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ABSTRACT: For Li−air batteries, dissolved gas can cross over from the
air electrode to the Li metal anode and affect the solid-electrolyte
interphase (SEI) formation, a phenomenon that has not been fully
characterized. In this work, the impact of atmospheric gases on the SEI
properties is studied using electrochemical methods and ex situ
characterization techniques, including X-ray photoelectron spectroscopy,
X-ray diffraction, Fourier transform infrared spectroscopy, and scanning
electron microscopy. The presence of O2 significantly improved the
lithium cyclability; less lithium is consumed to form the SEI or is lost
because of electrical disconnects. However, the SEI resistivity and plating
overpotentials increased. Lithium cycled in an “air-like” mixed O2/N2
environment also demonstrated improved cycling efficiency, suggesting
that dissolved O2 participates in electrolyte reduction, forming a
homogeneous SEI, even at low concentrations. The impact of gas environments on Li metal plating and SEI formation
represents an additional parameter in designing future Li-metal batteries.

As demand for high-performance energy storage devices
continues to grow, “beyond lithium-ion” battery
technologies, such as conversion-type chemistries and

lithium metal anodes, are necessary to meet these needs.1 Li−
air batteries, for instance, promise extremely high energy
capacities, with estimated theoretical values up to 3500 Wh/kg
and practical capacities in the range of 500−1000 Wh/kg.2−6

Since the first report of a Li−air battery, various electrodes,
catalysts, electrolytes, and additives such as redox mediators
and H2O have been employed to lower charge overpotentials,
suppress side reactions, and improve the cyclability.7−14

Although significant progress has been made at the positive
electrode, the generally irreversible reactions that occur at the
Li metal anode have not been fully characterized.2,15

The reduction potential of lithium is very low, such that it
will spontaneously decompose electrolyte, resulting in the
growth of a solid-electrolyte interphase (SEI).16 An ideal SEI is
electronically insulating to prevent continuous electrolyte
decomposition, yet ionically conductive to lithium ions.16,17

In a Li−air battery, SEI formation is affected by dissolved gas
diffusing from the positive electrode to the Li anode, analogous
to undesirable polysulfide shuttling in Li−S batteries and gas
crossover in fuel cells (schematic 1);18−23 the saturated O2
concentration and O2 diffusion constant for 1 M LiTFSI in
tetraglyme were estimated to be around ∼0.6 mM and

10−7cm2/s in 1 atm dry air at 25 °C, respectively.24−26

Furthermore, while the solubilities of other atmospheric gases
are less studied, they also affect SEI formation because of the
reactivity of Li metal.27−30 Several studies have shown that
atmospheric gases, including N2, can affect lithium cy-
cling.31−33

The stability of the lithium SEI is crucial to battery
performance and lithium cyclability.16,34−36 Discrepancies in
previous literature on the positive or negative impact of gas
crossover on SEI formation and lithium stability have yet to be
explained.19,20,31,32,37−39 Many reports state the necessity of
using a protected Li metal anode or SEI-forming additives to
enable cycling in the presence of O2.

9,20,40−44 Furthermore, the
effect of O2 partial pressures has not been explored, yet this is
relevant to Li metal batteries prepared in dry room
environments. These gaps in understanding necessitate a
systematic investigation of SEI and lithium plating in various
atmospheric gas environments.
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In this study, lithium metal was plated/stripped onto a
copper substrate while exposed to O2, Ar, and N2 environ-
ments. Ex situ techniques were used to characterize the SEI,
including scanning electron microscopy (SEM), Fourier-
transform infrared spectroscopy (FT-IR), X-ray diffraction
(XRD), and X-ray photoelectron spectroscopy (XPS). The
presence of O2 gas during Li plating, while increasing the
interfacial resistance, resulted in uniform nucleation and
dendrite suppression and enabled good Coulombic efficiencies.
A homogeneous SEI consisting of large LiOH domains is likely
formed as opposed to a heterogeneous layer formed of many
microphases. In mixed O2/N2 environments, Li plating
morphologies and cyclability were also improved, but without
a notable increase in resistance. These findings indicate that
gas crossover in Li−air batteries and other Li metal batteries
plays a significant role in SEI homogeneity and overall
performance.
Electrochemical Cycling of Li Cu Cells. Lithium metal was

plated/stripped in various atmospheric gases with the

Swagelok design shown in Figure S1. An initial 2.5 mAh/
cm2 of lithium was plated onto the Cu substrate, then
subjected to 20 stripping−plating cycles at 10% of the initial
capacity, all under galvanostatic conditions (Figure 1a). At the
end, all available lithium was stripped from the Cu. Coulombic
efficiencies (abbreviated as CE) were calculated using the
Aurbach method, which provides an average efficiency over the
whole experiment (Figure S2).38 Overpotential was averaged
from the voltage plateaus during plating. The electrolyte was 1
M LiTFSI in tetraglyme.
The Li plating and stripping tests performed in O2, Ar, and

