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a b s t r a c t

Humans live among other humans, not in isolation. Therefore, the ability to learn and behave in multi-
agent environments is essential for any autonomous system that intends to interact with people. Due
to the presence of multiple simultaneous learners in a multi-agent learning environment, the Markov
assumption used for single-agent environments is not tenable, necessitating the development of new
Policy Learning algorithms. Recent Actor–Critic algorithms proposed for multi-agent environments,
such as Multi-Agent Deep Deterministic Policy Gradients and Counterfactual Multi-Agent Policy
Gradients, find a way to use the same mathematical framework as single agent environments by
augmenting the Critic with extra information. However, this extra information can slow down the
learning process and afflict the Critic with Curse of Dimensionality. To combat this, we propose a
novel Deep Neural Network configuration called Deep Multi-Critic Network. This architecture works
by taking a weighted sum over the outputs of multiple critic networks of varying complexity and
size. The configuration was tested on data collected from a real-world multi-agent environment. The
results illustrate that by using Deep Multi-Critic Network, less data is needed to reach the same level
of performance as when not using the configuration. This suggests that as the configuration learns
faster from less data, then the Critic may be able to learn Q-values faster, accelerating Actor training
as well.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The main purpose of Policy Learning is teaching a desired
behaviour to an agent. Examples are training delivery drones,
robot firemen or Artificially Intelligent stockbrokers. The most
popular framework for training agents is Reinforcement Learning.
The autonomous agent, either physical (a robot) or virtual (a
software), exists in some environment it can influence by acting
intelligently. The environment provides positive (or negative)
feedback to the agent after taking an action. This feedback helps
the agent learn how to act in order to get the most positive
reward. Teaching a dog (the agent) how to sit on command (a be-
haviour) by giving it treats (reward) after a successful completion
illustrates the important concepts introduced above. Recently,
Reinforcement Learning enabled the learning of the game Go, a
board game with a very large number of valid board configura-
tions, from scratch without any human expert knowledge (Silver
et al., 2017). Going beyond Go and also mastering chess and
Japanese chess (Silver et al., 2018), Reinforcement Learning may
be leading us closer to Artificial General Intelligence, a type of
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Artificial Intelligence capable of generalising across and adapting
to a variety of different tasks, even ones not foreseen by its
creator (Goertzel, 2014). In addition to board games, Reinforce-
ment Learning has been used to learn how to play video games
better than humans (Mnih et al., 2015) and to teach a robot hand
to mimic actions as demonstrated by a human (Finn, Levine, &
Abbeel, 2016).

For solving Reinforcement Learning problems with a single
learning agent, many algorithms have been developed, such as Q-
learning (Watkins & Dayan, 1992), deep Q-learning
(Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, & Ried-
miller, 2013), Trust Region Policy Optimisation (Schulman, Levine,
Abbeel, Jordan, & Moritz, 2015), and Policy Gradients. Policy
Gradient (PG) methods are a family of Reinforcement Learning
algorithms in which a policy π parametrised by θ is learned
directly from experience (Sutton & Barto, 2018). Intuitively, PG
methods try to estimate in which direction the policy parameter
θ should change in order to make the policy better (Silver et al.,
2014). The downside of plain PG methods is high variance, owing
to the varying length of episodic tasks and post-episode policy
updates (Sutton & Barto, 2018); to reduce variance, Actor–Critic
methods train a Critic in addition to the Actor (the Policy in Policy
Gradient methods) (Konda & Tsitsiklis, 2000). While the Actor
estimates the direction of change for policy parameter θ , the
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Critic estimates the appropriate step size in that direction to make
sure the new updated policy is better than before. In this sense,
the Critic guides the Actor in learning the policy by providing
feedback on how much should the Actor change its policy in the
proposed direction.

