

UK Geoenergy Observatories, Glasgow Environmental Baseline Soil Chemistry Dataset

Decarbonisation and Resource Management Programme Open Report OR/19/062

BRITISH GEOLOGICAL SURVEY

DECARBONISATION AND RESOURCE MANAGEMENT PROGRAMME OPEN REPORT OR/19/062

UK Geoenergy Observatories, Glasgow Environmental Baseline Soil Chemistry Dataset

F M Fordyce, K M Shorter, C H Vane, C J B Gowing, E M Hamilton, A W Kim, P A Everett, B P Marchant and T R Lister

Contributors

M Watts, A Mills, A McDonald, S Gregory

Editors

B Palumbo-Roe, A A Monaghan

The National Grid and other Ordnance Survey data © Crown Copyright and database rights 2019/2020. Ordnance Survey Licence No. 100021290 EUL.

Keywords

topsoil, inorganic geochemistry, organic geochemistry, soil quality, pollution.

Front cover

Collection of a topsoil sample from Tollcross Park.

Bibliographical reference

FORDYCE F M, SHORTER K M, VANE C H, GOWING C J B, HAMILTON E M, KIM A W, EVERETT P A, MARCHANT B P AND LISTER T R.2020. UK Geoenergy Observatories, Glasgow Environmental Baseline Soil Chemistry Dataset. *British Geological Survey Open Report*, OR/19/062. 77pp.

Copyright in materials derived from the British Geological Survey's work is owned by UK Research and Innovation (UKRI) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail ipr@bgs.ac.uk. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract.

Maps and diagrams in this book use topography based on Ordnance Survey mapping.

© UKRI 2020. All rights reserved

Edinburgh

British Geological Survey 2020

BRITISH GEOLOGICAL SURVEY

The full range of our publications is available from BGS shops at Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com

The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation.

We publish an annual catalogue of our maps and other publications; this catalogue is available online or from any of the BGS shops.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as basic research projects. It also undertakes programmes of technical aid in geology in developing countries.

The British Geological Survey is a component body of UK Research and Innovation.

British Geological Survey offices

Environmental Science Centre, Keyworth, Nottingham NG12 5GG

Tel 0115 936 3100

BGS Central Enquiries Desk

Tel 0115 936 3143 email enquiries@bgs.ac.uk

BGS Sales

Tel 0115 936 3241 email sales@bgs.ac.uk

The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP

Tel 0131 667 1000 email scotsales@bgs.ac.uk

Natural History Museum, Cromwell Road, London SW7 5BD

Tel 020 7589 4090 Tel 020 7942 5344/45 email bgslondon@bgs.ac.uk

Cardiff University, Main Building, Park Place, Cardiff CF10 3AT

Tel 029 2167 4280

Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB Tel 01491 838800

Geological Survey of Northern Ireland, Department of Enterprise, Trade & Investment, Dundonald House, Upper Newtownards Road, Ballymiscaw, Belfast, BT4 3SB

Tel 01232 666595 www.bgs.ac.uk/gsni/

Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU

Tel 01793 411500 Fax 01793 411501 www.nerc.ac.uk

UK Research and Innovation, Polaris House, Swindon SN2 1FL

Tel 01793 444000 www.ukri.org

Website www.bgs.ac.uk Shop online at www.geologyshop.com

Acknowledgements

Clyde Gateway, Glasgow City Council, South Lanarkshire Council and the Forestry Commission are thanked for their access to enable the UK Geoenergy Observatory, Glasgow project and the environmental baseline soil geochemical survey.

Contents

Acl	know	ledgements	i
Co	ntent	S	i
Sui	nmar	ry	v
1	Intr	oduction	7
2	Soil	Chemistry Baseline Survey Rationale	9
	2.1	Soil inorganic and organic chemistry	9
	2.2	Soil geomicrobiology	9
	2.3	Survey design	10
3	Sam	ple Collection Methods	11
	3.1	Avoiding contamination	11
	3.2	Soil collection	11
	3.3	Soil texture determinations	13
	3.4	Field data recording	14
	3.5	Description of the survey sites	15
4	Ana	lytical Methods	20
	4.1	Soil asbestos screening	20
	4.2	Sample preparation	21
	4.3	Inorganic analysis	21
	4.4	Organic analysis	
5	Data	a Presentation	
6	Initi	ial Results	
	6.1	Asbestos results	
	6.2	Topsoil chemistry	
7	6.2 Con	Topsoil chemistry	33 41
7	6.2 Con 7.1	Topsoil chemistry clusions and Recommendations Conclusions	33 41 41
7	6.2 Con 7.1 7.2	Topsoil chemistry clusions and Recommendations Conclusions Recommendations	33 41 41 42
7 Glo	6.2 Con 7.1 7.2 ssary	Topsoil chemistry clusions and Recommendations Conclusions Recommendations	33 41 41 42 43

Appendix 1 Maps of the GGERFS soil sample locations	49
Appendix 2 Figures of merit for GGERFS soil analysis	54
Appendix 3 Summary statistics for the GGERFS soil chemical analysis	60
Appendix 4 Maps showing the distribution of selected parameters in GGERFS topsoil	66

FIGURES

Figure 1. Map of Great Britain, showing Glasgow, where the UK Geoenergy Observatory facility is located
Figure 2. Map showing GGERFS and control soil sample areas in the east of Glasgow
Figure 3. Plan of auger holes for collecting a soil sample comprising a composite of five sub- samples
Figure 4. Photograph showing example layout of five sub-sample auger holes in a 1 x 1 m square for soil sample G019 at site GGERFS04
Figure 5. Collecting top soil samples with a hand-held Dutch stainless steel auger at a) Tollcross Park (TC) and b) GGERFS10
Figure 6. Collecting a topsoil sample with a hand-held Dutch stainless steel auger at site GGERFS06b
Figure 7. Photos and description of a) Glasgow Green and b) Tollcross Park control sites16
Figure 8. Photos and description of soil survey sites GGERFS01-05, Cuningar Loop17
Figure 9. Photos and description of soil survey site GGERFS06b, Dalbeth18
Figure 10. Photos and description of soil survey site GGERFS010, Dalmarnock19
Figure 11. Box and whisker plots of As, Cd, Cu, Hg concentrations in topsoil at the GGERFS sites
Figure 12. Box and whisker plots of total Cr and Cr(VI) concentrations in topsoil at the GGERFS sites
Figure 13. Box and whisker plots of topsoil pH, total organic carbon (TIC) and total inorganic carbon (TOC) at the GGERFS sites
Figure 14. Box and whisker plots of selected major element concentrations (CaO, Fe ₂ O ₃ , MgO, SiO ₂ , TiO ₂) in topsoil at the GGERFS sites
Figure A1.1 Map of topsoil sample locations at site GGERFS01
Figure A1.2 Map of topsoil sample locations at site GGERFS02
Figure A1.3 Map of topsoil sample locations at site GGERFS03
Figure A1.4 Map of topsoil sample locations at site GGERFS04
Figure A1.5 Map of topsoil sample locations at site GGERFS05
Figure A1.6 Map of topsoil sample locations at site GGERFS06b
Figure A1.7 Map of topsoil sample locations at site GGERFS10
Figure A1.8 Map of topsoil sample locations in Glasgow Green
Figure A1.9 Map of topsoil sample locations in Tollcross Park

Figure A4.1 Maps showing total Cr concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples
Figure A4.2 Maps showing Cu concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples67
Figure A4.3 Maps showing Ni concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples
Figure A4.4 Maps showing Pb concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples69
Figure A4.5 Maps showing V concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples70
Figure A4.6 Maps showing Zn concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples71
Figure A4.7 Maps showing TPH concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples72
Figure A4.8 Maps showing ∑7PCB concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples73

TABLES

Table 1: Summary description of soil texture classes, their approximate particle size composition and feel test characteristics 14
Table 2. Summary of information recorded at each soil sample location
Table 3. List of topsoil samples that underwent asbestos screening
Table 4. Analytical replicates prepared from samples G027 and G03921
Table 5. Limits of quantification and list of inorganic parameters determined in topsoil23
Table 6. Reported possible spectral interferences in topsoil element concentration analysis by XRF. 24
Table 7. List of standards included with the XRF analysis of GGERFS topsoil samples
Table 8. List of conditioning factors applied to the GGERFS topsoil XRF data to normalise to the G-BASE national topsoil dataset. 25
Table 9. Reference materials included with the Cr(VI) analysis of GGERFS topsoil samples26
Table 10. Limits of quantification for topsoil carbon, petroleum hydrocarbon and PAH analytes
Table 11. Limits of quantification for 32 PCBs in topsoil 30
Table 12. Example extract of data from the GGERFS baseline Soil Chemistry03-18 dataset 32
Table 13. Guide to data quality qualifiers in the GGERFS topsoil 03-18 dataset
Table 14. Results of asbestos testing on topsoil sample G017 from GGERFS04
Table A2.1 Results for certified reference materials included in the XRF analysis of total element concentrations in topsoil
Table A2.2 Results for secondary reference materials included in the XRF analysis of total element concentrations in topsoil. 55

Table A2.3 Results for replicate Samples A and B included in the topsoil inorganic analyses	56
Table A2.4 Results for SIDMS repeat measurements of Cr(VI) and total Cr in topsoil	57
Table A2.5 Results for CRMs included in the topsoil SIDMS Cr(VI) analysis	57
Table A2.6 Results for certified reference material NIST1941b included in the topsoil PAH analytical run.	58
Table A2.7 Results for certified reference material NIST1941b included in the topsoil PCB analytical run.	59
Table A3.1 Summary statistics for inorganic parameters in GGERFS and BGS G-BASE Glasgow topsoil.	60
Table A3.2 Summary statistics for soil organic carbon and total petroleum hydrocarbons in GGERFS and BGS Glasgow topsoil.	61
Table A3.3 Summary statistics for PAH in GGERFS and BGS Glasgow topsoil	62
Table A3.4 Summary statistics for PCBs in GGERFS and BGS Glasgow topsoil	64
Table A3.5 Summary statistics for selected parameters in GGERFS topsoil compared to land quality generic soil guidelines.	65

Summary

This report gives an overview of information related to the environmental baseline topsoil chemistry dataset collected as part of the United Kingdom Geoenergy Observatories (UKGEOS) project at the Glasgow Geothermal Energy Research Field Site (GGERFS) in February-March 2018 (03-18). This report accompanies the release of the GGERFS Soil Chemistry03-18 dataset.

The GGERFS facility comprises 12 environmental baseline/mine characterisation boreholes drilled into the superficial deposits and bedrock in the Cuningar Loop and Dalmarnock areas in the east of Glasgow. The aims of the facility include de-risking key technical barriers to low-temperature shallow geothermal energy from groundwater in former coal mine workings and providing environmental characterisation and monitoring to assess any change in ambient conditions.

Prior to borehole development, a study of the chemical quality of soil was carried out to aid understanding of the ground conditions and to determine the pre-development environmental baseline, against which future change can be assessed.

Ten topsoil (0 - 20 cm) samples were collected from each of the proposed GGERFS borehole sites and from two control sites with semi-natural soil in Glasgow Green and Tollcross Park. Topsoil samples were collected from 90 locations. At each location the following samples types were taken:

- A Topsoil for inorganic and organic chemical analysis
- M-4 Topsoil for storage at -4 °C and future geomicrobiological culture work
- M-20 Topsoil for storage at -20 °C/ -80 °C and future geomicrobiological deoxyribonucleic acid (DNA) study

The samples collected for chemical analysis underwent laboratory testing to determine soil pH and the total concentration of 54 inorganic chemical elements and 75 organic substances including soil organic carbon, total petroleum hydrocarbon (TPH), poly-cyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) content.

The resultant chemical data are made available in the GGERFS baseline Soil Chemistry03-18 dataset along with descriptive information about the soils, such as location, land use, presence of any contaminant material in the soil and soil texture. The data are presented in Excel® table format in the file:

Any use of the data should be cited to:
DOI: https://dx.doi.org/10.5285/0bfdeb32-db24-4221-9d02-f074f51edff2
F M Fordyce, K M Shorter, C H Vane, C J B Gowing, E M Hamilton, A W Kim, P A Everett, B P Marchant and T R Lister. UK Geoenergy Observatories GGERFS_SoilChem03-18Data_Release.
and
FORDYCE F M, SHORTER K M, VANE C H, GOWING C J B, HAMILTON E M, KIM A W, EVERETT P A, MARCHANT B P AND LISTER T R .2019. UK Geoenergy Observatories, Glasgow Environmental Baseline Soil Chemistry Dataset. Open Report, OR/19/062 (Edinburgh: British Geological Survey)

The results of the baseline survey show that topsoil from the GGERFS sites generally contains higher inorganic and organic pollutant concentrations and is more calcareous/alkaline than semi-natural topsoil collected from the two control sites in Glasgow Green and Tollcross Park.

Similarly, the maximum concentrations of the pollutants cadmium (Cd), TPH, the naphthalene and dibenzofuran PAH compounds, \sum 7PCBs and tri-hepta PCB compounds reported at the GGERFS sites exceed those in pre-existing city-wide British Geological Survey (BGS) Glasgow topsoil datasets.

Whilst the current land use at all the GGERFS sites is open recreational space, these findings are a consequence of the historic land use at the GGERFS sites, all of which are underlain by building rubble, domestic rubbish and/or colliery waste.

Like many urban environments, soil quality at the GGERFS sites has been impacted adversely by the presence of these materials in the soil.

Hexavalent chromium (Cr(VI)) speciation, which is often associated with industry, was determined in the soil samples because there is a history of disposal of chromite ore processing residue (COPR) in the east of Glasgow. Results revealed that Cr(VI) concentrations in the soil were generally < 10 mg/kg, with the exception of sample G087 at site 06b where an isolated high value of 28 mg/kg was reported, probably as a result of paint fragments present in the sample.

There is no evidence of COPR waste in the topsoil samples collected from the GGERFS sites.

An asbestos screening assessment of a sub-set of 10 of the topsoil samples revealed that trace amounts of asbestos fibres (0.027 % wt) were found in one sample (G017) from GGERFS04 only. The amount of asbestos present was classed as 'insignificant risk' according to current industry standards. This sample was collected from outside the publicly accessible area of the Cuningar Loop Park.

Although the GGERFS sites show evidence of soil pollution, comparisons with current UK human health risk assessment land contamination generic soil guidelines for recreational open space indicate that **in general, the land would not be classed as contaminated**.

However, two soil samples G023 and G057 from site 05 do exceed the recreational open space guideline for Pb (1300 mg/kg). These were collected outside of the publicly accessible area in the Cuningar Loop. The fact that these samples exceed the guideline does not mean that the land is contaminated. Rather that further investigation would be required to determine whether there is a source-pathway-receptor linkage and any potential risk at these locations.

The Soil Chemistry03-18 dataset has established the pre-installation environmental baseline for the GGERFS facility, against which any future change in soil chemistry can be assessed.

1 Introduction

In 2015, the British Geological Survey (BGS) and the Natural Environment Research Council (NERC) were tasked with developing new centres for research into the sub-surface environment to aid the responsible development of new low-carbon energy technologies in the United Kingdom (UK) and internationally.

The Glasgow Geothermal Energy Research Field Site (GGERFS) in the Cuningar Loop – Dalmarnock area in the east of Glasgow is one of two United Kingdom Geoenergy Observatories (UKGEOS) project sites (Figures 1 and 2). The aims of the GGERFS facility include de-risking technical aspects of extracting/storing shallow geothermal energy in an urbanised former coal mine setting (Monaghan 2019; Monaghan et al. 2017; Monaghan et al. 2018).

The initial phase of the GGERFS project entails installing a network of boreholes into the superficial deposits and bedrock in the Cuningar Loop-Dalmarnock area of Glasgow to characterise the geological and hydrogeological setting and assess the potential for shallow geothermal energy. The borehole network is designed also for baseline monitoring to assess the environmental status before and during the lifetime of the project.

The GGERFS facility is located in the former industrial heartland of the east of Glasgow, in an urban area with extensive artificial ground. Previous work has shown that contaminants are present in the soil/artificial ground in the east of Glasgow. These have had a detrimental impact on both surface and groundwater quality in the area (Broadway et al. 2010; Farmer et al. 1999; Fordyce et al. 2004; Fordyce et al. 2012; Fordyce et al. 2017; Fordyce et al. 2019; Palumbo-Roe et al. 2017; Whalley et al. 1999).

The history and complexity of human activities (including coal mining) affecting the subsurface at the GGERFS sites mean that soil–surface-water–groundwater interactions are currently poorly understood.

Whilst the premise is that development of a mine-water geothermal facility should not instigate any material change in surface conditions, the potential for changes in sub-surface fluid flow to alter near-surface flow and soil saturation regimes (hence, soil chemistry) is unknown in such a complex environment.

The GGERFS facility provides an opportunity to monitor soil chemistry as an exemplar, to provide reassurance for similar schemes in complex settings, in the many UK urban areas, where main centres of population and fuel poverty coincide with a potential former coal mine geothermal resource.

As part of the environmental monitoring, a survey of the chemical quality of topsoil (0-20 cm depth) was carried out in February-March 2018 (03-18) at each of the proposed borehole sites to determine ground conditions and to establish the pre-development environmental baseline, against which future change can be assessed. It should be noted that the proposed borehole sites GGERFS04 and 06b were included in the facility planning applications and the soil survey; however, subsequently they were not taken forward as borehole construction sites.

The soil quality monitoring programme aimed to:

- improve the scientific understanding of the near-surface environment and interactions with the subsurface in the study areas
- support interpretation of water quality data
- provide information on ground conditions; help satisfy regulatory requirements and provide public reassurance

This report describes the methods used to carry out the topsoil survey and the initial results, as a guide to the release of the GGERFS Soil Chemistry03-18 dataset.

Contains Ordnance Survey data © Crown Copyright and database rights 2020

GGERFS Soil Sample Areas

Contains Ordnance Survey data © Crown Copyright and database rights. All rights reserved [2020] Ordnance Survey [100021290 EUL]

Note that proposed borehole sites GGERFS04 and 06b were included in the soil survey, but subsequently were not taken forward as borehole construction sites.

Figure 2. Map showing GGERFS and control soil sample areas in the east of Glasgow.

2 Soil Chemistry Baseline Survey Rationale

2.1 SOIL INORGANIC AND ORGANIC CHEMISTRY

The BGS has existing soil geochemistry datasets in the surrounding area of Glasgow from the Geochemical Baseline Survey of the Environment (G-BASE) project (Fordyce et al. 2012; Fordyce et al. 2017; Fordyce et al. 2019) and a related study of organic pollutants in selected urban soil (Kim et al. 2019). The GGERFS baseline soil chemistry survey used similar methods to previous BGS studies, so that the GGERFS facility can be placed in the context of the wider environment to aid the planning of future boreholes/ developments.

Accordingly, topsoil (0-20 cm) samples were collected because:

- (i) topsoil represents the zone of human interaction for public reassurance; and
- (ii) this sample type is directly comparable with the existing BGS soil chemistry datasets for the area.

It was accepted that this shallow sampling strategy would not necessarily provide a complete means to aid the interpretation of the shallow groundwater chemistry data, as that would require information on the quality of artificial ground or superficial deposits at greater depth also. However, any assessment of deeper soil or Quaternary superficial deposits was deemed to be outside the scope of this study, and instead within the remit of any subsequent site investigation work.

The aim was to determine key soil quality properties such as:

- (i) pH and total organic carbon (TOC) content;
- (ii) persistent organic pollutants (POPs) including total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) content;
- (iii) the total concentration of a suite of inorganic chemical elements, including key contaminants such as arsenic (As), cadmium (Cd), chromium (Cr) and lead (Pb);
- (iv) In addition to total-Cr, hexavalent chromium (Cr(VI)) was determined because of a history of chromite-ore processing, and contamination of soil and surface/ground water with Cr(VI) in the area (Broadway et al. 2010; Farmer et al. 1999; Fordyce et al. 2004; Fordyce et al. 2019; Palumbo-Roe et al. 2017; Whalley et al. 1999).

2.2 SOIL GEOMICROBIOLOGY

The aim of the soil geomicrobiology sampling was to characterise the geomicrobiology baseline before any thermal perturbations of the system and enable predictive understanding of possible responses of the geomicrobiological system.

The GGERFS project should allow microbiologists to make use of recent developments in sampling, culturing under *in situ* conditions and biological characterisation (including high throughput genomic sequencing, bioinformatics, and 'meta-omics' techniques including transcriptomics and proteomics).

Soil samples for microbiological analysis were collected at the same time as the chemical soil samples and stored for future use. Soil gas monitoring was also carried out at the GGERFS facility at similar locations to the soil chemistry sampling. This will allow microbiologists to contribute to interpreting the causes of any measured changes in soil gas.

2.3 SURVEY DESIGN

A statistically-optimised approach to sampling design was adopted to strengthen the inferences that may be drawn between any changes to key environmental parameters and future activities in the area.

The soil chemistry-monitoring programme had to account for the inherent variability (in baseline) of the analytes of interest, at varied spatial scales, and over time, at key phases of the site development. This is a general challenge for environmental monitoring, which has been recognised in the development of appropriate sampling designs that address what are called 'Before and After Control/Impact (BACI)' sampling problems. For each parameter of interest, using a BACI sampling design allows the values observed after development to be compared reliably with the values before. The premise is that anthropogenic activity in the location of interest will cause a different pattern of change from before to after it starts compared with natural change in the control location (Underwood 1991). Survey design was informed by the position of boreholes and Control/Impact domains, so that any future geothermal development-related effects can be detected in the presence of overall trends that are caused by other factors.

At the time of the initial soil survey, there were seven proposed sites for borehole installation comprising GGERFS 01, 02, 03, 04, 05, 06b and 10; hence, each of these sites was surveyed (See maps in Appendix 1). However, subsequently, sites GGERFS04 and 06b were not taken forward for borehole drilling. It was anticipated that following the survey, the installation of boreholes would cause disruption and alterations to the ground surface and soil profile. It was conceivable that soil chemistry could change merely as a consequence of borehole emplacement prior to any geothermal research activity. Therefore, two areas within the nearby Glasgow Green (GG) and Tollcross Park (TC) were sampled also, to serve as 'control' sites. These were selected on the basis that the land use of these long-established (since the 1800s) parks (Appendix 1) was unlikely to change or be disturbed during the lifetime of the facility.

Ten topsoil samples were collected from each of these nine sites.

