on the similarities to existing nodes using the distance measure. In the 

process of building the CF tree, the algorithm has implemented an optional step that 

allows dealing with outliers, i.e. records that do not fill well into any cluster. The next 

stage takes the resulted leaf-nodes of the CF tree as an input and groups them using 

an agglomerative hierarchical clustering algorithm which allows exploring a range of 

solutions with a different number of clusters. 

Considering the clustering procedure of this thesis. The human characteristics that will 

be included in the cluster analyses are the gender and the age category (19-30,31-

50,51+). Specifically, the 2-step cluster analysis in SPSS will be used, due to two 

important advantages that have been mentioned before and are essential for this 

analysis. First, it can handle large dataset, by constructing a cluster features (CF) tree 

that summarizes the records in contrast to hierarchical clustering that is inadequate 

for large datasets and the two datasets that will be analysed consists of 2700 and 7160 

observations. The other reason is that it can handle both categorical and continuous 

variables whereas K-mean clustering can only handle continuous variables and the 

current clustering is based on human factors and on deceleration profiles that are 

categorical variables. The other features that give leverage to this method, i.e. it 

automatically standardises all the variables, it can handle outliers and insignificant 

variables and it selects the best number of clusters automatically played an essential 

part on the selection of this method. 

The procedure that it follows to select the best number of clusters is described below. 

The Schwarz's Bayesian Criterion is calculated for the different number of clusters. 

The smallest the Bayesian Information Criterion (BIC) the better the cluster analyses. 

The maximum number of clusters is set equal to the number of clusters where the ratio 

BICk/BIC1 is smaller than c1 for the first time. In the table below the c1 has not been 

reached yet and so the SPSS stops at the maximum number of clusters that is set by 

the user, i.e. 15. Moreover, the SPSS calculates the ratio change R(k) in distance for 

k clusters. To decide the best number of clusters, SPSS calculates the ration R(k1)/ 

R(k2) for the two largest values. If the ratio is larger than 1.15 the number of clusters 
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is set equal to k1, otherwise to the largest number between k1 and k2. In this case, 

the 2 largest R(k) are for the 2 and 3 clusters and the ratio R(2)/ R(3)=1.14<1.15 and 

therefore the 3 clusters is set as the best solution from SPSS (Table 4.4). 

Table 4.4: Procedure for selecting the best number of clusters 

Auto-Clustering 

Number of 

Clusters 

Schwarz's Bayesian 

Criterion (BIC) 
BIC Change 

Ratio of BIC 

Changes 

Ratio of Distance 

Measures 

1 19050.606    

2 15560.152 -3490.454 1.000 1.619 

3 13428.661 -2131.492 .611 1.419 

4 11945.290 -1483.371 .425 1.175 

5 10692.548 -1252.742 .359 1.037 

6 9487.064 -1205.484 .345 1.325 

7 8592.616 -894.448 .256 1.121 

8 7801.248 -791.368 .227 1.157 

9 7126.100 -675.148 .193 1.243 

10 6595.160 -530.940 .152 1.052 

11 6093.612 -501.548 .144 1.167 

12 5672.884 -420.728 .121 1.055 

13 5277.438 -395.446 .113 1.165 

14 4947.107 -330.331 .095 1.086 

15 4647.895 -299.211 .086 1.021 

Other useful information that is provided by the 2-step clustering is the goodness of fit 

which is called silhouette measure of cohesion and separation and it is based on the 

average distance between the object. Its value fluctuates from -1 to +1, with values 

less than 0.20 indicating poor solution quality, values between 0.20 and 0.50 a fair 

quality and values over 0.50 a good quality. Last but not least, the 2-Level clustering 

demonstrates the importance of each variable that was included in the procedure, 

showing to the user if one variable is not necessary. 
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4.5 Comfort level and discrete choice models 

4.5.1 Calculation of comfort indices 

Ride comfort is a subjective concept understood as a state achieved by the removal 

or absence of uneasiness and distress. There have been many attempts in the 

literature to evaluate the comfort inside a vehicle and to discover the factors affecting 

it (Martin et al. 2008; Elbanhawi et al. 2015, Bellem et al., 2016; Le Vine et al., 2015a). 

One of the most important and critical factors of perceived safety and comfort is the 

braking as a sharp deceleration is closely connected to accidents. It should be noted 

that deceleration is only one dimension of passengers’ ride experience while braking, 

others include vibration and jerk (Le Vine et al., 2015a; Bellem et al., 2016). 

Le Vine et al. (2015a) support that passengers of an AV will have similar behaviour 

with current car passengers, who start experiencing discomfort at lower rates of 

deceleration than car drivers. Therefore, the AV should not manoeuvre in a way that 

mimics exactly the human-driver operation but in a way providing greater ride comfort 

(Le Vine et al., 2015a). This could be taken into consideration by applying thresholds 

found in comfort analysis on ground public transport. 

It is strongly supported that vehicle acceleration/deceleration and the time rate of 

change of acceleration, i.e. jerk can have a significant impact on passenger’s comfort 

and safety (Martin and Litwhiler, 2008; Wu et al., 2009; Lu et al., 2010; Jensen et al., 

2011; Powell and Palacín, 2015). As it is extendedly described in the literature review 

of the ride comfort there are no precise limits for comfort braking. In different words, 

the authors used various thresholds to achieve their objectives. For example, 

Gebhard, (1970) and Hoberock (1976) concluded that the range 1.08 m/s2 to 1.47 m/s2  

(0.11g to 0.15g) is considered comfortable deceleration for more studies and regarding 

the jerk the value should not exceed 2.94 m/s3 (=0.3g/s) to be perceived as 

acceptable. Moreover, Le Vine et al. (2015b) employed the maximum typical rates of 

acceleration and deceleration during revenue service for light rail speed rail, which 

equals 1.34 m/s2. The limit of 2 m/s2 was set by Abernethy et al. (1977)as the threshold 

of emergency deceleration, whereas in Wu et al. (2009)’s work it was the threshold of 
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comfortable deceleration. In addition, to recognise the “hard” braking in the EuroFOT 

project and the 100-Car NDS, the threshold was set at 4 m/s2. 

Taking into consideration the thresholds that have been used in previous studies on 

comfort and since the lowest one regarding deceleration equals to 1 m/s2 (Hoberock, 

1976; Eriksson and Svensson, 2015), an algorithm that detects all the deceleration 

events with deceleration greater than 1 m/s2 in absolute value was developed. This 

resulted in 23933 deceleration events. It is strongly supported that speed, acceleration 

and jerk play a crucial role to passenger’s comfort(Martin and Litwhiler, 2008; Wang 

et al., 2010; Jensen et al., 2011; Wu et al., 2013). 

Many studies have classified events and trips as comfortable or not by using only one 

of those variables either deceleration or jerk (Abernethy et al., 1977; Wu et al., 2009; 

Vine et al., 2015) and setting different limits depicted with straight lines in Figure 4.9. 

Although analysing simultaneously two of them can give more accurate results in the 

comfort evaluation of the events. 

 

 

In this work, deceleration and jerk were employed in order to determine the comfort 

level of the braking events. More specifically, combining different thresholds for 

deceleration and jerk, the comfort categories where developed. As it was mentioned 

in the literature there are no determined limits that can be used to define the comfort 

level and each study uses different ones (Hoberock, 1976; Martin and Litwhiler, 2008; 

Eriksson and Svensson, 2015; Powell and Palacín, 2015). Therefore, three different 

Different 

threshold for 

acceleration 

and 

deceleration 

Figure 4.9: Acceleration diagram with different threshold 
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sets of thresholds were used in this analysis, creating four, three and two comfort 

categories (Table 4.5, Table 4.6 and Table 4.7) and will be referred as classification 

A, B and C respectively. All three classifications were analysed and were modelled by 

using discrete choice modelling. 

4.5.1.1 The categorisation of the events 

As it was mentioned the Classifications A consists of four categories, i.e. very 

comfortable, slightly comfortable, slightly uncomfortable and very uncomfortable. The 

thresholds for the very uncomfortable zone were taken from the literature, as 4 m/s2 

was the limit for hard braking and 2.95 m/s3 the limit of jerk to be perceived as 

acceptable (McLaughlin et al., 2009). The following Table presents the thresholds that 

defined the four categories. 

Table 4.5: Thresholds for creating four comfort categories (Classification A) 

Comfort Level Deceleration (m/s2) Jerk (m/s3) 

Very comfortable [-1,-2) [0,-1) 

Slightly comfortable [-2,-3) [-1,-2) 

Slightly uncomfortable [-3,-4) [-2,-3) 

Very uncomfortable <-4 <-3 

Next, the deceleration events should be categorised in those four categories, based 

on the thresholds that are presented in Table 4.5. Initially, straight lines were 

considered for the acceleration and jerk limits, which created phase plane limit 

rectangles. That resulted in assigning a deceleration event that had deceleration -2 

m/s2 and jerk close to zero to the slightly comfortable category, whereas a deceleration 

event that had deceleration equal to -1.9 m/s2 and jerk equal to -0.9 m/s3 was assigned 

to a more comfortable category and that was not logical. Therefore, the lines that 

define the comfort categories were created using ellipses based on the acceleration 

and jerk limits. The centre of the ellipses was set at the point (0,-1) which was the 

lowest values of the observations. To create the ellipses for the different comfort 

levels, the fact that each ellipse should pass from the adequate limits was taking into 

consideration. Having the form of the equation of the ellipse (
𝑥2

𝑎2
+

y2

𝑏2
= 1) and knowing 

two point that the ellipse passes from, it was easy to calculate the coefficients a and b 
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and to get the equations that separate the comfort categories (Figure 4.10). For 

example, to calculate the ellipse that separates the “comfortable” from the “slightly 

comfortable” zone, the points (-2,0) and (0,-1) where it should cross the axis were 

inserted in the ellipse equation and the resulted equation was: (
𝑥2

4
+

y2

1
= 1). 

 

Figure 4.10: Distribution of the deceleration events at Classification A 

The same approach was used to define the areas of the three and the two comfort 

categories. The thresholds that were used for these classifications are presented in 

Table 4.6 and Table 4.7 respectively. 
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Table 4.6: Thresholds for creating three comfort categories (Classification B) 

Comfort Level Deceleration (m/s2) Jerk (m/s3) 

Comfortable [-1,-2) [0,-1) 

Neutral [-2,-3.4) [-1,-2) 

Uncomfortable <-3.4 <-2 

Table 4.7: Thresholds for creating TWO comfort categories (Classification C) 

Comfort Level Deceleration (m/s2) Jerk (m/s3) 

Comfortable [-1,-2.5) [0,-1.2) 

Uncomfortable <-2.5 <-1.2 

The procedure of assigning the deceleration events to the correct comfort category for 

Classification B and C is the same as for Classification A. Using the ellipse 

mathematical form and the adequate threshold the areas of each category were 

designed.  

4.5.2 Description of the model 

One of the primary assumptions of linear models is that the dependent variable must 

be continuous, unbounded and measured on an interval or ratio scale. Therefore, 

categorical variables cannot be modelled as dependent variables using linear models, 

no matter how many transformations are applied. One solution is to use discrete 

choice models. Discrete choice models, also called qualitative choice models are used 

widely in economics, in health science, in biostatistics, in transport mode preferences 

and in traffic safety (Pai et al., 2009; H.-A. Park, 2013; Ye and Lord, 2013; Sperandei, 

2014) and can explain or predict a choice from a set of alternatives. Discrete choice 

econometrics is usually more challenging since discrete choice explains less the 

choice process than continuous-outcome choices. The logit models have been 

identified through the literature to be an essential tool for dealing with discrete choices 

(Hensher and Greene, 2003). 

There are many discrete choice models, i.e. Logit, GEV (Generalized extreme value), 

probit, and mixed logit, but logit is by far the most widely used (K. Train, 2009). Starting 

with the simple binary logit model; where the dependent variable has only two 
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categories, the multinomial logit (MNL) model and the nested logit (NL) model have 

been developed. The MNL model is derived under the assumption that εni is iid 

extreme value for all i. The critical part of the assumption is that the unobserved factors 

are uncorrelated over alternatives or outcomes (also known as the independence from 

irrelevant alternative (IIA)), as well as having the same variance for all alternatives. 

However, the assumption of independence can be inappropriate in some situations 

(Hensher and Greene, 2003; K. Train, 2009; Ye and Lord, 2014). 

To avoid the independence assumption of the MNL model, other models have been 

developed. GEV models, for example, are based on a generalisation of the extreme 

value distribution, which can take many forms. The generalisation allows the 

unobserved factors over alternatives to be correlated. If this correlation equals to zero, 

the model becomes an MNL model. Also, another GEV model placed the alternatives 

into groups, i.e. nests and allows the unobserved factors to have the same correlation 

for alternatives within a nest and no correlation for alternatives in different ones, 

leading to the nested logit (NL) model. 

Another model category that was created to overcome the MNL model limitation is the 

multinomial probit models (MNP). Both those models and the GEV models existed 

conceptually and analytically since the 1970s. The difference of the MNP models is 

that they are based on the assumption that the unobserved factors are distributed 

jointly normal: 휀𝑛
′ = (휀𝑛1, … … . . , 휀𝑛𝐽)~𝑁(0, 𝛺). The advantage of the probit models is 

that they are flexible in handling correlations over alternatives and time. On the other 

hand, the normal distribution assumption causes some limitation, since unobserved 

factors may not be normally distributed. 

To deal with this disadvantage, mixed multinomial logit models (MMLN) were 

developed. Mixed logit models allow unobserved factors to follow any distribution. The 

defining attribute is that the unobserved factors can be split into two parts; one that is 

iid extreme value distributed and one that can follow any distribution and contains all 

the correlation and heteroskedasticity. 
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To fully understand the logit models, their equations will be presented and explained. 

First, it should be understood that the logit of the categorical variable Y is used as 

the response of the regression equation: 

 
ln (

𝑃

1 − 𝑃
) = 𝑎0+𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 

(4.21) 

where the logit function is the natural log of the odds that Y equals to one of the 

categories. Moreover, p is the probability of interested outcome; X is the explanatory 

variables and α and β the parameters of the logistic regression. Equation (4.21) is the 

simple logistic model (H. A. Park, 2013). 

Generally, some of the factor affecting the dependent variable are known and 

observed by the researcher and some are not. The observed factors are marked X 

and the unobserved ε.  A function y=f (X, ε) determines the relationship between the 

influencing factors and the choice of a category and is called utility function. This 

choice is not deterministic because ε is not observed. The utility function 𝑈𝑛𝑖 of the 

multilevel logit model can be used to express the tendency of decision-maker i to 

choose alternative n (Pai et al., 2009; Ye and Lord, 2014): 

 𝑈𝑛𝑖 = ∝𝑛 +  𝛽𝑛𝑋𝑛𝑖 +  휀𝑛𝑖 (4.22) 

where: 

 ∝𝑛 = a constant parameter for category n, the alternative-specific constant for an 

alternative captures the average effect on the utility of all factors that are not included 

in the model. 

𝛽𝑛=a vector of the estimated parameters of the explanatory factors for category n; 

n=1,…,N representing all the comfort categories;  

𝑋𝑛𝑖=a vector of explanatory variables affecting the comfort level for i at comfort 

category n (kinematic factors, driver characteristics, situational factors);  
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휀𝑛𝑖= the unobserved error term that follows the Type I GEV distribution (iid extreme 

value); and 

i=1,…., k, where k is the total number of observations, i.e. of deceleration events that 

are included in the model (Ye and Lord, 2013). 

When the regression coefficient of an independent variable is not significantly different 

from 0 in the 95% confidence level (pvalue>0.05 or tstat>1.96), then this variable is 

removed from the model. The interpretation of the logistic regression coefficient is that 

it shows the change (increase if βι>0 and decrease if βι<0) in the predicted logged odd 

of having the characteristic of interest when the explanatory variable Xi change by one-

unit (H. A. Park, 2013). Therefore, by taking the exponential of both sides, equation 

(4.21) becomes: 

 𝑜𝑑𝑑𝑠 =
𝑝

1 − 𝑝
= 𝑒𝑎0 × 𝑒𝑏1𝑋1 × 𝑒𝑏2𝑋2 × … . .× 𝑒𝑏𝑘𝑋𝑘 (4.23) 

Increasing an independent variable Xi by one-unit and keeping all the other factors 

unchanged, the odds of having the category of interest will increase or decrease by a 

factor eb
i : 

 𝑒𝑏1(1+𝑋1) − 𝑒𝑏1𝑋1 = 𝑒𝑏1(1+𝑋1)−𝑏1𝑋1 = 𝑒𝑏1+𝑏1𝑋1−𝑏1𝑋1 = 𝑒𝑏1 (4.24) 

The logit probability Pni(n) of an observation i choosing category n is:  

 
𝑃𝑖(n) =  

𝑒(𝑎𝑛+𝛽𝑛𝑋𝑛𝑖)

∑ 𝑒(𝑎𝑛+𝛽𝑛𝑋𝑛𝑖)
∀𝑛

   
(4.25) 

Equation (4.25) shows how to calculate the probability for each comfort category. 

The relation of the logit probability to representative utility is sigmoid, or S-shaped, 

meaning that if the utility for one alternative is relative low, then a small increase on 

that utility will have small impact on the probability of its being chosen whereas if this 
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probability is close to 0.5, then any change on the utility has significant effects (K. 

Train, 2009). 

As it was mentioned before, the MNL model has some limitations. These limitations 

can be overcome, by using Mixed logit model, since it allows random taste variation, 

unrestricted substitution patterns and correlation in unobserved factors over time. The 

mixed logit model is a flexible model that has been widely used after the advent of 

simulation techniques and the enhancement of computer power (Hensher and 

Greene, 2003; Ye and Lord, 2013). The utility function of the mixed logit model has 

the same structure as the MNL model (Equation (4.22)). The difference is that the 

coefficients vary over decision-makers in the population with density 𝑓(𝛽|𝜃). The 

mixed logit probabilities are the intervals of the multilevel logit probabilities over a 

density of parameters (K. Train, 2009). In other words, a mixed logit model is any 

model whose choice probabilities have the following form: 

 
𝑃𝑖(n) =  ∫

𝑒(𝑎𝑛+𝛽𝑛𝑋𝑛𝑖)

∑ 𝑒(𝑎𝑛+𝛽𝑛𝑋𝑛𝑖)
∀𝑛

  𝑓(𝛽|𝜃)𝑑𝛽 
(4.26) 

where 𝑓(𝛽|𝜃) is the density function of β with θ referring to a vector of parameters of 

the density function, i.e. mean and variance and all the other terms are as defined 

previously. 

The mixed logit probability is a weighted average of the logit formula evaluated at 

different values of β across the observations, with the weights given by the density 

𝑓(𝛽|𝜃) (K. E. Train, 2009; Pai et al., 2009). In the statistics literature, the weighted 

average of several functions is called a mixed-function, and the density that provides 

the weights is called the mixing distribution. Mixed logit is a mixture of the logit function 

evaluated at different β’ s with 𝑓(𝛽|𝜃) as the mixing distribution. 

The distribution for the coefficients should be specified and its parameters should be 

estimated. If there is one single issue that can cause much concern, it is the influence 

of the distributional assumptions of random parameters. There are different 

distributions that can be applied; the most popular being normal, triangular, uniform 

and lognormal distribution. The lognormal distribution is appealing if the response 
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parameter needs to be a specific (non-negative) sign; however, it has a very long right-

hand tail which is a disadvantage. The uniform distribution with a (0, 1) bound is 

sensible when we have dummy variables (Hensher and Greene, 2003). To evaluate 

which is the best distribution to use, multiple distributions should be used and then the 

outcoming models can be evaluated and compared to decide the best and most 

realistic one. Moreover, some logic thinking should be applied; for example, if the 

effect of one variable should logically be negative, a log-normal distribution might be 

the most appropriate choice. 

Finally, to decide if an MMNL model is better than the corresponding (i.e. the one that 

has the same explanatory variables) MNL model, the log-likelihood test can be applied 

(section 4.3.2.1), since the MMNL model can be “collapse” back to the multinomial 

logit one. The same procedure can be used to compare different formulations of mixed 

logit models, provided that the new model can ‘collapse’ back into the model with which 

it is compared. There are two more criteria that can be used to compare the models, 

i.e. the AIC or Bayesian Information Criterion (BIC), where the smaller the value the 

better the model. 

In this work, to model the level of comfort and identify the factors increasing the 

likelihood for a deceleration event to be perceived as uncomfortable, MNL and MMNL 

models were applied. The dependent variable is the comfort categories, which is a 

categorical variable. Moreover, the explanatory variables can be categorised at the 

event level variables and the driver level ones. All of them will be included in the 

models and the statistically insignificant ones will be removed since they do not affect 

the level of discomfort. The models were examined by developing code in R, using the 

CMC package provided by ITS Leeds (CMC (2017)) and different specifications were 

tested. Moreover, the distributions of the unobserved factors that will be examined are 

the normal, the lognormal and the exponential distribution. 

4.6 Conclusion 

This chapter provided a discussion of the methodology to be followed in this work. 

Following the research design, a statistical model (i.e. the multilevel mixed-effect 

model) was described in detail. This model can overcome the problem of the 
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dependencies in the datasets and it is appropriate to describe the available data and 

to discover the relation between the deceleration behaviour and its affecting factors. 

Moreover, the way to deal with a large amount of data was represented by detecting 

the deceleration event which was of interest and keeping only the data which describe 

this event. The problem which had to be overcome was that some data seem to be 

part of the event but actually were not and by including them, it would have misled the 

results. The different thresholds in order to overcome this problem were presented 

and justified. 

The different deceleration profiles that were tested were presented and explained in 

this chapter, along with the algorithm that calculates the specific function for each 

event and the average reference ones. In addition, the cluster algorithms were 

described and specifically the 2-Step algorithm that overcomes the challenges of the 

large dataset and the mixture of continuous and categorical variables in the analysis. 

Finally, the ride comfort and adequate thresholds for the classification of the 

deceleration events to different comfort level were discussed. Then, the discrete 

choice models and specifically the MMNL models that are capable of describing the 

relationship between influencing factors and comfort level are described in detail. 

It should be noted that the methodology and specifically the modelling strategy was 

data-driven. Specifically, the statistical models that were employed were selected due 

to the data structure (i.e. the hierarchical structure) for the multilevel models and the 

desired modelled value (i.e. the comfort level) for the discrete choice models. 

Moreover, the criteria and the thresholds used to detect the deceleration events and 

to classify the comfort levels came both from theory (i.e. previous studies) and data-

driven. 

In conclusion, Figure 4.11: presents a flowchart of the overall methodology of this PhD. 
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Figure 4.11: The flowchart of the methodology 
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5 Results of the Analyses: Deceleration Events 

5 

Employing the datasets and the methods that were discussed in Chapters 4 and 1 

respectively, a series of statistical analysis have been developed by employing 

different mixed multilevel regression models. Those models reveal the factors that 

affect the deceleration events, specifically the maximum deceleration value and the 

duration of the event. The effect of each factor is demonstrated in detail. This chapter 

presents the results of the developed models in section 5.2. 

In detail, the models that were tested to describe the examined variables were the 

random intercept two-level and three-level models and the random intercept and 

random slope two-level and three-level models. These models were applied to both 

the deceleration and the duration of the event. Each model is represented with a table 

that shows the coefficient estimates of the examined independent variable along with 

their t-statistic to prove their statistical significance and the magnitude of the effect of 

each variable. Moreover, in most of the cases a table that displays the LR-test to prove 

the most parsimonious model is presented. 

The first section demonstrates the results of the calculation of the most common 

braking profiles for both the press and the release of the brake. The specific equations 

are presented in tables and plotted to be visually understood. Moreover, the results of 

a cluster analysis investigating in which scenarios each function is used are displayed. 

5.1 Deceleration Profiles 

As it was discussed in the methodology, one of this study’s objectives is to reveal the 

most common braking profile. Three functions are tested for both parts of the 

deceleration events, i.e. for the press of the brake before the maximum deceleration 

and for the release of the brake after the maximum deceleration value. The three 

functions are: 1) 𝑎 = 𝑝1 ×  𝑡 + 𝑝2 (linear equation), 2) 𝑎 = 𝑝1 × 𝑡2 + 𝑝2 × 𝑡 + 𝑝3 

(Parabola 1) and 3) 𝑎 = 𝑝1 × 𝑠𝑞𝑟𝑡(𝑡) + 𝑝2 (Parabola 2), where a is the deceleration 

value, t is the time and p1-p3 are the model coefficients. The best-fitted deceleration 

functions for all the deceleration events have been calculated and the distribution of 
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the deceleration profiles are presented in Table 5.1. Also, the means of the adjusted 

R2, which are an indication of goodness of fit, are displayed in Table 5.2 and it can be 

concluded that all the fitted equations show reasonable goodness of fit (Adj. R2>0.77). 

Table 5.1: Distribution of the deceleration profiles for all the datasets 

REGIME I REGIME II 

  frequency proportion  frequency proportion 

OEM 

fit1 490 29.30 fit1 
fit2 
fit3 
sum 

404 23.91 

fit2 837 50.61 600 35.50 

fit3 363 20.09 686 40.59 

sum 1690  1690   

TELEFOT 

fit1 286 32.91 fit1 
fit2 
fit3 
sum 

250 28.77 

fit2 292 33.60 315 36.25 

fit3 291 33.49 304 34.98 

sum 869   869   

Combination 
(OEM+TeleFOT) 

fit1 788 29.91 fit1 
fit2 
fit3 
sum 

614 23.30 

fit2 1159 43.98 953 36.17 

fit3 688 26.11 1068 40.53 

sum 2635   2635   

UDRIVE 

fit1 2135 29.81 fit1 
fit2 
fit3 
sum 

2221 31.01 

fit2 3599 50.25 1803 25.17 

fit3 1428 19.94 3138 43.81 

sum 7162  7162  

Table 5.2: The mean value of the Adjusted R2 of the fitted equations 

 Adjusted R2 

 Regime I  Regime II 

TeleFOT 0.93 0.92 

OEM 0.84 0.77 

Combination 0.87 0.82 

UDRIVE 0.82 0.79 

It can be observed that the most common deceleration profile for the Regime I, which 

is the first part of the deceleration event from the beginning till the maximum 

deceleration, is the second equation, i.e. the Parabola 1. Specifically, for the OEM and 

the UDRIVE data, the percentage of the events following the second equations is more 

than 50% whereas for the TeleFOT project the proportion of the three equations is 

almost equal. The equation of Parabola 1 represents that the driver presses the brake 

smoothly at the beginning in order to evaluate the situation and then harder braking is 

followed. As far as Regime II is concerned, the most used profile is the third equation 

(Parabola 2), which depicts a firm release of the brake. More specifically, the 
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percentage of the Parabola 2 for the UDRIVE dataset is almost 43% and for the 

TeleFOT dataset 41%, whereas for the data received from the OEM project the most 

common equation resulted to be equation 2 which represents a slower release of the 

brake. 

In Table 5.3 the equations for the Regime I of the different datasets are presented. 

Those equations resulted from the average values of the equations that have been 

fitted for each deceleration event. Many similarities can be observed, the coefficients 

have almost the same values for all the datasets but TeleFOT. To illustrate the 

similarities and the difference, all equations are plotted in Figure 5.1. Judging from the 

plots, the main difference is at the duration of the events. Generally, TeleFOT events 

seem to have smaller duration than the others, which is depicted in the equations 

plotted in Figure 5.1. Moreover, parabola 2 (blue colour in Figure 5.1)  and the linear 

equation (red colour in Figure 5.1) have shorter duration whereas Parabola 1 (green 

colour in Figure 5.1) depicts a longer duration to the deceleration event. 

Table 5.3: Equations describing the press of the brake for all the datasets 

Fit before Linear equation Parabola 1 
 

Parabola 2 

TeleFOT 
 

 

 

OEM   

 

Combination   

 

UDRIVE    

*where a=maximum deceleration value of the event in m/s2 and d=duration(sec). 
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Figure 5.1: Plots of the equations representing the press of the brake 

Table 5.4 includes the equations for the second part of the deceleration event after the 

maximum deceleration and till the end of the event (i.e. Regime II) for all the datasets, 

which have been plotted in Figure 5.2. The equations for all the datasets show similar 

characteristics; parabola 2 (blue colour in Figure 5.2) represents the shorter duration 

for all the datasets while parabola 1 (green colour in Figure 5.2) represents the longer 

deceleration events. 

Table 5.4: Equations describing the release of the brake for all the datasets 

Fit after Linear equation Parabola 1 Parabola 2 

TeleFOT   

 

OEM    

Combination   

 

UDRIVE 
 

  

*where a=maximum deceleration value of the event in m/s2 and d=duration(sec). 
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Figure 5.2: Plots of the equations representing the release of the brake 

It can be observed that duration plays an important role in the profiles and the values 

of the coefficients. Therefore, a more detailed analysis was undertaken to investigate 

the formulation of the different profiles depending on the duration. To achieve that, a 

2-step cluster analysis was performed for each profile and an example is displayed in 
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Figure 5.3. The cluster took into consideration the duration and the coefficients of the 

equations for each event, apart from the constant which did not show any differences 

based on the duration. The cluster showed fair goodness of fit and all the variables 

were significant. This procedure was applied in all the datasets, however only the 

representative results of UDRIVE dataset will be displayed for similarities reasons. 