Although many Policy Learning algorithms exist for environ-
ments with a single learning agent, most environments we en-
counter are inhabited by many learning agents. Autonomous
vehicles should learn to drive among human drivers, robot fire-
men must coordinate with their human colleagues and delivery
drones in a fleet should learn to adapt their delivery routes
on the fly. However, few algorithms have been developed for
Multi-Agent Reinforcement Learning (MARL), the most notable
being Multi-Agent Deep Deterministic Policy Gradients (MAD-
DPG) (Lowe et al., 2017) and Counterfactual Multi-Agent (COMA)
Policy Gradients (Foerster, Farquhar, Afouras, Nardelli, & White-
son, 2018). Both algorithms are based on Actor–Critic meth-
ods, but with an augmented Critic called the Centralised Critic.
In a regular Actor–Critic algorithm, a Critic has access to the
same local information as the Actor. In MADDPG and COMA, the
Centralised Critic is able to see what every other Actor in the
environment is doing as well. Because a Centralised Critic can
see other Actors, it is able to estimate the size of the gradient
step with greater accuracy. Moreover, the Critic is necessary only
for training; once the Actors have been trained, the Critic can be
discarded and the Actor should be successful in solving their task
by using local information only.

However, learning from the local observations of all agents
simultaneously can make the Critic difficult to train. First, the
Critic must process data whose dimensionality grows linearly
with the number of agents. With the number of agents N and
the size of a local observation O, the Critic’s input is N · O. As
the Critic’s model grows larger and more complex, so will the
amount of training data needed, afflicting the Critic with Curse
of Dimensionality (Buşoniu, Babuška, & De Schutter, 2010).

Second, while the input size increases, the rate of input data
generation for the Critic remains constant. Whether there are 1,
1000 or 1 000000 agents in the system, data is generated at the
same rate as the Critic needs to process all local observations at
once. This can slow down training speed even further.

Finally, knowledge reuse can be difficult with Centralised Crit-
ics. For example, consider a company training a fleet of 1000
cooperating delivery drones. After training, the company has
1000 trained, ready-to-go drones and Critics that may be used to
train another 1000 drone fleet. However, if the company must
increase their fleet size to 2000, then there is no guarantee
that the knowledge stored in the old Critic can be used for
training. Theoretically, the company could use the old Critic to
train another independent 1000 drone fleet, but if they require
a cooperating fleet of 2000 drones, then additional training is
required nonetheless.

In order to alleviate the effects of Curse of Dimensionality
when training these Centralised Critics, we propose a novel Deep
Neural Network architecture called Deep Multi-Critic Network
(DMCN). The architecture is motivated by noting that the Critic
may not have to focus its attention on every other agent in
the system at all times. By creating a system of Critics that to
learn features of different size and complexity, their combina-
tion should be flexible enough to learn even in the presence
of little high-dimensional data and alleviate the effects of Curse
of Dimensionality. Moreover, as the Critics vary in complexity,
the representations learned are different and place emphasis on
different agents. DMCN’s output is a weighted sum over the
outputs of many Critics of different complexity. We hypothesise
that DMCN works because of the different capacities of Critics
that give it more flexibility when learning from little available
data.

The Baseline model is the simplest Deep Neural Network:
DMCN is a superset or network as it contains the Baseline model
as one Critic. For validation, we compare the performance of
DMCN vs. Baseline by using data collected from a multi-agent en-
vironment. In addition, we compare DMCN to Multi-Agent Deep
Deterministic Policy Gradients and Counterfactual Multi-Agent
Policy Gradients critics. If the Critic converges earlier during
training, we allow the Actor to take properly sized gradient steps
in the correct direction, accelerating its convergence as well.

The rest of the paper is organised as follows. Section 2 in-
troduces the concept of ‘centralised training, decentralised ex-
ecution’ and MARL algorithms MADDPG and COMA. Section 3
describes the proposed implementation of DMCN and Section 4
presents experimental results and discussion. Conclusion and
future work are discussed in Section 5.

2. Related work

2.1. Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning problems are often mod-
elled as partially observable Markov Games consisting of:

• N agents,
• set of states S, rewards R
• collection of action sets Ai, i ∈ {1, 2, . . . ,N} and observa-

tions Oi
• state transition function T : S×A1×A2×· · ·×AN → S, which

determines the probability of the next state p(s′|s, A1, A2,

. . . , AN ) based on the current state s and the actions taken
by all agents,

• private observations for each agent oi : S → Oi,
• a reward function for each agent by ri : S × A1 × A2 × · · · ×

AN → R

The policy of an agent is πi : Oi × Ai → [0, 1], which
determines the probability of taking action a ∈ Ai after receiving
observation o ∈ Oi. The goal of agent i is to learn a policy πi such
that

argmax
πi

Eai∼πi [Gi,t =

T∑
j=0

γ jri,j(s, a1, a2, . . . , πi(oi), . . . , aN )],

where Gi,T is agent i’s expected discounted return over the time
horizon T , actions of other agents j ̸= i are determined by their
policies πj, and ri,j is immediate reward in timestep j for agent i.