The aim of the sampling was to characterise soil chemical conditions around each of the borehole sites. The size and shape of the areas to be sampled was constrained by the locations and conditions on the ground, but extended to approximately 50 m around each proposed borehole position. The delineation of soil sampling areas also took account of anticipated losses of open ground due to access tracks to be put in place and planned developments around some of these sites that would have otherwise prevented future sampling.

The two control sites in Glasgow Green (GG), to the west of the facility and Tollcross Park (TC), to the north-east of the facility were chosen to be of a similar size to the GGERFS sampling sites, and outside the likely area of influence of the facility.

To ensure that the chemical data would be suitable for use in geostatistical approaches to future data interpretation, the majority of samples had to be relatively evenly spread across each of the nine sites, but with a proportion of closely-spaced pairs of samples to ensure that modelling short-scale variability is possible. Therefore, at each site we used a spatial simulated annealing algorithm to optimize the target location of nine samples, such that the mean distance from any point in the site to the nearest sample was minimized. Then one of these samples was selected at random and the 10th sample was located 5 m from it in a random direction. This sampling approach adheres to the rule-of-thumb suggested by Lark and Marchant (2018) for geostatistical surveys. At GGERFS sites 01, 02, 03, 04, 06b and 10, where borehole clusters were due to be emplaced, the optimization was constrained to ensure that at least four of the samples were collected in the zone adjacent to the borehole cluster at each site, so that these zones could be characterised adequately (See maps Appendix 1 soil sampling locations and proposed borehole positions at each site).

3 Sample Collection Methods

The soil sampling methods for the current project were based on the rigorous field-based control procedures developed by the BGS Geochemical Baseline Survey of the Environment (G-BASE) project, and were designed to minimise error (Johnson 2005; Bearcock et al. 2012).

Samples were collected in random number order but analysed in sequential order, so that any within-batch analytical instrument drift could be distinguished from genuine geographic variances (Plant 1973).

3.1 AVOIDING CONTAMINATION

- Jewellery was not worn during sample collection, to avoid metal contamination of the samples.
- Use of sun-cream and other skin products was avoided during sample collection.
- Gloves were worn during sample collection, for protection and to avoid contamination of the samples.
- The augers and sample bags for microbiological samples were not touched without gloves, to avoid contamination of the samples.
- The auger was cleaned between each sampling location, and the auger flight covered in a protective Rilsan® bag for transport between sites and storage.

3.2 SOIL COLLECTION

Samples were collected by teams of two to four BGS members of staff. Prior to fieldwork, 10 soil sampling target locations were identified via a statistically-based soil sampling design at each of the nine sites (See Section 2.3). The aim in the field was to collect samples from each of these target locations, or as close as possible to them, accepting conditions on the ground.

Samples were collected from all the target locations, with the exception of sites GGERFS10 and parts of sites GGERFS02 and GGERFS03. At GGERFS10, a shallow asphalt layer was encountered that prevented sampling at the northern edge of the site. The western edges of sites GGERFS02 and 03 also had to be revised, due to emplacement of a new access road and car park at the time of sampling. In all cases, alternative locations were selected in the field to be as close as possible to the target locations, whilst ensuring an even spread of samples across the site. Maps showing the sample locations are shown in Appendix 1.

At each sample location, a composite topsoil (0-20 cm) sample was collected, comprising five subsamples taken from the corners and centre of a 1 x 1 m square using a stainless steel hand-held Dutch auger (Figures 3, 4, 5, 6).

Reaching a depth of 20 cm was not possible at all the sample locations. Topsoil sample G069 was collected at a depth of 10 cm because of the presence of building rubble at site GGERFS01. Similarly, it was only possible to reach a sampling depth of 15 cm over parts of site GGERFS10, because of underlying asphalt and hard-core layers, affecting samples G052, G059, G064, G066, G070 and G088.

At each sampling location, the following suite of samples was collected:

- **M4 sample**: An approximate 100 g sample in plastic self-seal bags for storage for future microbiological culture analysis. This sample-type is stored at 4 °C; hence, is designated M4.
- **M-20 sample**: An approximate 100 g sample in plastic self-seal bags for storage for future microbiological DNA analysis. This sample was frozen for 18 months at -20 °C, and then at -80 °C once lower temperature freezer facilities were available; hence, are designated M-20.

• A sample: An approximate 750 g sample in Rilsan® bags for inorganic and organic chemical analysis. These were designated 'A' for the A soil horizon.

The geomicrobiology samples were collected first at each location. Material from the 5 sub-sample auger-holes was mixed and homogenised in a large plastic self-seal bag and a representative amount of approximately 100 g of material placed into the two labelled small self-seal bags for M4 and M-20 samples.

The A-soil chemistry samples were collected by drilling 5 auger-holes immediately adjacent to where the geomicrobiology samples were taken. Material from each of the 5 sub-sample auger holes was placed directly into the Rilsan® sample bag.

Upon collection, any excess air was removed and the bags were sealed and stored in a cool box with ice-packs as soon as possible.

The samples were returned to the laboratory for storage in the freezer/cold store on the day of sampling.

Figure 3. Plan of auger holes for collecting a soil sample comprising a composite of five sub-samples.

At each location, microbiology soil samples were collected from one set of auger holes first. Soil chemistry samples were collected from auger holes immediately adjacent to the microbiology sample holes

Figure 4. Photograph showing example layout of five sub-sample auger holes in a 1 x 1 m square for soil sample G019 at site GGERFS04.

Photos © BGS NERC UKRI a)

b)

Figure 5. Collecting top soil samples with a hand-held Dutch stainless steel auger at a) Tollcross Park (TC) and b) GGERFS10.

Photo © BGS NERC UKRI

Figure 6. Collecting a topsoil sample with a hand-held Dutch stainless steel auger at site GGERFS06b.

3.3 SOIL TEXTURE DETERMINATIONS

Once the geomicrobiology samples were collected, the excess material in the large self-seal bag was used to determine soil texture using the feel test, before being discarded.

Based on the BGS G-BASE methodology, eight soil texture classes were used, as outlined in Table 1. The methodologies for soil texture determination are based on those recommended by the England and Wales Soil Survey Field Handbook (Hodgson 1997) and the German equivalent field manual Bodenkundliche Kartieranleitung KA5 (BGR 2005).

- Soil texture to be estimated by "finger or feel test".
- The soil substrate is rubbed and kneaded between thumb and index finger.
- For results that are more accurate, the texture is estimated by the feel of moist soil. If the soil is dry, it must be moistened with deionised water. Main indicators for texture are the plasticity, granularity and cohesion (stickiness).

Table 1 gives a short description of the characteristics of each soil texture class and estimations on their average fractional composition. It should be mentioned, that the table is a composite summary

of descriptions and values used in British and German soil science. It should be noted that the soil texture classes, sandy silt, silty sand and clayey sand do not exist in the British soil science nomenclature, instead the term loam is widely used to describe these texture types.

Taxtura	Fraction %			Fool tost characteristics		
Texture	Clay	Silt	Sand			
SAND 0-5 0-10		85 -100	Sand imparts a gritty feel due to the shape of the individual particles. Grains can readily be seen, no recognisable fine particles, not sticky when moist.			
SILT	0-8	80 - 100	0 – 20	Sand grains barely (or not) visible. Feels soft and floury when dry, when moist it is greasy and neither sticky nor plastic.		
CLAY	65 – 100	0 – 35	0 – 35	Only fines, high plasticity, smooth and shiny friction surface, very sticky and plastic when moist.		
SACL Sandy Clay	20 – 55	0 – 20	45 – 70	Abundant fines with gritty feel, when moist sticky to very sticky and plastic, showing a good fingerprint.		
SICL Silty Clay	35 – 65	40 – 65	0 – 20	Floury when dry, very sticky and plastic when moist. Rough to shiny friction surface.		
CLSA Clayey Sand	17 – 25	0 – 15	60 – 83	Gritty feel, moderate sticky and low plastic when moist.		
SASI Sandy Silt	0-10	50 - 80	12 – 50	Sand gives gritty feel to abundant fine substance, floury and sticky when wet, non-plastic.		
SISA Silty Sand	0-10	25 – 40	52 – 75	Similar to SASI with greater sand component.		

Table 1. Summary description of soil texture classes, their approximate particle size composition and feel test characteristics.

(BGR 2005 and Hodgson 1997)

3.4 FIELD DATA RECORDING

Information about each location and soil sample was recorded on a standardised field-sheet at the time of sampling. Table 2 outlines the data recorded at each location.

Several parameters were noted, as these can affect soil properties and soil chemistry. These included soil texture, soil colour, visual qualitative assessment of soil moisture and organic matter content, the land use, the presence of any rock clasts and of contaminating materials such as metal, brick and glass fragments in the soil.

Any rainfall was noted on the day of sampling also. Longer-term local weather records for Dalmarnock monitoring station were consulted following fieldwork to assess if conditions had been dry at the field-site for at least a week before sampling (SEPA 2018).

Data Type	Description
GGERFS Site	The site name e.g. GGERFS01, GGERFS05, Tollcross Park (TC), Glasgow Green (GG) etc.
Soil Sample ID	G001 – G100
Sample Location	12-figure British National Grid Co-ordinates (Easting and Northing) determined using a portable global positioning system (GPS)
Site description	General description of the site and the sample location
Date	Date of sample collection
Land use	Categories of land use present at each soil location
Depth	Sample collection depth. Measured as the level of the bottom of the auger below ground surface in cm
Soil Texture	Determined by the feel test (See Section 3.3)
Soil Colour	Based on the G-BASE 8-colour classification scheme (Johnson 2005): black, dark brown, light brown, yellow, red, orange, green, grey
Soil Moisture Content	Based on the G-BASE qualitative visual inspection classification scheme (Johnson 2005): dry, damp, saturated
Soil Organic Content	Based on the G-BASE qualitative visual inspection classification scheme (Johnson 2005): low, moderate, high
Rock Clasts	Types of rock fragments visible in the soil
Contamination	Types of gross visible contamination present in the soil such as brick, metal, coal, glass, crockery fragments, plastic fragments/bags, oil, etc.
Rainfall	Based on the G-BASE rainfall record scheme (Johnson 2005): rainfall within categories of 12 hours, 24 hours, 48 hours, 2-7 days, 1 week, > 1 week. Noted in the field and checked against local weather records (SEPA 2018) following fieldwork
Photographs	Photographs were taken of each soil location

Table 2. Summary of information recorded at each soil sample location

3.5 DESCRIPTION OF THE SURVEY SITES

A brief description of the soil survey sites is provided in Figures 7 - 10 (Sections 3.5.1 - 3.5.4), as this has a bearing on the soil chemistry results. Building rubble and made ground materials were present at all the sites, except Glasgow Green and Tollcross Park.

3.5.1 Glasgow Green and Tollcross Park control sites


```
a) Glasgow Green
Photos © BGS NERC UKRI
```

b) Tollcross Park

Glasgow Green and Tollcross Park were selected as control sites because both are long-established recreational spaces within Glasgow where the land use has been consistent since at least Victorian times, and is likely to remain unchanged. Glasgow

Green is the city's oldest park and was established in the 15th century. It was used variously for grazing, washing and bleaching of linen before more formal landscaping as a park during the 1800s (GCC 2019a). Topsoil samples were collected for the present study from an open area of football pitches on the north bank of the River Clyde (Figure 2 and Figure 7a).

Tollcross Park was a country estate before being purchased as a recreational park for the city in 1897 (GCC, 2019b). For this study, topsoil samples were collected from an open area of grass in the south-west of the park (Figure 2 and Figure 7b).

Figure 7. Photos and description of a) Glasgow Green and b) Tollcross Park control sites.

3.5.2 GGERFS sites 01 – 05, Cuningar Loop

a) GGERFS01

c) GGERFS03 with proximity of new car park works

b) GGERFS02 Photos © BGS NERC UKRI

d) GGERFS04 with landscaped imported topsoil with hard-core

e) GGERFS05

The GGERFS sites 01 - 05 are located within what is today a woodland park in the Cuningar Loop, a large meander on the River Clyde in the east of Glasgow (Figure 2).

Examination of historical maps reveals an interesting history. The area was first developed in the early 1800s with the installation of a water pump and holding reservoirs for the Glasgow Waterworks, at site GGERFS04 at the northern end of the Cuningar Loop. This provided water to Glasgow from the River Clyde, before the advent of the Loch Katrine water supply system in 1859. The Glasgow Waterworks closed in the mid-1800s, but the reservoirs, devoid of water, remained in place and are marked as earthworks by 1900.

From the early 1900s, sand and gravel extraction was carried out in the northern half of the Cuningar Loop particularly in proximity to sites GGERFS04 and 01, resulting in open pits and a pond, which was present in the centre of the Loop until the 1990s. The south-west of the Cuningar Loop was home to the Old Farme Colliery, which operated between 1805 and 1931 and had a mineral railway to the west of GGERFS05. Coal spoil mounds associated with the colliery were present in the area of sites GGERFS02, 03 and 05 from the 1930s.

During the 1960s, the old colliery workings, sand and gravel pits and the former Glasgow Waterworks were infilled using material that included demolition rubble from the clearance of the Gorbals and other areas of the city. The land was then moribund until the regeneration of the area as a public park in 2014. The regeneration included construction of a public footbridge across the River Clyde adjacent to GGERFS04. As part of the landscaping around the new bridge, imported topsoil was applied to the northern tip of the Cuningar Loop, including the area around GGERFS04 that contains hard-core material (Ramboll 2018b) (Figure 8d).

Figure 8. Photos and description of soil survey sites GGERFS01-05, Cuningar Loop

3.5.3 GGERFS06b, Dalbeth

a) GGERFS6b Photos © BGS NERC UKRI b) GGERFS6b, auger-head of sample material showing imported brown topsoil overlying sandy orange base-soil

Site GGERFS06b is located in a present-day business park in Dalbeth, that is currently under development (Figures 2 and 9a). Historic maps reveal that the area was parkland of Easterhill House country estate, with a small lodge present to the north of the site between the mid-1800s until the 1940s. Two commercial properties were located to the north of the site in the 1950s until the early 2000s, when the site was cleared to make way for the current business park. Apart from these buildings, the site remained largely undeveloped and was used as a football pitch from the 1950s. However, the site lies immediately to the north and west of the former Easterhill Colliery and Clyde Iron Works and

significant piles of waste are evident on the southern segment and eastern boundary of the site from the early 20th century. The surrounding site was used as an unofficial landfill for building rubble and other waste between the 1970s and 1990s (Ramboll 2018b). As part of the recent business park development, the site has been landscaped with imported topsoil (Figure 9b), and is located on the borders of a tree-lined public footpath to the River Clyde.

Figure 9. Photos and description of soil survey site GGERFS06b, Dalbeth

3.5.4 GGERFS10, Dalmarnock

GGERFS10 showing top layer of hard-core material Photo © BGS NERC

GGERFS10 is located in an area of cleared ground earmarked for housing development in Dalmarnock (Figure 2). Historical maps reveal that from the mid-1800s the Barrowfield Print and Dye works was located to the south of the site. The site lies on the former cotton bleaching ground associated with the dye works. The dye works were redeveloped as an iron foundry, chemical works and leather works to the south of the site before the turn of the 20th century and the site was surrounded by cotton and carpet weaving mills until the mid-20th century. The Dalmarnock gas works was located to the north of the site from the mid-1800s. However, between the end of the 1800s and the 1950s, the site itself comprised tenement housing, which was cleared in the 1950 and 60s. The area was then largely empty, apart from a hostel that was located to the north of the site during the 1980s. Within recent years, soil and shallow groundwater contamination from the former gas works and surrounding former industries has been remediated and the site has been cleared for development (Ramboll 2018a). It is currently vacant with a covering of hard-core material. Subsequent to sampling, the site has been landscaped into a green corridor and sustainable urban drainage (SUDs) road verge feature.

Figure 10. Photos and description of soil survey site GGERFS010, Dalmarnock

4 Analytical Methods

On completion of the soil survey, the geomicrobiology samples were simply stored for future work.

This report describes the methods applied to the samples collected for soil chemistry analysis as follows.

To ensure data quality, the samples were analysed where possible using methods certified by the United Kingdom Accreditation Service (UKAS). This included asbestos screening at i2 Analytical Laboratories Limited (UKAS Testing Laboratory 4041), analysis of soil pH at the BGS laboratories (UKAS Testing Laboratory 1816) and x-ray fluorescence spectrometry (XRF) determinations by Malvern Panalytical Limited (UKAS Testing Laboratory 7488). The determination of Cr(VI) in soil by the BGS laboratories is not UKAS accredited, but is an established method (Hamilton et al. 2020).

4.1 SOIL ASBESTOS SCREENING

Prior to borehole development, environmental desk studies were carried out by a project contractor. These revealed the possible presence of asbestos in soil at approximately 1 m depth proximal to sites GGERFS01 and 04, noted in previous site investigation reports for the area (Ramboll 2018b).

As part of laboratory Health and Safety risk assessment, a sub-set of 10 GGERFS soil samples was screened for the presence of asbestos prior to sample preparation and analysis. These included the samples closest to the areas where the potential presence of asbestos had been reported previously at sites GGERFS01 and 04; and samples containing abundant building rubble at sites 02, 03, 05, 06b and 10 (Table 3).

The samples were analysed at i2 Analytical Limited, using a combined qualitative and quantitative method that is UKAS accredited.

The quantitative method entails initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing (Davies et al. 1996). The limit of quantification (LOQ) of this method is 0.001 % wt. The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution. In addition, the samples were analysed qualitatively for asbestos by polarising light microscope (PLM) and dispersion staining as described by the Health and Safety Executive (HSE 2006).

Table 3.	List o	of top	soil sam	ples th	at underv	went asbes	stos screening.
I upic ci		or cop	Join Sum		at anaci		, too ber cenning.

GGERFS Site	Sample ID
GGERFS01	G065
GGERFS01	G099
GGERFS02	G093
GGERFS03	G049
GGERFS04	G017
GGERFS04	G019
GGERFS04	G026
GGERFS05	G071
GGERFS6b	G053
GGERFS10	G060

4.2 SAMPLE PREPARATION

Following collection, the A-soil samples for chemical analysis were stored in a freezer at -20 °C and transported in cool boxes to the BGS laboratories for sample preparation and analysis.

The samples were then freeze-dried, disaggregated and sieved through a < 2 mm nylon sieve. The samples were thoroughly homogenised and cone and quartered before the following sample splits were taken:

- 10 g split for pH analysis.
- 50 g split for POPs analysis. This was milled in an agate ball mill to $< 250 \,\mu m$.
- 50 g split for inorganic chemical analysis. This was milled in an agate ball mill until 95% was < 53 μ m.
 - $\circ~$ From the 50g split milled to < 53 μm for inorganic analysis, the following further sample splits were taken:
 - 10 g split for Cr(VI) analysis
 - 12 g split for total element determinations by x-ray fluorescence spectrometry (XRF)

The XRF pellets were prepared by grinding the 12 g aliquot of milled material with 3 g of wax binder for 3 minutes in an agate planetary ball mill. This mixture was then pressed into a 40 mm diameter pellet at 250 kN using a Herzog (HTP-40) semi-automatic press.

As a check on sample preparation and analytical methods for the inorganic analysis, two samples were selected at random as analytical replicates (Sample A, G027 and Sample B, G039). For each of these samples, a second split of 50 g < 2 mm sample material was taken from the homogenised soil (Table 4). In addition, data quality was assured by inclusion of certified reference materials (CRM), and BGS in-house secondary reference materials (SRM) in the analytical runs. These replicates and standards were prepared in the same way as, and numbered in the same format as, the samples to appear 'blind' to the laboratories.

Table 4. Analytical replicates prepared from samples G027 and G039.

Sample Details	Sample A G027 from	n GGERFS06b	Sample B G039 from GGERFS04		
Replicate Splits	Replicate A1	Replicate A2	Replicate B1	Replicate B2	
Lab ID	G027	G010	G039	G075	

4.3 INORGANIC ANALYSIS

4.3.1 Soil total element concentrations by XRF

Total concentrations of 53 chemical elements were determined by x-ray fluorescence spectrometry (XRF) by Malvern Panalytical Limited using similar methods to those deployed by the BGS G-BASE project (Ingham and Vrebos 1994; Ingham et al. 2007a; Ingham et al. 2007b). Concentrations of the major elements are expressed as oxide weight percent and for all other elements as mg/kg.

This method is UKAS accredited for the majority of elements, with the exception of aluminium (Al_2O_3) , calcium (CaO), magnesium (MgO), potassium (K₂O), phosphorus (P₂O₅), silicon (SiO₂), sodium (Na₂O), chlorine (Cl), mercury (Hg) and sulphur (S).

Potential mineralogical and particle-size that might contribute to the overall analytical error uncertainty are minimised by fine milling of the samples prior to analysis. The calibrations were validated by analysis of reference materials and regularly corrected for instrumental drift.

The limit of quantification (LOQ) for XRF are shown in Table 5. The LOQs are theoretical values for the concentration equivalent to three standard deviations above the background count rate for

the analyte in a silica matrix. High instrumental stability results in practical values for these materials approaching the theoretical detection limit.

The presence of high concentrations of certain elements in sample media can have spectral interference effects on the XRF determination of other elements. Table 6 outlines the possible interferences noted in the GGERFS dataset and these data should be treated with caution.

For XRF data quality control, CRMs were analysed twice at the start and twice at the end of the sample batch. Three internal BGS SRMs (S13B, S23B and S58S) were analysed, hidden within the batch in duplicate. These standards were the same as those analysed with the G-BASE Clyde Basin soil dataset (Fordyce et al. 2017), so that the datasets are comparable (Table 7).

The analytical results for the reference materials are reported against the certified (CRM) or accepted (SRM) values, where available, together with a summary of the precision of the analysis of each material and the analytical recovery (Tables A2.1, A2.2, Appendix 2). Precision and the robustness of the analytical methods were assessed also by comparison of the two random analytical replicate samples (Sample A and Sample B) (Table A2.3, Appendix 2).

The repeat measurements of the standards and the analytical replicate results show good precision of the data with relative standard deviation (RSD) of \leq 15% and relative standard error (RSE) of \leq 10% reported for the majority of elements. The exceptions are elements where concentrations are close to the LOQ, as expected (Ag, Bi, Cd, Cs, Hg, Sm, Tl and Yb) and Cr in CRM LKSD-1 (Tables A2.1 - A2.3, Appendix 2).

To assess accuracy, comparisons of measured versus certified/accepted values for the CRM and SRM standards indicate that Cr has an apparently high recovery in LKSD-1 also, that is likely to be due to poor precision. This is possibly due to potential minor inhomogeneity in the reference material affecting this particular element (Table A2.1, Appendix 2).