The results for the first part of the deceleration are presented in Table 5.5 and Figure 

5.4. The majority of the deceleration events occurred within the medium duration, a 

small percentage (only 3.6% of the deceleration events) for Parabola 2 happened in 

short duration, whereas for Parabola 3 40% of the events had a short duration and 

only 12.7% had a long one. 

 

Figure 5.3: Example of the cluster analysis for Parabola 1 

Table 5.5: Results of the detailed analyses of the first part of the deceleration profiles 
based on the duration 

Deceleration events Count Percentage Duration Coefficient 1 Coefficient 2 

EQUATION 1 

Short duration 393 18.6% 1.08 -3.11 NA 

Medium duration 1346 63.6% 3.42 -.78 NA 

Long duration 377 17.8% 8.59 -.25 NA 

EQUATION 2 

Short duration 125 3.6% 1.35 -4.25 1.32 

Medium duration 2722 77.6% 4.18 -0.31 0.13 

Long duration 660 18.8% 10.9 -0.03 0.09 

EQUATION 3 

Short duration 484 40% 1.71 -2.26 NA 

Medium duration 573 47.3% 4.39 -1.02 NA 

Long duration 154 12.7% 9.62 -0.62 NA 
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Figure 5.4: Plots of the equations for the first part of the deceleration based on the 
duration 

The same procedure was followed for the part after the maximum deceleration, 

resulting in Table 5.6 and Figure 5.5. The medium duration is the dominant one with 

percentages from 47.3% to 67.3%, whereas short and long duration have almost equal 

percentages apart from equation 3 that short duration reaches 40% and long duration 

only 12.7%. 

Table 5.6: Results of the detailed analyses of the second part of the deceleration profiles 
based on the duration 

Deceleration events Count Percentage Duration Coefficient 1 Coefficient 2 

EQUATION 1 

Short duration 318 14.5% 0.8 4.46 NA 

Medium duration 1480 67.3% 2.3 1.4 NA 

Long duration 402 18.3% 5.46 0.44 NA 

EQUATION 2 

Short duration 357 21.8% 1.26 3.34 -0.53 

Medium duration 897 54.9% 2.4 0.56 -0.05 

Long duration 381 23.3% 5.9 0.09 -0.16 
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EQUATION 3 

Short duration 484 40% 1.71 -2.26 NA 

Medium duration 573 47.3% 4.39 -1.02 NA 

Long duration 154 12.7% 9.62 -0.62 NA 

 

Figure 5.5: Plots of the equations for the second part of the deceleration based on the 
duration 

After obtaining the profiles that people used to brake, it is interesting to investigate 

when the driver is conducting which profile. To achieve that the OEM data was utilized, 

and a cluster analysis was performed. For the cluster analyses, the two-step cluster 

method was used, and it was conducted in SPSS. Different scenarios were examined 

in order to determine which factors affect the profile of the deceleration and in which 

scenarios the driver chooses to brake with which profile. Specifically, the variables 

included in the cluster analyses vary in each scenario between the explanatory factors 

e.g. gender, age, road type etc., but the selected profile was always included and 

should be significant. Table 5.7 summarises the different tested scenarios. 
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Table 5.7: Different clusters to investigate the factors affecting the braking profile 

ID Variables Cluster Quality outcome 

1 Age_categories 
Driver_ID 
Male_or_not 
Road_type 

Poor 

2 Road_type  
Car_ID 

3 clusters 
Fair quality 

3 Road_type 
Male_or_not 
Age_categories 

Poor(insignificant) 

4 Male_or_not 
Age_categories 

Poor (insignificant) 

5 Road_type 
TripID 

Poor (insignificant) 

6 Road_type 
Trip_duration(min) 

Too many clusters 

7 Road_type 
Trip_duration(min) 
Car ID 

Too many clusters 

8 Road_type 
Initial speed 
Car ID 

Poor(fit_bef->insignificant) 

9 Road_type 
Initial speed 

Too many clusters 

10 Road_type 
Initial speed 
density 

4 clusters 
Fair quality 

11 Initial speed 
density 

Speed not significant 

12 Initial speed 
Density 
Cause of braking 
Traffic light 

Fit not significant 

13 Density 
Cause of braking 
Traffic light 

Fit not significant 

14 Density 
Cause of braking 

4 clusters 
Fair quality 

15 Cause of braking 5 clusters 
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16 Cause of braking 
Initial speed 

5 clusters 

 

17 Road type 
Cause of braking 

3 clusters 

 
18 Density 

Road type 
3 clusters 

 

19 Road type 
Traffic light 

Too many clusters 

If there were too many clusters, it was a classification giving no useful information 

about the use of each profile. The best results were given from the scenarios 15,16,17 

and 18, supporting that the cause of braking and the road type play an important role. 

Specifically, from cluster 15 it was concluded that if the reason for braking is the 

approach of a junction, then the deceleration profile follows either a linear equation or 

parabola 1 whereas if there is a roundabout, parabola 1 is the most used. Moreover, 

if there is an obstacle the driver brakes firmly (parabola 2) or in a linear way. The 

clustering analysis 17 shows more combined results. Specifically, if the driver is on a 

rural road but s/he brakes before a junction, the deceleration follows the linear 

function, whereas if the driver brakes because of an obstacle, the deceleration follows 

parabola 1. Finally, the last good clustering analysis (analysis 18) shows that if the 

traffic density is low and the road type rural, the deceleration follows either parabola 1 

or the linear equation, whereas if the traffic density is medium and the road type urban, 

the deceleration follows parabola 1.  

5.2 Multilevel modelling 

After identifying the deceleration profiles, a statistical analysis was undertaken in order 

to reveal which factors affect the deceleration events and how. The most important 

features describing a deceleration event are the maximum deceleration value and the 

duration, therefore, both features will be explored as dependent variables by separate 

statistical analysis. As it was discussed in the Methodology Chapter, the most 
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appropriate statistical model based on the structure of the data is the multilevel mixed-

effect model. This analysis was applied to all the datasets and the results are 

presented in the following sectors, named after the dataset. The procedure to reveal 

the best fitted statistical model in multilevel modelling is to first compare the null 

models, i.e. the model without having any explanatory variables, for no level, two-level 

and three-level using the LR-test. Then, the best linear regression model is calculated, 

revealing the independent factors that affect the deceleration value and duration. After 

that step, two types of multilevel model were estimated: (1) random-intercept model 

and (2) random- intercept and random- slope model for the two and the three-level 

depending on the results of the LR test and the intra-class coefficient. Each of the 

variables has been examined to determine whether or not the effect of the variable 

(i.e. the slope coefficient) varies across the examined level by conducting the LR test. 

For space purposes, not all the models can be displayed so the most parsimonious 

models will be presented in this Chapter for all the datasets and the result will be 

explained and compared. The LR test tables along with some good models can be 

found in the Appendix B. 

5.2.1 OEM 

The variables that were included in the statistical analysis for the OEM dataset, for 

both dependent variables, i.e. deceleration value and duration are presented in Table 

5.8. The variables can be categorised into the driver, the trip and the event level. 

Table 5.8: Variables including in the analysis of the OEM data 

Variable’s category Variable’s name Variable’s level 
Car_model 
Vehicle B as reference 

Vehicle A Trip level 
Vehicle C 

Road_type 
Motorway as reference 

Rural Trip level 
Urban 

 Trip duration (min) Trip level 
 Male Driver level 
Age categories 
Age_middle 

Age_young Driver level 
Age_old 

Driver’s reaction 
Driver_reaction_2 as 
reference 

Driver_reaction_1 Event level 
Driver_reaction_3 
Driver_reaction_4 

 Stops_at_car_block Event level 
 Traffic light Event level 
Traffic density Medium_density Event level 
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Low_density as 
reference 

High_density 

Reason for braking 
Obstacle_on_road as 
reference 

Roundabout Event level 
Junction 
Pedestrian crossing 
Other 

 Driver ID  
 TripID  
 Distance Event level 
 Initial speed  Event level 

In order to perform a three or a two-level analysis, it has to be ensured that there are 

enough observations to describe each level. In this case, enough trips per 

car/drive/road type (for the three-level modelling) and enough events per 

trip/car/driver/road type (if a two-level analysis is more suitable). Therefore, the 

adequate values were calculated and are presented in Table 5.9. 

Table 5.9: Number of observations for each level of the analysis for OEM data 

 
Mean Std. Dev. Min Max 

Trips per car model 43.67 13.28 36 59 

Trips per road type 43.67 0.58 43 44 

Trips per driver 10.92 2.11 6 12 

Events per driver 140.83 32.25 104 194 

Events per road type 563.33 311.29 204 751 

Events per car model 563.33 96.03 466 658 

Events per trip 12.90 8.39 2 34 

5.2.1.1 Deceleration value 

First, the regression model, which is simpler than the multilevel ones, is tested. After 

trying different combinations for the independent variables and different model 

combination, i.e. log_transformation of the independent and the dependent variables 

with linear ones, the most parsimonious model (highest R2 and all the variables 

statistically significant) was the linear-linear one. The adj. R2 =0.1228 and so 12.3% 

of the deceleration values can be explained well by this model. This is not a high 

percentage and it is not satisfactory. Therefore, it is of high importance to test for group 

effects, i.e. to test if a multilevel model is more suitable to describe the data. 
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5.2.1.1.1 2-Level null model 

First, the 2-level models will be analysed. In this dataset, there are 4 different levels 

(i.e. driver, trip, road type, car model level) in which the events are nested. It is 

important to mention that in the data, there are 12 different drivers, 131 different trips, 

and 3 different cars and road types. Thus, all the possible 2-level models are 

examined, and the results are presented in Table 5.10. 

Table 5.10: LR test for the 2-Level null models of deceleration value for OEM dataset 

2-LEVEL (null 
models) 

Log-
likelihood 

ICC LR 
Chi 
Probability 

Better 
model 

Single level -1322.89     

2-level-driver -1306.67 0.031 26.82 3.84 yes  

2-level-trip -1289.93 0.098 50.97 3.84 yes 

2-level-roadtype -1302.92 0.025 39.93 3.84 yes 

2-level-car -1305.78 0.023 34.20 3.84 yes 

The single null model (no independent variables) has been calculated too, in order to 

judge if there are group effects. The method that is used for this purpose is the LR 

test, which is a statistical test used generally for comparing the goodness of fit of two 

models (the null single-level model and the alternative 2-level one). By conducting the 

LR test to two models, the null hypothesis that there are no group effects: H0 : 𝜎𝑢
2=0 

can be tested (i.e. H0: the single-level model is true vs. HA: the multilevel model is 

true). The test statistic is twice the difference in the log-likelihoods: 

𝐿𝑅 = 2 × (𝑙𝑜𝑔𝑙𝑖𝑘𝑒ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙 − 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙) 

In this case, the alternative model is the multilevel model and the null, the single-level 

one. The test statistic LR is compared with a chi-squared distribution with degrees of 

freedom equal to the number of extra parameters in the more complex model. The 

multilevel model has one additional parameter, the between-group variance 𝜎𝑢
2, so 

there is 1 degree of freedom. From the table above, it is concluded that we can reject 

the null hypothesis (LR>chi probability), which implies that there are ‘real’ group 

differences, so all the 2-level models are preferred over the single-level model. 

Also, it can be seen from Table 5.10 that the trip-level model has the highest ICC 

(0.098), which means that deceleration from the same trip has some higher correlation 
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than deceleration from the same driver or from the same car or at the same road type. 

Specifically, 9.8% of the variation in deceleration values lies between trips and the rest 

lies between events in the same trip. Respectively, the variation on the other levels 

can be interpreted. Moreover, the ICC of the road type and the car model level is very 

low, indicating that there is no strong group effect in these categories. 

Moreover, on that point, it is useful to predict and examine the effect from each level. 

Here we present the driver effect since we have 12 drivers that are enough to detect 

the differences. So, from the null driver-level model, the predicted random effects and 

the associated standard errors for each driver were calculated (Table 5.11). Looking 

at these values and at Figure 5.6, 4 out of 12 drivers differ significantly from the 

average driver. The drivers 7 and 10 are predicted to brake the hardest, while the 

drivers 12 and 1 are predicted to brake softer. By observing the same graph for the 

trip level, it can be noted that in most of the trips the deceleration values are within the 

values of the average trip. Only around 10 trips differ significantly, presenting harder 

braking.  Also, from both plots, it is obvious that the confidence intervals around the 

predicted effects vary greatly in their length. Finally, it should be noted that because 

the independent variables have not been considered yet, the effects plotted here are 

very likely not to reflect just driver or trip effects, but some effects from the independent 

variables too.  

Table 5.11: Predicted random effects and standard errors for each driver for 2-Level driver 
model 

                                               

           1    .1168731   .0433698       12  

          12    .1129857    .035427       11  

                                              

           3    .0688475   .0411497       10  

           5    .0614487   .0411497        9  

          11    .0455511   .0383783        8  

           2    .0338556   .0393507        7  

           6    -.011801   .0347125        6  

                                              

           4   -.0247064   .0429262        5  

           8   -.0586784   .0423553        4  

           9   -.0744652   .0432204        3  

           7    -.131584   .0351041        2  

          10   -.1383269   .0447882        1  

                                              

    DriverID          v1       v1se   v1rank  
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Figure 5.6: Plots representing the driver and trip effects in the deceleration values for the 

2-Level null models for OEM dataset 

5.2.1.1.2 3-Level null model 

As it was previously discussed, the structure of the data reveals the existence of a 

three-level structure (events nested into trips nested into drivers). So, the three-level 

model was tested with the LR-test against the corresponding 2-level models, e.g. the 

driver-trip three-level model was tested against the 2-level driver and the 2-level trip 

model. 

Table 5.12: LR test for the 3-Level null model of deceleration value for OEM dataset 

3-level 
 log-

likelihood 
level ICC model 

Log-
likelihood 
of 2-level 

LR-
TEST 

Degree 
of 

freedom 

Chi 
prob. 

Better 
model 

model1 
(driver-
trip) 

-1285.94 

driver_id 0.027 
model1 
(driver level) 

-1306.67 41.46 1 3.84 yes 

trip_id 0.1 
model2 
(trip level) 

-1289.93 7.98 1 3.84 yes 

  null model -1322.89 73.90 2 5.99 yes 
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From Table 5.12, it can be concluded that the null three-level model is better than the 

corresponding null two-level ones. Although, this must be further examined as the 

independent variables are added to the model. The predicted effect of the driver-trip 

level model will be presented for a better understanding of the effect of the different 

levels. The predicted driver effects are listed in the following table: 

Table 5.13: Predicted random effects and standard errors for each driver for the 3-Level 
model 

 

Comparing the driver effects in the 3-Level model with the driver effect in the 2-Level 

one, the values of the effect changes as well as the sequence of the drivers, implying 

that a different model structure affects the effects on the deceleration value. 

Since there are 131 trips, the predicted trip effects are summarised rather than being 

listed in a table: 

 

So, the trip effects range from -0.276 to 0.1701, while the driver effects range from -

0.132 to 0.09 which is a smaller range. The magnitudes of the driver and the trip effects 

are presented in the next graph (caterpillar plot). 

                                              

           1    .0898232   .0526893       12  

          12    .0873516   .0493129       11  

                                              

           3    .0658264   .0508932       10  

           5     .041648   .0510103        9  

           2     .037428   .0511774        8  

          11    .0328924   .0501375        7  

           6   -.0135994   .0479679        6  

                                              

           4   -.0202643   .0530608        5  

           8   -.0295861   .0523007        4  

           9    -.044435   .0586832        3  

          10   -.1153911    .057785        2  

           7   -.1316937   .0481766        1  

                                              

    DriverID          v0       v0se   v0rank  

                                              

          u0         131    4.49e-11    .0951444  -.2764184   .1700764

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max
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Figure 5.8: Magnitudes of the effects in the 3-Level null model for OEM data 

From the plot above it is obvious that the confidence intervals around the predicted 

effects vary greatly in their length; drivers with fewer deceleration events (e.g. driver 

9, which has 108 deceleration events) will have longer intervals than ones with a lot of 

events (e.g. driver 7, which has 197 events). The plot shows that only 2 out of the 12 

drivers differ significantly from the average driver and one of them is close to the limit. 

Two drivers (7 and 10) had deceleration events with deceleration value significantly 

lower than the others, which means that they used to brake harder. Furthermore, it 

should be noted that because the independent variables have not been considered 

yet, the effects plotted here are very likely to reflect not just driver effects. 

5.2.1.1.3 2-Level random intercept model 

The next step is to start adding explanatory variables into the 2-level models (Random 

Intercept Models). After exploring all the different 2-level models (driver, trip, car 

model, road type), it is concluded that the car-level model and the road_type-level 

model were not suitable for these data since the ICC to both models was almost equal 

to 0. This signifies that none of these levels explains any of the variations in the 

deceleration values. The more common characteristics have the observations in the 

same cluster the larger the ICC. This was further supported by the LR-test that was 

conducted and showed that they are the worst models than the single level ones. On 

the other hand, both the trip and driver-level models gave better results than the single-

level ones. Judging from the results, it can be concluded that both models can describe 

the data good (ICC for the trip-level=0.04 and for the driver-level=0.036), but from the 
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log-likelihood and the BIC (lower value indicates a better model) it is revealed that the 

slightly better model is the two-level mixed model based on the drivers.  

5.2.1.1.4 2-Level random intercept and random slope 

Till now, driver and trip effects have been included by allowing the intercept of the 

regression model to vary randomly across the drivers and across the trips, but the 

slope of the regression line was assumed fixed across drivers and trips. Now, the 

random intercept model will be expanded by allowing the slope to vary randomly 

across the level too. Each of the variables has been examined to determine whether 

the effect of the variable (i.e. the slope coefficient) varies across the trips or the drivers 

by conducting the LR test. Only the standard deviation associated with the slope 

coefficients of the Vehicle C was found to be statistically significant at the driver level. 

Moreover, the LR-test was conducted to check if this or the simpler random intercept 

model is better.

It is concluded that the trip level random intercept model is the best whereas for the 

driver level the best model is the random intercept and random slope for the variable 

Vehicle C and its results are presenting in Table 5.14. It can be noted that the overall 

intra-class correlation (ICC) for the model is 0.03 indicating that only a 3 per cent of 

the variation in the deceleration value is explained by the multilevel or hierarchical data 

structure. 

Table 5.14: Results of the Driver Level mixed effect for Vehicle C model for OEM Data 

Deceleration Coef. z P>z 

Initial speed -0.020 -7.86 0.000 

Vehicle A 0.163 5.48 0.000 

Vehicle C 0.196 4.65 0.000 

Urban 0.112 4.02 0.000 

Roundabout 0.168 3.78 0.000 

Junction 0.117 3.16 0.002 

Pedestrian crossing -0.192 -2.28 0.022 

Other 0.155 3.93 0.000 

Driver reaction1 0.100 3.44 0.001 

Traffic light 0.136 3.59 0.000 

Stop car -0.191 -6.95 0.000 

Intercept -2.592 -40.54 0.000 
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Random-effects 
Parameters 

Estimate 

DriverID: 
Independent    

Var (Vehicle C) 0.0097 

Var (Intercept) 0.0071 

Var (Residual) 0.2360 

Level ICC 

DriverID 0.0293 

Observations 1689 

ll(model) -1191.73 

df 15 

The most statistically significant variables affecting the deceleration events have been 

found to be the initial speed, the road type and the need to stop. Regarding the initial 

speed of the event, a 1 m/s increase in the initial speed increases the absolute value 

of the deceleration by 0.0204m/s2 (harder braking), while if the road type is urban, the 

braking is reduced by 0.112 m/s2 relative to other road types. Moreover, if the car 

needs to stop in order to avoid a collision, the absolute deceleration value is increased 

by 0.191m/s2. 

As far as the car model is concerned, if the Vehicle A is used, the absolute deceleration 

value decreases by 0.163 m/s2 (softer braking). Since the use of the Vehicle C has a 

random effect (random coefficient and random slope) on the deceleration value, it can 

be seen that the use of the Vehicle C effect for driver j is estimated as 0.196 + u1j and 

the between driver variance in these slopes is estimated as 0.01. A 95% coverage 

interval for the driver slopes is estimated as 0.196 ∓ 1.96√0.001=0.04 to 0.41. Thus, it 

is expected to have a positive effect on 95% of the deceleration events with a slope 

coefficient between 0.04 and 0.41.  

Moreover, since the μ=0.196 and the σ=sqrt(0.0097)=0.098,  

z=0.196/0.098=2  

According to the normal distribution table for z=2  -> 0.9772. This means that for 

97.72% of the slopes it has a positive effect and for the rest 2.28%, the corresponding 

slopes show a negative effect. In terms of driver reaction, if the driver is looking forward 

(driver reaction 1) and not right/left or inside the car, it results in a decrease of the 

absolute deceleration value by 0.1 m/s2 (softer braking). 
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Another statistically significant variable is the reason for braking. This variable was 

included in the model as a categorical variable with 5 categories with the category of 

braking due to a dynamic obstacle as the reference category. It can be observed that 

braking due to a reason other than dynamic obstacle leads to an increase in the 

deceleration value i.e. smoother braking and this may be because the dynamic 

obstacle mostly describes the unexpected and sudden braking, except for the braking 

due to approaching to a pedestrian crossing. For example, if the driver brakes because 

there is a junction instead of a dynamic obstacle the deceleration value increases by 

0.117 m/s2 resulting in softer braking. Furthermore, the existence of a traffic light plays 

a significant role, i.e. if there is a traffic light, the absolute value of the deceleration is 

decreasing, indicating softer braking. Traffic density (i.e. low, medium and high) was 

included in the analyses as a categorical variable with low density as the reference 

category, but it was not statistically significant. 

The factors associated with the human characteristics were included in the model as 

categorical variables. More specifically, the age of the driver had three distinct 

categories, age_yound, age_middle and age_old; and gender had two categories, with 

the male drivers as the reference one. As the results indicate, none of the human 

factors variables was statistically significant. This is perhaps because the number of 

drivers (12 different drivers) was small and the number of events varied from driver to 

driver. 

5.2.1.1.5 Three-Level random intercept model 

The driver-trip model was also tested, and it was compared with the adequate two-

level models by the LR-test. It was revealed that the most parsimonious model is the 

2 driver-level random intercept and random slope model (Vehicle C has a mixed effect) 

(Table 5.14). 

5.2.1.2 Duration 

Next, the outcome of the statistical analysis with the dependent variable the duration 

is displayed. The best fitted linear regression is first calculated and it resulted to be the 

log-log transformation (i.e. the logarithmic transformation of the dependent and the 

independent variables where possible). The adjuster R2 is 0.5565, showing a 
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satisfactory fit. Although, the group effects should be tested to reveal if any multilevel 

model is more parsimonious. 

5.2.1.2.1 Multi-Level null model 

Similar to the analysis for the maximum deceleration value, the LR-test was conducted 

to test if a 2-Level model is better than a single-level model, resulting in favour of both 

the driver-level and the trip-level model. Moreover, the trip-level model has the highest 

ICC (0.126), which means that 12.6% of the variation in the duration of the deceleration 

event lies between the trips and the rest 87.4% lies between the events in the same 

trip. On the other hand, the driver-level model has small ICC (0.07), indicating that 

there is no driver effect on the duration. Moreover, the LR-test was performed to 

examine the 3-Level model against the corresponding 2-Level and single-level 

models, giving strong evidence that the 3-Level model overrides the driver-Level and 

the single level model but not the trip-level. 

5.2.1.2.2 2-Level random intercept and random slope models  

To create the 2-Level random intercept model, the explanatory variables were added. 

All the different groups were tested, i.e. driver, trip, car model, road type and it was 

concluded that only the trip-level model was suitable for the data, since the ICC of the 

other models almost equals to zero, meaning that none of these levels justified any of 

the variations in the duration of the deceleration events. The best 2-Level random 

intercept model considering trip effects is presented in Table 5.15. The next step was 

to test for random slope for each of the explanatory variables by conducting the LR-

test and comparing the AIC and the BIC. The results showed strong evidence that 

none of the explanatory variables has a random slope, meaning that the 2-Level 

random intercept model is the most parsimonious. 

Table 5.15: Results of the trip-level random intercept model of the duration for the OEM 
data 

Ln_duration Coef. z P>z 

Ln_initial speed 0.7500 30.26 0.00 

Roundabout 0.3120 8.19 0.00 

Urban -0.1160 -3.81 0.00 

Ln_trip duration 0.3100 3.10 0.00 
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Junction 0.2740 8.99 0.00 

Pedestrian crossing 0.2420 3.54 0.00 

Other 0.2930 8.99 0.00 

Driver_reaction_1 -0.1340 -5.33 0.00 

Stops_at_car_block 0.1580 4.66 0.00 

Traffic light -0.1150 -3.57 0.00 

Car_stops 0.3640 16.10 0.00 

Intercept -1.0780 -3.17 0.00 

Random-effects 
Parameters 

Estimate 

TripID: Identity  

var(Intercept) 0.0113 

var(Residual) 0.1524 

Level ICC   

TripID 0.0688   

Obs 1689   

ll(model) -848.4088   

df 14   

AIC 1724.818   
BIC 1800.864   

The most statistically significant variables affecting the duration of the deceleration 

event have been found to be the initial speed, the cause of braking and the need to 

stop. Since the logarithmic model is the most parsimonious the slope coefficient for 

each independent variable must be calculated. If the independent variable is in a 

logarithmic transformation as well, then the slope coefficient equals to 𝑏1 (
�̅�

�̅�
) where �̅� 

is the average of the independent variable and �̅� the average of the dependent 

variable. Otherwise, if the independent variable is not transformed then the slope 

coefficient equals to b1(�̅�). So, if the initial speed of the event increases by 1 m/s, the 

duration increases by 0.47sec. Moreover, if the car stops at the end of the deceleration 

event, the duration is longer by 3.15sec. Regarding the reason for braking, it can be 

concluded that braking due to a reason other than a dynamic obstacle leads to longer 

deceleration events, for example, if the braking happened because of a roundabout or 

a junction the duration increases by 2.7 sec and 2.37 sec respectively. As far as the 

road type is concerned, being in an urban road instead of a rural or motorway results 

in shorter deceleration events by 1 sec. 

Traffic density (i.e. low, medium and high) and the factors associating with the driver, 

i.e. gender and age showed no effect on the duration of the deceleration event. On 
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the other hand, if the driver is looking in front and not inside the car or right/left, s/he 

performs deceleration events that have shorter duration by 1.16 sec. This might 

indicate that the driver is more focused and reacts faster. Last but not least, the traffic 

light has a negative effect on the duration of the deceleration event, meaning that if 

there is a traffic light, the deceleration is shorter by 1sec, indicating maybe that when 

there is a traffic light the drivers delay to press the brake. 

5.2.2 TeleFOT 

The first thing is to test whether there are enough observations to describe each level 

so that a two-level and a three-level analysis can be conducted. The number of 

observations per each level is presented in Table 5.16. It can be observed that there 

are enough events per driver and per trip to perform both two-level analyses but there 

are not many trips per driver, i.e. mean 1.72 from 1 to 3 trips and that might be 

problematic in the appliance of a three-Level model. Also, it should be noted that there 

are 25 drivers performed 43 trips.  

Table 5.16: Number of observations for each level of the analysis for TeleFOT data 

 
Mean Std. Dev. Min Max 

Trips per driver 1.72 0.73 1 3 

Events per driver 33.44 26.7 4 90 

Events per trip 19.44 10.72 3 42 

5.2.2.1 Deceleration 

The best-fitted model of the linear regression has an adjusted R2 of 0.10. The adjusted 

R2 is low, indicating that the model does not explain well the dependent variable. The 

most significant explanatory factors are the initial speed, “if the car has to stop” variable 

and the reason for braking. The next step is to search for group effects that might 

describe better the dataset. 

5.2.2.1.1 2-Level null model 

To investigate if the 2-Level model describes better the data than the single-level one, 

the LR test is performed resulting that there is a group effect for both drivers and 

trips.The predicted driver and trip effect are displayed in Figure 5.9. Observing the 

Boxplots for the driver effect, only one driver from the 25 differs significantly from the 
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average driver, performing harder braking. Also, from the same graph for the trip level, 

it can be noted that in all the trips the deceleration values are within the values of the 

average trip. 

 

Figure 5.9: Plots representing the driver and trip effects in the deceleration values for the 
2-Level null models for TeleFOT dataset 

5.2.2.1.2 3-Level null model 

Moving to the 3-level null model, the LR-test showed that it is not significantly better 

from neither the single-level model nor any of the 2-Level ones. This was further 

supported by the low values of the ICC for the driver level in the 3-level model.  