2.2. Q-Learning and Deep Q-Learning in multi-agent environments

In Q-Learning and Deep Q-Learning, the optimal Q function

Q π (s, a) = E[Gt |St = s, At = a] = E[Rt + γGt+1|St = s, At = a]
(1)

is learned, from which the optimal policy is derived. In Deep Q-
Learning, the recursive form of the optimal Q function is used
to create an update rule to train a deep neural network with
parameters θ :

L(θ ) = E[(Q (s, a|θ ) − y)2], y = r + γ max
a′

Q (s′, a′
|θ ). (2)

Applying these concepts in multi-agent environments yields In-
dependent Q Learners, where the Q function of each agent is
conditioned only their own actions:

Q πi (s, a) = E[Gt |St = s, At = ai] = E[Rt + γGt+1|St = s, At = ai].
(3)
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However, it is not reasonable to assume that the optimal Q
function is not dependent on the actions of others. If the Q
function learned by Independent Q Learners is suboptimal, then
so is the policy derived from this function. Moreover, as multiple
agents are learning (changing their policies) simultaneously, the
Markov assumption is violated from the perspective of each indi-
vidual learner (Laurent, Matignon, & Fort-Piat, 2011), losing any
convergence guarantees of the Q learning algorithm.

In the paradigm of ‘centralised training, decentralised execu-
tion’ (Foerster et al., 2018; Lowe et al., 2017), Q functions are
learned centrally: by conditioning each Q function on the actions
of all N agents

Q πi (s, a1, a2, . . . , ai, . . . , aN )

= E[Gt |St = s, At = (a1, a2, . . . , ai, . . . , aN )], (4)

the Markov property is preserved and the optimal Q values can
be learned, although the Q function can be used for deriving the
optimal policy when actions of others are known. However, if the
Q function is used as part of an Actor–Critic method, where the
Q function determines the length of the gradient step, it can be
used to train agents capable of acting on their own by following
the gradient

∇θi J(θi) = E[∇θi logπθi (a|s)Q
πi (s, a1, a2, . . . , ai, . . . , aN )]. (5)

After training, we are left with Actors πi(a|s) capable of acting
without additional information and Critics Q πi (s, a1, a2,
. . . , ai, . . . , aN ), which can be discarded. Works utilising this
paradigm include Lowe et al. (2017) and Foerster et al. (2018).

2.3. Attention mechanisms in Reinforcement Learning

Many different attention mechanisms have been used in
(Multi-Agent) Reinforcement Learning settings to combat Curse
of Dimensionality.

A technique for incorporating attention mechanisms into the
Deep Recurrent Q-Network (DRQN) algorithm, used for Reinforce-
ment Learning of Atari games, was developed by in Sorokin,
Seleznev, Pavlov, Fedorov, and Ignateva (2015). The authors were
motivated by a desire for faster training and testing times. An
additional benefit of using attention was the ability to visu-
alise regions of input the learning agent focused on, bringing
an additional dimension of interpretability to the approach. At
the heart of the approach lies the composition of 3 networks:
the Convolutional Neural Network (CNN) that extracts feature
maps from input, the attention network which calculates the
context vector from the outputs of the CNN and the previous hid-
den state of the policy network, and a recurrent policy network
that outputs state–action values Q (s, a). The context vector may
be calculated in two different ways, creating ‘‘soft’’ and ‘‘hard’’
attention models, respectively.

In similar spirit, Choi, Lee, and Zhang (2017) set out to im-
prove sample efficiency in a RL setting by introducing Multi-focus
Attention Networks (MANets). Their approach is usable in both
single and multi-agent environments with little modifications.
For the multi-agent setting, similarly to attention mechanisms
used in Neural Translation, a key, query and value vector are de-
rived from the agents’ observations. Weights are then calculated
to assess how useful the observations are for each agent. Then, a
weighted sum of value vectors, called the communication feature,
is concatenated with the value vector itself, which is used as input
to the Q -value network.