For the rest of the elements, the data are within the expected range of recoveries for the technique $(100 \pm 20\%)$ showing good accuracy, except where element concentrations are close to or below the LOQ. The recoveries for Na₂O, MgO, Al₂O₃, SiO₂ and P₂O₅ are as expected, given analyte concentrations and the accuracy of the analytical method (Tables A2.1 and A2.2, Appendix 2).

The measured presence of Hg in GSD-6 (1.0-1.6 mg/kg) is unexpected when compared to a reference value of 0.045 mg/kg, but these values are below the LOQ, affecting the reliability of the data (Table A2.1, Appendix 2).

It is well known in geochemistry, that even when analytical instruments have been calibrated correctly, there are often identifiable shifts in the data between analytical batches as a result of recalibration events that have been necessary due to instrument breakdown or after instrument service/overhaul. The standards inserted with the GGERFS analytical runs were used to assess this type of long-term analytical drift between batches of samples. Tolerance limits arbitrarily set at the mean $\pm 2\sigma$ were used to assess data quality. Simple arithmetic correlations were applied to correct for this and normalise the data to the accepted CRM/SRM results. The same process is carried out on the rest of the BGS G-BASE UK geochemistry database (Lister and Johnson 2005). Thus, the GGERFS topsoil chemistry dataset is directly comparable with the surrounding BGS G-BASE Glasgow topsoil dataset, allowing the GGERFS results to be placed in context.

The correlation conditioning factors applied to the GGERFS topsoil datasets are outlined in Table 8. Factors were not applied to silver (Ag), bismuth (Bi), chlorine (Cl), germanium (Ge), mercury (Hg), iodine (I), indium (In), sulphur (S), selenium (Se), samarium (Sm), tantalum (Ta), tellurium (Te), thallium (Tl) and ytterbium (Yb), because either (i) certified/accepted values were not reported for these elements; or (ii) the majority of data, including the results for standards, were below the LOQ. Where application of the data conditioning factors resulted in an artificial negative value, these were set to zero.

Symbol	Parameter	Method	LOQ	Units	Lab	Accreditation	
Al ₂ O ₃	Aluminium	XRF	0.2	wt%	Panalytical	None	
CaO	Calcium	XRF	0.05	wt%	Panalytical	None	
Fe ₂ O ₃	Iron	XRF	0.01	wt%	Panalytical	UKAS	
K ₂ O	Potassium	XRF	0.01	wt%	Panalytical	None	
MgO	Magnesium	XRF	0.3	wt%	Panalytical	None	
MnO	Manganese	XRF	0.005	wt%	Panalytical	UKAS	
Na₂O	Sodium	XRF	0.3	wt%	Panalytical	None	
P ₂ O ₅	Phosphorus	XRF	0.05	wt%	Panalytical	None	
SiO ₂	Silicon	XRF	0.1	wt%	Panalytical	None	
TiO ₂	Titanium	XRF	0.010	wt%	Panalytical	UKAS	
Ag	Silver	XRF	0.5	mg/kg	Panalytical	UKAS	
As	Arsenic	XRF	0.9	mg/kg	Panalytical	UKAS	
Ва	Barium	XRF	1.0	mg/kg	Panalytical	UKAS	
Bi	Bismuth	XRF	0.3	mg/kg	Panalytical	UKAS	
Br	Bromine	XRF	0.8	mg/kg	Panalytical	UKAS	
Cd	Cadmium	XRF	0.5	mg/kg	Panalytical	UKAS	
Ce	Cerium	XRF	1.0	mg/kg	Panalytical	UKAS	
Cl	Chlorine	XRF	200	mg/kg	Panalytical	None	
Со	Cobalt	XRF	1.5	mg/kg	Panalytical	UKAS	
Cr	Chromium	XRF	3.0	mg/kg	Panalytical	UKAS	
Cs	Caesium	XRF	1.0	mg/kg	Panalytical	UKAS	
Cu	Copper	XRF	1.3	mg/kg	Panalytical	UKAS	
Ga	Gallium	XRF	1.0	mg/kg	Panalytical	UKAS	
Ge	Germanium	XRF	0.5	mg/kg	Panalytical	UKAS	
Hf	Hafnium	XRF	1.0	mg/kg	Panalytical	UKAS	
Hg	Mercury	XRF	2.5	mg/kg	Panalytical	None	
1	Iodine	XRF	0.5	mg/kg	Panalytical	UKAS	
In	Indium	XRF	0.5	mg/kg	Panalytical	UKAS	
La	Lanthanum	XRF	1.0	mg/kg	Panalytical	UKAS	
Мо	Molybdenum	XRF	0.2	mg/kg	Panalytical	UKAS	
Nb	Niobium	XRF	1.0	mg/kg	Panalytical	UKAS	
Nd	Neodymium	XRF	4.0	mg/kg	Panalytical	UKAS	
Ni	Nickel	XRF	1.3	mg/kg	Panalytical	UKAS	
Pb	Lead	XRF	1.3	mg/kg	Panalytical	UKAS	
Rb	Rubidium	XRF	1.0	mg/kg	Panalytical	UKAS	
S	Sulphur	XRF	1000	mg/kg	Panalytical	None	
Sb	Antimony	XRF	0.5	mg/kg	Panalytical	UKAS	
Sc	Scandium	XRF	3.0	mg/kg	Panalytical	UKAS	
Se	Selenium	XRF	0.2	mg/kg	Panalytical	UKAS	
Sm	Samarium	XRF	3.0	mg/kg	Panalytical	UKAS	
Sn	Tin	XRF	0.5	mg/kg	Panalytical	UKAS	
Sr	Strontium	XRF	1.0	mg/kg	Panalytical	UKAS	
Та	Tantalum	XRF	1.0	mg/kg	Panalytical	UKAS	
Те	Tellurium	XRF	0.5	mg/kg	Panalytical	UKAS	
Th	Thorium	XRF	0.7	mg/kg	Panalytical	UKAS	
TI	Thallium	XRF	0.5	mg/kg	Panalytical	UKAS	
U	Uranium	XRF	0.5	mg/kg	Panalytical	UKAS	
V	Vanadium	XRF	3.0	mg/kg	Panalytical	UKAS	
W	Tungsten	XRF	0.6	mg/kg	Panalytical	UKAS	
Y	Yttrium	XRF	1.0	mg/kg	Panalytical	UKAS	
Yb	Ytterbium	XRF	1.5	mg/kg	Panalytical	UKAS	
Zn	Zinc	XRF	1.3	mg/kg	Panalytical	UKAS	
Zr	Zirconium	XRF	1.0	mg/kg	Panalytical	UKAS	
Cr(VI)	ChromiumVI	SIDMS HPLC	0.5	mg/kg	BGS	None	
рН	рН	CaCl ₂ Slurry	0.1	-log[H+]	BGS	UKAS	

Table 5. Limits of quantification and list of inorganic parameters determined in topsoil.

SIDMS HPLC: Speciated isotope dilution mass spectrometry; High performance liquid chromatography CaCl₂: calcium chloride

Table 6. Reported possible spectral interferences in topsoil element concentration analysis by XRF.

Samples containing	Will affect the results for	Comments
Ba > 1000 mg/kg	Sc, V, Cr, Ag, In, Sn, Sb, I, Cs, Ba, La, Ce, Nd, Sm	Data for these samples fall outside the scope of UKAS accreditation
Cr >1000 mg/kg	Sc, V, Cr, Cs, Ba, La, Ce, Nd, Sm data and possibly other elements	Data for these samples fall outside the scope of UKAS accreditation
Cu >1000 mg/kg	Sc, V, Cr, Co, Ni, Cu, Zn, Cs, Ba, La, Ce, Nd, Sm, Yb, Hf, Ta, W data and possibly other elements	Data for these samples fall outside the scope of UKAS accreditation
Pb > 1000 mg/kg	Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Cs, Ba, La, Ce, Nd, Sm, Yb, Hf, Ta, W, Hg, Tl, Pb, Bi, Th, U data and possibly other elements	Data for these samples fall outside the scope of UKAS accreditation
Zn > 1000 mg/kg	Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Cs, Ba, La, Ce, Nd, Sm, Yb, Hf, Ta, W data and possibly other elements	Data for these samples fall outside the scope of UKAS accreditation

Table 7. List of standards included with the XRF analysis of GGERFS topsoil samples.

CRM	Source
GSD-6	Bulk stream sediment, National Research Centre (NRC) China
STSD-3	Bulk stream sediment, Canadian Centre for Mineral and Energy Technology (CANMET)
LKSD-1	Bulk lake sediment, CANMET Canada
LKSD-4	Bulk lake sediment, CANMET Canada
SRM	Source
S13B	Bulk stream sediment, BGS
S23B	Bulk stream sediment, BGS
S58S	Bulk soil, BGS

Table 8. List of conditioning factors applied to the GGERFS topsoil XRF data to normaliseto the G-BASE national topsoil dataset.

Element	Conditioning Factor
Al2O3	0.6962 x e + 4.0563
CaO	0.8518 x e + 0.3043
Fe2O3	0.9275 x e + 0.4844
К2О	0.8864 x e + 0.2381
MgO	0.5653 x e + 0.6052
MnO	0.7614 x e + 0.0216
Na2O	0.9776 x e + 0.5947
P2O5	0.6913 x e + 0.0794
SiO2	0.6249 x e + 23.499
TiO2	0.8368 x e + 0.1702
As	0.9777 x e + 1.8643
Ва	1.0366 x e + 10.244
Br	0.9742 x e + 1.2886
Cd	0.9663 x e + 0.1451
Ce	0.8123 x e + 14.223
Со	0.9124 x e - 0.3343
Cr	1.0330 x e - 4.6310
Cs	1.0791 x e - 0.3346
Cu	1.0073 x e + 4.0847
Ga	0.9268 x e + 2.4036
Hf	0.9234 x e + 1.4116
La	0.8776 x e + 7.4362
Мо	1.0071 x e + 0.2761
Nb	0.8136 x e + 4.5079
Nd	1.2478 x e - 9.2930
Ni	0.9787 x e - 1.1532
Pb	0.9786 x e - 0.1228
Rb	0.9658 x e + 5.1142
Sb	0.8805 x e + 0.1717
Sc	1.0084 x e - 1.0507
Sn	1.1811 x e - 0.0617
Sr	1.0258 x e - 9.6585
Та	0.5543 x e + 0.9735
Th	0.974 x e + 0.5861
U	0.9885 x e + 0.3665
V	1.0034 x e + 4.3054
W	1.0128 x e - 0.4052
Y	1.1717 x e - 3.5109
Zn	1.1135 x e - 16.747
Zr	0.9190 x e + 19.892
where e = n	neasured element concentration

4.3.2 Cr(VI) determinations by SIDMS and HPLC

The determination of Cr(VI) in soil samples was carried out using an Agilent 1260 Infinity II Bio-Inert High Performance Liquid Chromatography (HPLC) system coupled to an Agilent 8900 inductively coupled plasma mass spectrometer (ICP-MS) to perform speciated isotope dilution mass spectrometry (SIDMS), based on the methods of Hamilton et al. (2020).

The HPLC system works on the principle that the Cr(III) and Cr(VI) within a sample can be separated based on their affinity for a stationary phase (contained within an analytical column) and a mobile phase that is continuously pumped through the column. A volume of sample (typically 50 μ I) is injected into the pathway of the mobile phase and introduced into the analytical column. The Cr(III) and Cr(VI) will have different retention properties on the column and will therefore exit the column into the ICP-MS for detection at different times. During this period, the ICP-MS is undertaking time resolved analysis (TRA) and will scan at a defined mass-to-charge ratio (m/z 52 and 53 for Cr) for a predetermined interval of time (7.5 minutes). When each species of Cr passes through the column into the instrument, a response is produced in the form of a chromatographic peak. The area of each peak is integrated using Agilent MassHunter software and exported to Microsoft Excel® for calculation of mass-bias corrected abundances and isotope ratios.

The HPLC mobile phase (40 mM ammonium nitrate (NH₄NO₃)/50 mM TRIS Buffer/5 mM ethylenediaminetetraacetic acid-diammonium salt (NH₄-EDTA), corrected to pH 7.0 with aqueous ammonia) was prepared fresh on the day of analysis. The analytical column (Hamilton® PRP-X100) was conditioned with the mobile phase at a flow rate of 1.2 ml/minute until the baseline for m/z 52 and 53 was stable. The outflow from the analytical column was connected directly to the nebuliser of the ICP-MS using a length of poly-ether ether ketone (PEEK) tubing.

For sample preparation, 0.2 g subsample of the dried milled material was added to a fluorocarbon polymer (PFA) microwave vessel, followed by 10 ml of 50 mM NH₄-EDTA (pH 10.0). The vessel was then spiked with 0.4 ml of 53 Cr(VI) at a concentration sufficient to double the natural 53 Cr(VI) present in the sample. The sample was then subjected to a 5 minute heating programme at 80°C (8 minute ramp time), cooled and centrifuged at 4000 revolutions/ minute for 20 minutes to separate the supernatant from the extracted solid material. Prior to chromatographic separation, the sample was diluted with ultrapure water (2-fold for samples, 10- or 100-fold for CRMs). The LOQ was 0.5 mg/kg (Table 5).

Whilst the method is not accredited to the requirements of BS EN ISO/IEC 17025:2017, data quality was verified through the use of international CRMs and internal SRMs (Table 9). To ensure data precision, repeat measurements were made on 10% of the samples.

Results for the analytical replicate samples A and B (Table A2.3, Appendix 2), for the analytical repeats (Table A2.4, Appendix 2) and for repeat measurements on the CRM and SRMs (Table A2.5, Appendix 2) show good precision of the analytical methods with RSD and RSE of < 15%. Comparison of the data with the certified/accepted values for the CRM and SRMs also show good accuracy, with recoveries $100 \pm 15\%$ (Table A2.5, Appendix 2).

CRM	Source
NIST 2700	Hexavalent chromium in contaminated soil (Low Level), National Institute of Standards and Technology (NIST), United States of America (USA)
NIST 2701	Hexavalent chromium in contaminated soil (High Level), NIST, USA

Table 9. Reference materials included with the Cr(VI)analysis of GGERFS topsoil samples

4.3.3 Soil pH

Soil pH was determined at the BGS laboratories (UKAS accredited) by adding 5g of <2mm sample to 12.5 ml of 0.01M CaCl₂.2H₂O (calcium chloride). The mixture was shaken to form a slurry prior to analysis by pH electrode. This method of pH determination generally gives lower results (0.5 pH units) than water-based methods (Rowell 1997).

Results for the analytical replicate samples demonstrate good repeatability/precision of the data, with standard deviation (SD) of 0.03 pH unit (Table A2.3, Appendix 2).

4.4 ORGANIC ANALYSIS

Analyses of soil carbon, TPH, PAH and PCBs were carried out at the BGS laboratories.

The quality of PAH and PCB measurement was assessed by inclusion of the international CRM 'NIST 1941b organics in sediment' with the analytical runs. The CRM was analysed 15 times in duplicate (total 30 times) with samples interspersed throughout the analytical programme.

4.4.1 Soil carbon measurement

Total organic carbon (TOC) content was determined using an Elementar VarioMax C, N (carbonnitrogen) analyser after acidification with hydrochloric acid (HCl) to remove carbonate. The LOQ for the soil carbon measurements was 0.18% (Table 10). Total carbon (TTC) was determined by direct analysis of soils (no pre-treatment other than milling) and the Total Inorganic Carbon (TIC) calculated by subtracting TOC from TTC.

4.4.2 Total petroleum hydrocarbons measurement

Dried soils were extracted with organic solvents and the main compound classes separated by thin layer chromatography using silica rods. The concentration of saturated, aromatic hydrocarbons as well as resin compound was determined by an Iatroscan Mk6s instrument fitted with a flame ionization detector (FID). The LOQ was 1 mg/kg (Table 10).

4.4.3 Polycyclic aromatic hydrocarbons (PAH) measurement

Dried soils were spiked with appropriate deuterated surrogate standards and extracted with organic solvents on an accelerated solvent extraction system (ASE). The PAH were separated by column chromatography using solid phase extraction cartridge (SPE), spiked with internal standards and analysed by gas chromatography-mass spectrometry (GC-MS). The LOQ were determined as 5 times the standard deviation of 0.6 ng injection over a 14-day analysis period for 36 PAH compounds (Table 10).

Summary data presented in Table A2.6 (Appendix 2) confirms good precision (RSD \leq 25%) and an excellent fit with NIST1941b certified values across the low and medium molecular weight PAH with recoveries 100±15%. Higher RSD values are reported for concentrations close to the LOQ. Procedural blank samples of clean sand gave no quantifiable PAH.

4.4.4 Polychlorinated biphenyls (PCB) measurement

Dried soils were spiked with appropriate surrogate standards and extracted on an accelerated solvent extraction system (ASE). The PCBs were separated from non-halogenated moieties by column chromatography (e.g. Vane et al. 2014). The fraction containing PCB was spiked with internal standards and analysed by gas chromatography-mass spectrometry (GC-MS). Procedural blanks gave no appreciable PCB. Mean LOQ were determined as 5 times the standard deviation of 150 pg injections (n=36 over a 14 day period) (Table 11). The seven PCB congeners (PCB 28, 52, 101, 118, 153, 138, 180) that are recommended for monitoring by the International Council for the Exploration of the Sea (ICES) and the European Union Community Bureau of Reference

(EUCBR) were determined in the analytical runs. Summary data presented in Table A2.7 (Appendix 2) show good precision (RSD $\leq 20\%$) and a close comparison between CRM NIST1941b certified and BGS measurements for values determined above the LOQ (recoveries $100\pm10\%$).

Parameter	Symbol	LOQ	Units	Lab	Accreditation
Soil Carbon					
Total carbon (TTC)	TTC	0.18	%	BGS	None
Total organic carbon (TOC)	тос	0.18	%	BGS	None
Total inorganic carbon (TIC)	TIC	0.18	%	BGS	None
Petroleum Hydrocarbons					
resins		259	mg/kg	BGS	None
aromatics		63	mg/kg	BGS	None
saturates		67	mg/kg	BGS	None
Total petroleum hydrocarbons	TPH	67	mg/kg	BGS	None
36 Polyaromatic Hydrocarbons	PAH				
naphthalene		0.05	mg/kg	BGS	None
2-methylnaphthalene		0.03	mg/kg	BGS	None
1-methylnaphthalene		0.04	mg/kg	BGS	None
biphenyl		0.03	mg/kg	BGS	None
C2-naphthalenes		0.04	mg/kg	BGS	None
acenaphthylene		0.04	mg/kg	BGS	None
acenaphthene		0.03	mg/kg	BGS	None
dibenzofuran		0.03	mg/kg	BGS	None
fluorene		0.02	mg/kg	BGS	None
1-methylfluorene		0.02	mg/kg	BGS	None
dibenzothiophene		0.04	mg/kg	BGS	None
phenanthrene		0.03	mg/kg	BGS	None
anthracene		0.05	mg/kg	BGS	None
1-methylanthracene		0.04	mg/kg	BGS	None
C1-phenanthrenes / anthracenes		0.04	mg/kg	BGS	None
C2-phenanthrenes / anthracenes		0.04	mg/kg	BGS	None
fluoranthene		0.03	mg/kg	BGS	None
pyrene		0.03	mg/kg	BGS	None
1-methylpyrene		0.04	mg/kg	BGS	None
C1-fluoranthenes / pyrenes		0.04	mg/kg	BGS	None
C2-fluoranthenes / pyrenes		0.04	mg/kg	BGS	None
benz[a]anthracene		0.03	mg/kg	BGS	None
triphenylene		0.03	mg/kg	BGS	None
chrysene		0.03	mg/kg	BGS	None
C1-benz[a]anthracenes / chrysenes		0.06	mg/kg	BGS	None
C2-benz[a]anthracenes / chrysenes		0.06	mg/kg	BGS	None
benzo[b]fluoranthene		0.04	mg/kg	BGS	None
benzo[k]fluoranthene		0.05	mg/kg	BGS	None
benzo[j]fluoranthene		0.05	mg/kg	BGS	None
benzo[a]fluoranthene		0.05	mg/kg	BGS	None
benzo[e]pyrene		0.05	mg/kg	BGS	None
benzo[a]pyrene		0.05	mg/kg	BGS	None
perylene		0.03	mg/kg	BGS	None
dibenz[a,h]anthracene		0.06	mg/kg	BGS	None
indeno[1,2,3-cd]pyrene		0.04	mg/kg	BGS	None
benzo[g,h,i]perylene		0.05	mg/kg	BGS	None

Table 10. Limits of quantification for topsoil carbon, petroleum hydrocarbon and PAHs

РСВ	LOQ	Units	Lab	Accreditation
PCB028	1.47	µg/kg	BGS	None
PCB052	2.47	µg/kg	BGS	None
PCB081	2.27	µg/kg	BGS	None
PCB077	2.47	µg/kg	BGS	None
PCB095	3.01	µg/kg	BGS	None
PCB101	3.46	µg/kg	BGS	None
PCB099	3.13	µg/kg	BGS	None
PCB110	2.11	µg/kg	BGS	None
PCB123	2.57	µg/kg	BGS	None
PCB118	2.27	µg/kg	BGS	None
PCB114	3.00	µg/kg	BGS	None
PCB105	1.79	µg/kg	BGS	None
PCB126	2.05	µg/kg	BGS	None
PCB151	3.01	µg/kg	BGS	None
PCB149	2.61	µg/kg	BGS	None
PCB146	2.52	µg/kg	BGS	None
PCB153	2.52	µg/kg	BGS	None
PCB138	3.01	µg/kg	BGS	None
PCB167	2.16	µg/kg	BGS	None
PCB156	1.94	µg/kg	BGS	None
PCB169	2.50	µg/kg	BGS	None
PCB187	3.60	µg/kg	BGS	None
PCB183	3.13	µg/kg	BGS	None
PCB177	4.15	µg/kg	BGS	None
PCB180	3.71	µg/kg	BGS	None
PCB170	3.33	µg/kg	BGS	None
PCB189	6.03	µg/kg	BGS	None
3-Cl	1.47	µg/kg	BGS	None
4-Cl	2.40	µg/kg	BGS	None
5-Cl	2.60	µg/kg	BGS	None
6-Cl	2.62	µg/kg	BGS	None
7-Cl	4.12	µg/kg	BGS	None

Table 11. Limits of quantification for 32 PCBs in topsoil

5 Data Presentation

The GGERFS baseline Soil Chemistry03-18 dataset is presented in Excel® table format:

Filename: GGERFS_SoilChem0318Data_Release.xlsx

Any use of the data should be cited to:

DOI: https://dx.doi.org/10.5285/0bfdeb32-db24-4221-9d02-f074f51edff2

F M Fordyce, K M Shorter, C H Vane, C J B Gowing, E M Hamilton, A W Kim, P A Everett, B P Marchant and T R Lister. UK Geoenergy Observatories GGERFS_SoilChem03-18Data_Release

and to this report:

FORDYCE F M, SHORTER K M, VANE C H, GOWING C J B, HAMILTON E M, KIM A W, EVERETT P A, MARCHANT B P AND LISTER T R .2019. UK Geoenergy Observatories, Glasgow Environmental Baseline Soil Chemistry Dataset. Open Report, OR/19/062 (Edinburgh: British Geological Survey).