5.2.2.1.3 2-Level random intercept 

Having concluded that both driver and trip effect play a role, the 2-Level random 

intercept models for trip level and driver level were calculated. The results show almost 

the same effects of the explanatory variables to the deceleration value for both models. 
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Although, the trip-level model shows better fit since the ICC (0.046) is bigger than the 

ICC of the driver-level model (0.039). 

5.2.2.1.4 2-Level random intercept and random slope 

Then, it was tested if by adding a random slope to any of the independent variables, 

a better-fitted model would have been created. The resulted models were compared 

to the simpler random intercept model to prove which is the best model to describe the 

deceleration value. The results of the LR-Test and the comparison of the AIC and BIC 

concluded that the best model to describe the maximum deceleration value for the 

TeleFOT dataset is the trip-Level random intercept and random slope for traffic light 

model, which is displayed in Table 5.17. 

Table 5.17: Results of the trip-Level random intercept and random slope for traffic light 
model for deceleration (TeleFOT dataset) 

Deceleration Coef. z P>z 

Initial speed -0.027 -7.5 0.000 

Traffic light -0.083 -1.97 0.049 

Roundabout  0.176 3.51 0.000 

Junction  0.151 3.29 0.001 

Other  0.099 2.2 0.028 

Pedestrian crossing -0.022 -0.22 0.830 

Car stops -0.227 -6.84 0.000 

Rural 0.057 1.98 0.048 

Driver reaction 1 0.147 3.83 0.000 

Intercept -2.253 -40.11 0.000 

Random-effects 
Parameters 

Estimate 

TripID: Independent  

var(traffi~t) 0.0643 

var(Intercept) 0.0066 

var(Residual) 0.1378 

ICC 0.046     
Obs 837   

ll(model) -387.15   

df 13     

The initial speed and if the car stops affect the deceleration value the most. 

Specifically, 1m/s increase in the initial speed results in 0.027m/s2 decrease in the 

deceleration value and if the car stops at the end of the deceleration event leads to a 
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decrease in the deceleration value by 0.227m/s2. On the other hand, if the driver is 

looking ahead and the road type is rural, the deceleration value is increasing, resulting 

in softer braking. Another statistically significant variable is the reason for braking. The 

effect is positive if the deceleration did not happen due to a dynamic objective or a 

pedestrian crossing. 

As far as the traffic light is concerned, the initial effect for trip j is estimated as -0.083+ 

u1j and the between trip variance in these slopes is estimated as 0.0643 (σ=0,2536). 

Therefore, z=0.083/0.2536=0.327 and from the normal distribution table, it is 

concluded that 62.9% of the slopes of the traffic light variable give a negative effect on 

the deceleration value whereas the rest 37.1% a positive one. 

5.2.2.2 Duration 

The statistical analysis of the duration starts with the calculation of the best linear 

regression model, which is the ln-ln linear regression model with a satisfactory 

adjusted R2 (0.56). So, 56% of the duration values can be explained well by this model. 

5.2.2.2.1 Multi-level null model 

To examine if there is any driver or trip effect, the LR-test was conducted to the null 

trip-level and drivel-level against the single-level model and there was overwhelming 

evidence in favour of both 2-Level models. Also, using the LR-test the 3-Level model 

against the 2-Level and the single level models were examined and it resulted that the 

3-Level model is better than the single-level and the driver-level but not than the trip-

Level one. So, the best model is the 2-trip level model. 

5.2.2.2.2 2-level random intercept 

The procedure continues by adding the explanatory variables to the trip-level null 

model and by keeping the variables that are statistically significant. Also, when the 

explanatory variables were added to the drivel level model, the model resulted to be 

inappropriate (ICC value almost equal to 0). This happened because the driver 

variables (age, driver experience and gender) that were added explained the 

differences due to the driver. Next, random slopes for the dependent variables were 
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added to the trip-level random intercept model. The resulted models were compared 

with the random intercept trip-level model through the LR-test and it was proven that 

the best-fitted model is the random intercept trip-Level model (see Table 5.18). 

Table 5.18: Trip-Level random intercept model for the Duration (TeleFOT dataset) 

 Trip level 

Ln_duration Coef. z P>z 

Ln_initial speed 0.7480 28.92 0.00 

Ln_trip distance 0.1800 2.72 0.01 

Age_old 0.0840 2.29 0.02 

Driven_miles 2 -0.2380 -2.96 0.00 

Driven_miles 3 -0.1800 -2.18 0.03 

Driven_miles 4 -0.1230 -1.10 0.27 

Stop_at_car_block 0.0780 2.25 0.02 

Rural 0.0600 2.62 0.01 

Car_stops 0.4130 15.36 0.00 

Driver_reaction1 -0.0850 -3.85 0.00 

Intercept -0.6720 -3.30 0.00 

Random-effects 
Parameters 

Estimate 

TripID: Identity  
var(Intercept) 0.004 

var(Residual) 0.095 

Level ICC 
0.04 TripID 

Obs 845   
ll(model) -217.86   
df 13   
AIC 461.7207   
BIC 523.3321   

From the results in Table 5.18, it can be noted that the initial speed and the need to 

stop affect the most the duration of the deceleration events. They both have a positive 

effect, meaning that the increase of the initial speed or if the car needs to stop leads 

to an increase in the deceleration duration. Specifically, if the initial speed increases 

by 1 m/s, the duration increases by 0.33sec and if the car needs to stop it increases 

by 1.76 sec. Moreover, some driver characteristics play a significant role, i.e. the age, 

specifically an old driver brakes longer by 0.36 sec than a middle-age one and the 

driving experience showing that drivers with more driven miles brake in shorter 

duration, indicating more experience driving style. Shorter braking is resulting when 
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the driver looks in front just at the moment the driver started the braking and not inside 

the car. 

The reason for braking does not affect the duration even if it was inserting in the model. 

Driving in a rural road instead of an urban or a motorway leads to an increase to the 

duration by 0.26sec. Also, stopping at a car block has a positive effect on the duration. 

Last but not least, the trip duration has a positive effect on the duration, meaning that 

1 min increase in the trip duration results in 0.05sec increase in the deceleration 

duration. Finally, the ICC equals to 0.04, which means that 4% of the variation in 

duration values lies between the trips whereas the rest variation lies between the 

events on the same trip. 

5.2.3 Combination of OEM and TeleFOT 

5.2.3.1 Deceleration 

In order to explore further factors affecting the deceleration value, the two datasets i.e. 

OEM and TeleFOT were combined. Therefore, the factors will not be connected only 

to one dataset and the results would be more generic. First, Table 5.19 displays the 

observations for each level to establish that it is possible to perform the multi-level 

analysis. Also, it should be noted that there were 37 drivers and 174 trips. 

Table 5.19: Number of observations for each level of the analysis for combination dataset 

 
Mean Std. Dev. Min Max 

Trips per driver 4.70 4.55 1 12 

Events per driver 73.4 67.6 3 217 

Events per trip 15.6 9.9 2 42 

The LR-test was performed to examine if there are any group effects in the data. 

Specifically, the 2-Level models showed a better fit than the single-level one. In 

addition, there was significant evidence that the 3-Level model (driver-trip-event level) 

is the most parsimonious model with ICC for driver effect equal to 0.061 and for trip 

effect equal to 0.124. Those values signify that 12.4% of the variation in the 

deceleration values can be explained by the group effect of the trip and the driver and 

the 6.1% only from the driver effect. From the boxplots displayed in Figure 5.10, the 

group effects are visualised. As far as the drivers’ effect is concerned, many drivers 
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decelerate in harder than the average driver. Also, the intervals are smaller for those 

drivers meaning that their braking does not vary a lot. On the other hand, considering 

the trips, there are some trips where the decelerations that took place were harder or 

softer than the ones on the average trip. 

 
Figure 5.10: Boxplots of the group effect of the drivers and the trips for the deceleration 

(Combination dataset) 

Continuing to the statistical analysis, after calculating the most parsimonious linear 

regression model (adjusted R2=0.115) the 2-Level random intercept models were 

estimated both for trip and driver level, resulting in two good models with ICC=0.065 

for the trip level and ICC=0.036 for the driver level. Then, random slope was added to 

the explanatory variables and the LR-test indicated that the best model is the driver-

level random intercept and random slope for the variable Vehicle C. 

Next, the best 3-Level random intercept model was estimated and was compared with 

the best 2-Level random intercept model, concluding that there is strong evidence in 

favour of the 3-Level model (LR test). By adding random slope to the variables of the 

3-Level model in both driver and trip-level, the best model describing the combination 

data was revealed from the LR-test and by having the best values of AIC and BIC and 

it was the 3-Level random intercept and random slope for the variable “Car_stops” in 

the trip level (displayed in Table 5.20). 
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Table 5.20: Results of the 3-Level models for the deceleration value (Combination dataset) 

 3-LEVEL RANDOM 
INTERCEPT MODEL 

3-LEVEL RANDOM INTERCEPT 
AND RANDOM SLOPE 

Deceleration Coef. z P>z Coef. z P>z 

Initial speed -0.0004 -4.68 0.00 -0.0004 -4.60 0.00 

Trip distance -0.0116 -3.75 0.00 -0.0114 -3.71 0.00 

Traffic light -0.0524 -2.53 0.01 -0.0550 -2.66 0.01 

Roundabout 0.1145 4.07 0.00 0.1127 4.02 0.00 

Junction 0.0989 4.35 0.00 0.0974 4.30 0.00 

Pedestrian crossing -0.1822 -2.94 0.00 -0.1880 -3.04 0.00 

Other 0.1175 4.33 0.00 0.1222 4.52 0.00 

Car_stops -0.1666 -8.44 0.00 -0.1703 -7.60 0.00 

Vehicle A 0.1397 4.17 0.00 0.1397 4.20 0.00 

Telefot 0.2248 5.11 0.00 0.2284 5.17 0.00 

Vehicle C 0.1721 5.45 0.00 0.1614 5.08 0.00 

Intercept -2.5374 -65.21 0.00 -2.5392 -65.36 0.00 

Random-effects 
Parameters 

Estimate Estimate 

DriverID: Identity 

var(Intercept) 0.0066 0.0069 

TripID: Identity 

var(Car_stops)  0.0162 

var(Intercept) 0.0068 0.0055 

var(Residual) 0.1954 0.1916 

Level ICC   ICC   

DriverID 0.0318   0.034   
TripIDDriverID 0.0642   0.0608   
Obs 2715   2715   
ll(model) -1685.99   -1681.18   
df 15   16   

The results indicate similar effects for most of the explanatory variables as the ones 

of the best models from OEM and TeleFOT dataset. The main difference lies in the 

fact the best model is a 3-Level model, where 3.4% of the variation of the deceleration 

value lies between the drivers, 2,68% of the variation lies between the trips and the 

rest 93.92% of the variation lies between the events in the same trip of the same driver. 

Also, the effect of the variable “Car_stops” is different, i.e. it has a random effect and 

specifically to 91% of the data it has a negative effect and to 9% a positive one effect 

that varies. 

Regarding the other variables, the car model is one of the most statistically significant 

variables, indicating that driving any other car but Vehicle B results in softer braking 
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by 0.16-0.23 m/s2. Decelerating because of approaching a roundabout or a junction, 

increases the value of the deceleration by 0.112 m/s2 and 0.097 m/s2 respectively 

comparing to braking due to a dynamic obstacle. On the other hand, braking due to a 

pedestrian crossing and not due to a dynamic obstacle results in harder braking by 

0.1880 m/s2. Also, increasing the initial speed and the existence of traffic light have a 

negative effect on the deceleration value. Finally, no driver characteristic influences 

the deceleration value, but the reason might be that these characteristics were taken 

into consideration in the driver level. 

5.2.3.2 Clustering 

A different approach to analyse the data and explore the factors that affect the 

deceleration value is to group the data based on human factors, i.e. sociodemographic 

factors, to reflect the differences among the drivers, and on the braking pattern. To 

accomplish that, a cluster analysis was employed and specifically, the 2-step cluster 

analysis in SPSS was used since this method can handle categorical variables (such 

as gender, age categories and braking profiles) as well as big datasets. Five clusters 

were created as an outcome and their features can be seen in Figure 5.11. It can be 

noted that the size of the clusters does not have big differences (size of smaller 

cluster=396 and size of bigger cluster=637). Also, all the variables that were included 

in the cluster analysis are statistically significant. The distribution of the variables 

inside each cluster is displayed in the upper right part of Figure 5.11. It can be 

concluded that old people (cluster 1 and 3) slightly prefer the braking pattern (2) 

whereas young people also use the third braking pattern (3). Moreover, the different 

clusters present different deceleration characteristics. This can be supported by the 

results of the Analysis of Variance (ANOVA) test (p=0.045<0.05), conducted to test 

the differences between the means of the maximum deceleration for each cluster. 

Additionally, it was concluded from the Tukey’s HSD test that old females brake the 

hardest whereas old males brake the softest.  
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Figure 5.11: Features of the five clusters (Combination dataset) 

Having the deceleration events clustered and with the aim of examining all the 

influencing factors of the braking behaviour, the multilevel mixed-effect model was 

applied to each cluster using the StataMP 13 software. The factors that were 

considered are (1) event-level factors, such as situational factors (reason of braking, 

traffic density), kinematic factors at the beginning of braking, etc. and (2) trip level 

factors, such as trip duration, trip distance, the model of the car. Therefore, the 

maximum deceleration value was analysed using statistical analysis for each cluster. 

Since the driver effect has been included in the clustering, the model that was used 

was the 2-level linear regression model based on the trip level. The explanatory 

variables, which include distance, initial speed, if the car should stop, traffic density 

and the reason for braking, were kept the same among the clusters. The results of the 
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analysis are presented in Table 5.21. There was no evidence in favour of any random 

slope model in any of the clusters. The overall intra-class correlation (ICC) varies from 

0.037 (cluster 1) to 0.16 (cluster 4) indicating that 3.7% and 16% of the variation in the 

deceleration value is explained by the trip-level hierarchical data structure. Therefore, 

all models show a reasonable goodness-of-fit. 

Table 5.21: Results from Multilevel linear regression models in the 5 clusters (Combination 
dataset) 

 
Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 

Deceleration Coef. z Coef. z Coef. z Coef. z Coef. z 

Distance -0.018 -2.44 -0.020 -4.29     -0.012 -1.86     

Initial speed -0.012 -1.89    -0.024 -6.39 -0.012 -1.69 -0.033 -6.33 

Traffic light            0.126 2.45    

Roundabout     0.164 2.65 0.106 2.16    0.164 2.35 

T_junction     0.112 2.13 
 

   0.071 1.62 0.161 2.55 

Cross_junction
n 

    0.145 1.97 0.133 2.28    0.178 1.96 

Pedestrian  
crossing 

       
-0.255 -1.63    -0.553 -3.42 

Other     0.109 1.9 0.117 2.58 0.097 1.87 0.117 1.69 

Car_stops -0.198 -4.32 
-- 

-0.100 -2.22 -0.217 -5.73 -0.174 -4.2 -0.263 -4.81 

Intercept -2.237 -33.7 -2.482 -61.1 -2.150 -38.8 -2.345 -31.3 -2.158 -26.9 

Number of 
observations 396  471  601  596  637  
ICC 0.037   0.055   0.07   0.16   0.11   

AIC 424.6  840.9  657.4  756.3  764.8 
806.9 

 

BIC 448.3  880.7  697.0  795.8  806.9  

LogLik -206.3  -411.5  -319.7  -369.2  -372.4  

df 6  9  9  9  10  

The most statistically significant variables affecting the deceleration value for almost 

all the models are the initial speed and if the car should stop. Increasing the initial 

speed by 1m/s leads to harder braking (the decrease varies from 0.012 to 0.033m/s2) 

and if the car needs to stop, the deceleration value decreases from -0.1 to 0.263m/s2. 

Another important factor is the cause of braking. Specifically, approaching a 

roundabout or a junction results in softer braking compared to a dynamic obstacle, 

whereas approaching a pedestrian crossing leads to harder braking. Furthermore, for 

cluster 4 the existence of a traffic light made the braking softer. The traffic density was 

revealed to be insignificant for all the clusters. 
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5.2.4 UDRIVE 

The last dataset that was analysed is the UDRIVE dataset. UDRIVE is an NDS, so it 

consists of data that gathered unobtrusively in a natural setting. Specifically, the data 

that was analysed comprise 49 drivers and 470 trips. Therefore, this dataset can 

reveal more realistically the factors affecting the deceleration event, i.e. the maximum 

deceleration value and the duration. First, the multilevel statistical analysis was applied 

for both the dependent variables. Moreover, the explanatory variables include driver 

characteristics, i.e. age category, gender, and two indicators of personality; the 

AISS_total and the DBQ_total and DBQ_aggressive_violations, trip characteristics, 

such as car model and trip duration and event characteristics, for example, speed, 

steering angle, jerk, TTC, THW, space headway etc. 

It can be concluded that if all the explanatory variables are concluded in the model, 

then fewer observations will be considered since variables such as TTC, THW and 

space headway were only available when there is a car in front of the car of interest. 

Therefore, two statistical analyses where undertaken, in the first one (Statistical 

Analysis I), all the explanatory variables were included, leading to less observations 

(3,655 instead of 7,160) and in the second analyses (Statistical Analysis II) all the 

observations were included by taking out the variables that were missing from 

observations. The results of the statistical analysis II can be directly compared to the 

results of the previous datasets since almost the same variables are included, whereas 

the statistical analysis I can be used to reveal previously unexplored factors affecting 

the deceleration events. 

5.2.4.1 Deceleration value 

First, the group effects were tested by comparing the 2-Level and the 3-Level against 

the single-Level and it resulted that the 2-Level model is better than the single-level 

and the 3-Level is better than all the others, indicating that a 3-Level model might be 

the most parsimonious. 
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5.2.4.1.1 Statistical analysis I 

Initially, the simplest linear regression model is calculated, resulting in a model with 

adjusted R2=0.42 (satisfactory percentage), AIC=3450, BIC=3555.6, df=16 and 

LogLikelihood=-1708.05. Then, the explanatory factors were inserted in the driver-

level model and the trip-Level model calculating the 2-Level random intercept models 

that had strong evidence of being better than the linear regression model. Next, all the 

variables were tested for a random effect, but only the maxspeed and the max_jerk 

resulted in having a mixed effect. The comparison of the model was accomplished by 

conducting the LR test and it can be concluded, that the most parsimonious models 

are the driver-Level and the trip-Level random intercept and random slope for the 

variables maxspeed and max_jerk model. The best models from the trip and the driver 

level are presented in Table 5.22. 

Table 5.22: Results of the Drivel-Level models for the deceleration value (UDRIVE dataset) 

Model: 
Driver-Level random 

intercept and slope model 
Trip-Level random 

intercept and slope model 

Fixed effects:    
 Coeff. t-value Coeff. t-value 

Intercept -1.3507 -29.85 -1.4703 -34.62 

Age_young Insignificant 0.0187 0.79 

Age_middle Insignificant 0.0357 2.37 

Car_model Insignificant 0.0507 3.07 

Initial speed -0.0085 -14.28 -0.0085 -15.84 

Initial TTC 0.0011 3.75 0.0011 4.01 

Speed_limit_2 0.0098 0.58 0.0066 0.41 

Speed_limit_3 0.0994 3.14 0.0834 2.65 

Speed_limit_4 0.0164 0.72 0.0032 0.14 

Speed_limit_5 0.0749 2.32 0.0553 1.70 

Initial headway -0.0011 -3.12 -0.0009 -2.50 

Car_stops -0.1934 -13.86 -0.1864 -13.67 

Max_steering 
angle Insignificant 

-0.0003 
-1.87 

Max_jerk 0.5176 25.36 0.4953 31.53 

Traffic conjestion 0.1518 7.69 0.1372 7.10 

Random effects:     
 StdDev: StdDev: 

(Intercept) 0.2193 0.3503 

Initial speed 0.0021 0.0032 

Max_jerk 0.1154 0.1929 
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Residual 0.3765 0.3577 

AIC 3369.939  3240.124  

BIC 3481.608  3382.813  

logLik -1666.97  -1597.06  

ICC 0.78  0.767  

From the results presented in Table 5.22, it can be noted that the most significant 

factors affecting the deceleration value are the initial speed, the car_stops variable, 

the maximum jerk and the existence of traffic congestion for both models. Regarding 

the initial speed, it has a mixed effect on the deceleration value and its effect for driver 

j is estimated as -0.0085 + u1j and the between driver variance in these slopes is 

estimated as 0.0021 and its effect for trip i equals to -0.0085+u1i and the between trip 

variation is 0.0032. The initial speed effect is negative for the 100% of the data but the 

size of the effect varies. Also, an increase in the initial TTC leads to softer braking. 

The same result has braking due to traffic congestion. 

As far as the max_jerk is concerned, its effect for driver j is estimated as 0.5176 + u1j 

and the between driver variance in these slopes is estimated as 0.1154 and its effect 

for trip i equals to 0.495+u1i and the between trip variation is 0.1929. It must be noted 

that during the braking the jerk is negative, and its increase means a slower rate of 

deceleration. A 95% coverage interval for the driver slopes is estimated as 0.5176 ∓

1.96 ∗ 0.1154=0.29 to 0.74 and for trip slopes from 0.12 to 0.87. Thus, it is expected to 

have a positive effect on the 95% of the deceleration events with a slope coefficient 

between 0.04 and 0.41 for the driver-level model and between 0.12 and 0.87 for the 

trip-level model. Also, the positive effect of the max deceleration accounts for 100% of 

the data. 

The age category and the car model play a significant role only in the trip-level model. 

In detail, drivers that belong to the age category 31-50 tend to brake softer than the 

ones in the age category 50+. Also, driving a premium car leads to an increase in the 

deceleration value. Moreover, increasing the speed limits have a positive effect on the 

deceleration value, indicating the importance of the road type in the braking.  

Last but not least, the ICC value is really high for both models, indicating that both 

driver and trip groups play an important role in the variation of the deceleration value. 
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Furthermore, it can be concluded from the indicators AIC and BIC as well as from the 

log-likelihood that the trip-level model explains better the deceleration value. 

Exploring the three-level models, it can be concluded that the three-Level random 

intercept model is better than both the driver-level and the trip-level random intercept 

model but when random slope is being added to the explanatory variables, the best 

three-level model, which is the three-level random intercept and random slope for the 

variables maxspeed and max_jerk is worse than the adequate model of the trip-level. 

5.2.4.1.2 Statistical analysis II 

The same procedure was followed in the statistical analysis II, generating first the 

linear regression model with a satisfactory adjusted R2=0.34. After examining all the 

possible levels (Trip-Level, Driver-Level and Three-Level) by adding all the available 

factors and by allowing random slope to all of them, the best model was revealed 

which was the trip-Level random intercept and random slope for the variables 

maxspeed, following a car and max_jerk model (presented in Table 5.23). The ICC 

value of the model is really high, indicating that there is a strong trip effect on the 

deceleration value and in detail that 92.57% of the variation of the deceleration value 

lies between the trips. 

Table 5.23: Results of the most parsimonious model for deceleration value in statistical 
analysis II (UDRIVE dataset) 

Model: 
Trip-Level random intercept 

and slope model 

Fixed effects:   

 Coeff. t-value 

Intercept -1.5209 -37.45 

Car model 0.0408 2.75 

Trip distance_km 0.0012 1.83 

Initial speed -0.0092 -20.40 

Speed_limit_2 -0.0053 -0.34 

Speed_limit_3 0.0366 1.28 

Speed_limit_4 0.0554 3.02 

Speed_limit_5 0.0469 1.52 

Following_a_car 0.0797 5.70 

Car_stops -0.1882 -15.99 

Max_jerk 0.4555 31.20 

Traffic congestion 0.1353 6.44 
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One lane road -0.0426 -3.25 

Random effects:   

 StdDev: 

(Intercept) 0.5120 

Initial speed 0.0048 

Following_a_car 0.1451 

Max_jerk 0.2266 

Residual 0.4338 

AIC 9223.563  
BIC 9388.6  
logLik -4587.782  
ICC 0.9257  

The initial speed, the car_stops variable and the max_jerk are the factors that influence 

the deceleration value the most. Regarding the car_stops variable, it has a negative 

effect on the deceleration value. Both the initial speed and the maximum jerk have a 

random effect on the dependent variable. In more details, the maxspeed effect for trip 

j is estimated as -0.0092 + u1j and the between trip variance in these slopes is 

estimated at 0.0048, so the z=1.92 and from the normal distribution table the 

percentage 97.26% is obtained, showing the percentage that the maxspeed has a 

negative effect which varies. Calculating the same values for the max_jerk, leads to 

the conclusion that max_jerk affect positively 97.8% of the data, also a 95% coverage 

interval for the trip slopes is estimated as 0.4555 ∓ 1.96 ∗ 0.2266=0.11 to 0.9. 

Moving to the least significant variables, if there is traffic congestion, the deceleration 

value increases by 0.1353m/s2. Also, if the road has only one lane, the braking is 

harder by 0.0426 m/s2. The following a car variable has a random effect too, equals to 

0.0797+ u1j for the average trip and being positive for 70.8% of the observations and 

negative for the rest of them. 

The age category plays no significant role in the deceleration value, whereas driving 

a smaller car than a premium one results in increasing the deceleration value by 

0.04m/s2. As far as the speed limits are concerned, only the speed limit 4 which 

indicates being in a motorway affect significantly the dependent variable. Specifically, 

braking in a road with speed limit 4 (motorway) instead of speed limit 1 (urban road), 

results in softer braking by 0.0554 m/s2. Maybe the reason for that is that in urban 

roads unexpected dynamic obstacles, like pedestrians or bicycles might be the reason 

for braking leading to harder and faster braking. 
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5.2.4.2  Duration 

The modelling of the duration of the deceleration event is following, undertaking both 

statistical analyses. Initially, the LR-test for the multilevel models is presenting, 

showing that any multilevel model is better than the single-level model and that the 

three-level model outmatches the 2-Level models, but this might change as the 

explanatory variables and the random slopes are added. 

5.2.4.2.1 Statistical analysis I 

After examining all the possible transformations for the linear regression model, the 

ln-ln model appeared to be the best model with adjusted R2=0.604, meaning that 

60.4% of the variation in the duration can be explained well by the model. The most 

affecting factors were found to be the log_speed, the car_stops and the max_jerk. 

After that, the 2-Level and 3-Level random intercepts and random slopes model were 

estimated and the appropriate LR-tests were conducted, showing that the variables 

max_jerk and car_stops have a random effect. 

Table 5.24: Results of the best multilevel models for Duration in Statistical analysis I 
(UDRIVE dataset) 

Model: 
Driver-Level random 
intercept and slope 

model 

Trip-Level random 
intercept and slope 

model 

Three-Level random 
intercept and slope 

model 

Fixed effects: Coeff. t-value Coeff. t-value Coeff. t-value 

(Intercept) -1.6488 -18.25 -1.6041 -20.54 -1.6261 -18.07 

Trip duration_m 0.0031 2.77 Insignificant Insignificant 

Trip distance_km -0.0021 -2.88 Insignificant Insignificant 

Day -0.0358 -2.26 -0.0377 -2.22 -0.0351 -2.07 

Ln_initial speed 0.8892 49.97 0.8993 57.68 0.8915 51.45 

Initial TTC -0.0011 -4.38 -0.0010 -4.06 -0.0010 -4.03 

Initial THW 0.0096 2.22 0.0096 2.28 0.0080 1.90 

Speed_limit_2 0.0387 2.48 Insignificant 0.0321 2.11 

Speed_limit_3 0.0671 2.39 Insignificant 0.0500 1.81 

Speed_limit_4 0.0145 0.72 Insignificant 0.0004 0.02 

Speed_limit_5 0.0053 0.18 Insignificant -0.0122 -0.42 

Following_a_car 0.1976 6.32 0.1969 6.45 0.1927 6.31 

Car_stops 0.4617 26.70 0.4620 31.12 0.4580 27.02 

Speed violation Insignificant -0.0290 -1.85 Insignificant 

Max_steer_angle 0.0007 5.90 0.0007 6.03 0.0007 6.10 

Max_jerk 0.1604 11.29 0.1647 12.93 0.1639 11.23 



158 

 

Traffic conjestion 0.1239 6.81 0.1310 7.76 0.1261 7.26 

Pedestrian 0.0724 4.79 0.0671 4.71 0.0682 4.68 

One lane road -0.0392 -3.04 -0.0369 -3.14 -0.0305 -2.42 

Intersection 0.0886 7.71 0.0881 8.00 0.0888 7.99 

RANDOM EFFECT Driver id  Trip id Driver id 

 StdDev: StdDev: StdDev: 

(Intercept) 0.1568 0.3071 0.1119 

Car_stops 0.0691 0.1686 0.0503 

Max_jerk 0.0812 0.1453 0.0611 

Residual 0.3373 0.3137 NA 

   Trip_id  in Driver_id 

(Intercept) NA NA 0.2873 

Car_stops NA NA 0.1372 

Max_jerk NA NA 0.1501 

Residual NA NA 0.3138 

AIC 2656.935  2511.9  2511.44  

BIC 2819.068  2642.848  2610.99  

logLik -1302.47  -1234.947  -1223.72  

ICC 0.178  0.224  ICC(DRIVER) 0.065 

     ICC(TRIP) 0.427 

From Table 5.24 it can be concluded that the explanatory variables are almost the 

same for the three models with similar effects. One exception is that the duration and 

the distance of the trip are statistically significant (having a positive and a negative 

effect on the duration respectively) for the Driver-level model but not for the other two, 

maybe because in the other two models the effect of those two variables is included 

in the trip level effect. In all the models, the existence of traffic congestion, of 

pedestrians and of intersection results in longer braking. Moreover, the increase in the 

steering angle during the braking, leads to an increase in the duration, showing that if 

the car is turning while braking, the deceleration lasts longer (softer braking). A similar 

effect with the steering angle has the increase of the speed, specifically 1 km/h 

increase in the initial speed, results in around 0.14 sec increase in the duration for all 

three models. 