Another attention mechanism is proposed by Iqbal and Sha,
combined with an RL algorithm to create Multiple-Actor–
Attention-Critic (MAAC) (Iqbal & Sha, 2018). The approaches are
quite similar in that both follow the same pattern of calcu-
lating keys, queries and values. While in MANets, these were

Table 1
The similarities and differences of MANet and MAAC attention mechanism
implementations.
Parameter description MANet MAAC

Embedding ci = ff (si) ei = gi(ai, oi)
Key Keyi = Wkeyci Keyj = Wkej
Query ai = Waci qi = Wqei
Value Vali = fv(Wvalci) vj = h(Vgj(oj, aj))
Score Ai

j ∝ exp(aiKeyTj ) αj ∝ exp((Wkej)TWqei)

Contribution hi =
∑

j ValjA
i
j xi =

∑
j̸=i αjvj

Agent i Q -function input (Vali, hi) (ei, xi)

calculated from extracted features, in MAAC they are calculated
from agent embeddings. Although many calculated values are
similar, there are subtler differences between the approaches.
For example, MANet extracts features from private observations
using the same function while each agent has its own embedding
function in MAAC. The commonalities and differences of the two
approaches are illustrated in Table 1.

3. The proposed implementation of Deep Multi-Critic Network

3.1. Challenges in focusing on different agents

Although the idea of focusing only on the relevant features
when making a decision is simple, implementing it is not. The
main difficulties arise from the combinatorial explosion of feature
combinations to select and the inability of Deep Neural Networks
to work with inputs of varying size.

First, the number of possible agent selections grows exponen-
tially with the number of agents. With N agents, the total number
of selections is 2N . In a soccer game with 22 players, this leads
to over 4 · 106 combinations, which renders exhaustive search
impractical. Approximate solutions, such as Genetic Algorithms,
can still be unusable as the algorithm should be ran for each
training sample to have a sample-based selection of players for
every training data point. Should the number of data points be
approximately 104 and the Genetic Algorithm runs for 2 s, then
it will take roughly 5.5 h for a single iteration over training data.

Second, it is difficult to make use of varying number of in-
put features. As Central Critics are often Deep Neural Networks
(DNNs), it is not straightforward to use DNNs with inputs of vary-
ing size. Technically, Recurrent Neural Networks (RNNs) should
be able to learn from sequences of various lengths. However, as
the input of Central Critics is either the whole system state or
concatenated local observation vector, then creating a time series
based on this vector contains no true global temporal relationship
in the sequence. Observing the features of agents 1, 2 and 3
should produce the same selection result no matter the order they
are observed in. Moreover, the RNN has no information about
which agent’s features it is processing, so it can be difficult to
learn and predict the same answer regardless of the order of
inputs.

Another method is to represent discarded inputs by replacing
them with 0s. Using this technique care must be taken that no
input to the DNN is 0 unless the input is truly considered missing.
Otherwise the network may not learn to correctly interpret 0 as
a symbol for missing information. But, an optimal solution would
still require exhaustive search through all selections.

3.2. The proposed solution

As mentioned before, the amount of possible player selections
in a game of football makes exhaustive search intractable for
finding the best selection. In addition, it is difficult to use neural
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Fig. 1. Network architectures for the Baseline and Deep Multi-Critic Network.

networks with a varying number of features. The proposed Deep
Multi-Critic Network architecture, illustrated in Fig. 1, attempts
to overcome both obstacles.

The architecture is defined as follows. First, we initialise j Crit-
ics Q i

j (s, a|θ
i
j ) of different complexity for agent i ∈ {1, 2, . . . ,N}.

Then, we feed the centralised observation O = (s, a1, a2, . . . , aN )
through each Critic and obtain a vector consisting of j Critic
outputs:
−→
Q i

= (Q i
1(O | θ i

1), Q i
2(O | θ i

2), . . . , Q i
j (O | θ i

N )).