It contains the results of inorganic and organic chemical analyses for each of the 90 topsoil samples along with descriptive information about the soils, noted during sampling, such as location, land use, presence of any contaminant material in the soil and soil texture (See Table 2 for explanation).

For the chemical data, the analyte name, element chemical symbols, analytical method, units of measurement and LOQ are reported in header rows at the top of the table.

The XRF total element concentration data are reported in alphabetical order by chemical symbol as wt% oxide for the major elements, followed by minor and trace element data in parts per million (mg/kg). Data for organic substances are reported in percent for soil carbon measurements, mg/kg for TPH and PAH substances, and parts per billion (μ g/kg) for PCBs.

Table 12 shows an example extract from the GGERFS baseline Soil Chemistry03-18 dataset.

Data below the LOQ are reported in two formats, depending on the analytical technique. For some analytes, data are reported as < LOQ. For other determinands, because the calculated LOQ can be higher than the detection limit of the apparatus, values can be reported that are below the LOQ.

Whilst individual results below the calculated LOQ should be treated with caution, reliable estimates of average or typical values over an area may be obtained at lower levels of concentration; meaningful relationships may thus be recognised for some elements at levels lower than the LOQ. Therefore, where detected, data below the LOQ are reported with qualifiers. A guide to the qualifiers is provided in Table 13.

For the purposes of calculating statistics and presenting example maps in this report, data below the LOQ were set to half the LOQ. Summary statistics for this report were prepared in Excel® software. Example box and whisker plots showing the 10th, 25th, 50th, 75th and 90th percentiles of the data distribution, with dots showing outliers, were generated in the Statview® software package. Maps of the sample locations and graduated symbol maps showing selected element concentrations in topsoil across the GGERFS facility were compiled in ArcGIS® software.

Sample ID	Site_No	Easting	Northing	Samp_Type	Replicate	Inorganic Ana	lytes					
Name						Aluminium	Calcium	Iron	Potassium	Magnesium	Manganese	Sodium
Parameter						AI2O3	CaO	Fe2O3	К2О	MgO	MnO	Na2O
Method						XRF	XRF	XRF	XRF	XRF	XRF	XRF
LOQ						0.2	0.05	0.01	0.01	0.3	0.005	0.3
Units						wt%	wt%	wt%	wt%	wt%	wt%	wt%
G001	GGERFS01	262363	662850	Topsoil		11.9	1.33	5.19	1.29	1.1	0.1	1
G002	GGERFS6b	263554	662774	Topsoil		12.1	3.12	5.8	1.38	1.4	0.137	1.1
G003	GGERFS01	262319	662858	Topsoil		13.9	1.12	5.77	1.53	1.2	0.107	0.8
G004	GGERFS01	262364	662834	Topsoil		12.3	1.34	5.66	1.39	1.2	0.111	0.9
G005	GGERFS10	260895	663099	Topsoil		12.8	3.01	5.12	1.51	1.3	0.095	0.9
G006	GGERFS6b	263596	662713	Topsoil		11.3	1.96	4.7	1.36	1.2	0.098	1
G007	GGERFS02	262367	662647	Topsoil		11.1	1.36	5	1.31	1.2	0.08	1
G008	TC	263407	663822	Topsoil		10.8	0.52	4.58	1.04	0.9	0.068	1
G009	TC	263431	663816	Topsoil		11.1	0.53	4.83	1.06	0.9	0.054	1
G012	GGERFS6b	263578	662831	Topsoil		11.4	2.42	5.57	1.28	1.2	0.121	1.2
G013	GGERFS05	262326	662484	Topsoil		13	1.89	6.3	1.39	1.5	0.118	1.2
G014	GGERFS6b	263572	662770	Topsoil		11.4	2.62	5.57	1.28	1.3	0.135	1.2
G015	GGERFS03	262227	662738	Topsoil		10.7	2.02	5.11	1.31	1.3	0.086	1.3
G016	GGERFS04	262016	663229	Topsoil		11.8	2.82	5.76	1.43	1.6	0.102	1.3
G017	GGERFS04	262004	663223	Topsoil		nd	nd	nd	nd	nd	nd	nd
G018	GGERFS03	262224	662741	Topsoil		10.7	1.97	5.15	1.31	1.3	0.088	1.3
G019	GGERFS04	261995	663262	Topsoil		11.4	4.27	6.54	1.36	2.2	0.14	2
G020	GG	260125	663441	Topsoil		8	0.7	3.28	0.87	1.1	0.062	1.3
G021	GGERFS02	262365	662667	Topsoil		11.2	1.49	7.92	1.21	1.2	0.133	1
G023	GGERFS05	262320	662478	Topsoil		13.7	3.46	6.73	1.45	1.3	0.204	0.9
G024	TC	263349	663812	Topsoil		11.2	0.55	4.22	1.04	0.9	0.064	1.1
G025	TC	263427	663791	Topsoil		9.3	0.53	4.26	0.91	0.9	0.073	0.9
G026	GGERFS04	262063	663233	Topsoil		16.4	2	6.24	1.96	1.6	0.089	0.7
G027	GGERFS6b	263563	662791	Topsoil	SAMPA	12.2	3.23	5.87	1.37	1.5	0.129	1.3

Table 12. Example extract of data from the GGERFS baseline Soil Chemistry03-18 dataset.

Table 13. Guide to data quality qualifiers in the GGERFS topsoil 03-18 dataset.

Code	Translation	Defined as
>	Probably high	Not determined accurately due to interference. Probably higher.
<	Probably low	Not determined accurately due to interference. Probably lower.
*	Dubious quality	The value has a documented quality control issue such as matrix interference, treat data with caution.
\$	Uncertain value	Value as reported was below the lower detection limit cited by the analyst.
A	Estimated value	Value has been set to zero because data conditioning process created an artificial negative value.
nd	Not detected	
6 Initial Results

Subsequent to the 03-18 baseline soil geochemical survey, the GGERFS facility was rescoped such that boreholes have not been constructed at sites GGERFS 04 and 06b. However, the soil chemistry results for these sites are presented in this report to provide wider information for the area; and in case these sites are the focus of attention in future GGERFS developments.

6.1 ASBESTOS RESULTS

Examination of a sub-set of 10 topsoil samples carried out as a health and safety check prior to sample preparation and handling of the samples in the laboratory revealed that only one sample contained asbestos. This was present as chrysotile in sample G017 from site GGERFS04.

Further tests revealed the asbestos content was very low (0.027 % wt) and was in the form of bonded cement, with very low presence of fibres (Table 14).

The amount of fibres present was within the Joint Industry Working Group Asbestos in Soil and Construction & Demolition Materials threshold of 'Low' quantities - >0.01 to <0.05 % wt, with insignificant risk (CL:AIRE 2016).

The sample was processed with additional health and safety precautions in the BGS laboratories. However, sample G017 was not accepted for XRF analysis by Panalytical Laboratories Limited.

Any future analysis of archive material of this sample should be carried out with caution.

Sample ID	Sample Depth (cm)	Sample Weight (g)	ACM Types Detected	PLM Results	LOQ (%)	Total asbestos (%) by hand picking/weighing	Laboratory	Accrediation
G017	20	34	Loose fibres & hard/cement type material	Chrysotile	0.001	0.027	i2 Analytical	ISO 17025
ACM: asbe	stos cont	aining m	aterial	PLM: polari	sing ligh	nt microscopy		

Table 14. Results of asbestos testing on topsoil sample G017 from GGERFS04

6.2 TOPSOIL CHEMISTRY

Summary statistics of parameter concentrations in the GGERFS topsoil samples are shown in Tables A3.1-A3.4 (Appendix 3). To comment on soil quality, the GGERFS results were compared to the city-wide BGS G-BASE (Fordyce et al. 2017) and organic pollutant Glasgow topsoil (Kim et al. 2019) geochemistry datasets (Tables A3.1-A3.4, Appendix 3) and to land contamination generic soil guidelines (Table A3.5, Appendix 3).

Under UK environmental legislation, the Contaminated Land Exposure Assessment (CLEA) model was established to assess potential threats to human health from soil exposure, based on a minimal level of risk (EA 2002; EA 2009). The CLEA method uses toxicological data from international studies and likely soil exposure routes and duration to derive a series of generic assessment criteria (GAC) soil guideline values (SGVs) for various land-use types as a first-pass assessment of land quality for selected parameters of potential concern. If parameter concentrations are below the GAC, the land is not considered contaminated. In England, the SGVs were subsequently updated and a suite of generic human health risk values known as category 4 screening levels (C4SL) were derived, to provide a more pragmatic approach to the identification of land that is not contaminated (DEFRA 2014). These are based on a low rather than minimal level of risk and, as such, are generally higher than the CLEA SGVs. The C4SLs have not been adopted officially in Scotland, but are widely used. Therefore, for the present study reference is

made to the C4SLs (DEFRA 2014) and to current industry human health risk recommended thresholds that are typically considered as part of UK land quality assessments. These include GAC (CL:AIRE 2010; Nathanail et al. 2009); suitable for use screening levels (S4UL) (Nathanail et al. 2015) and Dutch soil target and intervention/trigger levels (VROM 2009). If parameter concentrations in soil exceed these generic guidelines, that does not mean that the land is contaminated. Rather, that further studies need to be carried out to define any source–pathway–receptor linkages for particular land-use types (EA 2009).

The results for selected parameters in topsoil are presented in box and whisker plots showing the data distribution at each of the survey sites in Figures 11 - 14.

Maps showing the concentrations of selected parameters in topsoil are shown in Appendix 4.

6.2.1 Comparisons with the city-wide BGS Glasgow topsoil datasets

The results for the GGERFS topsoil samples demonstrate that with the exception of Cd and SiO₂, the inorganic parameter contents are within the ranges reported in the city-wide BGS G-BASE urban topsoil geochemistry dataset for Glasgow (Table A3.1, Appendix 3).

By contrast, the concentrations of several organic parameters exceed those in the BGS Glasgow topsoil dataset reported by Kim et al. (2019), including total organic carbon (TOC), TPH, the naphthalene and dibenzofuran PAH compounds, and the 7 ICES/EUCBR indicator (hereafter Σ 7PCBs) and tri-hepta PCB compounds (Tables A3.2 – A3.4, Appendix 3).

These and the other results are discussed in more detail as follows.

6.2.2 Comparisons with UK land contamination guidelines

Whilst concentrations of As, Ba, Cd, total Cr, Cr(VI), Cu, Ni, V, Zn, TPH, benzo(a)pyrene (BaP) and \sum 7PCBs exceed the generic soil guidelines for allotment, garden or residential open space in several of the soil samples, they do not exceed the guidelines for recreational open space, the land use at the GGERFS sites. As such, the land would not be classed as contaminated (Table A3.5, Appendix 3; Figures 11 and 12; Figures A4.1-A4.3; A4.5-A4.8, Appendix 4).

However, topsoil Pb concentrations do exceed the category 4 screening level for recreational open space (C4SL 1300 mg/kg, DEFRA 2014) in samples G023 and G057 collected from site GGERFS05 (Figure A4.4, Appendix 4). This indicates that further investigation would be required to assess source-pathway-receptor relationships to determine any risks to human health from exposure to this soil. The highest concentrations of Ba in the GGERFS dataset (1834 and 1709 mg/kg respectively) are reported in these two samples also. This section of site GGERFS05 is characterised by extensive slag, coal fragments (possibly the waste from the Old Farme colliery) and building rubble, which likely account for the Ba and Pb pollution in these samples.

The highest As (40.4 mg/kg), Cd (18.8 mg/kg), Co (82.2 mg/kg), Hg (2.9 mg/kg), Mo (9 mg/kg), Ni (330 mg/kg), V (417 mg/kg) and Zn (11493 mg/kg) concentrations in the present study are reported in sample G069 from site GGERFS01 (Figure 11; Table A3.1, Appendix 3; Figures A4.3, A4.5 and A4.6, Appendix 4). Indeed the Cd concentration exceeds the maximum reported in the city-wide G-BASE Glasgow urban topsoil dataset (16 mg/kg; Fordyce et al. 2017). It was only possible to reach a sampling depth of 10 cm for this sample, due to the extensive presence of building rubble in this section of the GGERFS01 site. The results likely indicate greater soil pollution associated with this waste in this section of site 01. The TOC content of this sample is relatively high (14.54 %), which may be a consequence of the shallower sampling depth, as the top-most soil layer tends to be richer in decaying vegetative material (McBride 1994). Several metal pollutants are adsorbed by soil organic matter and the higher TOC content may also contribute to the elevated metal concentrations in this sample. However, none of these parameters exceed the generic soil guidelines for open recreational land use and the site would not be classed as contaminated.

6.2.3 Topsoil total and hexavalent chromium

Highest total-Cr concentrations (1184 - 2776 mg/kg) are reported in samples of the imported topsoil used to landscape much of site GGERFS04 (Figure 12 and Figure A4.1, Appendix 4). This material included hard-core largely comprised of dolerite. Calcium, Fe₂O₃, MgO, TiO₂ and V contents are also generally higher in GGERFS04 samples than soil from the other sites (Figure 14 and Figure A4.5, Appendix 4). Given that CaO, Cr, Fe₂O₃, MgO, TiO₂ and V are typically associated with mafic igneous rocks such as dolerite (Mielke 1979), this probably accounts for the high Cr values at this site. This is corroborated by evidence that:

- (i) samples G016, G026 and G054 from outside the zone of new topsoil at GGERFS04 display much lower total-Cr concentrations (97 469 mg/kg) and;
- (ii) the Cr(VI) concentrations are low (at or close to the limit of quantification (LOQ)) in the samples of imported topsoil, indicating that the high total-Cr contents are not associated with industrial waste (Figure 12).

Indeed, Cr(VI) concentrations in the GGERFS samples are < 10 mg/kg with the exception of sample G087 collected from GGERFS06b. This sample has the highest Cr(VI) (28.5 mg/kg) and Sb (44.7 mg/kg) contents in the GGERFS topsoil dataset. Total-Cr is high in this sample also (1751 mg/kg) (Figures 12 and A4.1, Appendix 4; Table A3.1, Appendix 4). These results indicate pollution of this soil, probably with paint fragments noted in the sample, as these elements are used in yellow pigments (Butterman and Carlin 2004; Gettens and Stout 1966). The surrounding samples collected within tens of meters of G087 at GGERFS06b have markedly lower Sb (< 2.5 mg/kg) Cr(VI) (< 1.0 mg/kg) and total-Cr (103-200 mg/kg) concentrations indicating the pollution is very isolated.

6.2.4 Selected topsoil pH, major element and carbon relationships

Topsoil pH values range between 3.79 and 7.86 (Table A3.1, Appendix 3). Soil samples collected from the GGERFS sites have generally higher pH values (> pH 5), with concordantly higher CaO (> 0.5 wt%), MgO (> 1 wt%) and total inorganic carbon (TIC > 1 %) concentrations than the park control sites (Figures 13 and 14). This is a result of calcareous building rubble, slag and made-ground materials noted at the GGERFS sites. These materials are known to raise the pH and CaO/MgO content of urban soil relative to natural soil in many urban environments (Birke et al. 2011; Fordyce et al. 2005; Fordyce et al. 2019).

Topsoil SiO₂ concentrations exceed the maximum reported in the wider G-BASE Glasgow urban topsoil dataset (82 wt%, Fordyce et al. 2017) in samples collected from Glasgow Green (Figure 14). This is not surprising as these samples were collected from football pitches on the alluvial plain of the River Clyde, where the soil was notably sandy in texture. The sandy nature of the soil accounts for the generally lower total organic carbon (TOC) content (< 2 %) in these samples than soil from the other study sites (Figure 13).

By contrast, the highest TOC value of 20% was reported in sample G051 from GGERFS05 and exceeds the maximum TOC content reported by Kim et al. (2019) in the BGS Glasgow topsoil dataset (Table A3.2, Appendix 3; Figure 13). This soil was collected from an area of extensive leaf-litter accumulation and had a peaty texture.

6.2.5 Comparisons between the GGERFS sites and control sites

In general, the GGERFS site soil samples contain higher metal and organic pollutant contents than the control samples collected from Glasgow Green and to a lesser extent Tollcross Park, as expected (Figures 11, 12, 14; Figures A4.1-A4.8, Appendix 4).

Similarly, the greater presence of building rubble, slag and made-ground materials at the GGERFS sites probably accounts for the generally higher Fe_2O_3 content (> 4.8 wt%) in these samples than in Glasgow Green and Tollcross Park (Figure 14).

6.2.6 Topsoil TPH, PAH and PCBs

Highest TPH concentrations (> 2500 mg/kg) that exceed the BGS Glasgow dataset reported by Kim et al. (2019) (Table A3.2 Appendix 3; Figure A4.7, Appendix 4) are noted in topsoil that contained hard-core from sites GGERFS04 and 10. In both cases, the hard-core included fragments of building rubble and asphalt, and the presence of asphalt probably accounts for the high TPH values. In addition, GGERFS10 is downslope from the former Dalmarnock Gas works and hydrocarbon pollution has been noted in the vicinity in the past (Ramboll 2018a). However, the area has since been remediated, and more detailed examinations of the organic chemistry dataset would be required to determine if the historic gas works is an additional source of pollution at this site.

The highest naphthalene-type and dibenzofuran PAH contents in the GGERFS dataset (Table A3.3, Appendix 3) are reported from sites GGERFS01, 02 and 05 in samples G037, G097, G057 and G095, all of which were collected from areas underlain by building rubble and where slag and, coal waste were noted in the topsoil. High concentrations of organic pollutants in sample G057 at site 05 are in addition to the high Ba and Pb contents already noted. Similarly, samples G037 (site 01) and G095 (site 02) contain the highest BaP concentrations in the GGERFS dataset (17.3 and 16.5 mg/kg respectively). The soil quality guidelines for BaP tend to be the most precautionary of all the PAH compounds reflecting the toxicity of this substance. As such, BaP is often used as an indicator PAH in assessments of land quality. The GGGERFS site values do not exceed the generic soil screening level for recreational open space; hence, the land would not be considered contaminated (C4SL 21 mg/kg; DEFRA 2014).

The sum of the seven PCB congeners (PCB 28, 52, 101, 118, 153, 138, 180) as recommended by the ICES/EUCBR are typically used as an indicator of soil quality (Kim et al. 2019). The highest Σ 7PCB concentrations in the GGERFS dataset, that exceed contents in the wider BGS Glasgow dataset (> 352 µg/kg; Kim et al. 2019), are reported from GGERFS 04 (sample G016) and 02 (sample G084) (Table A3.4, Appendix 3; Figure A4.8, Appendix 4). The Σ Tri-Hepta PCB contents in these two samples also exceed those reported by Kim et al. (2019) for Glasgow topsoil (> 1052 µg/kg) (Table A3.4) and likely relate to pollution from the building rubble and waste that underlie these sites. Indeed at site GGERFS04, the samples that lie to the south of the area recent landscaping (G016, G026, G054, and G017) show higher PCB contents than those collected from the area of imported topsoil in the north of the site (Figure A4.8, Appendix 4). In several of the topsoil samples from sites 01 – 05 Σ 7PCB contents are above the Dutch soil target value of 20 µg/kg (for ecosystem health), but are not above the intervention/trigger value of 1000 µg/kg (VROM 2009) (Table A3.5, Appendix 3 and Figure A4.8, Appendix 4).

Figure 11. Box and whisker plots of As, Cd, Cu, Hg concentrations in topsoil at the GGERFS sites

GG: Glasgow GreenTC: Tollcross ParkGF: Glasgow FacilityNumber of samples at each site: 10 (except 9 for total Cr at 04)C4SL: GAC screening level soil guideline for recreational open space (DEFRA 2014)C4SL: GAC screening level soil guideline for residential open space (DEFRA 2014)S4UL: GAC suitable for use level soil guideline recreational open space (Nathanail et al. 2015)S4UL: GAC suitable for use level soil guideline for residential open space (Nathanail et al. 2015)

Figure 12. Box and whisker plots of total Cr and Cr(VI) concentrations in topsoil at the GGERFS sites

Number of samples at each site: 10

Figure 13. Box and whisker plots of topsoil pH, total organic carbon (TIC) and total inorganic carbon (TOC) at the GGERFS sites

Number of samples at each site = 10 (except 9 at 04)

Figure 14. Box and whisker plots of selected major element concentrations (CaO, Fe₂O₃, MgO, SiO₂, TiO₂) in topsoil at the GGERFS sites

7 Conclusions and Recommendations

7.1 CONCLUSIONS

A soil chemistry baseline survey of 90 topsoil (0 - 20 cm) samples was carried out across the seven proposed GGERFS borehole sites in the east of Glasgow during February-March 2018. In addition, two control sites were included in the survey for comparison with semi-natural soil. The control sites were situated in long-established city parks, where the land use has been stable for over 100 years: Glasgow Green and Tollcross Park.

The samples were analysed to determine soil pH and the concentrations of 54 inorganic and 75 organic soil parameters.

Initial assessments of the chemical results reveal that topsoil from the GGERFS sites generally contains higher inorganic and organic pollutant concentrations and is more calcareous/alkaline than semi-natural topsoil collected from the two control sites.

Similarly, the maximum concentrations of the pollutants Cd, TPH, the naphthalene and dibenzofuran PAH compounds, \sum 7PCBs and tri-hepta PCB compounds reported at the GGERFS sites exceed those reported in pre-existing city-wide BGS Glasgow topsoil datasets.

Whilst the current land use at all the GGERFS sites is open recreational space, these findings are a consequence of the historic land use at the GGERFS sites, all of which are underlain by building rubble, domestic rubbish and/or colliery waste and, in the case of sites GGERFS04 and 10, are partially covered in hard-core material containing asphalt. Like many urban environments, soil quality at the GGERFS sites has been adversely impacted by the presence of these materials in the soil.