Braking at day leads to shorter duration braking, maybe due to the better conditions 

of light and the confidence that they cause. If there is a car in front at the moment of 

braking, the duration of the deceleration is increasing, showing maybe that the driver 

starts braking earlier and is more alert that he might need to stop. Also, the TTC at the 
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beginning of the braking has a significant negative effect on the duration. Moreover, if 

the event occurs in one-lane road, its duration decreases by 0.23 to 0.29 seconds. 

Considering the variables the max_jerk and the car_stops, they have a random effect 

in the duration for all three models. The max jerk effect for the average driver j is 

estimated as 0.1604+ u1j in the driver-Level model and for the average trip i as 

0.1647+ u1i in the trip-Level model. Also, 97.5% of the slopes coefficients of the max 

jerk were found to be positive in the driver-Level model and the corresponding 

percentage in the trip-Level model was 87%. The effect of the max _jerk on the 

duration is plotted in Figure 5.12, where the intercept and the slope vary in the driver 

and the trip level. Almost the same effect has the max jerk in the three-level models 

both for the driver and the trip level. The car stops variable has a positive effect on the 

duration for all the 3 models, but this effect varies with the average one to be around 

3.48 sec increase on the duration if the car has to stop. 

 

Figure 5.12: Random effect of the max_jerk in the duration for the driver and the trip level 
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Finally, all three models show high goodness of fit, although looking at the log-

likelihood, the indicators of fit, AIC and BIC and the ICC, the three-level model is 

concluded to better the other models. The ICC of the best model underlines the 

importance of both the trip and the driver group and shows that 6.5% of the duration 

variation lies between the drivers and 36.2% of the variation lies between the trips. 

5.2.4.2.2 Statistical analysis II 

Following the same procedure in the statistical analysis II, the best linear regression 

was once more the ln-ln one with adjusted R2=0.5260, which is smaller than the one 

form statistical analysis I indicating that the explanatory variables that were left out 

(e.g. TTC, THW) are affecting the duration. After examining all the possible models, 

i.e. trip, driver and three-Level random intercept and random slopes, the model three-

Level random intercept and random slope for the variables max_jerk and car_stops 

concluded to be the most parsimonious and is presenting in Table 5.25. 

Table 5.25: Results of the most parsimonious model for Duration in Statistical analysis II 
(UDRIVE dataset) 

Model: 
Three-Level random intercept 
and slope model 

FIXED EFFECT:   
 Coeff. t-value 

(Intercept) -1.7353 -24.78 

Day -0.0562 -3.63 

Ln_initial speed 0.8937 63.51 

Speed_limit_2 0.0435 2.88 

Speed_limit_3 0.0678 2.53 

Speed_limit_4 0.0099 0.59 

Speed_limit_5 0.0590 2.08 

Following_a_car 0.1618 14.00 

Car_stops 0.5539 30.20 

Max_steer_angle 0.0008 11.41 

Max_jerk 0.0937 4.76 

One_direction road -0.0457 -2.22 

Traffic congestion 0.1061 5.33 

Pedestrian 0.0671 4.60 

One lane road -0.0826 -4.34 

Intersection 0.1664 15.81 

RANDOM EFFECT 

 Formula: ~max_jerk + car_stops | driver_id 
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 StdDev: 

(Intercept) 0.2165 

Max_jerk 0.0972 

cCr_stops 0.0871 

 Formula: ~1 | trip_id %in% driver_id 

(Intercept) 0.4067 

Max_jerk 0.2168 

Car_stops 0.1479 

Residual 0.4101 

AIC 8422.16  
BIC 8621.6  
logLik -4182.08  
ICC(DRIVER) 0.124  
ICC(TRIP) 0.434  

Comparing the result of Statistical analysis I (Table 5.24) and of Statistical analysis II 

(Table 5.25), similar explanatory factors, apart from the ones that were not included in 

the analysis II, and effects can be observed. In more details, the most statistically 

significant factors are the log_speed, the car_stops, the following_a_car, the 

intersection and the max_steering_angle whereas the max_jerk is less significant than 

it was in the analysis I. All the above variables have a positive effect on the duration, 

with the max_jerk and the car_stops to have random effects. On the one hand, the 

car_stops variable has a positive effect that varies on the duration for 100% of the 

observations in both driver and trip level. On the other hand, the max_jerk was 

calculated to have 83.5% positive slopes in the drivel-level and 66.7% positive slopes 

in the trip-Level. The ICC of the model shows the importance of both the trip and the 

driver group since 12.4% of the duration variation lies between the drivers and 31% of 

the variation lies between the trips. 

5.2.4.3 Clustering 

Similar to the analysis of the “combination” dataset, to examine in depth the effects 

that the driver characteristics might in the deceleration events, the data were clustered 

based on 3 age groups (18-30,31-50,>50) and gender and braking profile. Again, the 

2-step cluster analysis in SPSS was employed to achieve that and the results gave 

good cluster quality with all the variables significant and 5 clusters, with almost similar 

size. The distribution of each variable in the clusters is presenting in Figure 5.13. 

Moreover, the different clusters present different deceleration characteristics.  
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Figure 5.13: Features of the five clusters (UDRIVE dataset) 

Next step is the statistical analysis of each cluster applying the multilevel mixed effect 

model using the statistical software R. The factors that were considered are: (1) event-

level factors, such as situational factors, kinematic factors at the beginning of braking, 

etc. and (2) trip level factors, such as day or night, the model of the car. Therefore, the 

maximum deceleration value was analysed using statistical analysis for each cluster. 

Since the driver effect has been included in the clustering, the model that was used 

was the 2-level mixed effect model based on the trip level. The results from the 

analysis are presented in Table 5.26 for statistical analysis I and Table 5.27 for 

statistical analysis II. There was overwhelming evidence in favour of the trip-Level 

random intercept and random slope models for both statistical analyses. All the models 

show a reasonable goodness-of-fit since the overall intra-class correlation (ICC) was 

higher than 0.16 for all the models. 
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Table 5.26: Results from multilevel linear regression models in the 5 clusters in the 
statistical analysis I (UDRIVE dataset) 

 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

 
Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value 

(Intercept) -1.2967 -12.11 -1.3372 -20.87 -1.4158 -19.89 -1.5245 -20.42 -1.2572 -18.14 

Day 
  

-0.0824 -2.30   

Urban 0.0782 1.97 
  

  

Car model 
 

0.1180 3.89 
 

  

Initial speed -0.0091 -7.68 -0.0079 -9.80 -0.0102 -10.44 -0.0064 -6.25 -0.0086 -10.19 

Speed_limit_2   0.0319 1.04   

Speed_limit_3   0.1367 2.20   

Speed_limit_4   -0.0305 -0.69   

Speed_limit_5   0.0923 1.36   

Initial 
headway 

 -0.0022 -3.65  -0.0013 -1.71  

Initial TTC 0.0018 2.54 
 

0.0009 1.63 
 

0.0012 2.01 

Car_stops -0.2665 -7.08 -0.2404 -10.39 -0.1979 -7.61 -0.1403 -4.66 -0.1541 -5.27 

Max_jerk 0.5851 12.30 0.5698 20.07 0.3926 15.92 0.3948 14.00 0.6348 20.96 

Arrive at 
traffic 
congestion 

0.1406 2.54     

Traffic 
congestion 

 0.1537 4.96 0.1396 3.60 0.1379 3.50 0.1173 2.77 

Random effects: 
 

StdDev StdDev StdDev StdDev StdDev 

(Intercept) 0.4715 0.3455 0.3647 0.5362 0.1987 

Initial speed 0.0049 0.0041 0.0050 0.0058 0.1704 

Max_jerk 0.2289 0.2122 0.1861 0.2617 0.0024 

Residual 0.3612 0.3339 0.3303 0.3173 0.3509 

AIC 495.86 
 

943.95 
 

751.09 
 

653.44 
 

688.84 
 

BIC 563.92 
 

1034.9 
 

837.61 
 

712.57 
 

749.14 
 

logLik -231.9 
 

-454.0 
 

-357.6 
 

-313.7 
 

-331.4 
 

ICC 0.826 
 

0.734 
 

0.793 
 

0.808 
 

0.169 
 

Number of 
observations 

520 
 

1158 
 

904 
 

698 
 

764 
 

Number of 
groups 

68 
 

208 
 

320 
 

299 
 

162 
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Table 5.27: Results from Multilevel linear regression models in the 5 clusters in the 
statistical analysis II (UDRIVE dataset) 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5  
Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value 

(Intercept) -1.553 -12.67 -1.329 -22.61 -1.379 -26.22 -1.946 -24.54 -1.3555 -15.54 

Car model 
 

0.0805 2.99 
 

  

Day   -0.059 -2.35   

Trip duration   
  

0.0054 2.75 

Initial speed -0.008 -5.96 -0.011 -14.47 -0.011 -15.20 -0.004 -4.15 -0.0097 -14.06 

Speed_limit_2  0.0498 1.81 0.0216 0.82   

Speed_limit_3  0.0296 0.57 0.0446 0.88   

Speed_limit_4  0.0737 2.27 0.0549 1.72   

Speed_limit_5  0.1559 3.08 0.1259 2.37   

Following_a_ 
car 

0.1608 4.81 0.0794 3.26 0.0529 2.57 0.1190 2.81  

Car_stops -0.193 -6.04 -0.224 -11.11 -0.222 -11.05 -0.101 -3.20 -0.1879 -8.08 

Max_steering_ 
angle 

0.0006 3.33     

Max_jerk 0.5118 10.24 0.5669 22.31 0.3984 18.62 0.3193 12.96 0.6030 21.53 

Traffic 
congestion 

 
0.1181 3.65 0.1241 3.27 0.1548 3.07 0.1103 2.74 

Intersection   -0.056 -2.91 
 

-0.0560 -2.50 

Random effects:  
StdDev StdDev StdDev StdDev StdDev 

(Intercept) 0.8254 0.3785 0.3628 0.8575 0.3371 

Initial speed 0.0087 0.0044 0.0048 0.0069 0.0035 

Max_jerk 0.3270 0.2133 0.2300 0.2184 0.2029 

Following_a_ 
car  

0.1008 0.1521 0.6890 0.4061 N/A 

Residual 0.4988 0.3582 0.3623 0.4443 0.3645 

AIC 2000.6 
 

1633.3 
 

1761.1 
 

1857.4 
 

1204.4 
 

BIC 2077.7 
 

1764.1 
 

1887.0 
 

1943.3 
 

1276.4 
 

logLik -985.3 
 

-792.6 
 

-857.6 
 

-911.7 
 

-588.19 
 

ICC 0.864 
 

0.768 
 

0.713 
 

0.939 
 

0.734 
 

Number of 
observations  

1263 
 

1719 
 

1759 
 

1158 
 

1263 
 

Number of 
groups 

71 
 

212 
 

382 
 

363 
 

182 
 

The most significant factors for all the clusters resulted to be the kinematic ones and 

specifically, the initial speed, the max jerk and the car_stops. The initial speed and the 

max jerk were found to have random effects in all the models and in detail their 

average effect varies from -0.004 to -0.011m/s2 for the initial speed and from 0.3193 

to 0.6348m/s2. Their effect varies a lot, specifically for the effect of the max speed is 

negative to 71% till 100% of the observations in the different clusters and the effect of 

the max_jerk is positive to 85.31% till 100% of the observations in the different clusters. 

Other statistically significant variables are the initial TTC and THW in the first analysis, 



165 

 

the following_a_car variable in the second one that gave random effect to 4 out of 5 

clusters, the traffic congestion and the intersection in some clusters. Generally, the 

results agree with the results from the Combination dataset and from the previous 

multilevel analysis. 

5.3 Summary 

This chapter has presented the results of the analyses of the three datasets regarding 

the deceleration events. In detail, the outcome of the estimation of the braking 

functions and the results of the models that have been developed to examine the effect 

of the driver, trip and event factors on the deceleration value and duration are 

displayed. The most used deceleration profile, which is assumed to make drivers feel 

comfortable while braking (i.e. with the absence of uneasiness and distress since the 

data does not include any safety-critical events), is the Parabola 1 for the press of the 

brake that represents in real life a smooth braking at the beginning followed by a harder 

one. In detail, this profile was used in 48.6% of the cases, whereas the linear and the 

parabola 2 were used in 30% and 21.4% respectively. As far as the release of the 

brake is concerned, the most used profile is the parabola 2 with 42.5% use against 

29.5% and 28% for the linear and the parabola 1 functions. Parabola 2 depicts a firm 

release of the brake at the beginning followed by a slower rate of deceleration. 

The main findings using the multilevel mixed effect models on the deceleration value 

are: 

• The structure of the data (how many drivers conducted how many trips) affect 

the best fitted multilevel model. For example, in the OEM data that 12 drivers 

conducted around 10 trips each the best model resulted to be the driver-level 

whereas in the TeleFOT dataset where 25 drivers conducted 1-2 trips the best 

model was a trip-level model. When each driver conducts only one till two trips, 

the common characteristics of the deceleration events belonging to one driver 

cannot be really examined due to lack of data while the trip dependencies can 

be better analysed. On the other hand, having 10 trips per driver provides 

enough data to reveal the dependencies of the deceleration events from the 

same driver. 
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• Higher initial speed and if the car has to stop variable affect negatively the 

deceleration value and are some of the most statistically significant variables. 

• The reason for braking has a significant effect, i.e. braking because the car 

approaches a roundabout or a junction results in softer braking comparing to 

dynamic obstacles, whereas braking because of a pedestrian crossing or a 

traffic light decreases the deceleration value. 

• The make and model of the car are proven to play an important role in the 

deceleration value. 

• Braking while driving in a rural road and not in a motorway for TeleFOT dataset 

and in an urban road instead of a motorway for OEM dataset results in smaller 

absolute deceleration values, i.e. softer braking. On the other hand, considering 

the road speed limits in the UDRIVE dataset, it was found that the higher the 

road speed limit the softer the braking which contradicts the results from the 

other two datasets. This antithesis might be due to the varied independent 

variables in each dataset and to the differences on the way this variable was 

obtained in each dataset. Particularly, in TeleFOT study it was obtained 

empirically by watching the videos, in OEM study it was given as a trip variable 

(i.e. each trip was conducted either to a motorway, an urban or a rural area) 

and in UDRIVE study it was obtained as road speed limits for each event. 

• When the driver was looking ahead at the time the braking starts gives softer 

braking compared to the cases when the driver looks inside the car. 

• The driver characteristics, i.e. age, gender, driving experience (available only 

for the TeleFOT project) and driving behaviour (expressed as driver reaction 

for the TeleFOT and OEM project), the traffic density and trip characteristic with 

the exception of car do not affect significantly the deceleration value. 

Some important results that were obtained from the statistical analysis of the duration 

of the deceleration event are: 

• The best-fitted model for the duration was found to be the logarithmic-

logarithmic model,  

• Trip-level seemed to have a greater effect on the variation of the duration since 

either the trip or the three-level models were the most parsimonious for the 
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different datasets and around 5% and 35% of the variation of the duration were 

between the trips for the trip-level and the three-level model respectively. 

• If the driver is looking ahead and not inside the car or right/left when the braking 

is starting, then the duration is shorter. 

• The driver experience has a negative effect on the duration, meaning the more 

experience the driver has the shorter the braking. 

• Driving in one-lane road and driving during the day result in a reduction of the 

duration of the braking. 

• If the reason for braking is not a dynamic obstacle, the braking lasts longer. 

• The initial speed and if the car stops are again statistically significant, having a 

positive effect on the duration. 

• Higher steering angle during the braking results in an increase of the duration. 

• Longer trip duration leads to a longer duration of the deceleration events. 

• Driver factor and traffic density are proven not to affect the duration of the 

braking. 

In addition, the findings described in this Chapter show that driver deceleration cannot 

be effectively modelled by applying average rates since the deceleration value and 

duration vary a lot depending on the vehicle kinematics, the reason for braking, the 

driver reaction and other situational factors. 
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6 Results of Comfort Modelling 

To model the level of comfort and identify the factors increasing the likelihood for a 

deceleration event to be perceived as uncomfortable, the logit model was applied. The 

dependent variable is a categorical variable representing comfort categories such as 

comfortable, neutral and uncomfortable.  Moreover, the explanatory variables are 

categorised at the event level variables and the driver level ones. All of them are 

included in the models and the statistically insignificant ones are removed since they 

do not affect the level of discomfort. 

The structure of the dataset is the following: each driver made multiple trips, and in 

each trip, there are multiple deceleration events. Therefore, the data could be handled 

as panel data. Although, since we intend to explore the factors in an event level, the 

panel data form was not taken into consideration and each deceleration event was 

analysed as an individual.  

Last but not least, it should be noted that two statistical analyses were undertaken; In 

the first one (i.e. Statistical Analysis I), all the explanatory variables were included, 

leading to fewer observations. Specifically, from 23,933 deceleration events that were 

identified, 5,843 events were included in the model. Many events happened without 

the existence of a leading vehicle and so, the variables TTC, THW, headway cannot 

be calculated. In addition, some drivers did not complete the questionnaire. In the 

second analyses (Statistical Analysis II) all the observations were included by taking 

out the variables that were mentioned before. 

As it was mentioned above, the MNL model is applied to analyse the comfort level of 

the deceleration event so as to identify influencing factors. Since the data cannot 

include all the important variables and the fact that there are missing factors in relation 

with the reason for braking, the driver’s risk perception and mental status etc., 

additional heterogeneity for the effect of the independent variables should be 

introduced (Pai et al., 2009). It is unrealistic to assume that all the influencing factors 

have a fixed effect on the comfort level of the deceleration events. Therefore, a 

methodological approach that allows for the possibility that the effect of the 

explanatory variables varies across the observations is adapted. So, a mixed logit 
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model is applied to the dataset and by conducting the LR-test, it is decided if this is a 

better model than the multinomial logit one. 

Therefore, this chapter presents the results of the discrete choice modelling of the 

comfort level of deceleration events. The explanatory variables and their specific effect 

are explained. 

6.1 Classification A (4 categories) 

6.1.1 Statistical analysis I (All variables) 

First, a multinomial logit statistical model was applied to the data with the Classification 

A and the results are presented in Table 6.1. The number of observations is 5,843 as 

it was mentioned in the previous section. Moreover, the Adj. Rho squared equals to 

0.2079, which shows a very satisfactory model fit for the MNL model. Taking into 

consideration that the factors affecting comfort are difficult to capture as comfort 

depends on the personal view of each driver, the model fit is satisfactory. In the 

beginning, all the variables were inserted into the model. After estimating the model, 

the variables that have a statistically significant effect at the 5% significance level were 

retained. The results are presented in Table 6.1. The parameter coefficients can be 

exponentiated to interpret the results in relative risk ratio’s or odds. The “Very 

comfortable” category was kept as the reference category and the results are 

interpreted with respect to this category. 

Table 6.1: Results of the logit model for Statistical Analysis I and Classification A 

Model variables 
Slightly 

comfortable 

Slightly 

uncomfortable 

Very 

uncomfortable 

Alternative-specific constant 
2.1317 

(12.92) 

2.4893 

(8.91) 

2.0077 

(4.60) 

TTC 
-0.0101 

(-6.88) 

-0.0181 

(-8.31) 

-0.0320 

(-7.11) 

THW 
-0.6097 

(-11.74) 

-1.2091 

(-10.74) 

-1.5082 

(-7.92) 

Space headway 
0.0452 

(9.56) 

0.0871 

(9.84) 

0.1001 

(7.89) 

Traffic congestion 
0.2530 

(3.44) 
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Initial speed 
-0.0263 

(-8.2) 

-0.0417 

(-7.85) 

-0.0427 

(-5.66) 

Motorway 
-0.2899 

(-2) 

-0.4008 

(-1.92) 
  

Intersection 
0.4091 

(6.29) 

0.5084 

(5.98) 

0.4745 

(3.53) 

Male 
-0.1494 

(-2.39) 

-0.2670 

(-3.23) 
  

Age 18-30  -0.2168 

(-1.96) 

-0.5795 

(-2.62) 

Age 30-50  0.1098 

(1.97) 
  

Model statistics       

LL (start): -8100.118 Rho-squared (0): 0.211 

LL(0): -8100.118 Adj.Rho-squared (0): 0.2079 

LL(final): -6390.799 AIC: 12833.6 

Number of observations: 5843 BIC: 13007.1 

The values of the alternative specific constants suggest that the average effect of the 

unmeasured variables tends to increase the probability of a braking event to be slightly 

comfortable, slightly uncomfortable or very uncomfortable. The probability is larger for 

an event to be slightly uncomfortable. 

The effect of TTC is clear, showing that longer TTC results in higher odds of having a 

more comfortable braking event. When TTC is increased by 1 second, the odds of the 

event to be “very uncomfortable” are 1.03 times higher than being “very comfortable”. 

THW was found to have a strong negative effect on all the categories, meaning that if 

the THW is increased the probability of an event to be uncomfortable is reducing. In 

this case, when the THW is increased by 1 second, the odds of the event to be “very 

comfortable” are 4.5 times higher than being “very uncomfortable”, revealing that THW 

has a stronger negative effect to the comfort of the deceleration event than TTC. 

Moreover, an increase in space headway leads to higher odds that an event is very 

uncomfortable.  The magnitude of the THW variable is larger than the one of the space 

headway, which may indicate that the event is affected more from the THW than from 

the space headway. 

Next, when the event is happening in a moment where there is traffic congestion, there 

are 1.3 more odds that the event is “slightly comfortable” compared to the reference 

category. As far as the initial speed is considered, its increase is resulting in smaller 
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odds of an event to be very uncomfortable. The initial speed does not have a really 

strong effect on the comfort of the deceleration event. This result might indicate that 

when the speed is high, the driver is more sensible in smaller deceleration and jerk 

and so the limits of the categories should be smaller for these cases. This is further 

supported with the effect of the motorway, showing that if the event is happening on 

the motorway in comparison to urban roads, its odds of being “very comfortable” are 

1.3 and 1.5 higher than being “slightly comfortable” and “slightly uncomfortable” 

respectively. The category “urban” did not have a significant effect. Considering the 

situational factors, the existence of a pedestrian, a cyclist or a PTW did not show any 

statistically significant effect on the comfort of the deceleration event, whereas the 

existence of an intersection, increases the probability of an event not to be “very 

comfortable”. 

Lastly, the results of the driver characteristics revealed that age and gender play a 

significant role to the comfort level of the deceleration event, while the AISS_total and 

the DBQ_all_violation that reveal the personality of the driver do not. More specifically, 

if the driver is a male then the odds of an event to be ”very comfortable” are higher 

than being “slightly comfortable” or “slightly uncomfortable”. Also, when drivers are 18-

30 years old compared to 50+, it is less possible to have uncomfortable deceleration 

events. This might be because drivers at that age are more careful since they do not 

have the experience. On the other hand, drivers aged 30-50 are more likely to have a 

“slightly uncomfortable event” than the ones aged 50+. 

As it was mentioned above, a mixed logit model was also applied to allow variation on 

the effect of the explanatory factors. Table 6.2 presents the log-likelihood of the mixed 

logit models, allowing heterogeneity on the effect of different factors. So, the procedure 

that was followed was allowing random effect to all the factors one by one working on 

the multinomial model with only significant variable presented in Table 6.1. Also, the 

log-likelihood test is presented, and the best model is the one that had the biggest 

value of twice the difference of its log-likelihood minus the log-likelihood of the 

multivariate logit model. In this case, the mixed logit model that allows mixed effect of 

THW turned out to be the best (see Table 6.2). 
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Table 6.2: Log-likelihood test for different mixed logit models for Statistical Analysis I and 
Classification A 

Model Log-Likelihood 

2*(LogLik-

LogLikbase model) 

Chi-Square test 

Discrete model -6390.8   

Mixed effect for THW -6378.20 25.2 
 7.81 (df =3) 

Best model 

Mixed effect for SPEED 
speed  std deviation->not 

significant 
  

Mixed effect for TTC 
-6346.93 

(insignificant variables) 
87.74 It  

Mixed effect for TTC and 

SPEED 

speed  std deviation->not 

significant 
  

Mixed effect for space 

headway 
-6387.16 7.28 

5.99 (df =2) 

Better model 

Mixed effect for TC -6389.52 2.56 
7.81 (df =3) 

Worse model 

Mixed effect for 

INTERSECTION 
-6390.59 0.42 

7.81 (df =3) 

Worse model 

Mixed effect for AGE -6389.11 3.38 
7.81 (df =3) 

Worse model 

     *at 95% confidence level 

Next, the results of the best-mixed logit model are displayed in Table 6.3. It is noticed 

that the Adj. Rho squared is slightly higher (i.e. equals to 0.209) compared to the MNL 

model. Also, the AIC and BIC are slightly lower, supporting further that the mixed logit 

model is a better model than the multinomial logit one. The model has a few outliers. 

The worst outlier is an observation with ID 50, which has only a 0.4% probability per 

choice. 

Table 6.3: Results of the best-mixed logit model for Statistical Analysis I and Classification 
A 

Model variables 

Slightly 

comfortable 

Slightly 

uncomfortable 

Very 

uncomfortable 

Alternative-specific constant 

2.5116 

(11.96) 

3.4018 

(8.96) 

3.4706 

(5.40) 

TTC 

-0.0113 

(-6.92) 

-0.020 

(-8.28) 

-0.0349 

(-7.34) 

THW 

-0.7768 

(-9.86) 

-1.7845 

(-7.78) 

-2.6159 

(-5.39) 
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THW: 

standard deviation 

-0.3112 

(-3.69) 

-0.4676 

(-3.85) 

-0.6543 

(-3.62) 

Space headway 

0.0553 

(9.22) 

0.1115 

(9.27) 

0.1326 

(6.78) 

Traffic congestion 

0.3089 

(3.51)    

Initial speed 

-0.0318 

(-8.47) 

-0.0535 

(-8.39) 

-0.0578 

(-5.73) 

Motorway 

-0.3281 

(-2.06) 

-0.4237 

(-1.8)   

Intersection 

0.4469 

(6.09) 

0.5466 

(5.72) 

0.4863 

(3.25) 

Male 

-0.1516 

(-2.20) 

-0.2861 

(-3.08)   

Age 18-30  

-0.2668 

(-2.11) 

-0.6215 

(-2.54) 

Age 30-50  

0.1127 

(1.79)   

Model statistics       

LL (start): -8100.118 Rho-squared (0): 0.2126 

LL(0): -8100.118 
Adj.Rho-squared 

(0): 
0.209 

LL(final): -6378.208 AIC: 12814.42 

Number of observations: 5843 BIC: 13005.93 

The values of the alternative specific constants suggest that the average effect of the 

unmeasured variables tends to increase the probability of a braking event to be slightly 

comfortable, slightly uncomfortable or very uncomfortable. It can be observed that the 

effect of the unobserved variables is stronger to this model comparing to the 

multinomial logit one. 

Comparing the results presented in Table 6.1 and in Table 6.3, it can be concluded 

that the variables have almost the same effects. For example, the TTC and the initial 

speed have a negative effect on the probability that a deceleration event is 

uncomfortable whereas the intersection and the existence of traffic congestion have 

an opposite effect. While the positive impact of the headway is slightly stronger in this 

model. Also, the effect of the younger drivers is bigger in this model, meaning that if 

the driver is 18-30 years old, the odds of a deceleration event to fall into the “very 

comfortable” category are 1.86 times higher than falling into the “very uncomfortable” 

category compared to if the driver was in the age category 50+. 
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The findings with regards to THW illustrate a strong negative effect on all the 

categories. In addition, THW was found to have a heterogeneous effect for all the 

comfort categories. Although, since the standard deviation is 2.5 till 4 times smaller 

than the coefficient, the impact of THW is negative across all the observation, with the 

small exception on the “slightly comfortable” category, where it has a positive effect 

on the 0.62% of the observations. So, increasing the THW has a negative effect, 

whose value is varying, to all the categories compared to the “very comfortable” 

category. Although, it should be noted that the normal distribution, which was the 

chosen distribution that the coefficient was allowed to fluctuate, might have enforced 

these results. 