A selection network f calculates a score for each of the Critics

−→α = f (O,
−→
Q i

| σ )T = (α1, α2, . . . , αj)T ,

which are used to produce the final output of the network: a
weighted sum over the Critic outputs

Q i
=

−→
Q i

·
−→α =

−→
Q i

· f (O,
−→
Q i

| σ )T =

∑
j

αjQ i
j (O | θ i

j ).

By combining the outputs of different Critics, each individual bias
will be less prominent in the total output. Moreover, as no single
Critic is responsible for the Q values alone, the responsibility is
distributed among the Critics, so that a large change in one Critic
will not have a great impact on the total output of the system.

The number of units in each hidden layer is defined as
K∑

i=1

dim(oi) + dim(ai), i ∈ {1, . . . , N},

where dim(oi) + dim(ai) is the sum of the dimensions of agent
i’s observation and action space. All hidden layer activation func-
tions are ReLUs. The Critics have no activation function in the final
layer, the selection network has a softmax activation function for
producing scores that sum to 1.

3.3. Baseline network architecture

Deep Multi-Critic Network is compared to the Baseline net-
work, which is the simplest Deep Neural Network with 2 fully
connected hidden layers and ReLU activation functions. The main
goal of Deep Multi-Critic Network is to achieve better generalisa-
tion compared to Baseline. The number of trainable parameters
in Baseline is 4418, while Deep Multi-Critic Network has 48349.
By having substantially more parameters, Deep Multi-Critic Net-
work should in theory be prone to overfitting compared to the
relatively simple Baseline network. The challenge is to achieve
better generalisation performance with a more complex model.

The Baseline architecture was chosen by performing a search
over a grid of parameters. For each combination of parameters,
10-fold cross-validation was used to find the best performing
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Table 2
Parameters searched over for the baseline architecture.
Parameter name Values

L1 regularisation 0.1, 0.001, 0.0001
No. of hidden layers 1, 2, 3
Epochs trained 1, 2, 3, 4, 5
Learning rate 0.1, 0.01, 0.001, 0.0001

Table 3
Football tracking data overview.
Property Value

Tracking data capture rate 10 Hz
Number of sequences 7500
Average sequence length 176 steps
Minimum sequence length 50 steps
Maximum sequence length 1480 steps
Sequence length standard deviation 133 steps
Total steps in all sequences 1321.7 k
Number of features 46
Features per agent (incl. ball) 2

model. Data used for performing the search originated from a
single player, leaving us with the data of 21 other players for
testing. Each fold was trained with 80% of training data and was
validated on the hold-out 20% data. This was done in order to find
the optimal complexity of the network when enough data has
been generated. Because we know the optimal complexity and
parameters beforehand, we can see how the network performs
when very little data is available. The score for a parameter
combination was the mean absolute prediction error on hold-out
data for each fold. The parameters searched over are presented in
Table 2.

3.4. Comparisons to COMA and MADDPG

In addition to comparing DMCN to Baseline, we also compare
it to COMA and MADDPG critics. Moreover, we also present
results for another configuration based on the DMCN approach,
called DMCN 128/8. The architectural idea behind the network
is the same as before, but now we are using subnetworks with
widths w ∈ {8, 16, . . . , 128}, in order to investigate the prop-
erties of a similar architecture with more complex subnetworks.
Finally, observing results using a similar, but different architec-
ture gives us more evidence either for or against the proposed
solution’s effectiveness.
4. Experimental results and discussions

4.1. Description of the dataset

The data used for conducting the experiments contains track-
ing data from 7500 football gameplay sequences, collected at
10 Hz. The data consists of the (x, y) coordinates of the players
and the ball recorded from to a top–down view of the football
court. The gameplay sequences are of varying length and in total
correspond to roughly corresponding 45 games worth of playing
time. Each sequence starts with the attacking team possessing the
ball and ends with them losing control of the ball — this has been
done in order to reduce the amount of ‘dead time’ in the learning
examples. The data has been prepared so that the attacking team
always moves from left to right. The data is available here (LLC,
2018).

For a more detailed overview of the data, please refer to
Table 3.