Both total Cr and Cr(VI) speciation were determined in the soil samples because there is a history of disposal of chromite ore processing residue (COPR) in the east of Glasgow. Whilst Cr(VI) can occur in certain natural environments, it is more typically associated with industrial activity. Results revealed that Cr(VI) concentrations in the soil were generally < 10 mg/kg, with the exception of sample G087 at site 06b where an isolated high value of 28 mg/kg was reported. However, given that Sb was also high in this sample (44.7 mg/kg) and concentrations of both these elements were low in the surrounding samples, this suggests isolated pollution probably from paint fragments that were present in the sample, as both these elements are used in pigments.

There is no evidence of COPR waste in the topsoil samples collected from the GGERFS sites.

An additional assessment of a sub-set of 10 of the topsoil samples revealed that trace amounts of asbestos fibres (0.027 % wt) were found in one sample (G017) from GGERFS04. This soil was collected over building rubble, outside an area of landscaped imported topsoil that has been applied to the northern section of site 04 and was not in the publicly accessible section of the Cuningar Loop. The amount of asbestos in this sample was within limits classed as 'insignificant risk'. None of the surrounding samples tested from this site contained asbestos indicating that the pollution is isolated.

Although the GGERFS sites show evidence of soil pollution, comparison with current UK human health risk assessment land contamination generic soil guidelines for recreational open space indicates that **in general, the land would not be classed as contaminated**.

However, two soil samples G023 and G057 from site 05 do exceed the recreational open space guideline for Pb (1300 mg/kg). These were collected outside of the publicly accessible area in the Cuningar Loop. The fact that these samples exceed the guideline does not mean that the land is contaminated. Rather that further investigation would be required to determine whether there is a source-pathway-receptor linkage and any potential risk at these locations.

The Soil Chemistry03-18 dataset has established the pre-installation baseline for the GGERFS facility, against which any future change in soil chemistry can be assessed.

7.2 RECOMMENDATIONS

Since the environmental soil chemistry baseline sampling was carried out in February-March 2018, topsoil at the GGERFS sites has undergone significant disturbance during the installation of the boreholes. Further ground disturbance will result from the planned installation of the flow experiment infrastructure. These activities are likely to alter the surface soil chemistry, before the site is fully operational. Therefore, if resources can be identified:

- It may be advisable that once the post-installation remediation is completed, a further set of topsoil samples from the disturbed areas be collected and analysed, to establish the preoperational soil quality baseline before the facility is fully functioning, to understand the ground conditions and provide public assurance.
- Similarly, it may be advisable that soil baseline chemistry sampling be carried out again during the operational phase of the project (in 5-6 years) to provide assurance that topsoil quality has not changed significantly as a consequence of running the facility.

Glossary

ACM	asbestos containing material
ASE	accelerated solvent extraction system
BACI	before and after control/impact
BaP	benzo(a)pyrene
BGR	German Geological Survey
BGS	British Geological Survey
C, N	carbon-nitrogen
CaCl ₂ .2H ₂ O	calcium chloride solution
CANMET	Canadian Centre for Mineral and Energy Technology
CIEH	Chartered Institute of Environmental Health
CL:AIRE	Contaminated Land: Applications in Real Environments
CLEA	contaminated land exposure assessment
COPR	chromite ore processing residue
CRM	certified reference material
C4SL	category four soil screening levels
DEFRA	Department for Environment Food and Rural Affairs
DNA	deoxyribonucleic acid
EA	Environment Agency of England and Wales
EDTA	ethylenediaminetetraacetic acid
EUCBR	European Union Community Bureau of Reference
FID	flame ionization detector
GAC	generic assessment criteria
G-BASE	Geochemical Baseline Survey of the Environment
GCC	Glasgow City Council
GC-MS	Gas chromatography mass spectrometry
GF	Glasgow Facility
GG	Glasgow Green
GGERFS	Glasgow Geothermal Energy Research Field Site
GIS	geographic information system
GPS	global positioning system
HCl	hydrochloric acid
HMSO	Her Majesty's Stationery Office
HPLC	high performance liquid chromatography
HSE	Health and Safety Executive
ICES	International Council for the Exploration of the Sea

ICP-MS	inductively coupled plasma mass spectrometry
ID	identity number
LOQ	limit of quantification
LQM	Land Quality Management
NERC	Natural Environment Research Council
NH ₄	ammonium
NH4NO3	ammonium nitrate
NIST	National Institute of Standards and Technology, USA
NRC	National Research Centre, China
РАН	polycyclic aromatic hydrocarbons
PCB	polychlorinated biphenyls
PEEK	poly-ether ether ketone
PFA	fluorocarbon polymer
PLM	polarising light microscopy
POPs	persistent organic pollutants
RSD	relative standard deviation
RSE	relative standard error
SEPA	Scottish Environment Protection Agency
SGV	soil guideline value
SIDMS	speciated isotope dilution mass spectrometry
SPE	solid phase extraction cartridge
SRM	secondary reference material
SUDS	sustainable urban drainage system
S4UL	suitable for use level
TC	Tollcross Park
TIC	total inorganic carbon
TOC	total organic carbon
TPH	total petroleum hydrocarbons
TRA	time resolved analysis
TTC	total carbon
UK	United Kingdom
UKAS	United Kingdom Accreditation Service
UKGEOS	United Kingdom Geoenergy Observatories project
USA	United States of America
VROM	Dutch Ministry of Housing, Spatial Planning and Environment
XRF	x-ray fluorescence spectrometry

References

British Geological Survey holds most of the references listed below, and copies may be obtained via the library service subject to copyright legislation (contact libuser@bgs.ac.uk for details). The library catalogue is available at: <u>https://envirolib.apps.nerc.ac.uk/olibcgi</u>.

BEARCOCK J M, EVERETT P A, SCHEIB A J, FORDYCE F M, NICE S E AND VANE C H. 2012. A Report on the G-BASE field campaign of 2011: the Clyde Basin. *British Geological Survey Internal Report* IR/11/070.

BGR. 2005. *Bodenkundliche Kartieranleitung*, 5. (Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe).

BIRKE M, RAUCH U AND STUMMEYER J. 2011. Urban geochemistry of Berlin, Germany. In JOHNSON C C, DEMETRIADES A, LOCUTURA J AND OTTESEN R T. (eds) *Mapping the Chemical Environment of Urban Areas*, 245–268. (Oxford: Wiley-Blackwell).

BROADWAY A, CAVE M R, WRAGG J, FORDYCE F M, BEWLEY R J F, GRAHAM M C, NGWENYA B T AND FARMER J G. 2010. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. *Science of the Total Environment*, Vol. 409 (2), 267-277.

BUTTERMAN W C AND CARLIN J F. 2004 Antimony Mineral Commodity Profiles. *Open-File Report* 03-019 (Reston: United States Geological Survey)

CL:AIRE. 2010. *Soil Generic Assessment Criteria for Human Health Risk Assessment*. (London: Contaminated Land: Applications in Real Environments).

CL:AIRE. 2016. Asbestos in Soil and Construction & Demolition Materials. Joint Industry Working Group Decision Support Tool (London: Contaminated Land Applications in Real Environments).

DAVIES L S T, WETHERILL G Z, MCINTOSH C, MCGONAGLE C AND ADDISON J. 1996. Development and validation of an analytical method to determine the amount of asbestos in soils and loose aggregates. *Health and Safety Executive Contract Research Report No: 83/1996*. (London: HMSO)

DEFRA. 2014. SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document. (London: Department for Environment, Food and Rural Affairs).

EA. 2002. Contaminated Land Exposure Assessment Soil Guideline Values. Bristol: Environment Agency.

EA. 2009. *Contaminated Land Exposure Assessment Soil Guideline Values*. Bristol: Environment Agency. https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-sgvs (accessed October 2019).

FARMER J G, GRAHAM M C, THOMAS R P, LICONA-MANZUR C, PATERSON E, CAMPBELL C D, GEELHOED J S, LUMSDON D G, MEEUSSEN J C L, ROE M J, CONNER A, FALLICK A E AND BEWLEY R J F. 1999. Assessment and modelling of the environmental chemistry and potential for remediative treatment of chromium-contaminated land. *Environmental Geochemistry and Health*, Vol. 21, 331-337.

FORDYCE F M, BROWN S E, ANDER E L, RAWLINS B G, O'DONNELL K E, LISTER T R, BREWARD N AND JOHNSON C C. 2005. GSUE: urban geochemical mapping in Great Britain. *Geochemistry*, *Exploration, Environment, Analysis*, Vol. 5, 325–336.

FORDYCE F M, EVERETT P A, BEARCOCK J M AND LISTER T R. 2019. Soil metal/metalloid concentrations in the Clyde Basin, Scotland, UK: implications for land quality. The Geosciences in Europe's Urban Sustainability: Lessons from Glasgow and Beyond (CUSP). *Earth and Environmental Science: Transactions of the Royal Society of Edinburgh*, Vol. 108 (2-3), 191–216. http://dx.doi.org/10.1017/S1755691018000282. http://nora.nerc.ac.uk/id/eprint/522493/

FORDYCE F M, EVERETT P A, BEARCOCK J M, LISTER T R, GOWING C, WATTS M AND ELLEN R. 2017. Soil Geochemical Atlas of the Clyde Basin. Edinburgh: *British Geological Survey Open Report*, OR/14/032. ISBN 978-0-85272-881-9. <u>http://nora.nerc.ac.uk/id/eprint/519195</u>

FORDYCE F M, NICE S E, LISTER T R, Ó DOCHARTAIGH B É, COOPER R, ALLEN M, INGHAM M, GOWING C, VICKERS B P AND SCHEIB A. 2012. Urban Soil Geochemistry of Glasgow. *British Geological Survey Open Report*, OR/08/002. <u>http://nora.nerc.ac.uk/18009/</u>

FORDYCE F M, Ó DOCHARTAIGH B É, LISTER T R, COOPER R, KIM A, HARRISON I, VANE C AND BROWN S E. 2004. Clyde Tributaries: Report of Urban Stream Sediment and Surface Water Geochemistry for Glasgow. *British Geological Survey Commissioned Report*, CR/04/037 http://nora.nerc.ac.uk/18996/.

GCCa. 2019. *Glasgow Green History*. (Glasgow: Glasgow City Council) <u>https://www.glasgow.gov.uk/glasgowgreen</u> (Access Date October 2019).

GCCb. 2019. *Tollcross Park History*. (Glasgow: Glasgow City Council) <u>https://www.glasgow.gov.uk/CHttpHandler.ashx?id=31500&p=0</u> (Access Date October 2019)

GETTENS R J AND STOUT G L. 1966. *Painting Materials: A Short Encyclopaedia*. (New York: Dover Publications)

HAMILTON E M, LARK R M, YOUNG S D, BAILEY E H, SAKALA G M, MASEKA K K AND WATTS M J. 2020. Reconnaissance sampling and determination of hexavalent chromium in potentiallycontaminated agricultural soils in Copperbelt Province, Zambia. *Chemosphere* Vol. 247, 125984.

HODGSON J M. 1997. Soil Survey Field Handbook. *Soil Survey Technical Monograph* No. 5, (Silsoe: Soil Survey). ISBN 0 901128 82 1

HSE. 2006. Asbestos: The analysts' guide for sampling, analysis and clearance procedures. *Health and Safety Executive Report HSG248* (London: HMSO)

INGHAM M N, GOWING C J B and HARRISON H M. 2007a. The validation of the determination of major oxides and trace elements by wavelength dispersive X-ray fluorescence spectrometry. *British Geological Survey Open Report OR/07/011*.

INGHAM M N, GOWING C J B and HARRISON H M. 2007b. The validation of the determination of trace elements by energy dispersive polarised X-ray fluorescence spectrometry. *British Geological Survey Open Report OR/07/012*. <u>http://nora.nerc.ac.uk/7196/</u>

INGHAM M N and VREBOS B A R. 1994. High productivity geochemical XRF Analysis. *Advances in X-ray Analysis*, Vol. 37, 717–724.

JOHNSON C C. 2005. 2005 G-BASE Field Procedures Manual. *British Geological Survey Internal Report*, IR/05/097. <u>http://nora.nerc.ac.uk/id/eprint/5190/</u>

KIM A W, VANE C H, MOSS-HAYES V L, BERIRO D J, NATHANAIL C P, FORDYCE F M AND EVERETT P A. 2019. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Glasgow, UK. The Geosciences in Europe's Urban Sustainability: Lessons from Glasgow and Beyond (CUSP). *Earth and Environmental Science: Transactions of the Royal Society of Edinburgh*, Vol. 108 (2-3), 231–247. https://doi.org/10.1017/S1755691018000324. http://nora.nerc.ac.uk/id/eprint/522139/

LARK R M AND MARCHANT B P. 2018. How should a spatial-coverage sample design for a geostatistical soil survey be supplemented to support estimation of spatial covariance parameters? *Geoderma*, Vol. 319, 88-99.

LISTER T R AND JOHNSON C C. 2005. G-BASE Data Conditioning Procedures for Stream Sediment and Soil Chemical Analyses. *British Geological Survey Internal Report* IR/05/150.

MCBRIDE M B. 1994. Environmental Chemistry of Soils. (Oxford: Oxford University Press).

MIELKE J E. 1979. Composition of the Earth's Crust and distribution of the elements. In: SIEGEL F R. (editor). *Review of Research on Modern Problems in Geochemistry*. Earth Science Series 16. 13–37. (Paris: UNESCO).

MONAGHAN A A, Ó DOCHARTAIGH B E, FORDYCE, F M, LOVELESS S, ENTWISLE D, QUINN M, SMITH K, ELLEN R, ARKLEY S, KEARSEY T, CAMPBELL S D G, FELLGETT M AND MOSCA I. 2017 UKGEOS: Glasgow Geothermal Energy Research Field Site (GGERFS): initial summary of the geological platform. Nottingham, UK, *British Geological Survey Open Report*, OR/17/006. http://nora.nerc.ac.uk/id/eprint/518636/

MONAGHAN A A, STARCHER V, Ó DOCHARTAIGH B E, SHORTER K M AND BURKIN J. 2018. UK Geoenergy Observatories: Glasgow Geothermal Energy Research Field Site: science infrastructure. Nottingham, UK, *British Geological Survey Open Report*, OR/18/037 http://nora.nerc.ac.uk/id/eprint/521444/

MONAGHAN A A, STARCHER V, Ó DOCHARTAIGH B E, SHORTER K M AND BURKIN J. 2019. UK Geoenergy Observatories : Glasgow Geothermal Energy Research Field Site: Science Infrastructure Version 2. Nottingham, UK, *British Geological Survey Open Report*, OR/19/032 <u>http://nora.nerc.ac.uk/id/eprint/522814/</u> <u>http://nora.nerc.ac.uk/id/eprint/518636/</u>

NATHANAIL C P, MCCAFFREY C, ASHMORE M H, CHENG Y Y, GILLETT A, OGDEN R AND SCOTT D. 2009. *LQM/CIEH Generic Assessment Criteria for Human Health Risk* (Nottingham: Land Quality Press).

NATHANAIL C P, MCCAFFREY C, GILLETT A G, OGDEN R C AND NATHANAIL J F. 2015. *The LQM/CIEH S4ULs for Human Health Risk Assessment*. (Nottingham: Land Quality Press). Copyright Land Quality Management Limited reproduced with permission Publication Number S4UL3083. All rights reserved.

PALUMBO-ROE B, BANKS V J, BONSOR H C, HAMILTON E M AND WATTS M J. 2017. Limitations on the role of the hyporheic zone in chromium natural attenuation in a contaminated urban stream. *Applied Geochemistry*, Vol. 83, 108-120.

PLANT, J A. 1973. A random numbering system for geochemical samples. *Transactions of the Institute of Mining and Metallurgy*, Vol. B82, 63–66.

RAMBOLL. 2018a. *UK Geoenergy Observatories: Glasgow Geothermal Energy Research Field Site Environmental Report*. GGERFS planning applications for Glasgow City Council. (Edinburgh: Ramboll). <u>https://publicaccess.glasgow.gov.uk/online-applicationDetails.do?keyVal=P70V2DEXFH600&activeTab=summary</u>

RAMBOLL. 2018b. *UK Geoenergy Observatories: Glasgow Geothermal Energy Research Field Site Environmental Report*. GGERFS planning applications for South Lanarkshire Council. (Edinburgh: Ramboll). <u>https://publicaccess.southlanarkshire.gov.uk/online-applications/caseDetails.do?caseType=Application&keyVal=P70TP90PHQJ00</u>

ROWELL, D L. 1997. *Soil science: methods and applications*. (UK: Longman Scientific and Technical)

SEPA. 2018. *Rainfall Data for Scotland*. (Stirling: Scottish Environment Protection Agency) <u>https://apps.sepa.org.uk/rainfall/data/index/327234</u>. Access date Feb-March 2018. UNDERWOOD A J. 1992. Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. *Journal of Experimental Marine Biology and Ecology*, Vol. 161, 145-178.

VANE C H, KIM A W, BERIRO D J, CAVE M R, KNIGHTS K, MOSS-HAYES V AND NATHANAIL P C. 2014. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. *Applied Geochemistry*, Vol. 51(0), 303-314.

VROM. 2009. *Circular on Target Values and Intervention Values for Soil Remediation*. (The Hague: Ministry of Housing, Spatial Planning and Environment (VROM)).

WHALLEY, C, HURSTHOUSE, A, ROWLATT, S, IQBAL-ZAHID, P, VAUGHAN, H AND DURANT, R. 1999. Chromium speciation in natural waters draining contaminated land, Glasgow, UK. *Water Air and Soil Pollution*, Vol. 112, 389-405.

Appendix 1 Maps of the GGERFS soil sample locations

UKGEOS Borehole: proposed borehole positions, final borehole positions were subject to revision

Figure A1.1 Map of topsoil sample locations at site GGERFS01.

202300 20 Soil data BGS. ©UKRI. Contains Ordnance Survey data © Crown Copyright and database rights. All rights reserved [2020] Ordnance Survey [100021290 EUL] UKGEOS Borehole: proposed borehole position, final borehole positions were subject to revision

Figure A1.2 Map of topsoil sample locations at site GGERFS02.

UKGEOS Borehole: proposed borehole position, final borehole positions were subject to revision

Figure A1.3 Map of topsoil sample locations at site GGERFS03.

Figure A1.4 Map of topsoil sample locations at site GGERFS04.

282300 Soil data BGS, ©UKRI. Contains Ordnance Survey data © Crown Copyright and database rights. All rights reserved [2020] Ordnance Survey [100021290 EUL] UKGEOS Borehole: proposed borehole position, final borehole positions were subject to revision

Figure A1.5 Map of topsoil sample locations at site GGERFS05.

Figure A1.6 Map of topsoil sample locations at site GGERFS06b.

UKGEOS Borehole: proposed borehole position, final borehole positions were subject to revision

Figure A1.7 Map of topsoil sample locations at site GGERFS10.

Figure A1.8 Map of topsoil sample locations in Glasgow Green.

Figure A1.9 Map of topsoil sample locations in Tollcross Park.