The predicted probabilities of the comfort categories against the THW are illustrated 

in Figure 6.1, in order to better understand the impact of THW to each of the 

categories. Probabilities for the uncomfortable categories, i.e. “slightly uncomfortable” 

and “very uncomfortable” are dropping significantly as the THW is increasing. 

Although, it can be noted that the decrease of the probabilities is not constant and that 

if the THW is more than 3.3 seconds the probability of an event to be uncomfortable 

is less than 0.1. The probabilities of the “slightly comfortable” category are increasing 

until the THW reaches the value of 1.8 seconds and then decreases for the rest of the 

values. 

 

Figure 6.1: Predicted probabilities for THW based on the best-mixed logit model for 
Statistical Analysis I and Classification A 
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It was previously mentioned that the distribution, which was considered to specify the 

functional form of the parameter density function, in the previous model was the 

normal distribution. This might have imposed some results on the heterogeneous 

effect and so, other distributions were considered, i.e. the negative lognormal and the 

triangular distributions and the results are displayed in Table 6.4 and Table 6.5. 

Table 6.4: Results of the mixed logit model using lognormal distribution for Statistical 
Analysis I and Classification A 

Model variables 

Slightly 

comfortable 

Slightly 

uncomfortable Very uncomfortable 

Alternative-specific 

constant 

2.478 

(11.78) 

3.3087 

(6.70) 

3.3805 

(4.97) 

TTC 

-0.0111 

(-6.88) 

-0.0198 

(-8.03) 

-0.0341 

(-7.45) 

THW 

0.0927 

(1.44) 

0.7316 

(4.17) 

1.0867 

(4.93) 

THW: 

standard deviation 

-0.2745 

(-4.06) 

-0.2567 

(-2.00) 

0.2902 

(3.03) 

Space headway 

0.0535 

(9.38) 

0.1071 

(7.91) 

0.1266 

(6.77) 

Traffic congestion  

0.3078 

(3.51) 
   

Initial speed 

-0.0309 

(-8.38) 

-0.0516 

(-7.66) 

-0.0550 

(-5.77) 

Motorway 

-0.3306 

(-2.08) 

-0.4181 

(-1.78) 
  

Intersection 

0.4467 

(6.11) 

0.5454 

(5.52) 

0.4787 

(3.22) 

Male 

-0.1546 

(-2.24) 

-0.2891 

(-3.08) 
  

Age 18-30 
 -0.2597 

(-2.02) 

-0.6291 

(-2.58) 

Age 30-50 
 0.1114 

(1.77) 
  

Model statistics       

LL (start): -8100.118 Rho-squared (0): 0.2126 

LL(0): -8100.118 
Adj.Rho-squared 

(0): 
0.209 

LL(final): -6379.457 AIC: 12814.42 

Number of observations: 5843 BIC: 13007.93 
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Table 6.5: Results of the mixed logit model using triangular distribution for Statistical 
Analysis I and Classification A 

Model variables 

Slightly 

comfortable 

Slightly 

uncomfortable Very uncomfortable 

Alternative-specific 

constant 

2.4012 

(11.98) 

2.9275 

(8.64) 

2.5552 

(5.6) 

TTC 

-0.0108 

(-6.86) 

-0.0189 

(-8.46) 

-0.0327 

(-7.18) 

THW: a 

-2.3623 

(-9.74) 

-1.7730 

(-5.46) 

-2.0197 

(-8.00) 

THW: b 

0.6320 

(3.42) 

-0.699 

(-1.42) 

-0.8695 

(-2.64) 

Space headway 

0.0523 

(9.16) 

0.0982 

(9.7) 

0.11 

(8.13) 

Traffic congestion  

0.2925 

(3.50) 
   

Initial speed 

-0.0303 

(-8.26) 

-0.0473 

(-8.33) 

-0.048 

(-6.06) 

Motorway 

-0.3117 

(-2.02) 

-0.3992 

(-1.82) 
  

Intersection 

0.4378 

(6.15) 

0.5287 

(5.81) 

0.4761 

(3.41) 

Male 

-0.1514 

(-2.26) 

-0.2743 

(-3.14) 
  

Age 18-30 
 -0.2364 

(-2.0) 

-0.5936 

(-2.62) 

Age 30-50 
 0.1093 

(1.80) 
  

Model statistics       

LL (start): -17598.85 Rho-squared (0): 0.2117 

LL(0): -8100.118 Adj.Rho-squared (0): 0.2081 

LL(final): -6385.651 AIC: 1229.3 

Number of 

observations: 
5843 BIC: 13022.82 

The negative lognormal distribution allows the THW to have only a negative impact on 

the comfort categories that fluctuates its value. The equation of the coefficient is: =

−𝑒(𝜇+𝜎×𝑟𝑁) , where rN ~N(0.1). Therefore, the coefficient of the THW is positive and if 

the equation is calculated, it results in similar coefficients with the ones of the normal 

distribution. As it can be observed from Table 6.4 and Table 6.5 the log-likelihood of 

those models is larger than the one that uses the normal distribution, meaning that 

these models are slightly worse and the normal distribution appears to give the best 



177 

 

statistical fit. Furthermore, it can be observed that the rest of the variables have almost 

the same coefficients. Table 6.5, shows the results when a triangular distribution was 

considered, and it can be noticed that the effect of the THW is negative for the 

uncomfortable categories and mostly negative for the “slightly comfortable” category 

that agrees with the results of the model with the normal distribution. In Figure 6.2, the 

density of beta (β) of the “slightly comfortable” category for the three different 

distributions is displayed. It can be observed that if the effect is not forced to be 

negative by using the negative log-normal distribution, it becomes positive for a small 

percentage (in both normal and triangular distributions). 

 

Figure 6.2: The density of beta (β) considering three different distributions for the “slightly 
comfortable” category 
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other variables that may affect the event when the situation is not the following car 

situation. 

Similar to the statistical analysis I, an MNL model was first applied, and the results are 

presented in Table 6.6. The adjusted R2 equals to 16.64, which shows a good fit, 

considering that there are plenty of factors affecting the deceleration comfort level that 

is not captured from the model. Moreover, the adjusted R2 is smaller than the 

corresponding adjusted R2 from statistical analysis I. This can be justified since for this 

analysis some explanatory variable were excluded. 

Table 6.6: Results of the logit model for Statistical Analysis II and Classification A 

Model variables 

Slightly 

comfortable 

Slightly 

uncomfortable 

Very 

uncomfortable 

Alternative-specific constant 

0.178 

(2.88) 

-0.7723 

(-14.01) 

-2.5993 

(-25.77) 

Traffic congestion 

0.2716 

(6.33)    

Initial speed 

-0.0014 

(-1.93)  

0.0159 

(12.78) 

Urban 

-0.0684 

(-2.11)    

Motorway 

-0.4484 

(-5.62) 

-0.5723 

(-5.21) 

-0.4923 

(-3.54) 

Pedestrian  

0.256 

(5.6) 

0.2138 

(3.54) 

0.3069 

(3.74) 

Intersection 

0.7046 

(22.42) 

0.9143 

(21.66) 

1.071 

(18.5) 

Male 

-0.1213 

(-3.99) 

-0.2645 

(-6.35) 

-0.1265 

(-2.24) 

Age 18-30  

0.167 

(4.34)   

Age 31-50  

0.1438 

(4.9)   

Lane 

-0.1915 

(-4.59) 

0.4421 

(-8.47) 

-0.244 

(-3.37) 

Model statistics       

LL (start): -33178.2 Rho-squared (0): 0.1671 

LL(0): -33178.2 
Adj.Rho-squared 

(0): 
0.1664 

LL(final): -27632.6 AIC: 55313.27 

Number of observations: 23933 BIC: 55507.26 
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The values of the alternative specific constants suggest that the average effect of the 

unmeasured variables tends to decrease the probability of a braking event to be 

slightly uncomfortable or very uncomfortable compared to “very comfortable”. 

Whereas, it has the opposite effect on the “slightly comfortable” category. 

The results indicate a positive effect of traffic congestion on a deceleration event to 

fall in the “slightly comfortable” category instead of the “very comfortable” one. This 

result is similar to the one from statistical analysis I. Next, the initial speed affects the 

categories “slightly comfortable” and “very uncomfortable”. To the first category, it has 

a negative effect, vice versa to the “very uncomfortable” category it has a positive 

effect. That means, that when the initial speed is increased by one unit, the odds to be 

“very uncomfortable” are 1.02 more than being “very comfortable”. This is an 

interesting finding since it comes in contrast to the statistical analysis I. 

As far as the type of road is concerned, the motorway has a negative effect on the 

discomfort of a deceleration event to all the comfort categories compared to rural 

roads. Moreover, if a deceleration event is happening in an urban road, there are fewer 

probabilities of it to be “slightly uncomfortable” instead of “very comfortable”. 

Considering the situational factors, the existence of a pedestrian plays an important 

role. Specifically, if there is a pedestrian, the odds of an event to be “slightly 

comfortable”, “slightly uncomfortable” and “very uncomfortable” are respectively 1.29, 

1.24 and 1.36 more than to be “very comfortable”. The effect of the pedestrian is 

important since it was not captured in the previous statistical analysis. A cyclist or a 

PTW didn’t show any statistically significant effect on the comfort of the deceleration 

event. On the other hand, the existence of an intersection has a strong positive impact 

on the discomfort of an event. For example, the odds of a “very uncomfortable” event 

are 2.92 higher than a “very comfortable” event, when there is an intersection. 

Table 6.6 proves that the driver characteristics have an impact on the comfort level of 

a deceleration event. For example, male drivers seem to have more probabilities to 

brake in a “very comfortable” way compared with females. The driver’s age has a bit 

different effect than the one that was revealed in the Statistical analysis I. Specifically 

if a driver is 18-30 years old compared to 50+, it is more possible to have “slightly 

uncomfortable” deceleration event. 
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A mixed logit model was applied to this statistical analysis too. Mixed logit models 

allowing different explanatory variables were tried and the best statistically fitted model 

is the mixed logit model that allows initial speed to have a heterogeneous effect (i.e. 

2*(LogLik-LogLikbase model)=113.2> 3.84 probability of chi-square for df=1). Table 6.7 displays 

the results of that model. The adjusted R2 is higher than the MNL model’s, supporting 

further that the mixed model is better fitted. Also, the model doesn’t seem to have 

extreme outliers, since the worst outlier is an observation with ID 389, which has a 

16.6% probability per choice. 

Table 6.7: Results of the mixed logit model with allowing random effect for speed for 
Statistical Analysis II and Classification A 

Model variables 

Slightly 

comfortable 

Slightly 

uncomfortable 

Very 

uncomfortable 

Alternative-specific 

constant 

0.178 

(2.88) 

-0.7723 

(-14.01) 

-2.4787 

(-23.36) 

Traffic congestion  

0.2772 

(6.45)    

Initial speed 

-0.0014 

(-1.86)  

0.0112 

(7.25) 

Initial speed: standard 

deviation   

-0.0099 

(-11.4) 

Urban 

-0.0641 

(-1.97)    

Motorway 

-0.4474 

(-5.6) 

-0.5721 

(-5.21) 

-0.452 

(-3.01) 

Pedestrian  

0.256 

(5.57) 

0.2135 

(3.54) 

0.2928 

(3.49) 

Intersection 

0.7043 

(22.42) 

0.9143 

(21.66) 

1.0832 

(18.29) 

Male 

-0.1223 

(-4.02) 

-0.2647 

(-6.35) 

-0.1366 

(-1.84) 

Age 18-30  

0.1635 

(4.19)   

Age 31-50  

0.1366 

(4.6)   

Lane 

-0.1922 

(4.61) 

0.4419 

(-8.47) 

-0.268 

(-3.53) 

Model statistics       

LL (start): -27898.6 Rho-squared (0): 0.1688 
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LL(0): -33178.2 
Adj.Rho-squared 

(0): 
0.1681 

LL(final): -27576.5 AIC: 55202.89 

Number of observations: 23933 BIC: 55404.97 

Comparing the results presented in Table 6.7 with the ones in Table 6.6, one can 

observe that the coefficients are almost the same. That means that the effects of the 

explanatory variables remain the same. The only difference is that speed has a 

heterogeneous effect on the “very uncomfortable” category. Particularly, it has a 

positive effect on 87% of the observations and a negative one on the rest 13%. 

6.2 Classification B (3 categories)  

6.2.1 Statistical analysis I (All variables) 

The second classification splits the deceleration events into three categories: 

“comfortable”, “neutral” and “uncomfortable”. The category “comfortable” was kept as 

the reference category. The number of the observations remains the same, 5,843 

observations. First, an MNL model was applied, and the outcome is presented in Table 

6.8. It can be observed that the adjusted Rho squared is 0.134, which is lower than 

the one from the model applied for classification A but it is still satisfactory for logistic 

regression models. That means that the available influencing factors affect less the 

comfort level of the deceleration event when having three categories. 

Table 6.8: Results of the logit model for Statistical Analysis I and Classification B 

Model variables Neutral Uncomfortable 

Alternative-specific constant 

2.2688 

(14.87) 

2.8993 

(12.57) 

TTC 

-0.0105 

(-7.03) 

-0.0224 

(-10.60) 

THW 

-0.6199 

(-13.71) 

-1.3257 

(-14.38) 

Space headway 

0.0471 

(11.00) 

0.0897 

(12.09) 

Traffic congestion 

0.2489 

(3.39)   

Initial speed 

-0.0262 

(-8.68) 

-0.0418 

(-9.06) 
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Motorway 

-0.3753 

(-2.50) 

-0.5159 

(-2.50) 

Pedestrian  

0.4261 

(6.62) 

0.4472 

(5.32) 

Intersection 

-0.1985 

(-3.12) 

-0.1899 

(-2.25) 

Age 18-30  

-0.2856 

(-3.22) 

Model statistics     

LL (start): -6419.192   

LL(0): -6419.192   

LL(final): -5541.113   

Number of observations: 5843   

Rho-squared (0): 0.1368   

Adj.Rho-squared (0): 0.134   

AIC: 11118.23   

BIC: 11238.34   

With regards to the values of the alternative specific constants, they suggest that the 

average effect of the unmeasured variables tends to increase the probability of a 

braking event to be neutral or uncomfortable. The TTC and the THW have a negative 

effect, meaning that the larger the TTC or the THW, the fewer probabilities of a 

deceleration event to be neutral or uncomfortable instead of comfortable. It can be 

noted from Table 6.8 that the THW has the strongest effect of all the explanatory 

variables since its magnitude is the highest in absolute value. For example, if the THW 

increases by 1 sec, the odds of an event to be “comfortable” are 3.76 times higher 

than to be “uncomfortable”. The effect of the space headway is positive, i.e. when 

increasing the space headway by 1 unit, the odds of an “uncomfortable event” are 1.09 

higher than of a “comfortable” event. 

Furthermore, the initial speed and the motorway have a negative effect on the 

discomfort level of a deceleration event. So far, the results are similar to those from 

Statistical analysis I at four comfort categories. Although, when having three 

categories the existence of a pedestrian has a significant effect, in contrast to when 

having four categories. Specifically, the deceleration event is more likely to be “neutral” 

or “uncomfortable” than “comfortable” when there is a pedestrian. Also, the 

probabilities of an event to be more uncomfortable are reducing if the reason for 

braking is an intersection. 
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As far as the driver characteristics are concerned, only one age category is significant 

at the “uncomfortable” category. It can be explained as if the driver is between 18-30 

years old, the odds of having a “comfortable” deceleration event are 1.33 more than 

having an “uncomfortable” one. Comparing to the four categories results (Table 6.1), 

it can be noted that the driver characteristics have a bigger influence in the four 

categories classification since the gender and the age 30-50 variable are statistically 

significant. 

To try to explain better comfort level at the classification B by allowing heterogeneous 

effects on the explanatory variables, mixed logit models were applied. The log-

likelihood of the different mixed logit models, as well as the log-likelihood test, are 

demonstrated in Table 6.9. It is indicated from Table 6.9 that the mixed model allowing 

THW to have a mixed effect is significantly better than the MNL model, whose outcome 

is displayed in Table 6.10. The adjusted R2 is slightly higher and both the AIC and the 

BIC are smaller than the MNL model, supporting further the fact that the mixed model 

has a better statistical fit. The model has some outliers, with the most extremes to 

have 0.44% and 2.6% probability per choice. 

Table 6.9: Log-likelihood test for different mixed logit models for Statistical Analysis I and 
Classification B 

Model Log-Likelihood 

2*(LogLik-

LogLikbase model) 

Chi-Square test 

Discrete model 
-5541.11 

  

 

Mixed effect for THW 
-5527.19 

27.84 

5.99 (df =2) 

Better model 

Mixed effect for SPEED 
-5541.11 

0.004 

5.99 (df =2) 

Worse model 

Mixed effect for TTC 

-5509.34 

not significant   

 

Mixed effect for space 

headway 
-5539.12 

3.98 

5.99 (df =2) 

Worse model 

Mixed effect for 

MOTORWAY 
-5540.3 

1.62 

5.99 (df =2) 

Worse model 

Mixed effect for 

INTERSECTION 
-5540.46 

1.320 

5.99 (df =2) 

Worse model 
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Table 6.10: Results of the best-mixed logit model for Statistical Analysis I and    
Classification B 

Model variables Neutral Uncomfortable 

Alternative-specific constant 

2.6512 

(12.93) 

4.1083 

(10.97) 

TTC 

-0.0117 

(-7.27) 

-0.0255 

(-9.88) 

THW 

-0.7846 

(-10.29) 

-2.0971 

(-9.47) 

THW: 

standard deviation 

-0.3011 

(-3.91) 

-0.5697 

(-5.50) 

Space headway 

0.0587 

(9.47) 

0.1220 

(10.00) 

Traffic congestion 

0.3113 

(3.51)   

Initial speed 

-0.0321 

(-8.53) 

-0.0568 

(-9.01) 

Motorway 

-0.398 

(-2.48) 

-0.5118 

(-2.11) 

Pedestrian  

0.4679 

(6.47) 

0.4818 

(4.94) 

Intersection 

-0.2061 

(-2.97) 

-0.2202 

(-2.26) 

Age 18-30  

-0.4075 

(-3.07) 

Model statistics     

LL (start): -6419.192   

LL(0): -6419.192   

LL(final): -5527.189   

Number of observations: 5843   

Rho-squared (0): 0.139   

Adj.Rho-squared (0): 0.1358   

AIC: 11094.38   

BIC: 11227.84   

From Table 6.10, it can be observed that the effects of the explanatory factors are 

almost similar to the MNL model. The difference come at the magnitude of the 

alternative-specific constants, which is larger, especially for the “uncomfortable” 

category. This increase implies that the unobserved factors affecting the comfort level 

increase a lot the probability of an event to be uncomfortable. In addition, the findings 

with regards to THW illustrate an even stronger negative effect on all the categories, 

which vary across the observations. Since the standard deviation is 2.6 and 3.7 bigger 
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than the mean for the “neutral” and the “uncomfortable” category respectively, it can 

be concluded from the normal distribution table that for the “neutral” category THW 

has a negative effect at the 99.53% of the observations and for the “uncomfortable” 

category at almost 100%. Therefore, the effect of the THW is negative, but its 

magnitude is varying. 

In Figure 6.3, the predicted probabilities of the three comfort categories against the 

THW are displayed. After a point for the THW, around 3 seconds, the probabilities of 

all the categories have a continuous trend, i.e. the comfortable category is increasing 

and the other two are decreasing. To illustrate better the probabilities before that point, 

a zoom-in version of that plot is presented in Figure 6.4. The probability of the 

“uncomfortable” category drops really a fact at the first two seconds followed by a 

smoother drop, whereas the probabilities of the “comfortable” category are increasing 

in a constant way till around the 5th second. Lastly, the most interesting picture is that 

of the “neutral” category probabilities, which are increasing till the THW equals to 

1.8sec and the start decreasing, showing the heterogeneity of the effect of THW to the 

“neutral” category. 

 

Figure 6.3: Predicted probabilities for THW based on the best-mixed logit model for 
Statistical Analysis I and Classification B 
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Figure 6.4: Zoom in version of Figure 6.3 

6.2.2 Statistical analysis II (All observations) 

Following the same methodological approach as in classification A, an MNL model 

was applied to the dataset with the three comfort categories using only the affecting 

factors available for all the observations. The outcome of the model is displayed in 

Table 6.11. The adjusted R2 has dropped from 0.134 at Statistical analysis I to 0.10, 

implying that the explanatory variables used at the Statistical analysis I might explain 

better the comfort level. Moreover, the number of observations plays an important role 

in the Adjusted R2, i.e. having more observations, 23,933 instead of 5,843, can lead 

to a smaller Adjusted R2. 

Table 6.11: Results of the logit model for Statistical Analysis II and Classification B 

Model variables Neutral Uncomfortable 

Alternative-specific constant 

0.2334 

(4.94) 

-1.0268 

(-14.53) 

Traffic congestion 

0.2848 

(6.29) 

0.1632 

(2.48) 

Initial speed  

0.0056 

(6.30) 

Urban 

-0.0719 

(-2.43)   

Motorway 

-0.4803 

(-6.32) 

-0.5238 

(-5.00) 

Pedestrian 

0.2680 

(5.92) 

0.2150 

(3.67) 
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Intersection 

0.7378 

(23.90) 

0.9340 

(23.06) 

Male 

-0.1351 

(-4.52) 

-0.1995 

(-5.02) 

Age 18-30 

0.1820 

(4.76)   

Age 31-50 

0.1318 

(4.5)   

Lane 

-0.2217 

(-5.40) 

-0.3171 

(-6.13) 

Model statistics    

LL (start): -26293.09   

LL(0): -26293.09   

LL(final): -23654.95   

Number of observations: 23933   

Rho-squared (0): 0.1003   

Adj.Rho-squared (0): 0.0997   

AIC: 47345.9   

BIC: 47491.4   

The magnitude of the alternative-specific constants signifies that the average effect of 

the unmeasured variables, increase the probability of a deceleration event to be 

“neutral” instead of “comfortable” and vice versa decrease the probability to be 

“uncomfortable” instead of “comfortable”. 

The traffic congestion has a positive effect, meaning that when there is traffic 

congestion when the deceleration event is taking place, then the probability of this 

event to be “neutral” or “uncomfortable” is greater than to be “comfortable”. The initial 

speed affects only the “uncomfortable” category in a way that when the initial speed 

increases the odds of the “uncomfortable” category increase too. As far as the road 

type is concerned, if the deceleration event is taking place in a motorway or in the 

urban road instead of rural ones, the probability of this event to belong to the 

comfortable category increases. 

Regarding the situational factors, both pedestrians and intersections have a positive 

effect on the event’s discomfort, i.e. increase the odds of the event to belong to the 

“neutral” or the “uncomfortable” category instead of the “comfortable” one. Moreover, 

if the road has only one lane, then the probabilities of an event to be “uncomfortable” 

are decreasing. 
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Finally, driver characteristics became significant again. In detail, if the driver is male, 

the odds of a “comfortable” event are 1.15 and 1.22 higher than of a “neutral” and 

“uncomfortable” event respectively. Also, the age of the driver affects the “neutral” 

category: when the driver’s age is less than 50, the probabilities of having a “neutral” 

event are higher than having a “comfortable” one compared to the reference age 

category. 

Next, the results of the mixed logit model are presented in Table 6.12, showing that 

the mixed logit model allowing heterogeneous effect at the factor intersection is slightly 

better than the MNL one. Specifically, the adjusted R2 is almost the same, whereas 

the AIC is larger and the BIC smaller. That doesn’t give significant proof that this model 

is statistically significantly better than the MNL model. The log-likelihood test gives 

small evidence that this model is better (2*(LogLik-LogLikbase model)=13.58> 3.84 critical 

value of chi-square distribution for df=1). 

Table 6.12: Results of the mixed logit model with allowing random effect for intersection 
for Statistical Analysis II and Classification B 

Model variables Neutral Uncomfortable 

Alternative-specific constant 

0.22221 

(3.99) 

-1.0539 

(-14.56) 

Traffic congestion 

0.3663 

(6.79) 

0.1568 

(2.34) 

Initial speed  

0.0062 

(6.72) 

Urban 

-0.0779 

(-2.18)   

Motorway 

-0.5406 

(-6.31) 

-0.5334 

(-5.03) 

Pedestrian 

0.3411 

(6.00) 

0.2000 

(3.37) 

Intersection 

1.023 

(7.3) 

0.9361 

(23.00) 

Intersection: standard deviation 

3.0424 

(2.93)   

Male 

-0.1416 

(-4.04) 

-0.1970 

(-4.91) 

Age 18-30 

0.2178 

(4.65)   

Age 31-50 

0.1226 

(3.27)   
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Lane 

-0.2222 

(-4.51) 

-0.3151 

(-6.03) 

Model statistics    

LL (start): -26293.09   

LL(0): -26293.09   

LL(final): -23648.16   

Number of observations: 23933   

Rho-squared (0): 0.1006   

Adj.Rho-squared (0): 0.0999   

AIC: 49334.31   

BIC: 47487.89   

Comparing the results presented in Table 6.12 with Table 6.11, it is noted that the 

magnitudes of the influencing factors are similar, so the interpretation is the same. 

Regarding the existence of an intersection, it has a mixed effect on the “neutral” 

category. In detail, for 63.31% of the observations, the intersection increases the 

probability of a “neutral” event, whereas for the rest 36.69% it has an opposite effect. 

6.3 Classification C (2 categories) 

6.3.1 Statistical analysis I (All variables) 

The last classification has two comfort categories: “comfortable” and “uncomfortable”. 

The category “comfortable” was kept once more as the reference category. Since the 

dependent variable has only two categories, the model becomes a binary MNL model. 

Table 6.13 presents the results of this model, the adjusted Rho squared equals to 

0.062, which means that the Classification C might not be the best classification to 

explore the comfort influencing factors. 

Table 6.13: Results of the logit model for Statistical Analysis I and Classification C 

Model variables Uncomfortable 

Alternative-specific constant 

2.1343 

(15.15) 

TTC 

-0.0127 

(-9.46) 

THW 

-0.7343 

(-14.69) 

Space headway 

0.0554 

(12.58) 
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Initial speed 

-0.028 

(-9.68) 

Motorway 

-0.3353 

(-2.44) 

Intersection 

0.3654 

(6.57) 

Male 

-0.1764 

(-3.15) 

Age 18-30 

-0.2796 

(-3.44) 

Model statistics   

LL (start): -4050.059 

LL(0): -4050.059 

LL(final): -3799.933 

Number of observations: 5843 

Rho-squared (0): 0.0618 

Adj.Rho-squared (0): 0.0595 

AIC: 7617.87 

BIC: 7677.92 

The influence of the unobserved factors is higher probabilities of an event to belong to 

the “uncomfortable” category. Both TTC and THW have a positive effect on the comfort 

level of a deceleration event. Increasing the THW by 1 sec leads to 2.09 higher odds 

of a “comfortable” instead of an “uncomfortable” event. Regarding the driver 

characteristics, being a male driver aged 18-30 reduces the probability of having an 

“uncomfortable” deceleration event. When the driver brakes because of an 

intersection, the odds of being an “uncomfortable” event are 1.44 times higher than 

being “uncomfortable”. Furthermore, motorway and initial speed have a negative 

impact on the “uncomfortable” category. 

The next step is to allow for heterogeneous effect to all the explanatory factors. The 

log-likelihood along with the test is demonstrated in Table 6.14. It is obvious that the 

model that allows TTC and THW to have a mixed effect is the best but the most 

complex too. Also, the mixed model that allows only TTC to have heterogeneous effect 

seems to have a good fit. Therefore, both models are presented below in Table 6.15. 
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Table 6.14: Log-likelihood test for different mixed logit models for Statistical Analysis I and 
Classification C 

Model Log-Likelihood 

2*(LogLik-

LogLikbase model) 

Chi-Square 

test 

Discrete model -3799.93  

 

Mixed with THW -3790.78 18.3 

3.84 (df =1) 

Better model 

Mixed with SPEED -3798.84 2.18 

3.84 (df =1) 

Worse model 

Mixed with TTC -3780.42 39.02 

3.84 (df =1) 

Better model 

Mixed with space headway -3844.52 -89.18 

3.84 (df =1) 

Worse model 

Mixed with MOTORWAY -3799.87 0.12 

3.84 (df =1) 

Worse model 

Mixed with INTERSECTION -3797.34 5.18 

3.84 (df =1) 

Better model 

Mixed with TTC and THW -3776.04 47.78 

5.99 (df =2) 

Better model 

Table 6.15: Results of the mixed logit model (TTC) for Statistical Analysis I and  
Classification C 

 

Mixed logit model with 

TTC having 

heterogeneous effect (1) 

Mixed logit model with 

TTC and THW having 

heterogeneous effect (2) 

Model variables Category 

 Uncomfortable Uncomfortable 

Alternative-specific 

constant 

4.4230 

(5.68) 

5.0560 

(5.43) 

TTC 

-0.0379 

(-4.43) 

-0.0376 

(-4.55) 

TTC: standard deviation 

0.1141 

(3.49) 

0.0971 

(3.54) 

THW 

-1.5248 

(-5.41) 

-1.8078 

(-5.17) 

THW: 

standard deviation NA 

-0.5518 

(-3.65) 

Space headway 

0.1219 

(5.05) 

0.1469 

(4.80) 

Initial speed 

-0.0507 

(-4.88) 

-0.066 

(-4.72) 

Motorway 

-0.9614 

(-2.53) 

-0.8948 

(-2.40) 
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Intersection 

0.6331 

(3.96) 

0.6592 

(3.98) 

Male 

-0.3488 

(-2.52) 

-0.3854 

(-2.59) 

Age 18-30 

-0.6208 

(-2.75) 

-0.6431 

(-2.82) 

Model statistics     

LL (start): -4050.059 -4050.059 

LL(0): -4050.059 -4050.059 

LL(final): -3780.416 -3776.041 

Number of 

observations: 
5843 5843 

Rho-squared (0): 0.0666 0.0677 

Adj.Rho-squared (0): 0.0641 0.0649 

AIC: 7580.83 7574.08 

BIC: 7647.56 7647.49 

Firstly, the adjusted R2 has been slightly increased with the binary mixed logit models 

from 0.0618 to 0.0666 for the mixed model (1) and 0.0677 for the mixed model (2). 