Training data for the Critics, which consist of input–output
pairs, were generated from gameplay sequences as follows. Each
gameplay sequence is in matrix form ST×F , where T is the length

Table 4
The training set sizes used.
% of data 0.0125 0.025 0.05 0.1 0.2 0.5 1
Nr. of samples 82 165 329 659 1318 3295 6589

Table 5
Proposed solution (DMCN) compared to Counterfactual Multi-Agent Policy Gra-
dient (COMA) and Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
critics. Values presented in the table are test losses, measured and averaged
over 30 different runs.
DMCN COMA MADDPG DMCN 128/8 Data (%)

0.511 0.395 0.54 0.368 0.0125
0.379 0.236 0.414 0.213 0.025
0.177 0.111 0.23 0.073 0.05
0.0588 0.057 0.108 0.025 0.1
0.024 0.03 0.051 0.011 0.2
0.008 0.012 0.018 0.004 0.5
0.004 0.006 0.007 0.002 1.0

of the sequence and F is the number of features (46). From ST×F
we create input–output pairs for agent i

(St,:, St+1,2i:2i+1), t ∈ {1, 3, ..., 2⌊
T
2

⌋ + 1}.

The training data was standardised to have 0 mean and a standard
deviation of 1. Test data was standardised with the parameters
used for training data.

4.2. Effects of Curse of Dimensionality

The main purpose of Deep Multi-Critic Network is to reduce
the effects of Curse of Dimensionality when training Central
Critics. However, there is more than enough data when gameplay
sequences are turned to input–output pairs. In order to see the
effects of Curse of Dimensionality, very small subsets of available
data are used to train the Baseline and Deep Multi-Critic Network
models. The small subsets are randomly sampled from training
data repeatedly for various subset sizes. This is done to simulate
the model’s learning performance in different stages of data avail-
ability. Test data is also sampled randomly, without overlapping
with training data. Both models get trained and tested on the
same data in order to provide as fair of a comparison as possible.

For each subset of training and testing data, both Baseline
and Deep Multi-Critic Network model are instantiated, trained
and tested 30 times. Training dataset sizes range from 0.125%
to 1% of available data, with each successive dataset doubling in
size (see Table 4). Both models are trained for 10 epochs and
their performance on test data (20% of available data, sampled
randomly) is calculated after each epoch. This allows us to see
if and when the models stop generalising and start overfitting.
After completing 30 runs, the metrics are averaged to produce an
aggregated view of model performance.

4.3. Results

The experimental results show that Deep Multi-Critic Net-
work’s test loss is significantly lower than Baseline’s on all tested
training set sizes (Fig. 2). Although Deep Multi-Critic Network
contains more than 10 times the trainable parameters in the
Baseline model, the performance advantage for Deep Multi-Critic
Network is preserved even when 0.05% of data is used for train-
ing. Intuitively, such a complicated model will likely overfit. The
gap between Baseline and Deep Multi-Critic Network perfor-
mance becomes smaller as training progresses, allowing Baseline
to catch up to Deep Multi-Critic Network. However, the no-
ticeable gap between the models remains, even as more data
becomes available.



102 J. Hook, V.D. Silva and A. Kondoz / Neural Networks 128 (2020) 97–106

Fig. 2. Baseline vs. Deep Multi-Critic Network (DMCN) performance on the test sets.

The results suggest that Deep Multi-Critic Network uses avail-
able data more efficiently than the Baseline model. In each train-
ing data setting, the loss gap between Baseline and Deep Multi-
Critic Network after the first epoch is between 0.7 and 0.8. The
gap between the losses of Baseline and Deep Multi-Critic Network
shrinks from 0.8 down to 0.2 as the networks are trained with
more data.

Comparing the proposed approach (DMCN) to the critics of
Multi-Agent Deep Deterministic Policy Gradients (MADDPG) and
Counterfactual Multi-Agent Policy Gradients (COMA), COMA
comes ahead in the three smallest data settings, with DMCN

maintaining an advantage over MADDPG (Fig. 3. Starting from the
fourth smallest data setting (0.1%), the performance gap between
DMCN and COMA closes (0.059 vs. 0.057, respectively), with
DMCN coming ahead in other experiments (Table 5). However,
DMCN 128/8 can achieve better performance compared to COMA
in all available data settings.