Appendix 2 Figures of merit for GGERFS soil analysis

Addit Col Mon Col Mon Col Mace No No No No No <				GSD-6 Bulk	Stream Se	diment, NR	с			STSD-3 Bul	k stream sed	iment, CAN	IMET			LKSD-1 Bu	lk lake sedim	nent, CANM	ET			1	LKSD-4 Bul	D-4 Bulk lake sediment, CANMET								
atrial bit	Analyte	Units	LOQ	cv	Mean	SD	%Recovery	RSD %	RSE %	cv	Mean	SD 9	Recovery	RSD %	RSE %	cv	Mean	SD	CV %	Recovery	RSD %	RSE %	cv	Mean	SD 9	6Recovery	RSD %	RSE %				
cord bot bot </td <td>AI2O3</td> <td>wt%</td> <td>0.20</td> <td>14.2</td> <td>15.25</td> <td>0.39</td> <td>108</td> <td>3</td> <td>1</td> <td>10.9</td> <td>8.95</td> <td>0.10</td> <td>82</td> <td>1</td> <td>1</td> <td>7.8</td> <td>3.98</td> <td>0.15</td> <td>7.8</td> <td>51</td> <td>4</td> <td>2</td> <td>5.9</td> <td>4.38</td> <td>0.05</td> <td>74</td> <td>1</td> <td>1</td>	AI2O3	wt%	0.20	14.2	15.25	0.39	108	3	1	10.9	8.95	0.10	82	1	1	7.8	3.98	0.15	7.8	51	4	2	5.9	4.38	0.05	74	1	1				
ColuCol	CaO	wt%	0.05	3.9	3.94	0.03	102	1	<1	3.3	3.36	0.02	102	1	<1	10.8	12.42	0.03	10.8	115	<1	<1	1.8	1.73	0.01	96	1	<1				
O O	Fe2O3	Wt%	0.01	5.9	5.81	0.04	99	1	<	6.2	5.92	0.03	95	<1	<1	4.1	3.83	0.03	4.1	93	1	<1	4.1	4.03	0.01	98	<1	<1				
Ope Ope <td>K20</td> <td>wt%</td> <td>0.01</td> <td>2.4</td> <td>2.54</td> <td>0.02</td> <td>105</td> <td>1</td> <td><</td> <td>1.8</td> <td>1.73</td> <td>0.01</td> <td>96</td> <td>1</td> <td><1</td> <td>1.1</td> <td>0.90</td> <td>0.01</td> <td>1.1</td> <td>82</td> <td>2</td> <td>1</td> <td>0.8</td> <td>0.72</td> <td>0.01</td> <td>90</td> <td>1</td> <td><1</td>	K20	wt%	0.01	2.4	2.54	0.02	105	1	<	1.8	1.73	0.01	96	1	<1	1.1	0.90	0.01	1.1	82	2	1	0.8	0.72	0.01	90	1	<1				
No.0 S	MgO	Wt%	0.30	3.0	4.38	0.10	146	2	1	2.2	2.28	0.05	103	2	1	1./	1.43	0.05	1./	84	4	2	0.9	0.80	0.00	89	<1	<1				
ore bit bit< bit< bit< bit< bit< bit< bit< bit< bit< bit bit<	IVINU	Wt%	0.01	0.1	0.14	0.00	114	1	<.	0.3	0.38	0.00	128	1	<1	0.1	0.09	0.00	0.1	90	1	1	0.1	0.07	0.00	68	1	<1				
COD COD COD COD COD	Na20	WL%	0.30	2.3	2.00	0.08	109	4		1.5	0.80	0.00	23	<1	1	2.0	0.83	0.05	2.0	41	0	3	0.7	0.20	0.00	100		- 1				
DOD MA	502	WL/0	0.03	61.2	61.20	1.56	108	4		40.4	20.05	0.01	95	2	-1	40.1	22.20	0.01	40.1	56	0	*	41.6	20.53	0.01	109		- 1				
n n	5102	wt%	0.10	01.2	01.50	1.50	100	3		40.0	0.55	0.51	70	1	<1	40.1	0.38	0.00	40.1	76	-4	1	41.0	0.28	0.50	71	1	1				
N N	Λσ.	ma/ka	0.01	0.0	0.71	0.00	52	65	23	0.7	<0.55	10.0	, s nd	± nd	1~ bd	0.5	0.30	0.13	0.5	63	34	17	0.4	0.20	0.00	92	25	17				
n n n 1	Λ6 Δs	mg/kg	0.50	13.6	13.13	0.15	97	4		28.0	24.98	0.39	89	2	1	40.0	33.58	0.13	40.0	84	2	1	16.0	16.60	0.00	104	2	1				
m m m n	Ra	ma/ka	1.00	330.0	210.25	2 00	97	-1		1/100.0	1222.25	0.55	80	1	- 1	430.0	279.75	4 10	430.0	89	- 1	- 1	330.0	251.25	2 22	76	- 1	1				
m m	Bi	ma/ka	0.30	5.0	4 12	0.61	93	15		1450.0	0.68	0.68	bn	101	50	450.0	0.99	9.15	450.0	b0 bd	01	45	550.0	0.27	0.31	nd	115	57				
col mode 0.00 0.8 0.2 0.1 0.10 0.11 0.12 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.1	Br	mg/kg	0.50	5.0	0.13	0.01	nd	115	57	24.0	22.68	0.00	94	101	<1	11.0	9.45	0.75	11.0	86	3	2	49.0	49.00	0.51	100	115	1				
c c	Cd.	mg/kg	0.50	0.4	0.25	0.06	58	23	13	1.0	0.70	0.18	70	26	13	1 2	1 10	0.12	1.0	92	10	5	1.9	1.83	0.05	96	16	8				
C mm Colo mm Colo mm Colo mm Colo	Ce	mg/kg	1.00	68.0	70.00	0.82	103	1		63.0	52.00	0.82	83	20	1	27.0	24.00	0.82	27.0	89	3	2	48.0	35.75	0.50	74	1	1				
Co. Marke 1.50 244 77.5 77.1 110 11.0 12.5 0.5 110 110 10.0	CI	mg/kg	200.00	nr	<200	nd	nd	nd	n	nr	<200	nd	nd	nd	nd	nr	240.25	9.32	nr	nd	4	2	nr	<200	nd	nd	nd	nd				
C mays 3.00 1.900 1.88.8 0.54 1.910	Co	mg/kg	1.50	24.4	27.58	0.71	113	3	1	16.0	18.45	0.48	115	3	1	11.0	12.15	0.76	11.0	110	6	3	11.0	13.08	0.50	119	4	2				
C C T S	Cr	mg/kg	3.00	190.0	188.88	2.45	99	1	1	80.0	71.00	3.35	89	5	2	31.0	54.10	23.36	31.0	175	43	22	33.0	30.18	1.95	91	6	3				
Cu marke 1.30 37.30 27.30 29.50 93.60 97.60 97.60 98.40 84.2 1 31.0 27.60 0.61 67.70 0.50 <	Cs	mg/kg	1.00	9.1	8.50	0.58	93	7	3	5.2	5.75	0.50	111	9	4	2.0	1.50	0.58	2.0	75	38	19	2.0	2.00	0.00	100	<1	<1				
Ga mode 1 <th1< th=""> 1 1 1</th1<>	Cu	mg/kg	1.30	383.0	376.30	2.05	98	1	<1	39.0	35.38	0.70	91	2	1	44.0	37.08	0.58	44.0	84	2	1	31.0	27.05	0.61	87	2	1				
Ge mile 0.00 1.3 0.07 0.00 0.	Ga	mg/kg	1.00	16.7	15.40	0.18	92	1	1	nr	13.18	0.40	nd	3	2	nr	8.23	0.38	nr	nd	5	2	nr	6.83	0.61	nd	9	4				
minute fund 10 4 10 4 10 <th <="" colspan="4" td="" th<=""><td>Ge</td><td>mg/kg</td><td>0.50</td><td>1.3</td><td>0.67</td><td>0.29</td><td>51</td><td>43</td><td>22</td><td>! nr</td><td>0.30</td><td>0.10</td><td>nd</td><td>33</td><td>17</td><td>nr</td><td><0.5</td><td>nd</td><td>nr</td><td>nd</td><td>nd</td><td>nd</td><td>nr</td><td>0.15</td><td>0.07</td><td>nd</td><td>47</td><td>24</td></th>	<td>Ge</td> <td>mg/kg</td> <td>0.50</td> <td>1.3</td> <td>0.67</td> <td>0.29</td> <td>51</td> <td>43</td> <td>22</td> <td>! nr</td> <td>0.30</td> <td>0.10</td> <td>nd</td> <td>33</td> <td>17</td> <td>nr</td> <td><0.5</td> <td>nd</td> <td>nr</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>nr</td> <td>0.15</td> <td>0.07</td> <td>nd</td> <td>47</td> <td>24</td>				Ge	mg/kg	0.50	1.3	0.67	0.29	51	43	22	! nr	0.30	0.10	nd	33	17	nr	<0.5	nd	nr	nd	nd	nd	nr	0.15	0.07	nd	47	24
ng/hg 2.50 0.70 0.40 0.24 0.28 0.1 0.1 0.27 0.22 0.1 0.27 0.22 0.1	Hf	mg/kg	1.00	4.9	3.05	0.31	62	10	5	5.1	3.60	0.37	71	10	5	3.6	2.30	0.41	3.6	64	18	9	2.8	1.70	0.22	61	13	6				
mp/kg 0.50 0.1 0.10 <th< td=""><td>Hg</td><td>mg/kg</td><td>2.50</td><td>0.0</td><td>1.30</td><td>0.24</td><td>2889</td><td>19</td><td>9</td><td>0.1</td><td>0.17</td><td>0.21</td><td>185</td><td>125</td><td>62</td><td>0.1</td><td>0.20</td><td>nd</td><td>0.1</td><td>182</td><td>nd</td><td>nd</td><td>nr</td><td>0.28</td><td>0.10</td><td>nd</td><td>35</td><td>17</td></th<>	Hg	mg/kg	2.50	0.0	1.30	0.24	2889	19	9	0.1	0.17	0.21	185	125	62	0.1	0.20	nd	0.1	182	nd	nd	nr	0.28	0.10	nd	35	17				
n mg/kg 0.0 0.1 0.10 0.1	1	mg/kg	0.50	nr	0.30	0.28	nd	94	47	nr nr	11.38	0.10	nd	1	<1	nr	1.83	0.21	nr	nd	11	6	nr	9.63	0.39	nd	4	2				
in mp/kg 100 930 830 0.22 97 2 1 30 0.00 70 4.1 100 102 0.20 0.83 4.2 2.60 100 0.22 77 8 0 No mp/kg 4.00 120 8.83 0.20 77 77 0.02 101 13 10 0.02 100 0.21 100 0.21 0.10 <	In	mg/kg	0.50	0.1	0.10	nd	71	nd	no	l nr	0.10	nd	nd	nd	nd	nr	0.50	0.14	nr	nd	28	14	nr	0.20	nd	nd	nd	nd				
Mo mg/kg L00 L70 L72 L72 L72 L70 L72 L70 </td <td>La</td> <td>mg/kg</td> <td>1.00</td> <td>39.0</td> <td>38.00</td> <td>0.82</td> <td>97</td> <td>2</td> <td>1</td> <td>39.0</td> <td>31.00</td> <td>0.00</td> <td>79</td> <td><1</td> <td><1</td> <td>16.0</td> <td>13.25</td> <td>0.50</td> <td>16.0</td> <td>83</td> <td>4</td> <td>2</td> <td>26.0</td> <td>19.00</td> <td>0.82</td> <td>73</td> <td>4</td> <td>2</td>	La	mg/kg	1.00	39.0	38.00	0.82	97	2	1	39.0	31.00	0.00	79	<1	<1	16.0	13.25	0.50	16.0	83	4	2	26.0	19.00	0.82	73	4	2				
Net mp/kg 1.0 1.2 1.8.3 0.26 7.4 3 1 1.20 1.07 0.26 8 3 2 0.20 0.51 8 4 0 4.25 0.22 0.10 0.10 Net mp/kg 1.30 0.20 0.70 0.51 </td <td>Mo</td> <td>mg/kg</td> <td>0.20</td> <td>7.7</td> <td>7.78</td> <td>0.22</td> <td>101</td> <td>3</td> <td>1</td> <td>6.0</td> <td>5.93</td> <td>0.43</td> <td>99</td> <td>7</td> <td>4</td> <td>10.0</td> <td>9.10</td> <td>0.29</td> <td>10.0</td> <td>91</td> <td>3</td> <td>2</td> <td><5</td> <td>1.55</td> <td>0.06</td> <td>nd</td> <td>4</td> <td>2</td>	Mo	mg/kg	0.20	7.7	7.78	0.22	101	3	1	6.0	5.93	0.43	99	7	4	10.0	9.10	0.29	10.0	91	3	2	<5	1.55	0.06	nd	4	2				
Net mp/kg 0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 1 100 100 101 10 100 100 100 2.0 2.00<	Nb	mg/kg	1.00	12.0	8.83	0.26	74	3	1	12.0	10.70	0.36	89	3	2	7.0	3.60	0.29	7.0	51	8	4	9.0	4.25	0.21	47	5	2				
Nic mg/kg 1.5 0.70 1.5 0.10 1.5 0.10 1.2 1 0.00 0.13 0.1 0.10 0.10 0.2 0.00 <th< td=""><td>Nd</td><td>mg/kg</td><td>4.00</td><td>33.0</td><td>32.03</td><td>1.99</td><td>97</td><td>6</td><td>3</td><td>33.0</td><td>38.30</td><td>2.76</td><td>116</td><td>7</td><td>4</td><td>16.0</td><td>18.65</td><td>2.39</td><td>16.0</td><td>117</td><td>13</td><td>6</td><td>25.0</td><td>29.03</td><td>2.07</td><td>116</td><td>7</td><td>4</td></th<>	Nd	mg/kg	4.00	33.0	32.03	1.99	97	6	3	33.0	38.30	2.76	116	7	4	16.0	18.65	2.39	16.0	117	13	6	25.0	29.03	2.07	116	7	4				
Pho mg/kg 1.0 2.773 0.61 1.00 2 1 0.00 7.84 0.20 7.75 0.62 7.75 0.62 0.75 0.62 0.75 0.62 0.75 0.62 0.75 0.62 0.75 0.62 0.75 0.62 0.75 0.62 0.75 0.62 0.75 0.62 0.75 0.62 0.75 <	Ni	mg/kg	1.30	78.0	79.03	1.56	101	2	1	30.0	31.33	0.41	104	1	1	16.0	16.13	0.61	16.0	101	4	2	31.0	32.75	0.52	106	2	1				
ne/k ne/k 0000 105.5 10.3 9.8 9 1 6.1 6.14 0 0 1 6.1 0 1 6.1 0 1 6.1 0 0.1 <td>Pb</td> <td>mg/kg</td> <td>1.30</td> <td>27.0</td> <td>27.73</td> <td>0.61</td> <td>103</td> <td>2</td> <td>1</td> <td>40.0</td> <td>45.48</td> <td>0.94</td> <td>114</td> <td>2</td> <td>1</td> <td>82.0</td> <td>75.78</td> <td>0.63</td> <td>82.0</td> <td>92</td> <td>1</td> <td><1</td> <td>91.0</td> <td>93.90</td> <td>0.73</td> <td>103</td> <td>1</td> <td><1</td>	Pb	mg/kg	1.30	27.0	27.73	0.61	103	2	1	40.0	45.48	0.94	114	2	1	82.0	75.78	0.63	82.0	92	1	<1	91.0	93.90	0.73	103	1	<1				
S mg/k 1000 7840 9780 9700 9780 9700 9780 <td>Rb</td> <td>mg/kg</td> <td>1.00</td> <td>107.0</td> <td>105.35</td> <td>1.33</td> <td>98</td> <td>1</td> <td>1</td> <td>68.0</td> <td>61.28</td> <td>0.43</td> <td>90</td> <td>1</td> <td><1</td> <td>24.0</td> <td>22.05</td> <td>0.52</td> <td>24.0</td> <td>92</td> <td>2</td> <td>1</td> <td>28.0</td> <td>24.08</td> <td>0.25</td> <td>86</td> <td>1</td> <td>1</td>	Rb	mg/kg	1.00	107.0	105.35	1.33	98	1	1	68.0	61.28	0.43	90	1	<1	24.0	22.05	0.52	24.0	92	2	1	28.0	24.08	0.25	86	1	1				
Sh mg/k 0.0 1.1 0.10 0.13 0.10 0.14 0.15 0.14 0.16 0.17 0.18 0.05 0.18 0.16 0.18 0.16 0.18 0.16 0.16 0.18 0.16 0.16 0.16 0.18 0.16 <th< td=""><td>S</td><td>mg/kg</td><td>1000.00</td><td>784.0</td><td>356.00</td><td>38.32</td><td>45</td><td>11</td><td>5</td><td>1400.0</td><td>1414.25</td><td>23.63</td><td>101</td><td>2</td><td>1</td><td>15700.0</td><td>9431.50</td><td>52.28</td><td>15700.0</td><td>60</td><td>1</td><td><1</td><td>999.0</td><td>5370.00</td><td>44.31</td><td>538</td><td>1</td><td><1</td></th<>	S	mg/kg	1000.00	784.0	356.00	38.32	45	11	5	1400.0	1414.25	23.63	101	2	1	15700.0	9431.50	52.28	15700.0	60	1	<1	999.0	5370.00	44.31	538	1	<1				
Sc mg/kg 3.00 1.00 1.15 1.50 1.07 1.8 1.70 1.8 2.37 9.0 1.26 2.10 7.0 7.8 0.82 1.08 1.1 1.71 Sc mg/kg 0.00 0.01 0.01 0.	Sb	mg/kg	0.50	1.3	1.73	0.25	138	14	7	4.0	3.85	0.13	96	3	2	1.2	1.18	0.15	1.2	98	13	6	1.7	1.48	0.35	87	24	12				
See mg/kg 0.00 0.01 0.00 0.06 0.01 0.00	Sc	mg/kg	3.00	17.0	18.15	1.50	107	8	4	13.0	13.78	2.08	106	15	8	9.0	11.38	2.37	9.0	126	21	10	7.0	7.58	0.82	108	11	5				
sm mg/kg 3.0 5.6 3.05 2.06 5.4 6.8 3.4 6.7 4.3 1.22 6.2 2.8 1.4 6.0 0.88 0.68 5.8 3.8 1.9 5.0 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 6.5 3.25 0.79 0.5 0.5 0.55 0.5	Se	mg/kg	0.20	0.3	0.13	0.06	44	43	22	nr nr	1.43	0.05	nd	4	2	nr	0.93	0.05	nr	nd	5	3	nr	2.20	0.08	nd	4	2				
Sn mg/kg 0.50 2.8 2.73 0.15 0.16 0.12 0.12 0.2 7 4 1.60 0.56 0.68 4 2 50 0.14 90 90 10 10.1	Sm	mg/kg	3.00	5.6	3.05	2.06	54	68	34	7.0	4.33	1.22	62	28	14	4.0	2.30	0.88	4.0	58	38	19	5.0	3.25	0.79	65	24	12				
sr mg/kg 1.0 266. 266.8 2.0 1.00 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <td>Sn</td> <td>mg/kg</td> <td>0.50</td> <td>2.8</td> <td>2.73</td> <td>0.15</td> <td>97</td> <td>6</td> <td>3</td> <td>4.0</td> <td>3.00</td> <td>0.22</td> <td>75</td> <td>7</td> <td>4</td> <td>16.0</td> <td>13.45</td> <td>0.60</td> <td>16.0</td> <td>84</td> <td>4</td> <td>2</td> <td>5.0</td> <td>4.50</td> <td>0.14</td> <td>90</td> <td>3</td> <td>2</td>	Sn	mg/kg	0.50	2.8	2.73	0.15	97	6	3	4.0	3.00	0.22	75	7	4	16.0	13.45	0.60	16.0	84	4	2	5.0	4.50	0.14	90	3	2				
Ta mg/kg 1.0 0.8 0.37 0.21 0.49 57 28 0.0 0.0 0.10 0.0 <	Sr	mg/kg	1.00	266.0	266.88	2.20	100	1	<1	230.0	236.48	2.10	103	1	<1	250.0	248.60	1.61	250.0	99	1	<1	110.0	116.43	0.34	106	<1	<1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Та	mg/kg	1.00	0.8	0.37	0.21	49	57	28	8 0.9	0.20	nd	22	nd	nd	0.3	0.20	nd	0.3	67	nd	nd	0.4	<1	nd	nd	nd	nd				
$ \begin to transform the tra$	Te	mg/kg	0.50	0.1	0.13	0.06	103	43	22	nr nr	<0.5	nd	nd	nd	nd	nr	0.10	nd	nr	nd	nd	nd	nr	0.20	nd	nd	nd	nd				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Th	mg/kg	0.70	9.0	8.83	1.49	98	17	8	8 8.5	6.60	0.63	78	10	5	2.2	1.88	0.44	2.2	85	24	12	5.1	4.90	0.57	96	12	6				
U mg/kg 0.50 2.4 2.00 0.28 1.17 10 5 10.19 9.01 9.7 9.4 2 1 3.10 3.00 0.22 9.7 1 2.7 9.7 9.4 2 1 3.10 3.00 0.22 9.7 1 2.7 9.7 9.7 9.4 2 1 3.10 3.00 0.22 9.7 1 2.7 9.7 9.7 9.4 2 1 3.10 3.00 0.22 9.7 1 2.7 9.7 9.7 9.4 2 1 3.10 3.00 0.22 9.7 1 2.7 9.7 9.7 9.7 9.4 2 1 3.10 3.00 0.22 9.7 1 2.7 9.7 9.7 9.7 9.4 2 1 3.0 3.02 9.7 9.7 9.7 9.4 2 1 3.0 3.02 0.7 9.7 9.7 9.7 9.4 1 1.0 3.0 3.02 1.0 3.02 1.0 1.0 1.0 1.0 1.	п	mg/kg	0.50	1.1	1.00	0.14	93	14		nr	0.95	0.30	nd	32	16	nr	0.80	0.34	nr	nd	42	21	nr	1.03	0.35	nd	34	17				
v mg/rg 3.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 90 4 2 45.00 49.00 90 4 2 45.00 45.00 90 4 2 45.00 45.00 90 4 2 45.00 45.00 90 4 2 45.00 45.00 90 4 2 45.00 45.00 90 4 2 45.00 <	U	mg/kg	0.50	2.4	2.80	0.28	117	10	-	10.5	9.43	0.19	90	2	1	9.7	9.15	0.19	9.7	94	2	1	31.0	30.08	0.22	97	1	<1				
W mg/kg 0.00 25.0 25.0 1.27 95 5 3 4 3.58 0.45 nd 13 6 6.4 1.00 0.61 c4 nd 32 16 c4 1.00 0.22 nd 1.00 0.22 nd 1.00 0.02 nd 1.01 1 <t< td=""><td>v</td><td>mg/kg</td><td>3.00</td><td>142.0</td><td>134.88</td><td>1.87</td><td>95</td><td>1</td><td>1</td><td>134.0</td><td>124.70</td><td>2.56</td><td>93</td><td>2</td><td>1</td><td>50.0</td><td>45.13</td><td>1.88</td><td>50.0</td><td>90</td><td>4</td><td>2</td><td>49.0</td><td>44.33</td><td>0.99</td><td>90</td><td>2</td><td>1</td></t<>	v	mg/kg	3.00	142.0	134.88	1.87	95	1	1	134.0	124.70	2.56	93	2	1	50.0	45.13	1.88	50.0	90	4	2	49.0	44.33	0.99	90	2	1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W	mg/kg	0.60	25.0	23.65	1.27	95	5	3	<4	3.58	0.45	nd	13	6	<4	1.90	0.61	<4	nd	32	16	<4	1.60	0.22	nd	14	7				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Y	mg/kg	1.00	20.0	20.13	0.60	101	3	1	36.0	33.23	0.57	92	2	1	19.0	19.58	0.25	19.0	103	1	1	23.0	21.10	0.39	92	2	1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	mg/kg	1.50	2.1	0.97	0.49	46	51	26	3.4	2.03	0.75	60	37	19	2.0	1.68	0.29	2.0	84	1/	و	2.0	1.65	0.39	83	23	12				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	mg/kg	1.30	144.0	142.88	0.67	99	<1	<	204.0	206.20	1.10	101	1	<1	331.0	308.58	2.21	331.0	93	1	<1	194.0	186.73	0.80	96	<1	<1				
The second control of	Aumhora	mg/Kg	1.00	170.0	107.03	1.46	99	1 SD: stand:	Ind days	196.0	181.58	3.10	93	2	1	134.0	119.28	2.07	134.0	89	2	1	105.0	95.80	U.54	91	1	<1				
	100 limit	of quant	a. +		RSF: reality	e standard	error	DCD: and	nu uevia	uon Isasi davi 11	C	.ANMET: Ca	al Research	tre for Mi	neral and	Energy Teo	cnnology		n	r: not repor	ted											

Table A2.1 Results for certified reference materials included in the XRF analysis of total element concentrations in topsoil.