Also, the indicators of goodness of fit, AIC and BIC have been decreased showing that 

the mixed model (2) is the best-fitted model. 

From Table 6.15, it can be noted that the magnitudes of the alternative-specific 

constants are larger than in the binary MNL model, indicating that the effect of the 

unobserved factors on an event being “uncomfortable” is bigger and positive. The TTC 

has a heterogeneous effect on the “uncomfortable” category for both models. In detail, 

TTC has a negative effect on the 62.93% of the observations and a positive one on 

the rest 37.07% for the mixed model (1). For the mixed model (2) the percentage that 

TTC has a negative effect is 65.17%. To better illustrate the mixed effect of TTC, the 

probabilities of the two comfort categories against the TTC have been plotted in Figure 

6.5 and Figure 6.6 for the mixed model (1) and (2) respectively. Small differences can 

be identified in the Figures, the initial probabilities are slightly different. In both figures, 

the probabilities change rapidly at the beginning till TTC=4sec and then have a 

smoother change. 
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Figure 6.5: Predicted probabilities for TTC based on the TTC mixed logit model for 
Statistical Analysis I and Classification C 

 

Figure 6.6: Predicted probabilities for TTC based on the mixed logit model (TTC and THW 
random effect) for Statistical Analysis I and Classification C 
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“comfortable” event rather than an “uncomfortable” one. The THW in the mixed model 

(2) has a fluctuated effect: it is negative for all the observations since the mean is more 

than three times bigger than the standard deviation but its value changes, sometimes 

it affects the event stronger whereas other times it has a small effect on the comfort 

level of the event. Figure 6.7 depicts the graph of the probabilities of the two comfort 
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categories against the THW and it can be concluded that the probabilities change in 

an almost constant rate. 

 

Figure 6.7: Predicted probabilities for THW based on the mixed logit model (TTC and THW 
random effect) for Statistical Analysis I and Classification C 

The rest influencing factors have similar magnitudes for both mixed models. For 

example, the probabilities of an “uncomfortable” event are increasing if the space 

headway increases or if the reason for braking is the approach of an intersection. On 

the other hand, if the initial speed increases or the event is happening in a motorway, 

the probabilities of an “uncomfortable” event are decreasing. Last but not least, if the 

driver is female or older than 50 years old, the odds of having an “uncomfortable” event 

are higher. 

6.3.2 Statistical analysis II (All observations) 

The last step of the analyses is to apply a binary mixed model to all the observations 

using Classification C. As it can be noted from Table 6.16, the adjusted R2 is really 

low, indicating that the model doesn’t have a reasonable fit. Therefore, the results are 

presented in Table 6.16, but they won’t be further analysed. 

Table 6.16: Results of the logit model for Statistical Analysis II and Classification C 

Model variables Neutral 

Alternative-specific constant 

-0.112 

(-2.32) 

Traffic congestion 

0.1081 

(2.5) 
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Initial speed 

0.0024 

(3.83) 

Motorway 

-0.3885 

(-5.44) 

Pedestrian 

0.1378 

(3.55) 

Intersection 

0.6321 

(23.58) 

Ptw 

0.4925 

(3.04) 

Male 

-0.1724 

(-6.51) 

Lane 

-0.2498 

(-7.15) 

Model statistics   

LL (start): -16589.09 

LL(0): -16589.09 

LL(final): -16205.84 

Number of observations: 23933 

Rho-squared (0): 0.0231 

Adj.Rho-squared (0): 0.0226 

AIC: 32429.69 

BIC: 32502.43 

6.4 Summary 

This Chapter has presented the results of the classification of the events in different 

comfort levels and the modelling of comfort level during a deceleration event. 

Specifically, the relationship between the comfort levels and different explanatory 

variables, such as driver characteristics, kinematics and situational variables is 

explored. 

The main findings of the statistical analysis of the comfort level applying Logit 

Multinomial and the Mixed Logit Multinomial models are: 

• The categorisation of the deceleration events into 4 comfort categories, i.e. very 

comfortable, slightly comfortable, slightly uncomfortable and very 

uncomfortable is proven to be a better categorisation than 3 or 2 comfort 

categories with the later to be the worst. 
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• Comparing the adjusted Rho squared of the best models for statistical analysis 

I and II, it can be concluded that statistical analysis I gave better results, 

indicating that the variables that were included in this analysis, i.e. THW, TTC, 

headway have a significant effect on the comfort level. 

• The average effect of the unmeasured variables tends to increase the 

probability of a braking event to be one of the uncomfortable categories. 

• Assuming that the functional form of the parameter density function follows the 

normal distribution gives better results than the (negative) lognormal or the 

triangular distribution. 

• The initial speed has a complicated effect, in detail in the statistical analysis I, 

its increase lead to fewer odds of an event to be in the uncomfortable 

categories, whereas in the statistical analysis II it had a mixed effect leading to 

more chance to be very uncomfortable for 80% of the observations. 

• Smaller TTC and smaller THW result in higher odds for uncomfortable events, 

with the effect of the THW to vary. 

• If the driver is a woman or is more than 50 years old, there are more odds to 

perform more uncomfortable braking events. 

• Driving in the motorway leads to more comfortable events. 

• Braking because of a pedestrian or intersection lead to more uncomfortable 

events 

• If there is traffic congestion, there are more odds to have a neutral than a 

comfortable event. 

The differences in the results for the different categorisation showed the importance 

of picking up the appropriate thresholds to define the comfort levels. The outcomes of 

the discrete modelling showed that there are many variables that affect the comfort 

level of a deceleration event and that some of them have a mixed effect. Also, the 

significance of the variables that are connected to a leading vehicle (e.g. TTC, THW) 

is obvious comparing the two statistical analyses. Finally, the outcomes demonstrate 

that the comfort level of a deceleration event is sensitive mostly to the kinematic and 

situational variables. 
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7 Discussion and Recommendations 

This thesis aims to examine the deceleration behaviours of drivers under normal 

driving conditions to ensure comfortable braking design. This has been addressed by 

analysing the deceleration events from naturalistic driving data and by concentrating 

on three points: 

✓ Identification of the deceleration profiles 

✓ Developing relationships between the components of the deceleration event, 

i.e. the deceleration value and the duration and their influencing factors. 

✓ Exploration of the factors that affect the comfort level of the driver while braking. 

Appropriate algorithms were developed to detect deceleration events and identify the 

deceleration profiles using data from three different studies (see Chapter 4). Then 

suitable statistical models were employed to develop the underlying relationship 

between influencing factors and braking behaviour and comfort level. The results of 

the statistical analyses were presented in Chapters 5 and 6. The influencing factors 

were event-level factors: kinematic and situational factors, trip-level factors:  trip 

duration, length and car and driver-level factors: driver’s age and gender. The aim of 

this section is to further discuss the results and findings from Chapters 5 and 6 to 

provide a better understanding and to critically synthesize the findings and relate them 

to the existing literature. The following section of the Chapter firstly discusses the 

deceleration profiles that were identified, followed by a detailed review of the effects 

of the influencing factors on the deceleration value and the deceleration duration. Next, 

the comfort evaluation is explained along with the influence of the examined factors in 

the comfort level. Moreover, recommendations and policy implications in light of the 

findings are presented. Finally, a summary of this chapter is provided. 

7.1 The deceleration profiles and the influencing factors of 

deceleration behaviour 

Chapter 5 presented the results of the fitting algorithm that identified the deceleration 

profiles. Many attempts have been made in the literature to model the deceleration 

(Bennett and Dunn, 1995; Ma and Andréasson, 2008; Maurya and Bokare, 2012). 



198 

 

Constant acceleration models, linear-decreasing models, polynomial acceleration 

models have been studied (Bennett and Dunn, 1995). It was concluded in this thesis 

that a single equation is not suitable to fit the deceleration for the whole duration. 

Accordingly, the event was split into two regimes: one before the maximum 

deceleration and one after that. The same procedure was followed by Maurya and 

Bokare (2012), who described the deceleration against speed with dual regime models 

for all the vehicle types but cars. Moreover, Ma and Andréasson (2008) separated the 

deceleration event in many regimes using pattern classification. 

Within this PhD project, the deceleration value was fitted against time. Three equations 

were examined: a linear equation ( 𝑎 = 𝑝1 ×  𝑡 + 𝑝2), a second-order polynomial (𝑎 =

𝑝1 × 𝑡2 + 𝑝2 × 𝑡 + 𝑝3) and a non-linear equation 𝑎 = 𝑝1 × 𝑠𝑞𝑟𝑡(𝑡) + 𝑝2. Parabola 1 

represents in real life that the driver brakes smoothly at the beginning and then harder 

braking is followed. This might be due to the time that the driver needs to evaluate the 

situation and the available distance to brake. Considering the Regime II (i.e. the part 

after the maximum deceleration value), the most common deceleration profile was 

concluded to be the non-linear equation (Parabola 2), which reflects a firm release of 

the brake. It should be noted that all the equations showed satisfying goodness of fit. 

For instance, the adjusted R2 values range from 0.82 to 0.93 for the equations of 

Regime I and from 0.77 to 0.92 for the equations of Regime II. Finally, the values of 

the coefficients of the best-fitted equations were calculated and presented in Chapter 

5. 

In contrast to the work within this PhD, where the deceleration value was fitted against 

the time of the deceleration event, other studies have tried to model the deceleration 

value against other variables, such as approaching speed, speed difference, distance 

headway and acceleration of the leading vehicles. More specifically, Bennett and Dunn 

(1995) suggested a model for predicting acceleration that includes the deceleration 

time and the approach speed, Maurya and Bokare (2012) modelled the deceleration 

against the speed using three equations (a linear, an exponential and a second-order 

polynomial) and Ma and Andréasson (2008) modelled the braking regimes against the 

speed, the distance headway and the acceleration of the leading vehicles. In contrast, 

within this thesis, the total range of the deceleration values during a braking event was 
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modelled against time. The outcome is the creation of deceleration profiles that 

describes the deceleration event and characterise comfortable braking. 

One other difference lies in the fact that those studies tried to model the deceleration 

in a specified environment by collecting data in controlled experiments whereas the 

data used in this PhD are naturalistic driving data and includes different braking 

scenarios. Specifically, Bennett and Dunn (1995) analysed the ‘approaching a traffic 

light’ scenario, Ma and Andréasson (2008) studied the car-following stage and Maurya 

and Bokare (2012) collected the data from a 1.5 km express highway. 

Chapter 5 also presented the effects of all the examined factors from the statistical 

analysis of the deceleration events. The appropriate statistical models, i.e. mixed 

effect multilevel models were applied to examine the effect of different factors on both 

the deceleration value and the deceleration duration. The examined factors were 

driver factors, trip factors, situational factors and kinematic ones and varied a bit 

among the different studies depending on the availability of those factors. In contrast 

to previous studies (Goodrich et al., 1999a; Z. Wu et al., 2009; Loeb et al., 2015) that 

have examined factors only from one category at the time, the work within this thesis 

examined all those factors simultaneously to reveal which are the most important. 

7.1.1 Deceleration and driver factors 

Concerning the driver factors, it was concluded that gender does not have a 

statistically significant effect on the deceleration, whereas age was found to affect the 

deceleration value for the trip-level model. Furthermore, it should be noted that 

regarding the deceleration duration, some driver characteristics were found to be 

important only in the TeleFOT dataset. Those characteristics were age, (i.e. a driver, 

who belongs in the 50+ age category seems to brake longer by 0.084 sec than a driver 

that belongs in the 31-50 category), and driving experience, (specifically a driver with 

more driven miles per year was found to brake in a shorter period of time, indicating 

more experience). 

Age and gender were explored in all the datasets. Also, the driver experience, 

expressed in driven miles per year was studied in the OEM and TeleFOT datasets and 

three indexes from driver’s questionnaire and specifically the AISS and the aggressive 
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violations index of the DBQ (DBQ_aggressive_violations) were included in the model 

of UDRIVE dataset. The results from all the datasets revealed that those driver factors 

have a statistically significant effect on neither the deceleration value nor the 

deceleration duration. The only exception within this work was for the variable age, 

which was statistically significant for the deceleration value in the OEM and UDRIVE 

datasets but only when a trip-level model was applied. When a driver-level model was 

applied, then age became statistically insignificant since its effect is included in the 

model structure level. The model showed that drivers, aged 18-30 and more than 50 

years old brake at lower deceleration rates in the OEM study compared to drivers, 

aged 31-50. For the UDRIVE dataset, the drivers that belong to the younger and the 

middle-age category seemed to brake with lower deceleration rates than older drivers, 

and specifically the drivers, aged 31-50 use the lowest deceleration rates. 

The results regarding driver factors seem to agree with previous studies that have 

explored driving characteristics. For example, Loeb et al. (2015) concluded that 

younger drivers have worse performance on braking, so that age is an important 

factor, although, this study examined only age as an influencing factor. Also, Haas et 

al. (2004) who tried to determine the deceleration behaviour, found that gender had 

no effect at all whereas age had a small effect on the deceleration behaviour, results 

which were similar to this work. Similarly, Xiong and Boyle (2012) supported that age 

is an influencing factor. However, in their study, El-Shawarby et al. (2007) found age 

and gender statistically significant variables. Their result demonstrates in particular 

that male drivers appear to have higher deceleration values than female drivers and 

drivers, aged 40-59 seemed to break at lower deceleration values compared to drivers 

in age groups under 40 years and more than 60 years. The result regarding age agrees 

with the outcome of the UDRIVE dataset. 

7.1.2 Deceleration and trip factors 

Moving on to the trip factors, it was found in the UDRIVE dataset that the model of the 

car influences the deceleration value. On the other hand, trip duration, trip distance 

and driving during day positively correlate with the deceleration duration. 

Trip duration, trip distance, time of the day and car model were the trip factors 

examined in one or more of the datasets. It was found that only the model of the car 
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has an impact on the deceleration value, meaning that the car characteristics affect 

the braking. Specifically, in the UDRIVE dataset, it was concluded that driving a 

premium car leads to an increase in the deceleration value. Studying the braking 

behaviour of different vehicle types, Maurya and Bokare (2012) also pointed out the 

significant effect of the driving type on braking behaviour. Although, that study was 

more generic since it dealt with different vehicle types, i.e. trucks, motorized three and 

two-wheelers and cars, it still supports the view that vehicle characteristics affect the 

deceleration. Moreover, the time of the day was examined by another study (Haas et 

al., 2004) and results revealed that time-of-day did not have a statistically significant 

dependency on the deceleration rate, which confirms the finding of this work. 

Considering the deceleration duration more trip factors play a significant role, though 

the car model did not affect the deceleration duration. Trip duration and trip distance 

have a positive effect, meaning that when trip duration or trip distance is bigger the 

deceleration duration is larger too. The aforementioned effect of the trip duration and 

distance might be because the driver tires as the trip is longer and his braking reactions 

become consequently slower. In contrast with the deceleration value, deceleration 

duration was found to be affected by the time of the day. Specifically, in the UDRIVE 

dataset, which was the only dataset that time of the day (i.e. day or not) was available, 

‘day’ variable was found to influence the deceleration duration in a way that if it is ‘day’, 

the deceleration event is shorter by 0.03-0.05 seconds. This finding shows that the 

driver feels more confident while braking during the day compared to the night, his/her 

reactions are better, and he/she needs less time to brake. 

7.1.3 Deceleration and kinematic factors 

Another factor category, that was examined within this work concerns the kinematic 

factors. The findings revealed that higher initial speed results in an increase in both 

the absolute value of the deceleration and the deceleration duration. Moreover, it was 

found that higher initial TTC results in longer duration and smaller deceleration rates 

(softer braking). Furthermore, the maximum steering angle had a small but significant 

effect on the deceleration rate, meaning that an increase in the maximum steering 

angle results in harder braking. Finally, the maximum jerk influences the deceleration 

value, in a way that a slower rate of deceleration leads to smaller deceleration values. 
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In general, the kinematic factors were found to have the most statistically significant 

effect on both the deceleration value and the deceleration duration. Regarding the 

initial speed of the event, it was concluded to be one of the most important factors. A 

1 m/s increase in the initial speed increases the absolute value of the deceleration by 

0.02-0.027m/s2 (harder braking) for the 3 datasets, i.e. TeleFOT, OEM and their 

combination. For the UDRIVE dataset, the results showed that initial speed has a 

mixed effect which is negative similar to the other datasets, but the size of the effect 

varies. The importance of initial speed as an influencing factor is confirmed through 

the literature (Bennett and Dunn, 1995; Haas et al., 2004; Wada et al., 2008; Wu et 

al., 2009; Maurya and Bokare, 2012; Xiong and Boyle, 2012). 

Xiong and Boyle (2012) concluded that speed is one of the factors that affect the 

driver’s response while braking, whereas Wu et al. (2009) and Wada et al. (2008) took 

into consideration the velocity as a major factor to model comfortable braking in car-

following scenarios. The initial speed was found to have a strong and statistically 

significant dependence on the deceleration value in Haas et al. (2004)’s work. 

Particularly, the rates of deceleration increased until the initial speed was 64 km/h but 

were relatively constant above that. To test if the relationship between the initial speed 

and the deceleration value was not linear within this work, the square of the initial 

speed was used as an explanatory variable, but the result could not support that 

hypothesis, so the linear relationship was kept. Bennett and Dunn (1995) discovered 

that the deceleration rate was proportional to the initial speed such that higher speed 

drivers decelerate harder which complies with the result of the statistical analysis of 

this work as well as to the results of Maurya and Bokare (2012)’s work, who supported 

that higher maximum initial speed leads to higher deceleration values, higher 

deceleration distance and higher deceleration duration. 

The same effect of the increase of the initial speed to the deceleration duration was 

discovered in this work. In detail, a 1 m/s increase in the logarithmic of the initial speed, 

results in a 0.75 sec to 0.89 sec increase in the logarithmic of the deceleration duration 

for the different datasets. The logarithmic values were used since in all the datasets 

the most parsimonious models were the ones that the dependent and independent 

variables were in logarithmic transformations. To have a better understanding of the 

resulting increase in the deceleration duration, the slope coefficients with respect to 
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the initial speed were calculated for all the models and the outcome was that if the 

initial speed increases by 1 m/s, the deceleration duration will be increased by 0.47-

0.50 seconds. 

Within the statistical analysis of the UDRIVE datasets, more kinematic factors were 

available and were included in the model. Those factors were TTC, THW, space 

headway, maximum steering angle during the deceleration event, the maximum jerk 

and the speed of the preceding car. The speed of the preceding car was found to be 

insignificant, which contradicts the results of some studies in the literature (e.g. Wada 

et al., 2008, 2010; Wu et al., 2009). One reason for that difference might be that those 

works were focused on car-following situations only whereas this PhD work examined 

data from many different braking scenarios. TTC and space headway were concluded 

to be statistically significant variables that influence the deceleration value such that 

an increase in the initial TTC leads to softer braking whereas an increase in the initial 

headway results in higher deceleration rates. The importance of those variables to the 

braking events was underlined by Goodrich et al., (1999a); Kazumoto et al. (2006) and 

Wu et al. (2009). The first study characterised the braking behaviour by the perceptual 

trajectory using TTC versus THW (Goodrich et al., 1999a). From the second study, it 

was revealed that the inverse of the TTC was the most affecting factor on a driver’s 

judgement on when to apply the brakes (Kazumoto et al., 2006) and at the last study 

the braking comfort was modelled based on the space headway and the velocity of 

the controlled vehicle (Wu et al., 2009).  

7.1.4 Deceleration and situational factors 

Last but not least, different situational factors were examined. The analysis 

demonstrated that the reason for braking plays a statistically significant role in 

deceleration behaviour. The results indicate that braking due to approaching a 

roundabout or a junction results in softer braking (lower deceleration values) 

comparing to dynamic obstacles, while braking due to a pedestrian crossing leads to 

the highest deceleration values. Regarding the deceleration duration, the reason for 

braking was influencing the duration so that if the reason for braking is a dynamic 

obstacle, the deceleration event is shorter comparing to all the other reasons. 

Moreover, it was found that traffic density does not influence the braking behaviour.  
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By reviewing the results of the remaining situational factors in the UDRIVE dataset, it 

is observed that when the braking happens while following a car, it results in softer 

braking since the absolute deceleration value decreases by 0.08m/s2 and the 

logarithm of the duration increases by 0.16 sec. This result might be because in car-

following situations the driver is usually more aware and keeps a distance from the 

preceding car. The same effect has the existence of traffic congestion when braking. 

Similarly, in this situation, the driver keeps a safe distance from the other cars and the 

initial speed is usually not high. On the other hand, driving on a one-lane road leads 

to harder deceleration events, i.e. higher deceleration values and shorter duration. The 

nonexistence of another lane and consequently the inability to change lanes when the 

preceding vehicle brakes might be the reason for this result. 

In terms of driver reaction variable, if the driver is looking in front (driver reaction 1) 

and not right/left or inside the car at the time the braking starts, it results in a decrease 

of the absolute deceleration value by 0.1-0.14 m/s2 (softer braking) and to a shorter 

deceleration duration. The shorter duration could be explained since if the driver has 

his attention on the road (i.e. looking in front), his braking reaction can be faster. 

By watching the videos from the TeleFOT and the OEM study, traffic density, the type 

of road, the existence of a traffic light when braking, the reason for braking and where 

the driver is looking at the beginning of the braking event were obtained and included 

in the analysis. Specifically, the reason for braking consists of braking due to 

approaching a roundabout, a cross or T-junction, pedestrian crossing or a dynamic 

obstacle. The reason for braking was included in the model as a categorical variable 

with the braking due to a dynamic obstacle category to be the reference one.  

Regarding the UDRIVE dataset analysis, the situational variables that were included 

are the type of road, the number of lanes, the speed limits of the road or the type of 

road, if the road is one direction road, if there is a traffic congestion at the moment of 

braking, if there was a following car situation at the moment of driving and if there was 

an intersection, a cyclist, a PTW or a pedestrian at the moment of braking. 

As mentioned beforehand, traffic density was found to be statistically insignificant for 

both the deceleration value and the deceleration duration. The study of Xiong and 

Boyle (2012) concluded in the same result, i.e. that traffic density does not influence 



205 

 

the driver’s respond while braking. Although, they found also that road type and 

weather conditions are insignificant. Within this thesis, weather conditions were not 

examined but the road type, i.e. if the braking is happening in a motorway, rural or 

urban road resulted to be one statistically significant influencing factor for all the 

conducted studies. However, inconsistencies of road type effects regarding the 

deceleration were found across the datasets. Given the variability of the road type 

effect in the conducted studies, a more in-depth investigation by studying each road 

type separately is recommended. 

Through the literature, most of the studies focused on a specific scenario and did not 

examine different reasons for braking or different road types (Bennett and Dunn, 1995; 

Haas et al., 2004; El-Shawarby et al., 2007; Wada et al., 2008, 2010). Specifically, 

Bennett and Dunn (1995) examined the deceleration behaviour on the motorways, 

Haas et al. (2004) on stop-sign controlled intersections on rural highways and El-

Shawarby et al. (2007) on signalised intersections. Furthermore, within the literature 

when studying the braking behaviour, the car- following scenario was examined a lot, 

with applications on the ACC (Goodrich et al., 1999b, 1999a; Z. Wu et al., 2009; Xiong 

and Boyle, 2012). Moreover, in all those studies, controlled experiments on the road 

or simulation studies were used to collect the data whereas within this work, 

naturalistic driving data were used and almost all the reasons for braking and other 

situational factors were considered. Using naturalistic driving data ensures that the 

driver is constantly exposed to a natural environment and does not change his driving 

behaviour. For example, in the UDRIVE NDS, the drivers were monitored over a period 

of two years. Therefore, a more realistic picture of a daily braking behaviour can be 

derived. Additionally, the situational effect, which was proven to be statistically 

significant for the braking behaviour, was captured. 

It should be noted that the situational factors, which were revealed to be statistically 

significant, were affecting the deceleration behaviour less than the kinematic factors. 

Therefore, more attention should be paid on the kinematic aspects. This is supported 

further by comparing the results of the statistical analysis I and II of the UDRIVE 

dataset. In the statistical analysis I, where more kinematic factors are included, i.e. 

TTC, THW, space headway, it was concluded that only the situational factor traffic 

congestion is statistically significant, whereas, in the corresponding statistical analysis 
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II, the traffic congestion, the one lane and the following a car variables were affecting 

the deceleration value. 

Choosing the appropriate statistical model to analyse the deceleration behaviour 

determines the outcome of the analyses. Due to the studies’ data structure, the 

dependences among the same driver and the same trip should be taken into 

consideration. Therefore, the multilevel models were employed for this study’s 

statistical analyses which consider the similarities and differences of the deceleration 

event because they were executed by the same driver or during the same trip. Also, 

the mixed effect was investigated for all the influencing factors, since the effect of one 

or more variables can vary among the observations. It was also concluded that the 

structure of the dataset, and specifically of how many drivers the dataset consists and 

how many trips they have conducted, influences the selection of the most 

parsimonious model. In the OEM dataset, which consists of 12 drivers making around 

10 trips each, the best model was the driver-level one whereas in the TeleFOT dataset, 

consisting of 25 drivers who have conducted 1-2 trips each, the most parsimonious 

model was the trip-level model. Regarding the deceleration duration, trip-level and 

three-level models were found to be the most parsimonious, revealing that the trip has 

a greater effect on the variation of the deceleration duration. 

Overall, the findings discussed above demonstrate that driver deceleration cannot be 

effectively modelled by employing average rates and a generic braking profile since it 

varies a lot depending on kinematic, situational, driver and trip factors. Haas et al. 

(2004) found a similar result while taking only the gender and the speed into account 

as influencing factors. They also supported the finding that the deceleration and 

acceleration cannot be modelled by applying average rates and suggested the use of 

a statistical pool of probable values. 

7.2 Comfort affecting factors 

In Chapter 4, the procedure to model comfort categories was described. It was 

challenging to decide which variables should be taken into consideration in order to 

create the different comfort categories for the braking events. The literature has 

revealed different factors affecting the perceived comfort. Some of those factors are 
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noise, temperature, car seat, air quality and motion (Martin and Litwhiler, 2008; 

Constantin et al., 2014; Elbanhawi et al., 2015). However, it was found that the way of 

execution of different manoeuvres affects the passenger’s comfort (Scherer et al., 

2015; Bellem et al., 2016, 2018). In detail, Scherer et al. (2015) concluded that 

acceleration and deceleration are essential parameters of the perceived comfort. 

Moreover, Martin and Litwhiler (2008) emphasised the importance of the control of the 

braking profile for the safety and comfort of the passengers in (semi)- AVs. Within this 

work, the braking manoeuvre was studied which can be backed up from the literature 

that influences the passenger’s comfort. 

In this work, the components that were selected to determine the level of the braking 

events were the deceleration value and the change of deceleration, i.e. the jerk, and 

both are supported by the literature as important elements of modelling comfort. 

Specifically, Dovgan et al. (2012) developed a two-level multi-objective optimisation 

algorithm for discovering comfortable driving strategies and within this algorithm, they 

model comfort as the change of deceleration, i.e. the jerk. To test and analyse the 

comfort of three different manoeuvres, i.e. lane change, acceleration and deceleration, 

Bellem et al. (2018) used the longitudinal and lateral jerk and the acceleration to 

configure the variations on those manoeuvres. In another study, Bellem et al. (2016) 

tried to identify the essential components for the development of comfortable highly 

automated driving style and they found that acceleration, jerk, quickness and headway 

distance are of great importance. Moreover, Wu et al. (2009) attempted to model brake 

comfort on car-following scenarios by categorising the braking into comfort, discomfort 

and dangerous situations based on the velocity, the space headway, the acceleration 

and the friction coefficient. 