4.4. Discussion

In order to understand how Deep Multi-Critic Network
achieves good performance, we investigate the change in Critic
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Fig. 3. Deep Multi-Critic Network (DMCN) compared to Counterfactual Multi-Agent Policy Gradient (COMA) and Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) critics.

scores. As the output of Deep Multi-Critic Network is a weighted
sum of Critics, with the weights given by the Selection network,
observing the scores gives us insight into how Critic contribu-
tions change during training and with increasing the amount of
training data.

To visualise the scores, Deep Multi-Critic Network was trained
30 times on sampled data for each dataset size for 10 epochs. The
scores were produced by evaluating the model on test data (20%)
after each training epoch and collecting the Selection network’s
outputs. After collection, the scores were averaged to produce the
mean score for each Critic during each training epoch.

Average scores indicate that once more training data becomes
available, more complex Critics are given a higher score (Fig. 4).
With the lowest data setting, scores are distributed rather uni-
formly, even after the last training epoch, which shows that no
single Critic is a distinct contributor to the output. In higher data
settings, the score distribution moves towards the right in the
direction of more complex Critics, indicating the higher contri-
bution of larger subnetworks to the overall output. Intuitively,
as the more complex critics are exposed to more data, they get
increasingly accurate compared to the smaller critics. The smaller
critics are limited by their capacity, enabling more complex critics
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Fig. 4. Average scores for DMCN Critics during training.

to contribute more to the overall output as more data becomes
available for the multi-critic network.

Compared to the Baseline Network, the proposed Deep Multi-
Critic Network with its many Critics achieved equivalent per-
formance earlier during training and achieved an overall lower
loss, suggesting the ability to learn more from the same amount
of data. Even though Deep Multi-Critic Network contains more
than 10 times the parameters in the Baseline Network, over-
fitting did not occur and the generalisation performance was
better than the baseline model in all experiments. This effect
can be attributed to the distribution of responsibility: no single
subnetwork is responsible for the final output alone, but selected
subnetworks can learn to contribute more than others. Deep

Multi-Critic Network’s performance is comparable with critics
from other approaches (COMA and MADDPG). Although DMCN
and DMCN 128/8 have a more complex architecture with more
neurons, they manage to achieve competitive performance com-
pared to COMA and MADDPG without overfitting to the small
amounts of training data. Interestingly, DMCN 128/8, with a more
complicated architecture (approximately 152k parameters), of-
fers better performance in low-data settings compared to the
original DMCN, possibly indicating an enhanced ability to learn
from the same amount of experience. Looking at the critic scores
in Fig. 5, we observe a similar pattern of critic scores in Fig. 4. In
both cases, higher complexity critics contribute more to the final
output of the network, with some critics of moderate complexity
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Fig. 5. Average scores for DMCN 128/8 Critics during training.

having a noticeable score as well. Again, we hypothesise that
the performance gains are achieved by distributing responsibility
among critics and leveraging the possibility of combining the
outputs of models, each of various capacity.

5. Conclusions and future work

Overcoming the issue of Curse of Dimensionality associated
with multi-agent reinforcement learning is crucial for the suc-
cess of many applications that require policy learning in multi-
agent settings. Paying attention to only a subset of features is
an avenue that researchers have recently focused on. However,
implementing such feature selection, in real-world environments

is a challenging concept to implement, because of the com-
binatorial explosion of feature combinations to select and the
inability of Deep Neural Networks to work with inputs of varying
size. To overcome this issue, this paper presents an ensemble
of critic networks is trained, which performs a context depen-
dent summation of the results. The proposed Deep Multi-Critic
Network, which is proposed as a method for reducing the ef-
fects of Curse of Dimensionality, was shown to have an ability
to learn faster from fewer samples, in a multi-agent learning
environment. The proposed methodology to simplify the learning
process in a Multi-agent scenario is a step towards enhancing the
effectiveness of data driven policy learning.
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Future work is necessary to investigate efficient ways for
finding the optimal architectures of the Critics — their number,
width, depth and other parameters, as we believe this to be very
problem-dependent. Furthermore, it is necessary to determine
how the addition of Deep Multi-Critic Network will affect the
convergence of the Critic in Actor–Critic methods to further val-
idate the findings. Finally, we intend to investigate how strongly
the initial weights of Deep Multi-Critic Network determine which
Critics receive higher scores during training.
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