			S13B Bull	k stream sec	diment, BC	GS			S23B Bulk	stream sec	diment, BO	6S			S58S Bulk	soil, BGS				
Analyte	Units	LOQ	AV	Mean	SD	%Recovery	RSD %	RSE %	AV	Mean	SD	%Recovery	RSD %	RSE %	AV	Mean	SD	%Recovery	RSD %	RSE %
AI 2O 3	wt%	0.20	18.0	19.30	0.57	107	3	2	14.1	14.70	0.00	105	<1	<1	16.3	17.85	0.21	109	1	1
CaO	wt%	0.05	0.7	0.52	0.01	78	3	2	1.8	1.85	0.02	103	1	1	0.9	0.83	0.01	92	2	1
Fe2O3	wt%	0.01	6.8	6.77	0.06	99	1	1	6.4	6.51	0.01	102	<1	<1	6.3	6.39	0.05	101	1	1
К2О	wt%	0.01	2.3	2.36	0.01	102	1	<1	3.8	3.98	0.01	104	<1	<1	2.1	2.21	0.01	103	1	<1
MgO	wt%	0.30	1.4	1.60	0.00	114	<1	<1	1.8	2.30	0.00	128	<1	<1	1.3	1.50	0.00	114	<1	<1
MnO	wt%	0.01	0.1	0.10	0.00	92	3	2	0.4	0.42	0.01	119	2	1	0.1	0.08	0.00	89	1	1
Na2O	wt%	0.30	0.3	0.10	nd	30	nd	nd	1.9	1.40	0.00	72	<1	<1	0.3	<0.3	nd	nd	nd	nd
P2O5	wt%	0.05	0.2	0.15	0.01	85	5	3	0.3	0.39	0.01	124	2	1	0.1	0.09	0.01	65	8	6
SiO2	wt%	0.10	61.8	59.25	1.91	96	3	2	57.9	54.45	0.07	94	<1	<1	58.5	52.50	0.85	90	2	1
TiO2	wt%	0.01	0.8	0.73	0.00	94	1	<1	0.9	0.95	0.00	100	<1	<1	0.9	0.87	0.00	99	<1	<1
Ag	mg/kg	0.50	nr	0.65	0.35	nd	54	38	nr	<0.5	nd	nd	nd	nd	nr	<0.5	nd	nd	nd	nd
As	mg/kg	0.90	14.1	14.25	0.21	101	1	1	93.7	95.30	0.57	102	1	<1	25.2	24.70	0.42	98	2	1
Ва	mg/kg	1.00	725.0	846.00	16.97	117	2	1	657.0	660.00	7.07	100	1	1	386.0	338.00	2.83	88	1	1
Bi	mg/kg	0.30	nr	0.50	nd	nd	nd	nd	nr	5.75	0.07	nd	1	1	nr	0.10	nd	nd	nd	nd
Br	mg/kg	0.80	5.5	4.30	0.28	79	7	5	16.7	16.90	0.28	101	2	1	7.8	6.75	0.07	87	1	1
Cd	mg/kg	0.50	0.5	0.45	0.07	90	16	11	0.6	0.60	0.28	100	47	33	0.3	<0.5	nd	nd	nd	nd
Ce	mg/kg	1.00	86.0	82.50	2.12	96	3	2	111.0	116.50	0.71	105	1	<1	81.0	92.50	0.71	114	1	1
CI	mg/kg	200.00	nr	<200	nd	nd	nd	nd	nr	<200	nd	nd	nd	nd	nr	<200	nd	nd	nd	nd
Co	mg/kg	1.50	18.6	20.25	0.64	109	3	2	18.4	19.95	0.92	108	5	3	18.8	20.70	0.99	110	5	3
Cr	mg/kg	3.00	95.2	91.10	2.69	96	3	2	54.9	57.35	4.60	104	8	6	109.9	113.85	2.19	104	2	1
Cs	mg/kg	1.00	14.0	13.00	0.00	93	<1	<1	15.0	14.50	0./1	97	5	3	7.0	6.50	0./1	93	11	8
Cu C-	mg/kg	1.30	1/.1	13.60	0.85	80	6	4	59.6	55.00	0.42	92	1	1	19.9	16.55	0.21	83	1	1
Ga	mg/kg	1.00	22.7	22.15	0.35	98	2	1	23.1	22.05	0.78	95	4	2	19.5	18.50	0.00	95	<1	<1
Ge	mg/kg	0.50	nr	0.65	0.07	na	11	8	nr	0.70	0.28	na	40	29	nr	1.15	0.07	100	5	4
HT	mg/kg	1.00	4.7	4.35	0.07	93	47	1	13.0	2.25	0.35	92	3	2	8.9	8.95	0.64	001	/	5
Hg	mg/kg	2.50	nr	0.15	0.07	na	47	33	nr	2.25	0.07	na	3	2	nr	0.10	0.25	na	na	na
1	mg/kg	0.50		2.45	0.55	nu	14	10		c0.0	0.07	nu	L ba	L ba	111	0.30	0.55	nu	/ nd	
10	ma/ka	1.00	47.0	43.50	0.71	03	2	1	61.0	60.50	0.71	00	1	1	45.0	46.50	0.71	103	2	1
Mo	ma/ka	0.20	1.0	45.50	0.71	67	11	2	31.0	31.45	0.71	99	1		45.0	40.50	0.07	75	13	-
Nh	mg/kg	1.00	15.5	13.65	0.07	88	2	1	22.4	21.55	0.21	96	<1	<1	19.5	18 30	0.07	94	15	1
Nd	mg/kg	4 00	41.9	40.70	0.57	97	- 1	1	57.4	50.75	3 75	88	-1		49.3	47.45	0.92	96	2	1
Ni	mg/kg	1.30	43.1	45.80	0.57	106	- 1	- 1	20.7	22.75	0.21	110	1	1	47.8	52.95	0.49	111	- 1	1
Pb	mg/kg	1.30	63.2	64.45	3.32	102	5	4	110.3	115.90	1.27	105	1	1	24.2	25.00	0.28	103	1	1
Rb	mg/kg	1.00	117.0	115.15	0.92	98	1	1	182.6	184.85	0.35	101	<1	<1	96.7	95.60	0.57	99	1	<1
s	mg/kg	1000.00	<1000	910.00	1.41	nd	<1	<1	<1000	544.00	26.87	nd	5	3	<1000	148.50	2.12	nd	1	1
Sb	mg/kg	0.50	nr	0.65	0.07	nd	11	8	2.6	3.25	0.35	125	11	8	1.0	0.70	0.28	70	40	29
Sc	mg/kg	3.00	13.5	14.65	0.49	109	3	2	12.3	13.90	0.28	113	2	1	15.1	14.05	0.35	93	3	2
Se	mg/kg	0.20	nr	0.45	0.07	nd	16	11	nr	0.35	0.07	nd	20	14	nr	0.30	0.00	nd	<1	<1
Sm	mg/kg	3.00	5.7	4.15	1.48	73	36	25	7.2	7.00	2.40	98	34	24	8.8	5.65	0.35	64	6	4
Sn	mg/kg	0.50	3.1	2.00	0.28	65	14	10	5.7	5.20	0.14	91	3	2	2.8	2.85	0.07	102	2	2
Sr	mg/kg	1.00	123.6	129.10	0.85	104	1	<1	197.1	207.05	1.63	105	1	1	52.3	59.50	0.42	114	1	1
Та	mg/kg	1.00	1.3	<1	nd	nd	nd	nd	1.9	1.05	0.78	55	74	52	1.3	0.85	0.07	66	8	6
Те	mg/kg	0.50	nr	<0.5	nd	nd	nd	nd	nr	0.20	nd	nd	nd	nd	nr	0.10	nd	nd	nd	nd
Th	mg/kg	0.70	11.4	11.45	0.64	101	6	4	27.6	27.35	2.05	99	7	5	13.7	14.30	1.27	104	9	6
TI	mg/kg	0.50	nr	0.90	0.00	nd	<1	<1	nr	1.55	0.07	nd	5	3	nr	0.75	0.07	nd	9	7
U	mg/kg	0.50	3.1	2.85	0.21	92	7	5	37.5	38.50	0.14	103	<1	<1	3.3	3.30	0.00	99	<1	<1
v	mg/kg	3.00	90.8	86.25	2.05	95	2	2	108.3	109.10	0.28	101	<1	<1	157.1	154.30	3.54	98	2	2
w	mg/kg	0.60	0.6	1.15	0.21	192	18	13	39.7	40.40	0.99	102	2	2	2.0	2.85	0.21	143	7	5
Y	mg/kg	1.00	20.4	21.05	0.07	103	<1	<1	25.0	24.55	0.49	98	2	1	30.0	29.35	0.07	98	<1	<1
Yb	mg/kg	1.50	2.6	1.40	0.99	54	71	50	2.7	2.35	1.20	87	51	36	3.4	1.50	0.42	44	28	20
Zn	mg/kg	1.30	106.1	108.55	0.21	102	<1	<1	121.3	128.75	6.15	106	5	3	67.0	72.00	0.28	107	<1	<1
Zr	mg/kg	1.00	175.4	174.75	3.32	100	2	1	446.0	460.65	2.33	103	1	<1	344.6	358.55	1.20	104	<1	<1
Number o	fanalyse	25:2			AV: a cce p	ted value		SD: stand	ard deviat	ion		nr: not repor	ted							
LOQ: limit	ofquant	tification			RSE: reali	tve standard	error	RSD: relat	ive standa	ard deviatio	on	nd: not deter	rmined							

Table A2.2 Results for secondary reference materials included in the XRF analysis of total element concentrations in topsoil.

Analyte	Units	LOQ	Replicate A1	Replicate A2	Mean	SD	RSD %	RSE %	Replicate B1	Replicate B2	Mean	SD	RSD %	RSE %
			G010	G027					G039	G075				
AI2O3	wt%	0.20	12.0	12.2	12.10	0.14	1	1	11.9	11.8	11.85	0.07	1	<1
CaO	wt%	0.05	3.17	3.23	3.20	0.04	1	1	3.81	3.86	3.84	0.04	1	1
Fe2O3	wt%	0.01	5.75	5.87	5.81	0.08	1	1	6.66	6.76	6.71	0.07	1	1
К2О	wt%	0.01	1.35	1.37	1.36	0.01	1	1	1.40	1.40	1.40	0.00	<1	<1
MgO	wt%	0.30	1.4	1.5	1.45	0.07	5	3	2.2	2.2	2.20	0.00	<1	<1
MnO	wt%	0.01	0.127	0.129	0.13	0.00	1	1	0.124	0.124	0.12	0.00	<1	<1
Na 2O	wt%	0.30	1.2	1.3	1.25	0.07	6	4	2.1	2.1	2.10	0.00	<1	<1
P2O5	wt%	0.05	0.22	0.23	0.23	0.01	3	2	0.28	0.27	0.28	0.01	3	2
Si O 2	wt%	0.10	63.6	64.4	64.00	0.57	1	1	65.8	64.6	65.20	0.85	1	1
TiO2	wt%	0.01	0.803	0.804	0.80	0.00	<1	<1	1.036	1.051	1.04	0.01	1	1
Ag	mg/kg	0.50	0.25	0.1	0.18	0.11	61	43	0.2	0.4	0.30	0.14	47	33
As	mg/kg	0.90	10.6	11.1	10.85	0.35	3	2	8.3	7.6	7.95	0.49	6	4
Ва	mg/kg	1.00	543	570	556.50	19.09	3	2	889	905	897.00	11.31	1	1
Bi	mg/kg	0.30	0.8	0.5	0.65	0.21	33	23	<0.3	<0.3	nd	nd	nd	nd
Br	mg/kg	0.80	8.2	7.9	8.05	0.21	3	2	5.3	4.9	5.10	0.28	6	4
Cd	mg/kg	0.50	0.8	0.5	0.65	0.21	None	23	0.3	0.3	0.30	0.00	<1	<1
Ce	mg/kg	1.00	70	72	71.00	1.41	2	1	57	57	57.00	0.00	<1	<1
Cl	mg/kg	200.00	<200	<200	nd	nd	nd	nd	<200	<200	nd	nd	nd	nd
Со	mg/kg	1.50	20.7	20.5	20.60	0.14	1	<1	21.1	22.3	21.70	0.85	4	3
Cr	mg/kg	3.00	109.6	119.6	114.60	7.07	6	4	1543.3	1370	1456.65	122.54	8	6
Cs	mg/kg	1.00	3	2	2.50	0.71	28	20	2	3	2.50	0.71	28	20
Cu	mg/kg	1.30	77.9	83.2	80.55	3.75	5	3	52.2	48.3	50.25	2.76	5	4
Ga	mg/kg	1.00	15.1	13.9	14.50	0.85	6	4	14	15.1	14.55	0.78	5	4
Ge	mg/kg	0.50	2.8	3.2	3.00	0.28	9	7	1.1	1.4	1.25	0.21	17	12
Hf	mg/kg	1.00	6.6	7	6.80	0.28	4	3	6.5	6.3	6.40	0.14	2	2
Hg	mg/kg	2.50	0.3	0.5	0.40	0.14	35	25	<2.5	<2.5	nd	nd	<1	nd
I	mg/kg	0.50	1.9	1.6	1.75	0.21	12	9	1.9	1.9	1.90	0.00	<1	<1
In	mg/kg	0.50	<0.5	<0.5	nd	nd	nd	nd	<0.5	<0.5	nd	nd	nd	nd
La	mg/kg	1.00	39	40	39.50	0.71	2	1	32	31	31.50	0.71	2	2
Мо	mg/kg	0.20	1.8	1.9	1.85	0.07	4	3	3	2	2.50	0.71	28	20
Nb	mg/kg	1.00	15.9	15.2	15.55	0.49	3	2	15.2	14.5	14.85	0.49	3	2
Nd	mg/kg	4.00	35.1	33.3	34.20	1.27	4	3	24	21.2	22.60	1.98	9	6
Ni	mg/kg	1.30	56	56.7	56.35	0.49	1	1	45.7	45.6	45.65	0.07	<1	<1
Pb	mg/kg	1.30	276.3	226.5	251.40	35.21	14	10	77.5	92.6	85.05	10.68	13	9
Rb	mg/kg	1.00	49.3	49.2	49.25	0.07	<1	<1	41.1	42.7	41.90	1.13	3	2
S	mg/kg	1000.00	549	556	552.50	4.95	1	1	810	793	801.50	12.02	1	1
Sb	mg/kg	0.50	2.4	2.2	2.30	0.14	6	4	3.2	4.8	4.00	1.13	28	20
Sc	mg/kg	3.00	11.9	14.2	13.05	1.63	12	9	11.8	14.8	13.30	2.12	16	11
Se	mg/kg	0.20	1.3	1.1	1.20	0.14	12	8	0.4	0.3	0.35	0.07	20	14
Sm	mg/kg	3.00	6.1	4.3	5.20	1.27	24	17	4	3.5	3.75	0.35	9	7
Sn	mg/kg	0.50	12.7	11.6	12.15	0.78	6	5	7.9	6.2	7.05	1.20	17	12
Sr	mg/kg	1.00	173.5	178.3	175.90	3.39	2	1	227.9	233.3	230.60	3.82	2	1
Та	mg/kg	1.00	<1	<1	nd	nd	nd	nd	<1	<1	nd	nd	nd	nd
Те	mg/kg	0.50	<0.5	<0.5	nd	nd	nd	nd	<0.5	<0.5	nd	nd	nd	nd
Th	mg/kg	0.70	9.5	7.9	8.70	1.13	13	9	5.4	6.3	5.85	0.64	11	8
TI	mg/kg	0.50	0.8	1.2	1.00	0.28	28	20	0.5	0.1	0.30	0.28	94	67
U	mg/kg	0.50	2.2	2.7	2.45	0.35	14	10	2	1.9	1.95	0.07	4	3
v	mg/kg	3.00	109.8	118	113.90	5.80	5	4	149.2	157.4	153.30	5.80	4	3
w	mg/kg	0.60	1.4	1.6	1.50	0.14	9	7	1.1	1.1	1.10	0.00	<1	<1
Y	mg/kg	1.00	26.8	27.8	27.30	0.71	3	2	22.7	23.6	23.15	0.64	3	2
Yb	mg/kg	1.50	1.5	1.9	1.70	0.28	17	12	0.9	0.4	0.65	0.35	54	38
Zn	mg/kg	1.30	340.2	358.4	349.30	12.87	4	3	174.7	178.7	176.70	2.83	2	1
Zr	mg/kg	1.00	261.5	266.6	264.05	3.61	1	1	253.6	249	251.30	3.25	1	1
Cr(VI)	mg/kg	0.5	<0.5	<0.5	<0.5	nd	nd	nd	<0.5	<0.5	<0.5	nd	nd	nd
рH	log [H+]mol/L	0.1	7.26	7.3	7.28	0.03	nd	nd	7.46	7.44	7.45	0.01	nd	nd
SD: standa	ard deviation			SE: standard e	rror				Bold: values I	below LOQ sho	uld be trea	ted with a	aution	
RSD: relat	ive standard de	viation		RSE: realitve s	tandard err	or			LOQ: limits of	quantification	n			
nd: not de	termined													

Table A2.3 Results for replicate Samples A and B included in the topsoil inorganic analyses.

Table A2.4 Results for SIDMS repeat measurements of Cr(VI) and total Cr in topsoil.

Sample ID	Cr(VI) mg/kg					
	Repeat 1	Repeat 2	Mean	SD	RSD%	RSE %
G001	<0.5	<0.5	<0.5	nd	nd	nd
G010	<0.5	<0.5	<0.5	nd	nd	nd
G016	5.3	6.1	5.7	0.59	10	7
G029	<0.5	<0.5	<0.5	nd	nd	nd
G037	<0.5	<0.5	<0.5	nd	nd	nd
G038	0.5	0.5	0.5	0.00	<1	<1
G051	<0.5	<0.5	<0.5	nd	nd	nd
G059	0.6	0.5	0.5	0.02	4	3
G073	<0.5	<0.5	<0.5	nd	nd	nd
G095	1.1	1.3	1.2	0.14	11	8
nd: not dete	ermined					

Table A2.5 Results for CRMs included in the topsoil SIDMS Cr(VI) analysis.

CRM	Units	LOQ	Number of	Certified/ A	Accepted	BGS	RSD	Recovery
			Measurements	Value		Mean	%	%
NIST2700 Cr(VI) Low Level	mg/kg	0.5	8	14.9	±1.2	15.3	7	102
NIST2701 Cr(VI) High Level	mg/kg	0.5	4	551.2	±34.5	518.1	8	94
LOQ: limit of qualitification								

Table A2.6 Results for certified reference material NIST1941b included in the topsoil PAH analytical run.

PAH compound	Units	LOQ	NIST1941b		BGS	Standard	RSD	Recovery
			Certified Va	alue	Mean	Deviation	%	%
naphthalene	mg/kg	0.054	0.848	(±0.095)	0.87	0.22	25	103
2-methylnaphthalene	mg/kg	0.033	0.276	(±0.053)	0.29	0.06	21	105
1-methylnaphthalene	mg/kg	0.037	0.127	(±0.014)	0.13	0.03	22	102
biphenyl	mg/kg	0.030	0.074	(±0.008)	0.08	0.01	15	108
C2-naphthalenes	mg/kg	0.035	1.877	(±0.053)	1.97	0.36	18	105
acenaphthylene	mg/kg	0.036	0.053	(±0.006)	0.06	0.01	17	113
acenaphthene	mg/kg	0.030	0.038	(±0.005)	0.04	0.01	18	104
dibenzofuran	mg/kg	0.030	nr		0.12	0.03	22	nd
fluorene	mg/kg	0.023	0.085	(±0.015)	0.09	0.01	13	106
1-methylfluorene	mg/kg	0.023	nr		0.06	0.01	18	nd
dibenzothiophene	mg/kg	0.039	nr		0.05	0.00	9	nd
phenanthrene	mg/kg	0.030	0.406	(±0.044)	0.42	0.04	10	103
anthracene	mg/kg	0.046	0.184	(±0.018)	0.19	0.02	8	103
1-methylanthracene	mg/kg	0.038	nr		0.04	0.00	12	nd
C1-phenanthrenes / anthracenes	mg/kg	0.038	0.313	(±0.099)	0.33	0.03	9	105
C2-phenanthrenes / anthracenes	mg/kg	0.038	0.247	(±0.062)	0.26	0.03	11	105
fluoranthene	mg/kg	0.029	0.651	(±0.050)	0.70	0.06	8	108
pyrene	mg/kg	0.025	0.581	(±0.039)	0.56	0.05	9	96
1-methylpyrene	mg/kg	0.037	0.052	(±0.002)	0.06	0.01	22	114
C1-fluoranthenes / pyrenes	mg/kg	0.037	0.252	(±0.048)	0.26	0.02	8	103
C2-fluoranthenes / pyrenes	mg/kg	0.037	0.205	(±0.038)	0.21	0.03	13	102
benz[a]anthracene	mg/kg	0.033	0.335	(±0.025)	0.35	0.03	9	104
triphenylene	mg/kg	0.034	0.108	(±0.005)	0.10	0.03	32	93
chrysene	mg/kg	0.034	0.291	(±0.031)	0.30	0.02	8	103
C1-benz[a]anthracenes / chrysenes	mg/kg	0.055	0.208	(±0.043)	0.22	0.02	9	106
C2-benz[a]anthracenes / chrysenes	mg/kg	0.055	0.120	(±0.024)	0.13	0.02	19	108
benzo[b]fluoranthene	mg/kg	0.035	0.453	(±0.021)	0.47	0.03	7	104
benzo[k]fluoranthene	mg/kg	0.053	0.225	(±0.018)	0.23	0.02	8	102
benzo[j]fluoranthene	mg/kg	0.053	0.217	(±0.005)	0.23	0.02	8	106
benzo[a]fluoranthene	mg/kg	0.053	0.073	(±0.018)	0.08	0.01	11	110
benzo[e]pyrene	mg/kg	0.053	0.325	(±0.025)	0.33	0.03	9	102
benzo[a]pyrene	mg/kg	0.048	0.358	(±0.017)	0.38	0.03	9	106
perylene	mg/kg	0.026	0.397	(±0.045)	0.39	0.03	8	98
dibenz[a,h]anthracene	mg/kg	0.055	0.053	(±0.010)	0.06	0.01	9	113
indeno[1,2,3-cd]pyrene	mg/kg	0.035	0.341	(±0.057)	0.36	0.03	8	106
benzo[g,h,i]perylene	mg/kg	0.047	0.307	(±0.045)	0.32	0.03	8	104
NIST: National Institute of Standards and T	echnology, US	5A		nr: not re	ported			
RSD: relative standard deviation				nd: not de	etermined			
LOQ: limit of quantification				Number o	f analyses: 30)		

PCB Units LOQ NIST1941b		NIST1941b		BGS	Standard	RSD	Recovery	
			Certified Value	Range	Mean	Deviation	%	%
PCB028	µg/kg	1.47	4.52	3.95 - 5.09	4.49	0.48	11	99
PCB052	µg/kg	2.47	5.24	4.96 - 5.52	5.50	0.40	7	105
PCB081	µg/kg	2.27	nr		<2.27	0.10	233	nd
PCB077	µg/kg	2.47	0.31	0.28 - 0.34	<2.47	0.28	27	nd
PCB095	µg/kg	3.01	3.93	3.31 - 4.55	3.72	0.63	17	95
PCB101	µg/kg	3.46	5.11	4.77 - 5.45	5.34	0.42	8	105
PCB099	µg/kg	3.13	2.90	2.54 - 3.26	<3.13	0.92	34	nd
PCB110	µg/kg	2.11	4.62	4.26 - 4.98	4.45	0.68	15	96
PCB123	µg/kg	2.57	nr		<2.57	0.19	95	nd
PCB118	µg/kg	2.27	4.23	4.04 - 4.42	4.20	0.46	11	99
PCB114	µg/kg	3.00	nr		<3.00	0.04	583	nd
PCB105	µg/kg	1.79	1.43	1.33 - 1.53	<1.79	0.64	39	nd
PCB126	µg/kg	2.05	nr		<2.05	0.13	583	nd
PCB151	µg/kg	3.01	nr		<3.01	0.19	15	nd
PCB149	µg/kg	2.61	4.35	4.09 - 4.61	4.48	0.39	9	103
PCB146	µg/kg	2.52	1.22	1.10 - 1.34	<2.52	0.99	92	nd
PCB153	µg/kg	2.52	5.47	5.15 - 5.79	5.90	1.03	17	108
PCB138	µg/kg	3.01	3.60	3.32 - 3.88	3.71	0.46	12	103
PCB167	µg/kg	2.16	nr		<2.16	1.16	83	nd
PCB156	µg/kg	1.94	0.51	0.42 - 0.60	<1.94	0.28	93	nd
PCB169	µg/kg	2.50	nr		<2.50	0.53	121	nd
PCB187	µg/kg	3.60	2.17	1.95 - 2.39	<3.60	0.38	17	nd
PCB183	µg/kg	3.13	0.98	0.89 - 1.06	<3.13	0.30	29	nd
PCB177	µg/kg	4.15	nr		<4.15	0.26	25	nd
PCB180	µg/kg	3.71	3.24	2.73 - 3.75	<3.71	0.65	18	nd
PCB170	µg/kg	3.33	1.35	1.26 - 1.44	<3.33	0.35	27	nd
PCB189	µg/kg	6.03	nr		<6.03	0.31	273	nd
3-Cl	µg/kg	1.47	nr		9.47	1.64	17	nd
4-Cl	µg/kg	2.40	nr		42.54	4.15	10	nd
5-Cl	µg/kg	2.60	nr		31.38	4.70	15	nd
6-Cl	µg/kg	2.62	nr		24.57	3.54	14	nd
7-Cl	µg/kg	4.12	nr		13.04	2.24	17	nd
NIST: National Institute of Standards			s and Technology,	USA	nr: not repor	ted		
RSD: relati	ve standard d	eviation			nd: not dete	rmined		
LOQ: limit of quantification					Number of a	nalyses: 30		
Bold: value	s below LOQ	should be t	reated with caution	า				

Table A2.7 Results for certified reference material NIST1941b included in the topsoil PCB analytical run.