The next challenge of the comfort categories modelling was the selection of the 

values- limits for the deceleration and the jerk. From the literature, it was concluded 

that different studies used different limits and that there are no broadly-used thresholds 

(Hoberock, 1976; Martin and Litwhiler, 2008; Eriksson and Svensson, 2015; Powell 

and Palacín, 2015). Therefore, as described in Chapter 3, three different sets of 

thresholds were used to model the comfort categories, resulting in three 

classifications, with four, three and two comfort categories. Chapter 6 presented the 

results of the statistical analysis of the comfort categories and specifically the factors 
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that influence the comfort level of the braking event. The appropriate statistical model, 

i.e. the mixed effect logit models were applied to all the classifications to discover the 

effect of the factors on the odds of an event to perceived as uncomfortable or 

comfortable. The dependent variable of the model was the comfort categories and the 

examined factors were kinematic, situational and driver factors. Since the change of 

deceleration, i.e. the jerk was used to classify the events into different comfort 

categories, it was not included as an influencing factor in the model. 

From the results of the statistical analysis and specifically the goodness of fit of the 

models, it was concluded that the classification of the 4 comfort categories, i.e. very 

comfortable, slightly comfortable, slightly uncomfortable, very uncomfortable gave 

better results than the classification of the 3 comfort categories, i.e. comfortable, 

neutral, uncomfortable. Whereas, the classification with the 2 comfort categories gave 

the worst results, indicating that the existence of more categories is essential maybe 

because the influencing factors have a varying effect that cannot be depicted when 

having only the 2 categories as the dependent variable. 

Moving on to the specific results from the model, it should be noted that in all the 

models the alternative specific constants suggest that the average effect of the 

unmeasured variables tend to increase the probability of a deceleration event to 

belong in any category but the comfortable one (‘very comfortable’ for classification A 

and ‘comfortable’ for classification B and C). That means that there are variables, 

which were not included in the model, that influence the level of comfort during a 

braking event by making it less comfortable. Further research is suggested to 

investigate other influencing factors that were not included in this thesis and which 

might be responsible for this effect, such as the weather conditions, the road friction. 

7.2.1 Comfort level and kinematic factors 

From the examined kinematic variables, THW was found to affect the comfort category 

the most, whereas the TTC, space headway and the initial speed were found to have 

an effect on the comfort categories, which was not so strong. The importance of the 

headway was also underlined in the literature (Brookhuis et al., 2001; Wu et al., 2009). 

The term of headway can be described by both the space headway and the THW. 

Within this work, the THW was revealed to describe the best the car-following situation 
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and to influence the perceived comfort the most. Wu et al. (2009) supported that the 

available distance from the preceding vehicles (i.e. space headway) influences the 

comfort level of a braking situation and Brookhuis et al. (2001) mention that short 

headway was considered less comfortable. 

Within this work, the effect of the TTC variable was clear, showing that bigger TTC 

results in bigger odds of the event to be in the most comfortable category. The 

magnitude of the effect is small. Specifically, when the TTC increases by 1 sec the 

odds of the event to belong in the most comfortable category are 1.02-1.035 times 

higher than being in other comfort categories. The exception to the clear effect of TTC 

is the heterogeneous effect that it was found to have on the “uncomfortable category” 

in the statistical analysis of Classification C (two comfort categories as dependent 

variable). In detail, the TTC was resulted to have 65.17% negative slopes with different 

values and 34.83% positive ones. By calculating the probabilities of the two comfort 

categories against the TTC, it was concluded that the effect of the TTC was stronger, 

i.e. the probability of the event to be comfortable while the TTC was increasing, was 

increasing rapidly till the TTC equals to 4 seconds and then there was a smoother 

change. This might be because the comfort perception is affected more when the 

preceding and the examined vehicles are too close (TTC has small values<4sec). 

Regarding THW, it was found to have a strong negative effect that varies across 

comfort categories. The effect means that when THW increases by 1 sec the 

probability of a deceleration event to be anything else other than “very comfortable” 

for Classification A and “comfortable” for classification B and C decreases. 

Specifically, if THW increases by 1 second, the odds of the event to be “very 

comfortable” for Classification A or “comfortable” for classification B are 4.5 and 3.5 

times higher than to be “very uncomfortable” or “uncomfortable” respectively. 

Therefore, it is revealed that THW has a stronger effect on the comfort level than TTC. 

Considering the mixed effect that it was found to have, the impact of THW was found 

to be markedly (i.e. 99%) negative. The predicted probabilities of the comfort 

categories against the THW revealed that probabilities for the uncomfortable 

categories decrease significantly as THW increases and until it reaches the value of 

2.4 sec and thereafter, they still decrease but at a slower rate. Moreover, if THW is 

more than 3.3 seconds the probability for an event to be uncomfortable is less than 
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0.1. These results demonstrate that the critical values of THW are the ones smaller 

than 2.4 sec and that THW has a very strong negative effect on the comfort level. 

Furthermore, the space headway has a positive effect on the uncomfortable 

categories, meaning that an increase in the space headway results in bigger odds that 

an event belongs to one of the uncomfortable categories. That might not be logical 

since someone would have expected that the increase in space headway would lead 

to more comfortable events. However, the effect of the space headway is not that 

significant since its magnitude is smaller than the magnitude of THW, which indicates 

that the event is affected more from THW than from space headway. 

Regarding the initial speed, when THW, TTC and space headway are also considered, 

its increase results in smaller odds for a braking event to belong to one of the 

uncomfortable categories. Although, the initial speed was not found to have a strong 

effect on the comfort of the deceleration event. Specifically, if the initial speed is 

increased by 1km/h, the odds of a deceleration event to be perceived as comfortable 

are 1.03-1.06 more than uncomfortable. However, when the effects of  THW, TTC and 

space headway were not included, the initial speed in statistical analysis II had a mixed 

effect for Classification A in that an increase at the initial speed results in bigger odds 

of an event to be very uncomfortable for 87% of the observations and for the rest 13% 

the odds got smaller. In Classification B, the increase of the initial speed leads to more 

probabilities for an event to belong to the “uncomfortable” category. 

7.2.2 Comfort level and driver factors 

The driver factors that were included in the comfort level analysis were the age of the 

driver (as a categorical variable with 3 age categories, i.e. 18-30, 31-50 and 51+), the 

gender of the driver (as a categorical variable with 2 categories, i.e. male and female), 

and two personality characteristics, the AISS_total and the DBQ_all_violations 

(violations index of the DBQ), which were continuous variables. The results of the 

statistical analysis acknowledged that the variables AISS_total and 

DBQ_all_violations do not have a statistically significant effect on the perceived 

comfort. This result agrees with the conclusion of the study from Bellem et al. (2018), 

who found that personality traits have no effect on the manoeuvre preferences. They 
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also found that age and gender do not influence manoeuvre preferences, but this 

contradicts the results within this work. 

Regarding the driver’s gender, if the driver is a male then the probabilities of the 

braking event to fall into one of the comfortable categories are higher than being 

uncomfortable. In detail, if the gender of the driver is male and not female, it resulted 

in 1.12-1.40 greater odds of an event to be comfortable than uncomfortable.  

On the other hand, the effect of the age of the drivers was concluded to be more 

complicated. Specifically, if the driver belongs in the age category 18-30, the odds of 

a deceleration event to fall into the most comfortable category are 1.46-1.86 times 

higher than falling into the most uncomfortable category compared to if the driver was 

in the age category 50+. This could be due to the risk tolerance that varies with age. 

On the other hand, if the driver belongs to the 31-50 age category, there are more 

probabilities of a deceleration event to fall into one of the middle categories (neutral or 

slightly uncomfortable) than being very comfortable compared to the drivers in the 50+ 

age category. 

7.2.3 Comfort level and situational factors 

The last category of factors that were included in the comfort modelling were the 

situational factors. Driving on a motorway has a negative effect on the discomfort of a 

braking event to all the comfort categories compared to the rural roads. Additionally, 

the presence of a pedestrian or an intersection results in bigger odds of an event to 

be uncomfortable. 

The existence of a cyclist or a PTW vehicle or if the road had only one direction did 

not have a statistically significant effect. The traffic congestion did not have a 

significant effect on the most uncomfortable category, i.e. it was neither increasing nor 

decreasing the probabilities of an event to be perceived as very uncomfortable. 

Although, it affected the middle comfort categories (i.e. “slightly comfortable” for 

Classification A and “neutral” for classification B). Specifically, if the deceleration event 

takes place while there is traffic congestion, the odds of this event to be perceived as 

very comfortable are less than being in a medium comfort category. In detail, a 
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deceleration event has around 1.3 more odds to be “slightly comfortable” than “very 

comfortable” at traffic congestion situations. 

Regarding the road type, the variable motorway was concluded to have a statistically 

significant effect for all the analyses, whereas the variable urban was statistically 

significant only in the models of statistical analysis II. If the event is happening on the 

motorway in comparison to rural roads, its odds of falling into the most comfortable 

category are between 1.35 and 1.8 higher than belonging in one of the uncomfortable 

categories. This result might indicate that when driving on motorways, where the 

speed is high, the driver’s perception of comfort might change since lower values of 

deceleration and jerk might affect him/her. Therefore, one suggestion would be to 

study driving on motorways separately by applying lower values on the thresholds that 

determined the comfort categories. On the other hand, if the braking event takes place 

in an urban road and not in a rural one, the probabilities of it to be “slightly 

uncomfortable” or “neutral” are less than of being “very comfortable”. Although, driving 

on the urban road does not have a significant impact on the most uncomfortable 

categories. 

The existence of a pedestrian was statistically significant to all the models but the one 

of the statistical analysis I of Classification A. Its effect can be explained as following: 

if there is a pedestrian presence at the moment of braking, the probabilities of the 

deceleration event to be in the most comfortable categories are less than being in any 

of the uncomfortable categories. Specifically, the odds of the event to fall into one of 

the uncomfortable categories are 1.24-1.6 more than to fall into the reference 

category. In addition, the existence of an intersection while braking, which might also 

be the reason for braking, has a strong positive effect on the discomfort of the 

deceleration event. In detail, if there is an intersection, the odds of an uncomfortable 

event are higher than that of a comfortable braking event. Lastly, if the deceleration 

event happens when driving on a one-lane road, then the probability of the event to 

be comfortable is higher than being uncomfortable. 

Generally, by judging the goodness of fit of the best-fitted models of all the statistical 

analysis and classification, it is revealed that statistical analysis I gave better results. 

A possible reason could be because the additional variables that were included in that 
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analysis, i.e. TTC, THW and space headway influence strongly the perceived comfort 

during a deceleration event. Moreover, the other important outcome of that analysis is 

that classifying the comfort into more categories gave better results. Therefore, the 

classification of the comfort categories is of great importance and can affect the 

results. 

Overall, the findings discussed above demonstrate that comfort during braking is 

mostly affected by the THW, Specifically, THW has a very strong negative effect on 

the comfort level, which is more intense when the THW is smaller than 2.4 sec. 

Additionally, the situational factors that influence the braking comfort are the presence 

of traffic congestion, an intersection or a pedestrian. Last but not least, it was shown 

that driver characteristics, i.e. age and gender play a statistically significant role for the 

comfort level. 

7.3 Recommendations for practice 

The findings of this study provide some new insights regarding the deceleration 

behaviour of the drivers under normal driving conditions which can benefit different 

stakeholders to overcome some of the challenges regarding Autonomous Vehicles 

(see .Figure 1.1). In this section, recommendations for practice for each stakeholder 

will be presented in detail. 

7.3.1 Car manufacturers 

To recommend for practice regarding AVs, it is first important to understand the main 

features of an AV. Modern AVs are equipped with a variety of sensors (e.g. Ultrasonic 

sonars, cameras, radars, GPS, accelerometers etc.) in order to quickly and safely 

navigate through a road network by: 1) perceiving their position on the map (pose 

sensors), 2) plan, evaluate and follow a path, and 3) detect, classify and avoid the 

obstacles (object sensors). Sensors can be classified into proprioceptive which 

measure values that are internal to the car (e.g. speed, orientation) and exteroceptive 

which obtain information from the surroundings of the vehicle (relative distances, 

relative speeds, objects etc.). 
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Also, the control mechanism (Figure 7.1) is important in order to understand how an 

AV works. The sensing subsystem (sensors) is responsible for taking raw data, as well 

as static and dynamic urban environment measurements (Campbell et al., 2010) which 

are essential to navigate safely. Precise and comprehensive environment perception 

is necessary for safe and comfortable autonomous driving in complex traffic situations 

such as busy cities (Ziegler et al., 2014). As depicted in Figure 7.1 the perception 

subsystem is divided into two main parts: the object recognition and the localisation. 

The planning subsystem includes different components such as path planners, 

behavioural planners and route (map) planners. Finally, the trajectory control 

subsystem includes the actual actuators and commands to drive the car. Information 

for the control subsystem would come from some combination of the higher-level 

planning (i.e. the proposed route), and direct sensing in some emergency cases 

(Campbell et al., 2010). 

Sensors
GPS and vehicle 

sensors

Camera and 
Radar Sensors

Digital map

Human 
machine 
interface

Perception 
and 

localization
-  Radar, laser processing
- Moving obstacle  Recognition 
(pedestrians, other vehicles, etc.)
- Stable obstacle Recognition 
(traffic lights, pavements, etc.) 

- Map relative localisation
- pose
- map relative estimates
- localisation based on road geometry
- localisation based on static features

Object Recognition Localisation

Planning
- Decision making
-Trajectory (path) planning
- Behavior generation
- Intersections , junctions, 
blockages deal planning

Trajectory 
control - Steering

- Lane keeping control
- Brake
-Throttle
- Advanced Cruise control

Lateral control Longitudinal control

 

Figure 7.1: Basic Block Diagram (Forrest et al., 2007, Campbell et al., 2010, Ziegler et al., 
2014, Urmson et al., 2008) 

The findings of this study regarding deceleration behaviour can contribute to the 

system design of the AVs and specifically to the development of the trajectory control 
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of (semi-) AVs. Moreover, the findings can benefit the braking behaviour of (semi-) 

AVs by generating more comfortable and safer braking events. One of the main 

outcomes of this study is the identification of the equations representing the 

deceleration profiles and the detection of the most used one. The most commonly 

used profile starts with smooth braking when a driver detects a reason to brake and 

then he/she brakes harder. The same deceleration profile can be employed by the 

developers of (semi-)AVs to ensure the operation of comfortable braking. This could 

be achieved by programming the trajectory control to generate braking that follows this 

deceleration profile. Also, having the situational and kinematic factors as an input from 

the perception and localization process (i.e. from the sensors), developers of 

(semi-)AVs could apply the adequate relationships resulted from this work. 

Furthermore, by employing these profiles the carsickness, which is common in 

automated driving systems and results from the conflict between the visual sensory 

system and the movement of the human body, could be reduced. This could also help 

overcome the lack of acceptance from the users (i.e. the human factor barrier). 

Another recommendation is about the current technology of the Advanced Driver 

Assistant Systems (ADAS). AVs are considered to be the next step of the current 

vehicle technology and the ADAS (Elbanhawi et al., 2015). ADAS have been already 

studied, paying particular attention to their impact on safety, traffic flow, environment 

and drivers. They are low autonomy systems that assist the driver and can be used 

towards the development of a fully AV. The ADAS that improve the lateral and 

longitudinal control of the vehicle have been used and studied the most. 

The lateral control consists of: 1) the Lane Departure Warning System (LDWS), whose 

purpose is to avoid run-off-road and sideswipe collisions, 2) the Lane Keeping Assist 

System, which assists the drivers to keep the vehicle in its existing lane by providing 

small amounts of actuation to steering and 3) the Parallel Parking Assist, which 

controls the steering while the driver controls the braking and acceleration in order to 

park successfully etc. On the other hand, the longitudinal control includes among 

others: 1) the Adaptive Cruise Control (ACC), which controls the speed (throttle and 

brake) at which the vehicle moves relative to the front vehicle in order to avoid collision 

and 2) the Rear Parking Assist, which helps the driver to park by controlling the brake 
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or informing the driver that he has to brake when approaching another object (Forrest 

et al., 2007). 

The results of this research could also be implemented on ADAS technology. 

Particularly, the longitudinal control ADAS, i.e. the ACC and the Rear Parking Assist 

could be benefited by using the deceleration profiles, since those are perceived natural 

by the drivers and this could increase the user’s acceptance and market penetration. 

One important finding was that some of the driver factors have been found to affect 

the comfort level of the deceleration events. These findings support the idea of 

developing personalized (semi-)AVs since each driver has different braking behaviour 

and braking preferences. Therefore, it is recommended for the (semi-)AVs 

manufacturers to develop methods that can personalize the vehicle to its passenger 

to ensure comfort and safety. This could deal with the human factor barrier and 

increase the user’s trust and acceptance. 

Finally, it should be noticed that the relationships of the influencing factors with the 

deceleration characteristics, which is the main outcome of the models that have been 

developed, can be key elements in the development of braking systems not only for 

(semi-) AVs but for conventional cars too. Specifically, the initial speed should be 

considered since with higher initial speed the absolute deceleration value is higher, 

and the duration is longer. Moreover, the situational factors play an important role. The 

reason for braking, road type, lighting conditions (driving during daylight) and the 

number of lanes affect the braking event and should be taken into consideration when 

developing a braking system. As a consequence, driver deceleration should not be 

modelled by applying average rates and all of the aforementioned factors and their 

effect should be well-thought-out. 

7.3.2 Researchers 

Regarding the researchers, the findings of this research can be used to face the 

challenges system design, human factors and modelling of impact. Specifically, the 

most comfortable deceleration profile that was an outcome of this study can be 

implemented into the algorithms which control the trajectory of the AVs. Moreover, 
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similar profiles can be tested to study the acceleration behaviour and to reveal the 

most comfortable one. 

The main outcome of the modelling of deceleration behaviour is the relationships of 

the affecting factors with the deceleration value and duration. It is strongly 

recommended that researchers should not apply average decelerate rates and 

durations when studying or modelling deceleration behaviour since many factors are 

affecting it. The kinematic factors, i.e. the initial speed, the TTC and the max steering 

angle were found to affect the deceleration event the most, so special attention should 

be given to those factors. Another factor category that influences the braking 

behaviour is the situational factors, e.g. the reason for braking, the road type etc. Thus, 

it is recommended to take into consideration those effects and analyse in more detail 

each situational factor. The developing technologies of vehicular communication (VC) 

that support vehicle-to-vehicle (V2V) and vehicle to infrastructure (V2I) can improve 

the deceleration events and provide more safe and comfortable braking. Specifically, 

taking into consideration the situational factors and utilizing V2I communication it can 

provide smooth and early decelerations. 

Based on the fact that the most significant influencing factor of the comfort level during 

braking is THW, the car-following situations should be given special attention. 

Considering that a 1-second increase in THW results in 3.5-4.5 more odds for an event 

to be in one of the comfort categories, increasing the initial THW when the brake is 

applied is probably a good suggestion. Particularly, the effect was found to be more 

intense when the values of THW are small, i.e. lower than 2.4 seconds. The 

introduction of V2V communication could be very beneficial in these cases, since the 

leading vehicle can inform the following ones when it is about to brake and the 

following vehicles can perform adequately, ensuring comfortable braking events. 

Furthermore, the findings revealed that braking while a pedestrian is present, leads to 

more uncomfortable events. Therefore, this scenario should be also studied 

separately, and the braking development should increase the comfort, maybe by 

decelerating earlier or by informing the passenger that the pedestrian has been 

recognized and the appropriate actions would be followed. 
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Modelling in simulators is a powerful tool for the researchers. It helps them plan, design 

and operate transportation systems. They can test numerous different scenarios, even 

the ones that are dangerous to be tested in real life, such as crashes and near-

crashes. They can focus on a specific variable, analyse it and test for its effect in detail 

(SWOV Institute for Road Safety Research, Leidschendam, 2012). Regarding (semi-) 

AVs, modelling can test the operation of automated functions under many different 

scenarios and predict impacts on safety, comfort, emissions etc. (Stevens and 

Newman, 2013). 

Based on the equations representing the deceleration profiles that were calculated in 

this study, traffic simulation modelling could be enhanced to depict the deceleration 

events more accurately. In addition, the relationships between the influencing factors 

and the deceleration rate and duration could be implemented into traffic simulation 

modelling. For example, creating different decelerations depending on the reason for 

braking and other situational factors. This would lead to more realistic traffic 

simulations. Moreover, by analysing in simulators different scenarios even near-

crashes events regarding car-following situations, the braking behaviour can be 

studied in more detail and the impacts of possible V2V communication can be 

detected. 

7.3.3 Drivers 

Winning the trust of the drivers to give the control of the car is one of the most crucial 

challenges of this new technology (Kraus et al., 2010; Stevens and Newman, 2013). 

People are reluctant to trust an autonomous system for the uncertainty that it is not 

reliable and safe (Parasuraman and Riley, 1997; Lee and See, 2004). Although, 

feeling safe and comfortable when using a new technology increases the user’s 

acceptance (Elbanhawi et al., 2015). Findings from this study can be used to ensure 

comfort and safety feeling to the user. Specifically, by implementing the most used 

deceleration profile and applying the adequate deceleration rates depending on the 

situational factors can increase the comfort level while braking. Moreover, the factors 

that affect the most the comfort level and contribute to the discomfort of the users were 

identified within this research. So, actions can be taken to prevent discomfort, such as 

to ensure longer THW in car-following situations, to inform the user for the detection 
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of a dangerous situation and a need to stop with appropriate HMI, to update the road 

infrastructure with different signs that inform the driver for the road configuration that 

might lead to braking. By applying such measures, the driver can start trusting and 

accepting the automation and thus begin to use it in the current vehicles that are 

already equipped with different ADAS. 

7.3.4 Regulators and legislators 

The findings of this study could be considered for improving the design characteristics 

of future road networks. Specifically, the different deceleration characteristics that 

were found in this study could be beneficial into the design of different road elements 

such as intersection, roundabout and deceleration lane (Maurya and Bokare, 2012). 

Moreover, it was concluded that the initial speed affects a lot the deceleration 

behaviour and that higher initial speed results in harder and more uncomfortable 

braking. Therefore, it is suggested that the variable speed limit should be adjusted 

according to the situational factors and geometric characteristics. For example, where 

there is a turn (i.e. bigger steering angle) or there is a pedestrian crossing the speed 

limit should be reduced. Another recommendation is to place more signs on the road 

to warn when approaching road configuration that requires braking and especially in 

pedestrian crossings where the braking was found to be more uncomfortable. This 

would increase the feeling of safety and comfort of the user, especially when 

automation is apparent (ADAS and AVs). 

To date, there is a lack of regulation and legislation regarding automation in vehicles 

(Lay and Saxton, 2000; Barabás et al., 2017; BSI and Catapult Transport Systems, 

2017). Standardisation of the new technology could help overcome some of the 

barriers and specifically the lack of common standards and policy framework, the 

integration with existing transport systems, the cybersecurity threat and the public 

acceptance issues. Standard is an agreed way of doing something; “the distilled 

wisdom of people with expertise in their subject matter area and who collectively know 

the needs of the various stakeholders” (BSI and Catapult Transport Systems, 2017). 

In the report by BSI and Catapult Transport Systems (2017), many existing standards 

regarding autonomous vehicles were found with the most used to be ISO 26262, 

ISO/IEC 27001 and IATF 16949 (BSI and Catapult Transport Systems, 2017). In some 
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US states, there have been specific automated driving legislation for vehicle 

deployment under certain conditions (Lay and Saxton, 2000). Although, the existing 

standards are too complex, and it is hard to navigate through them and there is the 

need for establishing an international widely used standard. 

There is still the need to regulate the system design of ADAS features and (semi-) AVs 

as well. From the findings of this work, it can be concluded that many factors, i.e. 

kinematic, trip, driver and situational factors should be taking into account to design 

for braking and this should be ensured by regulation. Moreover, the impacts of different 

conditions on the automated systems should be investigated, for instance when it is 

raining, when the lighting conditions are bad, for different grades of friction between 

the tires and the road surface. Last but not least, it is recommended to regulate clearly 

the I2V communication and the required equipment to ensure early and comfortable 

braking since it was reported that communication standards were overly complex (BSI 

and Catapult Transport Systems, 2017). 

7.4 Summary 

This Chapter critically discussed the results presented in Chapters 5 and 6 of this 

thesis. Firstly, the deceleration profiles estimated as natural and comfortable were 

analysed and compared with the findings of the literature review. The main finding was 

that the most used profile was the one that the driver brakes smoothly at the beginning, 

maybe in order to evaluate the situation, followed by harder braking. Moreover, the 

effects of the factors on deceleration value and duration were discussed. Kinematic 

factors were found to mostly influence both the deceleration value and duration. 

Increase in the initial speed resulted in higher absolute deceleration value but longer 

duration, increase in the initial TTC leads to softer braking whereas an increase in the 

initial headway results in higher deceleration rates. THW did not affect the deceleration 

value but its increase leads to a longer deceleration event. One important outcome is 

that the driver and the trip factors do not greatly influence the deceleration event, while 

the situational factors and specifically the reason for braking, the driver reaction and 

the following a car scenario play an important role in the deceleration components. 

Since the deceleration events are influenced by all these factors, the deceleration 
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behaviour cannot be effectively modelled by using average rates for all the different 

braking scenarios. 

In this chapter, the comfort modelling and the factors affecting the comfort level while 

braking were also discussed. This discussion revealed the challenges of modelling the 

perceived comfort, in terms of which variables are most important for the perceived 

comfort in order to use them to model it and which thresholds used be used. The 

comfort modelling by employing the deceleration value and the jerk, which was used 

within this work, was supported by the literature and by using different classifications, 

i.e. different thresholds, it was concluded that having more comfort categories can 

result in better and more detailed results. Moreover, the factors affecting perceived 

comfort were reviewed, concluding that kinematic, situational and driver factors have 

significant effects. Specifically, THW had one of the strongest effects; when THW 

increases, the event has more probabilities to be comfortable. Personality traits were 

found to be insignificant, while gender and age affected the comfort level, supporting 

the idea of a personalised (semi-)AV. Some situational factors, such as intersections 

and pedestrian played also a significant role in comfort, underlying the importance of 

taking the surrounding situation into consideration while analysing or modelling the 

braking. 

Finally, some recommendations for practice that result from this work’s findings were 

presented regarding different stakeholders, i.e. car manufacturers, researchers, 

drivers and regulators/ legislators. To ensure comfort and apparent safety when a 

(semi-)AV decelerates, the calculated deceleration profiles and the findings regarding 

the influencing factors should be implemented into the development of the braking 

planning of (semi-)AV vehicles. Moreover, the integration of the affecting human 

factors into the design of the (semi-)AVs, which leads to personalized cars, is 

recommended. The outcomes of this study could enhance the traffic simulation 

modelling and the design of intersections and deceleration lanes. Finally, the need of 

the establishment of an international simpler standard concerning (semi-)AVs is 

underlying.  
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8 Conclusion 

Vehicle automation and specifically AVs can potentially have many benefits, e.g. 

improvement of traffic safety by eliminating human error, extended mobility for elderly 

and disabled people, more efficient traffic flow and increased capacity. However, to 

attain the benefits of (semi-) AVs the passenger should feel safe and comfortable 

inside them. Therefore, comfort is of great importance for the development and 

acceptance of (semi-) AVs along with the analysis of vehicle dynamics. Braking has 

been revealed to be one of the most important factors affecting comfort. It is, therefore, 

necessary to fully understand the driver’s braking behaviour, i.e. the braking level, the 

braking duration and the deceleration profiles, as well as the factors affecting this 

behaviour. Moreover, it is important to investigate the comfort levels of braking and 

the influencing factors.  

Therefore, this research aims to thoroughly analyse the deceleration behaviour of 

drivers under normal driving conditions to ensure comfortable braking design.  

It should be underlined that this research is predominantly important for the results. 

Specifically, the deceleration profiles that are received as natural and were calculated 

in this thesis are important to understand the deceleration behaviour of drivers. 

Moreover, within this research the influencing factors of deceleration were identified 

and the relationships between them and deceleration characteristics were defined. 

This means that the deceleration characteristics were modelled against the driver, 

kinematic and situational factors and the results indicate that factors from all three 

categories affect the deceleration behaviour. Furthermore, this PhD research 

identified acceptable thresholds to detect deceleration events and categorise them 

into different comfort categories. Finally, it examined which factors increase the 

likelihood of an event to become very uncomfortable and might lead to dissatisfaction 

and distrust of AVs. 

8.1 Research objectives revisited 

The aim of this research has been fulfilled by accomplishing the individual objectives: 
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1. To identify factors affecting the deceleration behaviour and ride comfort. 