Appendix 3 Summary statistics for the GGERFS soil chemical analysis

Dataset	Al2O3	CaO	Fe2O3	К2О	MgO	MnO	Na2O	P2O5	SiO2	TiO2	Ag	As	Ba	Bi	Br	Cd	Ce	Cl	Co
Units	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
GGERFS																			
Min	6.5	0.52	2.20	0.66	0.8	0.041	0.7	0.18	43.6	0.454	<0.5	4.5	130	<0.3	3.6	<0.5	28	100	4.4
Max	16.5	6.12	14.89	1.96	2.4	0.208	2.2	0.45	84.6	1.100	1.3	40.4	1834	8.7	28.6	18.8	132	100	82.2
Median	11.7	1.76	5.47	1.35	1.3	0.095	1.1	0.25	62.4	0.793	<0.5	11.0	506	0.6	11.0	0.5	61	100	19.2
Mean	11.6	1.99	5.53	1.29	1.3	0.098	1.2	0.26	63.3	0.792	<0.5	11.6	546	1.2	11.7	0.9	61	100	19.6
SD	2.0	1.17	1.62	0.25	0.3	0.031	0.3	0.05	8.3	0.130	0.2	5.2	290	1.6	6.0	2.0	15	0	9.5
Count	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89
G-BASE G	1125 G	17.94	20.19	2 21	10.5	2 150	2.4	1 99	82.2	2 002	22.5	850.0	10079	15.0	120 /	16.0	1101	191	560.0
Count	23.0	2333	20.10	2333	2333	2333	2333	2333	2333	2332	23.3	2333	2333	2333	2333	2333	2333	976	2333
ooune			2000	2000	2000	2000	2000	2000	2000	2000	2000	2000		2000			2000		
Dataset	Cr	Cs	Cu	Ga	Ge	Hf	Hg		in	La	Мо	Nb	Nd	Ni	Pb	Rb	S	Sb	Sc
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
GGERFS																			
Min	30	1	10	5.3	<0.5	1.3	<2.5	<0.5	<0.5	14	0.2	10.0	1.7	11	11	17.4	26	<0.5	< 3.0
Max	2776	5	1192	25.7	21.3	10.4	2.9	4.0	0.6	78	9.0	19.7	97.6	330	1639	87.2	1525	44.7	28.0
Median	133	3	83	14.1	2.6	61	<2.5	21	<0.5	34	2.2	15.0	29.4	50	227	45.7	573	2.5	10.9
Mean	268	3	137	14.4	3.2	6.1	<2.5	21	<0.5	34	2.4	15.0	29.3	58	309	46.4	631	4 1	10.7
SD	450	1	164	3.7	2.8	1.4	0.6	1.0	0.1	9	1.2	1.8	13.4	38	295	12.8	338	5.5	4.4
Count	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89
G-BASE G	ilasgow																		
Max	5334	25	3680	54.3	90.6	81.4	nd	35.8	0.7	507	55.7	61.4	103.5	1038	9937	109.3	5549	173.5	34.0
Count	2333	2333	2333	2333	2333	2333		2333	976	2333	2333	2333	976	2333	2333	2333	976	2333	2333
																	ĺ		
Dataset	Se	Sm	Sn	Sr	Та	Те	Th	Tİ	U	v	w	Y	Yb	Zn	Zr	pН	Cr(VI)		
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-log[H+]	mg/kg		
GGERFS																			
Min	<0.2	< 3	0.9	37	<1.0	<0.5	1.6	<0.5	<0.5	33	<0.6	4.8	<1.5	19	156	3.79	<0.5		
Max	5.2	11.1	204	465	1.5	<0.5	13.3	2.5	6.4	417	18.2	65	4.1	11493	383	7.86	28.5		
Median	1.0	3.4	15	134	<1.0	<0.5	7.4	1.0	2.2	108	1.6	23	<1.5	322	248	6.75	<0.5		
Mean	1.0	3.4	31	139	<1.0	<0.5	7.2	1.0	2.3	116	2.4	23	1.5	502	247	6.31	1.1		
SD	0.7	2.0	42	66	0.4	0.0	2.2	0.4	0.8	52	2.9	8	0.8	1219	42	1.21	3.2		
Count	89	89	89	89	89 89 89 89 89 89 89 89						89	89	89	89	89	90	90		
G-BASE G	ilasgow																		
Max	14.5	15.4	659	462	4.0	4.1	18.0	11.5	6.2	737	154.9	75	6.9	5086	2000	8.79	1485.0		
Count	2333	976	2333	2333	2333	2333	2333	2333	2333	2333	2333	2333	976	2333	2333	2331	27		
nd: not d	etermine	d	Bold:	GGERFS	soil ma	ximum	> BGS G-	BASE GI	asgows	oil data	aset max	kimum							
SD: stand	lard devi	ation		G-BASE	Glasgov	v (Fordy	ce et al.	2017; Fo	ordyce e	t al. 201	9)								

Table A3.1 Summary statistics for inorganic parameters in GGERFS and BGS G-BASE Glasgow topsoil.

Dataset	тос	ττс	TIC	resins	aromatics	saturates	TPH (non-volatile)	
Units	%	%	%	mg/kg	mg/kg	mg/kg	mg/kg	
GGERFS								
Min	1.38	1.40	0.00	262	32	34	90	
Max	20.02	20.36	1.57	9488	3782	2247	5928	
Median	5.92	6.21	0.17	1560	219	289	587	
Mean	6.01	6.21	0.22	2194	482	454	937	
SD	3.18	3.20	0.23	1917	719	465	1142	
Count	90	90	90	90	90	90	90	
BGS Glasgow								
Max	17.97	nd	nd	nd	1807	757	2505	
Count	84				84	84	84	
nd: not determin	ed	Bold:	GGER	FS soil ı	maximum >	BGS Glasg	ow soil dataset ma	ximum
SD: standard deviation BGS Glasgow (Kim et al. 2019)								

Table A3.2 Summary statistics for soil organic carbon and total petroleum hydrocarbons in GGERFS and BGS Glasgow topsoil.

Dataset naphthalene		2-methylnaphthalene	1-methylnaphthalene	biphenyl	C2-naphthalenes	acenaphthylen			
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			
GGERFS									
Min	0.03	0.02	0.02	0.02	0.24	0.02			
Max	6.63	2.87	2.00	0.51	26.50	0.49			
Median	0.54	0.44	0.35	0.09	4.89	0.04			
Mean	0.87	0.61	0.46	0.13	6.62	0.05			
SD	1.13	0.59	0.42	0.12	5.64	0.07			
Count	90	90	90	90	90	90			
BGS Glasgow									
Max	2.13	1.19	0.98	1.07	8.39	0.53			
Count	84	84	84	84	84	84			
Dataset	acenaphthene	dibenzofuran	fluorene	1-methylfluorene	dibenzothiophene	phenanthrene			
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			
GGERFS									
Min	0.02	0.02	0.01	0.01	0.02	0.06			
Max	3.91	2.26	4.52	1.08	0.90	25.52			
Median	0.40	0.42	0.54	0.17	0.11	2.74			
Mean	0.64	0.61	0.83	0.22	0.17	3.94			
SD	0.71	0.55	0.87	0.20	0.16	4.32			
Count	90	90	90	90	90	90			
BGS Glasge	ow								
Max	9.81	1.06	14.09	4.26	1.24	112.39			
Count	84	84	84	84	84	84			
_					-				
Dataset	anthracene	1-methylanthracene	C1-phenanthrenes/	C2-phenanthrenes/	fluoranthene	pyrene			
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			
GGERFS	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0			
Min	0.02	0.02	0.04	0.02	0.06	0.06			
Max	5.82	0.69	10.96	5.53	35.14	28.83			
Median	0.67	0.09	1.56	0.93	4.40	3.51			
Mean	0.94	0.14	2.05	1.16	5.74	4.86			
SD	1.02	0.14	1.98	1.06	5.84	5.02			
Count	90	90	90	90	90	90			
BGS Glasge	ow								
Max	19.01	nd	55.72	8.61	111.79	112.38			
Count	84		84	84	84	84			
nd: not de	termined	SD: standard deviation	Bold:	GGERFS soil maximum	BGS Glasgow soil datase	et maximum			
				BGS Glasgow (Kim et al. 2019)					

Table A3.3 Summary statistics for PAH in GGERFS and BGS Glasgow topsoil.

Table A3.3 cont.

Dataset	1-methylpyrene	C1-fluoranthenes/	C2-fluoranthenes/	benz[a]anthracene	triphenylene	chrysene
		pyrenes	pyrenes		"	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
GGERFS						
Min	0.02	0.02	0.02	0.02	0.02	0.02
Max	3.41	9.91	7.01	14.89	1.62	12.19
Median	0.40	1.35	1.11	2.18	0.27	1.65
Mean	0.58	1.89	1.41	2.81	0.34	2.17
SD	0.60	1.86	1.38	2.77	0.30	2.16
Count	90	90	90	90	90	90
BGS Glasgo	w					
Max	nd	15.30	nd	52.90	nd	nd
Count		84		84		
Dataset	C1-benz[a]anthracenes/	C2-benz[a]anthracenes/	benzo[b]fluoranthene	benzo[k]fluoranthene	benzo[j]fluoranthene	benzo[a]fluoranthene
	chrysenes	chrysenes				
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
GGERFS						
Min	0.03	0.03	0.02	0.03	0.03	0.03
Max	5.77	3.14	10.41	5.42	5.57	2.11
Median	0.86	0.45	1.73	0.93	0.90	0.39
Mean	1.13	0.63	2.28	1.20	1.19	0.51
SD	1.06	0.63	2.10	1.13	1.10	0.46
Count	90	90	90	90	90	90
BGS Glasgo	w					
Max	34.73	nd	37.46	19.62	19.96	6.87
Count	84		84	84	84	84
Dataset	benzo[e]pyrene	benzo[a]pyrene	perylene	dibenz[a,h]anthracene	indeno[1,2,3-cd]pyrene	benzo[g,h,i]perylene
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
GGERFS						
Min	0.03	0.02	0.01	0.03	0.02	0.02
Max	9.74	17.28	4.40	1.31	9.75	10.59
Median	1.32	2.38	0.62	0.20	1.38	1.40
Mean	1.73	3.17	0.82	0.27	1.84	1.91
SD	1.68	3.23	0.82	0.25	1.78	1.84
Count	90	90	90	90	90	90
BGS Glasgo	Św					
Max	25.48	50.11	15.52	3.32	30.45	31.81
Count	84	84	84	84	84	84
nd: not det	termined	SD: standard deviation	Bold:	GGERFS soil maximum >	BGS Glasgow soil datas	et maximum
				BGS Glasgow (Kim et al.	2019)	

Dataset	PCB028	PCB052	PCB101	PCB118	PCB138	PCB153	PCB180	∑7РСВ	PCB077	PCB081	PCB105	PCB114	PCB123	
Units	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	µg/kg	µg/kg	µg/kg	µg/kg	μg/kg	µg/kg	
GGERFS														
Min	0.73	1.23	1.73	1.13	1.50	1.26	1.85	9	1.23	1.13	0.89	1.50	1.28	
Max	53.52	96.95	218.14	150.35	142.60	205.88	164.47	1032	7.29	6.87	62.44	3.67	14.66	
Median	0.73	1.23	1.73	1.13	1.50	1.26	1.85	9	1.23	1.13	0.89	1.50	1.28	
Mean	1.67	3.08	5.65	3.85	5.32	6.16	5.05	31	1.34	1.19	1.99	1.55	1.49	
SD	5.58	10.95	23.32	16.04	18.68	24.44	17.67	117	0.75	0.61	6.71	0.31	1.49	
Count	90	90	90	90	90	90	90	90	90	90	90	90	90	
BGS Glasgo	w													
Max	10.82	7.44	23.44	10.47	62.47	101.62	135.37	352	nd	nd	nd	nd	nd	
Count	84	84	84	84	84	84	84							
Dataset	PCB126	PCB156	PCB167	PCB169	PCB189	PCB151	PCB149	PCB146	PCB095	PCB099	PCB110	PCB187	PCB183	
Units	μg/kg	μg/kg	µg/kg	µg/kg	µg/kg	μg/kg	μg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	
GGERFS														
Min	1.02	0.97	1.08	1.25	3.01	1.50	1.30	1.26	1.50	1.56	1.05	1.80	1.56	
Max	11.43	14.26	46.69	4.60	3.01	24.21	133.07	18.14	107.35	76.40	157.63	101.77	44.96	
Median	1.02	0.97	1.08	1.25	3.01	1.50	1.30	1.26	1.50	1.56	1.05	1.80	1.56	
Mean	1.45	1.13	1.90	1.38	3.01	1.91	4.70	1.52	3.93	2.84	4.61	3.76	2.25	
SD	1.58	1.41	5.15	0.55	0.00	2.53	17.75	1.91	12.06	8.04	17.29	10.76	4.69	
Count	90	90	90	90	90	90	90	90	90	90	90	90	90	
BGS Glasgo	w													
Max	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Count														
Dataset	PCB177	PCB170	3-Cl	4-Cl	5-Cl	6-Cl	7-Cl	∑Tri-Hepta						
Linite		110/110	ua llea	ua llua		ua/ka	ua (ka	PCB						
COEPES	με/ Νε	με/ «ε	μg/ κg	με/ «ε	μg/ kg	με/ κε	με/ «ε	μg/ κg						
GGERF3	2.07	1.55	0.72	4.20	4.20	4.24	2.00	-						
Mari	2.07	1.00	0.73	1.20	1.30	1.31	2.06	/						
Nadian	09.58	/1.32	86.39	325.01	1,084.01	969.63	861.74	3327						
Median	2.07	1.66	0.73	9.56	10.86	7.43	2.06	31						
iviean	3.04	2.81	3.05	17.17	30.55	33.45	19.87	110						
SD	/.22	/.63	9.15	44.12	119.78	132.49	92.11	398						
	90	90	90	90	90	90	90	90						
BGS Glasgow			20.71	0455	407.00	202.72	400.4.5	4050						
iviax	nd	nd	29.74	84.56	137.90	382.73	433.14	1052						
Count	orminod	Plack: 7 DC	84	(ICES/ELICED)	84 Rold-	84	84	84	ow coil data	ot maximu	m			
SD: standa	rd doviation	DIDUK: / PUE		(ICES/EUCBR)	D010:									
JD. Standa	in neviduon	Tranhie: ILI-I	pie: iri-Hepta PCBS BGS Glasgow (kim et al. 2019)											

Table A3.4 Summary statistics for PCBs in GGERFS and BGS Glasgow topsoil.

Parameter:	As	Ва	Cd	Co	Cr	Cu	Hg	Мо	Ni	Pb	Sb	Se	v	Zn	Cr(VI)	TPH (non-volatile)	benzo[a]pyrene	∑7РСВ
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	μg/kg
Min	4.5	130	<0.5	4.4	30	10	<2.5	0.2	11	11.1	<0.5	<0.2	33	19	<0.5	90	0.02	9
Max	40.4	1834	18.8	82.2	2776	1192	2.9	9.0	330	<u>1639.3</u>	44.7	5.2	417	11493	28.5	5928	17.28	1032
Median	11.0	506	0.5	19.2	133	83	<2.5	2.2	50	226.5	2.5	1.0	108	322	<0.5	587	2.38	9
Mean	11.6	546	0.9	19.6	268	137	<2.5	2.4	58	308.7	4.1	1.0	116	502	1.1	937	3.17	31
SD	5.2	290	2.0	9.5	450	164	0.6	1.2	38	294.6	5.5	0.7	52	1219	3.2	1142	3.23	117
Count	89	89	89	89	89	89	89	89	89	89	89	89	89	89	90	90	90	90
Generic Soil Guidelines	*	۸	*	-	#	#	#	~	#	*	~	#	#	#	*	۸	*	-
А	49		4.9		18000	520	19		53	80		88	91	620	170		5.7	
GP	37		26		910	2400	40		130	200		250	410	3700	21		5	
G	40	1300	149		910	7100	56	670	180	310	550	430	1200	4000	21	1200	5.3	
OR	79		220		1500	12000	120		230	630		1100	2000	81000	23		10	
OP	168		880		33000	44000	240		800	1300		1800	5000	170000	250		21	
All				190														20/1000
Land use:		* DEFRA	A (2014)	C4SL cat	egory 4 s	oilscree	ening lev	vels				∑7PCB:	Sum 7 P	CB conge	ners (ICE	S/EUCBR)		
A: allotment		^ Natha	nail et	al. (2009) GAC ge	nericas	sessme	nt criter	ia									
GP: garden with produce		# Nathanail et al. (2015) S4UL suitable for use screenin							glevels			Italic : exceeds allotment/garden generic guidelines						
G: garden without produce		~ CL:AI R	RE (2010)	GACge	nericass	essmen	t criteria	â				Bold: exceeds residential open space/ all land use, generic guidelines						
OR: residential open space		- VRON	1 (2009) 1	rigger v	alue (exc	cept Σ7PC	CB: targe	t value/	′trigger v	alue)		<u>Bold</u> : ex	Bold: exceeds recreational open space generic guidelines					
OP: recreational open s	pace																	
All: any land use																		

Table A3.5 Summary statistics for selected parameters in GGERFS topsoil compared to land quality generic soil guidelines.

Appendix 4 Maps showing the distribution of selected parameters in GGERFS topsoil.

SGV: soil guideline values S4UL: suitable for use level (Nathanail et al. 2015)

OR: open space residential G: garden with no produce

Soil data BGS © UKRI. RGB Aerial Photography - © GeoPerspectives

Figure A4.1 Maps showing total Cr concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples.

Soil data BGS @ UKRI. RGB Aerial Photography - @ GeoPerspectives

Soil data BGS © UKRI. RGB Aerial Photography - © GeoPerspectives

SGV: soil guideline values S4UL: suitable for use level (Nathanail et al. 2015)

A: allotment

a)

b)

c)

Figure A4.2 Maps showing Cu concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples.

Soil data BGS © UKRI, RGB Aerial Photography - © GeoPerspectives

Soil data BGS © UKRI. RGB Aerial Photography - © GeoPerspectives

c)

a)

b)

SGV: soil guideline values S4UL: suitable for use level (Nathanail et al. 2015)

OR: open space residential G: garden with no produce GP: garden with produce A: allotment

Figure A4.3 Maps showing Ni concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples.

68

c)

b)

a)

SGV: soil guideline values C4SL: category 4 screening level (DEFRA 2014)

OP: open space recreational OR: open space residential G: garden with no produce GP: garden with produce A: allotment

Soil data BGS © UKRI. RGB Aerial Photography - © GeoPerspectives

Figure A4.4 Maps showing Pb concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples.

Glasgow Green Topsoil GGERFS10 V mg/kg Percentile/SGV 410 - 417 S4UL GP - Max . 91-410 S4ULA-GP 33 - 91 Min - S4UL A Soil Sample Areas 120 180 30 60 240 Meter

Soil data BGS © UKRI. RGB Aerial Photography - © GeoPerspectives

SGV: soil guideline values S4UL: suitable for use level (Nathanail et al. 2015)

GP: garden with produce A: allotment

Figure A4.5 Maps showing V concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples.

b)

c)

Figure A4.6 Maps showing Zn concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples.

Soil data BGS © UKRI. RGB Aerial Photography - © GeoPerspectives

SGV: soil guideline values GAC: generic assessment criteria (Nathanail et al. 2009)

a)

b)

c)

G: garden with no produce

Soil data BGS © UKRI. RGB Aerial Photography - © GeoPerspectives

Figure A4.7 Maps showing TPH concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples.

Soil data BGS © UKRI. RGB Aerial Photography - © GeoPerspectives

SGV: soil guideline values TR: intervention value T: target value (VROM 2009)

a)

b)

c)

Figure A4.8 Maps showing \sum 7PCB concentrations in a) Cuningar Loop, b) GGERFS06b/ Tollcross Park and GGERFS10/Glasgow Green topsoil samples.