A literature review was carried out in Chapter 2 which introduces the human factors 

challenges regarding autonomous driving. It was found that current literature includes 

a number of studies about deceleration behaviour and comfort during braking, 

examining different affecting factors. Some studies focused on driving factors, others 

on kinematic ones but there is a lack of research in analysing situational factors and 

how they affect braking. Specifically, the kinematic factors that have been studied the 

most regarding ride comfort are the acceleration, the deceleration, the jerk, the TTC 

and the space headway. Considering the factors influencing the braking behaviour, 

the speed, the TTC as well as the age and gender of the driver were examined the 

most by the current literature. Existing analyses have employed different statistical 

techniques to reveal the relationship of those factors with the braking behaviour. 

Additionally, no research has considered all those factors in one analysis, requiring a 

multilevel analysis. Moreover, through the literature, there are inconsistent thresholds 

of how to detect a deceleration event and which deceleration events can be perceived 

as uncomfortable or comfortable. 

2. To describe and validate data collection approaches for analysing deceleration 

behaviour. 

An in-depth literature review on the data collection approaches that have been used 

to date is presented in Chapter 2. It was found that the most common methods to 

collect data for studying the driving behaviour are the simulators, the self-report 

methods such as the questionnaires, the controlled experiments, the FOTs and the 

naturalistic driving studies (NDS). Current literature has also used a combination of 

those methods. The advantages and disadvantages of the individual methods were 

also demonstrated. Moreover, there was extensive reporting on the two currently most 

used methods, i.e. the FOT and the Naturalistic driving studies (NDS). Their definition, 

their methodology and the most important FOT and NDS that have been conducted 

up to date were presented. 

3. To investigate and refine the data to improve the analysis quality. 
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The data, used in this research were obtained from two FOTs, i.e. the TeleFOT project 

and the OEM project and one NDS, the UDRIVE study. The three projects provided 

naturalistic driving data and gave the opportunity to examine normal driving. From 

these projects, 35 million observations were examined obtaining from 86 different 

drivers and 644 different trips. The driving behaviour was monitored constantly, with 

the aid of different sensors such as GPS, accelerometer, radar and cameras. The 

variables of our interest were obtained by mining them from the time series data, by 

calculating them via a developed algorithm and by viewing the videos. The data had 

a mixture of different road elements, road users and traffic conditions. The 

deceleration events were obtained from the datasets using an extracting algorithm 

developed in this study. The algorithm uses specific thresholds and three different 

criteria to extract the braking events and it resulted in 21,600 events. Primarily 

exploratory data analysis was conducted to those events to summarise their main 

characteristics, detect any outliers and improve the analysis quality. 

4. To develop the deceleration profiles. 

An analytic description of the methodology used to estimate the deceleration profiles 

was presented in Chapter 4. The examined equations were visually explained and 

their meaning in real life was given. To correctly calculate the braking profile, a curve 

fitting algorithm was developed and resulted in profiles with reasonable goodness of 

fit (average adjusted R2=0.85). Then, the most common profiles for the two parts of 

the braking event were found and presented thoroughly in Chapter 5. To explore which 

profiles were used in which situational scenarios, cluster analysis was applied. 

5. To extract the underlying relationship between influencing factors and both, 

braking behaviour and comfort level. 

The models that were used to extract the underlying relationship between influencing 

factors and both, braking behaviour and comfort level were described in detail in 

Chapter 4. Specifically, to examine all the influencing factors affecting the deceleration 

event, i.e. the deceleration value and the deceleration duration, the multilevel mixed-

effect models were applied. The multilevel models were selected since all the dataset 

had a nested structure, i.e. the deceleration events were nested into the trips and the 

trips were nested into the drivers and the nested data are not statistically independent. 
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Multilevel models can handle this particularity by taking into consideration the 

correlation among the data that belong to the same group. The outcomes of the 

multilevel models for all datasets are interpretable and some also agree with the 

existing literature (as discussed in Section 7.1). The results of the multilevel mixed 

effect models (presented in Chapter 5) showed that the kinematic (i.e. initial speed, 

TTC, THW) and the situational factors (e.g. reason for braking) affect the most the 

deceleration variables whereas the driver or the trip factors have a small or no effect 

on braking. In addition, the results indicate the importance of the structure of the data; 

i.e. the number of the drivers in the dataset and the number of the trips each driver 

conducts since it affects the level of the most parsimonious model. 

The relationships of the comfort level of braking events with kinematic, driver and 

situational factors were found by applying MMNL models (detailed description of the 

model in Chapter 4) since the dependent variable was categorical. The significant 

improvement on the goodness of fit of the models, which have 4 comfort categories 

compared to 3 or 2 comfort categories, revealed the importance of the classification 

of the data and of the selection of the appropriate thresholds for each comfort level. 

Also, the results underlined the importance of the car-following parameters (i.e. THW, 

TTC and space headway) on the braking comfort level which comes in line with the 

existing literature. 

6. To recommend for comfortable braking design. 

As discussed in Chapter 7, there are some recommendations for practice arising from 

the findings of this research. The coefficients of the models provided some new insight 

into the relationships of the influencing factors (i.e. kinematic, situational, driver and 

trip factors) with the deceleration event and the braking comfort level. The new 

information could be used for the development of more comfortable braking functions 

in the braking systems of conventional cars, semi or fully AVs. Moreover, the new 

relationships of the deceleration characteristics and their affecting factors could be 

helpful for the design of different road elements. The findings also supported the idea 

of personalised (semi-) AVs. Therefore, the acceptance and trust of the (semi-)AVs 

could be aggrandized leading to bigger market penetration. Moreover, the calculation 
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of the deceleration profiles is useful to generate braking that feels familiar, safe and 

comfortable and could possibly be used to enhance traffic simulation modelling.  

8.2 Contribution to knowledge 

This work has generated new qualitative and methodological outcomes which can be 

used to enhance future analyses. The main contribution to knowledge of this research 

are: 

1. The establishment of an event detection methodology and the estimation of 

comfortable braking profiles 

One of the methodological implications of this study is related to the detection of 

deceleration events. In the literature, there are different methods and thresholds 

that were applied to detect a deceleration event. However, this study presents a 

detection method that takes into consideration three different criteria to be more 

accurate. This can be widely used to detect the deceleration events in future 

studies and by making some small alterations to detect events from other important 

manoeuvres. Moreover, the precise detection of the beginning and the end of the 

event plays a crucial part in the estimation of the braking profiles. 

This research has calculated the equations that represent the deceleration profiles 

for the two parts of the braking (i.e. before the maximum deceleration and after 

that). Moreover, the most used deceleration profile which is assumed to be 

perceived as the most comfortable was estimated. The drivers at the first part of 

braking prefer to brake smoothly at the beginning and then proceed to harder 

braking. Concerning the second part, fast release of the brake was observed 

followed by a slower deceleration change. 

2. The extraction of the relationships between a range of factors and braking. 

This research has examined thoroughly the relationship of the kinematic, 

situational, driver and trip factors with the deceleration characteristics (i.e. 

deceleration value and deceleration duration). The outcomes of this analysis 

advance the understanding of what affects the deceleration behaviour and how. 
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Specifically, the kinematic factors and especially the initial speed affect significantly 

the braking. Increase of the initial speed results to harder braking. Moreover, the 

situational factors influence the braking event. Particularly, the reason for braking, 

road type, the driver situation before the braking are statistically significant factors. 

On the other hand, the driver factors resulted in having no significant effect on the 

deceleration event. 

These findings support further the event-based analysis of the manoeuvres. Within 

the literature, there are many studies that have analysed the braking in a specific 

road element such as signalised crossed intersection or roundabout. Although, 

those studies are missing the situational factors (i.e. the reason for braking and the 

road type) that actually affect the braking. This work also underlined the importance 

of using the appropriate statistical model to analyse naturalistic driving data. The 

most common structure of those data is the hierarchical structure so that each 

driver conducts many trips and each trip contains many events and the most 

suitable methodological approach is the use of multilevel modelling. The multilevel 

modelling can explore the effects of the influencing factors by taking into account 

the fact that events in the same trip or by the same driver have some 

dependencies. 

3. The modelling of the comfort level for drivers while braking 

Another methodological aspect of the deceleration behaviour analysis that has 

been highlighted in this work is the classification of the deceleration events into 

comfort level categories. Specifically, the selection of the deceleration value and 

the jerk (i.e. deceleration derivative) as the determinants for the classification and 

the appropriate thresholds to create the comfort categories are of crucial 

importance since there are no widely used thresholds in the literature. 

From modelling the comfort level of the deceleration events applying discrete 

choice modelling, the relationship between the influencing factors and the comfort 

level was obtained. Also, the kinematic factors such as THW, the TTC and the 

initial speed affect significantly the comfort level. Smaller THW and TTC cause 

more uncomfortable deceleration events. The relationship between the reason for 

braking and the comfort level was that if the braking happened because of the 
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existence of a pedestrian the comfort level was low (i.e. uncomfortable braking 

event). Finally, the driver characteristic and specifically the age and gender were 

found to affect the comfort level supporting the idea of personalised (semi-)AVs. 

8.3 Limitations of the research 

The research presented in this thesis is not without limitations. It includes data and 

methodological limitations, the most important of which are outlined below: 

• Lack of data from autonomous vehicles: Having data from AVs would be 

ideal for this research. It would reveal when and why passengers of AVs feel 

unease. Particularly, it could be investigated, which values of deceleration 

and jerk make passenger uncomfortable when braking. Moreover, it could 

verify the results of this study concerning the relationship of the influencing 

factors with the comfort levels of deceleration. 

 

• Inaccuracies of situational factors: The situational factors and specifically 

traffic density and the reason for braking (i.e. roundabout, junction, pedestrian 

crossing and dynamic obstacle) were obtained by watching the videos at the 

moment of the event for the OEM and TeleFOT datasets. This might result in 

some inaccuracies since there might be multiple reasons why a driver brakes 

which might not be captured by the video. Moreover, the estimation of traffic 

density was made empirically by calculating the cars on the video frame at 

the moment of braking and taking into consideration the road configuration, 

since different road configuration has different road capacity. It should be 

noted that for the TeleFOT dataset road type was also estimated empirically, 

hiding the risk of inaccuracies to this variable too. 

 

• Omitted variables: The models that have been employed did not consider a 

number of potentially important factors affecting deceleration. Such factors 

are the weather, light conditions, time of the day, the friction between the tyres 

and the road surface (Z. Wu et al., 2009; Paleti et al., 2010; Reschka et al., 

2012; Xiong and Boyle, 2012). The inclusion of these factors in the analysis 

could potentially describe the deceleration characteristics and the comfort 
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level more explicitly and hence they could have improved the resulted 

models. Moreover, there is the risk that some of the variables that were found 

to be statistically significant, to be erroneously estimated. 

 

• Limited driver’s data: The only human factors that were accessible and 

were used in this study are; the age, the gender, the driver experience (only 

for the TeleFOT dataset) and the driver reaction before the event (obtained 

from the videos for the TeleFOT and the OEM datasets). However, there are 

many other human factors such as education level, income level, occupation 

and others that might affect the deceleration behaviour. Moreover, according 

to the literature, factors like fatigue and the sentimental state of the driver (i.e. 

the mood) at the time of the braking could also affect the deceleration 

behaviour. 

 

• Combination of motorways with dual carriageways:  All the roads of the 

Strategic Road Network in the United Kingdom include commercially and 

socially significant routes. However, they have different speed limits, 

geometry, traffic characteristics and capacity and they should be analysed 

separately. Although, within this study, the dual carriageways and the 

motorways were combined as one category since the extracted variable from 

the datasets was the speed limits of the travelled road and both motorways 

and dual carriageways have the same limit (i.e. 70 mph=112 km/h). 

 

• Variable selection: For the classification of the deceleration events into the 

comfort categories, the deceleration value and the jerk variables were 

utilized. If more or different variables were added for the classification, the 

results might have been improved but the analyses would have been more 

complicated. 

8.4 Further research 

The work that has been presented in this research, i.e. the event-based approach and 

the profile calculation can be extended and can contribute to the analysis of other 
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important manoeuvres. The method is flexible and can be easily transferred. 

Considering the limitations that have been previously described, there are several 

improvements that can be made in the future. 

The statistical models and the clustering method rely on the quality of the data. 

Therefore, accuracy is very important to gain the correct results. In the future, image 

recognition and image processing techniques should be employed in order to extract 

the desired data from the videos. Specifically, with adequate methods such as image 

recognition techniques, the reason for braking, the driver reaction and the traffic 

density could be mined from the videos more accurate and faster. Moreover, future 

research should include more information about the drivers (e.g. years of driving, 

obedience to traffic rules, education level) and analyse the effect of these new factors 

on deceleration behaviour.  

Future research should also investigate more factors that might influence the 

deceleration behaviour. The road, weather and light conditions, as well as the friction 

between the tyres and the road surface, are some of the factors that should be 

investigated. Furthermore, more accurate data for the road types should be employed 

to consider each road type separately since each road type has its own unique 

characteristics. Performing different braking analysis depending on the road type 

would be interesting and might reveal that each road type causes a totally different 

deceleration behaviour. 

Regarding the comfort level of the deceleration events, a study, where passengers in 

an AV could report how comfortable and safe they feel at each braking, should be 

conducted. Another suggestion would be to measure indicators, such as heart rate, 

sweat, facial expression etc. that directly imply the level of discomfort. That way data 

that represent the comfort level can be obtained. Combining those data with the 

kinematic variables that were used in this study for the comfort level classification, 

more precise estimation of what affects the comfort level of the passengers inside an 

AV while braking could be achieved. In addition, more classification techniques such 

as Neural Networks and Naïve Bayes Classifier could be employed, and the results 

could be compared to reveal the best technique.  
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Finally, the literature supports that there are other manoeuvres apart from deceleration 

that play a crucial role in the comfort level of the passengers (Elbanhawi et al., 2015; 

Bellem et al., 2018). Acceleration and lateral lane change are two of them and the 

methodology that was developed within this study can be used for the detailed analysis 

of these manoeuvres. It would be interesting to conduct a study with fully AVs. Through 

this, it would be possible to confirm which manoeuvres make the passenger most 

uncomfortable and to focus on them in future research. 
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Appendix B 

Tables presenting the LR tests and the results of some other good models from 

multilevel modelling (Chapter 5) 

OEM dataset 

LR test for the 2-Level random intercept and random slope models of deceleration for 
OEM data 

Model 
log-

likelihood 
LR-

TEST 

Degree of 
freedom 

Difference 

Chi 
probability 

Better 
model 

AIC BIC 

TRIP LEVEL        

random intercept 
model 

-1200.68         2433.3 2520.2 

random intercept 
+slope               

Initial speed -1200.45 0.46 2 5.99 no 2434.9 2527.2 

Vehicle C -1199.88 1.606 4 9.49 no 2433.7 2526.1 

Pedestrian 
crossing -1200.31 0.738 6 12.59 no 

2434.6 2526.9 

DRIVER LEVEL        

random intercept 
model -1195.69         

2419.4 2495.4 

random intercept 
+slope           

    

Initial speed -1195.23 0.93 2 5.99 no 2420.4 2501.9 

Urban -1195.65 0.078 2 5.99 no 2421.3 2502.7 

Pedestrian 
crossing -1195.42 0.532 2 5.99 no 

2420.8 2502.3 

Vehicle C -1191.73 7.912 2 5.99 yes 2413.5 2494.9 

 

LR-test between the 3-Level and the 2-Level random intercept models for deceleration 
(OEM dataset) 

random intercept 3-
level model 

log-
likelihood 

LR-
TEST 

Degree of 
freedom 

Chi 
probability 

Is the 3-
level a 
better 
model? 

AIC BIC 

3-LEVEL (driver/trip) -1194.16         2418.3 2499.8 

 2-level(trip) -1200.68 13.04 1 3.84 yes 2433.3 2520.2 

2-level(driver) -1195.69 3.06 1 3.84 no 2419.3 2495.4 
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Result of the 2-Level random intercept models for OEM dataset 

 Trip Level Driver Level 

Deceleration_max Coef. z P>z Coef. z P>z 

Initial_speed -0.0210 -7.87 0.00 -0.0200 -7.83 0.00 

Vehicle A 0.1690 4.27 0.00 0.1650 5.52 0.00 

Vehicle C 0.1990 5.42 0.00 0.1800 6.18 0.00 

Urban 0.1000 2.87 0.00 0.1120 3.99 0.00 

Roundabout 0.1630 3.61 0.00 0.1660 3.72 0.00 

Junction 0.1220 3.3 0.00 0.1150 3.11 0.00 

Pedestrian crossing -0.1840 -2.17 0.03 -0.1930 -2.29 0.02 

Other 0.1510 3.79 0.00 0.1550 3.92 0.00 

Driver_reaction_1 0.0950 3.28 0.00 0.0980 3.36 0.00 

Traffic_light 0.1350 3.55 0.00 0.1370 3.59 0.00 

Car_stops -0.1920 -6.94 0.00 -0.1920 -6.95 0.00 

Age_old 0.1060 2.84 0.00    
Age_young 0.0870 2.28 0.02    
Intercept -2.6470 -38.67 0.00 -2.5890 -39.65 0.00 

Random-effects 
Parameters 

TripID: Identity 
Estimate 

DriverID: Identity 
Estimate 

Var (Intercept) 0.01 0.0089 

Var (Residual) 0.235 0.2381 

Level TripID   DriverID   
ICC 0.041   0.036   
Obs 1689   1689   
ll(model) -1200.68   -1195.69   
df 16   14   

LR-test for the 3-Level null model of duration for OEM dataset 

3-level 
log-
likelihood 

level ICC model 
Log-
likelihood 
of 2-level 

LR-
TEST 

Degree 
of 
freedom 

Chi 
prob. 

Better 
model 

model1 
(driver-
trip) 

-1448.19 

driver_ 
id 0.001 

model1 
(driver level) 

-1492.41 
88.44 1 3.84 yes 

trip_id 0.126 
model2 
 (trip level) 

-1448.19 
0.000 1 3.84 no 

    null -1494.5 92.61 2 5.99 yes 
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TeleFOT dataset 

Results of the best Linear regression model of the deceleration for the TeleFOT dataset 

Deceleration Coef. t P>t 

Initial speed -0.025 -7.12 0.000 

Traffic light -0.104 -2.76 0.009 

Roundabout 0.177 3.42 0.001 

Junction 0.140 3.00 0.003 

Pedestrian crossing -0.029 -0.28 0.779 

Other 0.105 2.28 0.023 

Car stops -0.227 -6.76 0.000 

Driver reaction 1 0.142 3.63 0.000 

Intercept -2.244 -40.58 0.000 

Adj R-squared 0.10 

LR test for the 2-Level null models of deceleration value for TeleFOT dataset 

2-level 
log-
likelihood 

ICC LR-TEST 
Degree of 
freedom 

Chi 
probability 

Better 
model 

null -455.82           

model1 (driver level) -453.222 0.018 5.19656 1 3.84 yes 

model2 (trip level) -453.405 0.022 4.83006 1 3.84 yes 

LR test for the 3-Level null models of deceleration value for TeleFOT dataset 

3-level 
log-
likelihood 

level ICC model 
Log-
likelihood 
of 2-level 

LR-
TEST 

Degree 
of 
freedom 

Chi 
probability 

Better 
model 

model1 
(driver-
trip) 

-452.975 

driver 
_id 0.013 

model1 
(driver 
level) 

-453.22 0.49 1 3.84 no 

trip_id 0.023 
model2   
(trip level) 

-453.41 0.86 1 3.84 no 

    null -455.82 5.69 2 5.99 no 

Results of the 2-Level random intercept models for the deceleration for the TeleFOT 
dataset 

  Trip level Driver level 

Deceleration Coef. z P>z Coef. z P>z 

Initial speed -0.028 -7.88 0.00 -0.027 -7.64 0.00 

Traffic light -0.090 -2.30 0.02 -0.099 -2.53 0.01 

Roundabout 0.187 3.67 0.00 0.197 3.86 0.00 
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Junction 0.154 3.33 0.00 0.159 3.44 0.00 

Pedestrian crossing -0.024 -0.23 0.82 -0.025 -0.24 0.81 

Other 0.106 2.31 0.02 0.122 2.67 0.01 

Rural 0.060 2.05 0.04       

Car stops -0.242 -7.27 0.00 -0.239 -7.21 0.00 

Driver reaction 1 0.152 3.96 0.00 0.155 4.02 0.00 

Intercept -2.241 -39.51 0.00 -2.224 -38.96 0.00 

Random-effects 
Parameters 

Estimate Estimate 

TripID: Identity   

var(Intercept) 0.007 0.006 

var(Residual) 0.146 0.148 

ICC 0.046     0.0393     

Obs 837   837    

ll(model) -396.651   -397.616    

df 12     11     

 

LR test for the 2-Level random intercept and random slope models of deceleration value 
for TeleFOT dataset 

Model 
log-
likelihood 

LR-TEST 
Degree of 
freedom 
Difference  

Chi 
probability 

Better 
model 

AIC BIC 

TRIP LEVEL        

random intercept 
model 

-396.678         815.35 867.38 

random intercept 
+slope 

              

Initial speed -393.162 7.03216 2 5.99 yes 809.49 861.51 

Traffic light -387.172 19.0105 2 5.99 yes 798.34 855.10 

Junction  -396.647 0.06076 2 5.99 no 817.29 874.05 

Other  -396.057 1.24074 2 5.99 no 816.11 872.87 

Car stops -392.158 9.03954 2 5.99 yes 808.32 865.07 

Rural -396.429 0.49674 2 5.99 no 816.86 873.62 

Traffic light and Car 
stops 

-385.271 
22.8143 4 9.49 yes 

796.54 858.03 
3.802* 2 5.99 no 

DRIVER LEVEL        

random intercept 
model 

-395.142         814.28 871.04 

random intercept 
+slope 

              

Traffic light -392.784 4.717 2 5.99 no 811.64 873.05 

Other  -394.331 1.62252 2 5.99 no 814.66 876.15 

Rural  -395.127 0.03028 2 5.99 no 816.25 877.74 

Car stops -394.875 0.5338 2 5.99 no 815.75 877.2 
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     * Compared with the random intercept and random slope for traffic light model 

 

Plots representing the driver and trip effects in the duration for the 2-Level null models for 
TeleFOT dataset 

The LR-test comparing the multi-Level null models and the single model of the duration 
for the TeleFOT dataset 

2-level 
log-

likelihood 
ICC Models 

LR-
TEST 

Degree of 
freedom 

Chi 
probability 

Better 
model 

null -574.638            

model1 
(driver 
level) 

-555.979 0.068 
 

37.31 1 3.84 yes 

model2 
(trip 
level) 

-541.225 0.112 
 

66.82 1 3.84 yes 

model1 
(driver-
trip) 

-541.173 

driver
_id 

0.012 
model1 
(driver level) 

29.61 1 3.84 yes 

trip_ 
id 

0.112 
model2 
(trip level) 

0.10 1 3.84 no 

 null 66.93 2 5.99 yes 
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LR test for the trip-Level random intercept and random slope models of duration for 
TeleFOT dataset 

random intercept 
2-level model 

log-
likelihood 

LR-
TEST 

Degree of 
freedom 

Chi 
probability 

Better 
model 

AIC BIC 

2-LEVEL (trip) -217.86         461.72 523.33 

random intercept 
+slope               

Age_old -215.013 5.6946 2 5.99 no 458.03 524.38 

Stop_at_car_block -217.84 0.0406 4 9.49 no 463.68 530.03 

Rural -217.433 0.8532 6 12.59 no 462.87 529.22 

Driver reaction -217.669 0.3826 6 12.59 no 463.34 529.69 

 

Combination dataset 

LR-test comparing the 2-Level random intercept against the 2-Level random intercept and 
random slope models for deceleration value (Combination Dataset) 

Model 
log-
likelihood 

LR-Test 
Degree of 
freedom 
Difference  

Chi 
prob. 

Better 
model 

AIC BIC 

TRIP LEVEL        

Random intercept 
model 

-1699.92         3427.8 3510.5 

random intercept 
+slope 

              

Trip distance -1699.29 1.248 2 5.99 no 3428.6 3517.2 

Car_stops -1695.97 7.894 2 5.99 yes 3421.9 3510.5 

Pedestrian crossing -1697.15 5.54 2 5.99 no 3424.3 3512.9 

Vehicle C -1696.32 7.182 2 5.99 yes 3422.6 3511.3 

DRIVER LEVEL        

Random intercept 
model 

-1693.29         3416.5 3505.2 

random intercept 
+slope 

              

Trip distance -1691.40 3.784 2 5.99 no 3414.8 3509.3 

Pedestrian crossing -1692.58 1.398 2 5.99 no 3417.2 3511.7 

Vehicle C -1684.57 17.436 2 5.99 yes 3401.2 3495.7 

 

Results of the best 2-Level model for deceleration (Combination dataset) 

Deceleration Coef. z P>z 

Initial speed -0.0004 -4.83 0.00 

Traffic light -0.0534 -2.58 0.01 
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Trip distance -0.0115 -3.71 0.00 

Roundabout 0.1142 3.96 0.00 

Junction 0.0983 4.31 0.00 

Pedestrian crossing -0.1869 -3.02 0.00 

Rural -0.0441 -2.24 0.03 

Other 0.1156 4.30 0.00 

Car_stops -0.1637 -8.41 0.00 

Vehicle A 0.1375 5.26 0.00 

Telefot 0.2236 6.01 0.00 

Vehicle C 0.1782 4.20 0.00 

Intercept -2.5190 -72.75 0.00 

Random-effects 
Parameters 

Estimate 

DriverID: Independent  

var(Vehicle C) 0.012 

var(Intercept) 0.006 

var(Residual) 0.199 

ICC 0.029   
Obs 2715   
ll(model) -1684.579   
df 16   

LR-test of the 3-Level against the 2-Level random intercept models for deceleration 
(Combination dataset) 

random intercept 3-level 
model 

log-
likelihood 

LR-TEST 
Degree of 
freedom 

Chi 
probability 

Better model 
the 3-level 

3-LEVEL (driver/trip) -1685.99         

 2-level(trip) -1699.92 27.856 1 3.84 yes 

2-level(driver) -1693.29 14.610 1 3.84 yes 

 

UDRIVE dataset 

LR-test comparing the 2-Level and the 3-Level against the single-Level for deceleration 
(UDRIVE dataset) 

Model df AIC BIC ICC 
Log-

Likelihood 
Compa-

rison 
Chi 

prob. 
L.R 
test 

Better 
model 

Intercept 
Only (1) 2 12707.3 12721.0  -6351.6 

 
 

 
 

driver_ 
level (2)   3 12554.8 12575.4 0.0373 -6274.4 

(1 vs 2) 3.84 154.4 Yes 
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trip_  
level (3) 3 12599.8 12620.4 0.0455 -6296.9 

(1 vs 3) 3.84 109.5 Yes 

three_ 
level (4) 

4 12536.1 12563.6 

ICCdriver= 
0.0325 
ICCtrip= 
0.0184 

-6262.0 

(1 vs 4) 5.99 179.1 Yes 

(2 vs 4) 3.84 20.7 Yes 

(3 vs 4) 3.84 65.68 Yes 

 

LR-test for multilevel models for Duration (UDRIVE dataset) 

Model df AIC BIC ICC logLik Comparison 
L.Rati
o test 

p-
value 

interceptOnly (1) 2 14687.2 14700.9  -7341.61    

driver_level (2)   
3 14524.7 14545.3 0.037 -7259.36 

1 vs 2 
164.5 

<.000
1 

trip_level (3) 
3 14563.6 14584.2 0.045 -7278.82 

1 vs 3 
125.9 

<.000
1 

three_level (4) 4 14496.2 14523.7 

ICCdriver

= 
0.0325 
ICCtrip= 
0.0184 

-7244.12 

1 vs 4 
194.9

8 
<.000

1 

2 vs 4 
30.48 

<.000
1 

3 vs 4 
69.4 

<.000
1 

LR-test of the 2-Level random intercept and random slope models for duration in 
Statistical analysis I (UDRIVE) data 

Model df AIC BIC ICC Log-Lik. 
Compari

son 
L.Ratio 

test 
p-value 

Linear model (1) 
21 2739.1 2876.2  -1347.5 

 
  

Driver-Level random 
intercept model (2) 21 2716.4 2847.3 0.019 -1337.2 

 
  

Driver-Level random 
intercept and slope for 
max_jerk and 
car_stops variables 
model  (3) 26 2656.9 2819.1 0.178 -1302.5 

(2 vs 3) 

69.44 <.0001 

Trip-Level random 
intercept model (4) 23 2726.3 2869.8 0.031 -1340.1 

(1 vs 4) 
14.8 <.0001 

Trip -Level random 
intercept and slope for 
max_jerk and 
car_stops variables 
model (5) 28* 2511.3 2684.9 0.224 -1227.7 

(4 vs 5) 

225.0 <.0001 
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Three-Level random 
intercept model (6) 22 2715.5 2852.7 

0.017 
&0.014 -1335.8 

 
  

Three-Level random 
intercept and slope 
model (7) 32* 2511.4 2611.0 

0.065 
&0.43 -1223.7 

(6 vs 7) 
224.0 <.0001 

* Add the insignificant variables in order to have the same explanatory variables and to perform 
the LR test 

 