N2 atmospheres showed stark differences in overpotential and
capacity loss. Samples in Ar, while initially cycling with a low
overpotential, showed a large jump in polarization after the
first 9 cycles (Figure 1a), indicating that no more lithium can
be removed from the Cu electrode.34,35 Almost 40%
irreversible loss in capacity occurred in a single plating/
stripping cycle (Figure 1d). This poor performance is in
agreement with previous studies using ether electrolytes.45

By contrast, O2 crossover greatly improved the CE (Figure
1b); however, there was a large increase in overpotential
(Figure 1c). Interestingly, O2 improved the performance in
carbonate-based electrolytes without increasing the over-
potential (Figure S3). This suggests that improved plating/
stripping efficiencies with O2 are not solely due to high
overpotentials, the high overpotentials increasing Li nucleation
density according to classical nucleation and growth theory.17

An N2 gas environment slightly improved the CE as well,
without a drastic increase in plating overpotential (Figure 1b).
Impedance spectroscopy was performed following 20

plating−stripping cycles, and the data were fit with an
equivalent circuit model (Figure S4). Larger impedances
were observed for the SEI formed in O2, consistent with the
trend in overpotentials. The shape of the impedance was also
different in the O2 sample, indicating differences in SEI
structure and ion transport mechanism.
Ex Situ Morphology and Composition Studies Af ter Cycling.

SEM images were taken to investigate the effect of gas
crossover on the cycled morphology (Figure 2a). After the
cycling and stripping of all the available lithium, electrically
isolated Li dendrites were visible in the Ar sample, which
explains the large capacity losses (Figure 1b). This dead Li was
observed in the XRD spectra for Ar and N2 samples (Figure

Scheme 1. Schematic of the Li Metal Electrode during
Charge in a Li−Air Battery Where Gas Crossover from the
Positive Electrode Can Participate in SEI Formation

Figure 1. Electrochemical cycling of Li|Cu cells. (a) Potential versus time plot for galvanostatic cycling tests performed in O2, Ar, and N2. (b)
Coulombic efficiency and (c) plating overpotentials. Four cells were repeated in each gas environment, and error bars show standard
deviations. (d) Galvanostatic plating−stripping for one cycle. Current densities of 0.25mA/cm2 were used.
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S5). In an O2 environment, the cycled morphology was more
uniform and less porous (Figures 2a and S6), which correlates
with the weaker Li signal seen by XRD (Figure S5) and the
higher CE observed (Figure 1b).
Ex situ XPS was used to characterize the SEI components:

for all samples, salt decomposition products, including LiF,
Li2O, and Li2S, were identified (Figure 2b).36,46 Peak positions
are well aligned with previous studies.47,48 These peaks
increased with depth profiling while the C−C peaks decreased
(Figure S7 and Table S4), consistent with widely accepted SEI
models: more inorganic components closer to the SEI/Li
metal interface.16 From the F 1s and S 2p spectra, relative peak

intensities of LiF (purple) and Li2S (cyan) were much larger
for the SEIs formed in Ar and N2 than in O2 (Figure 2b and
Tables S5−S9), and total atomic concentrations showed more
F, N, and S content as well (Figures S7 and S8). Online
electrochemical mass spectrometry results also indicate
increased fluoride species in Ar and N2 samples compared to
O2 (Figure S9).
There were fewer salt reduction products in the SEI formed

with O2, and LiOH was observed from the XRD and FTIR
spectra (Figures S3 and S10). These peaks were absent in the
Ar and N2 samples. In addition, Li2CO3 (Figure 2b, yellow)
was detected with larger relative intensities in the O2 sample; a

Figure 2. SEI morphology and composition studies. (a) SEM images and (b) XPS spectra for the SEI formed in various gas environments
after cycling.

Figure 3. Effect of O2 on Li nucleation. (a−c) SEM images of the first Li plating. Scale bar = 10 μm. (d) Voltage versus capacity during
galvanostatic plating. (e) Linear sweep voltammetry to 0.3 V vs Li/Li+ and (f) subsequent FTIR measurements of the Cu electrode.
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C 1s peak at 283 eV, attributed to Li−C species, was also
detected in the O2 sample.48,49 Although LiF-rich SEIs
reportedly improve Li metal anode stability, the poor
Coulombic efficiencies in Ar samples, despite high LiF content,
suggest that other specieslikely LiOHand mechanisms
such as SEI uniformity may play a large role in controlling
lithium plating and stripping.50−53

Studies of the Initial Li Deposition. The initial Li plating of 2.5
mAh/cm2, prior to cycling, resulted in round, particulate Li
morphologies for O2 samples (Figure 3a). In an Ar
environment, whisker-like dendrites were formed (Figure
3b). Both uniform nuclei and thick dendrites were observed
for N2 samples (Figure 3c). We hypothesize that O2 affects the
Cu surface, which subsequently affects lithium nucleation.17,54

In galvanostatic plating, the low reduction potentials of lithium
dictate that electrolyte is first reduced; this continues until an
electrically insulating layer is formed across the Cu surface,
preventing further electrolyte reduction.16,36 In the presence of
O2, less charge was irreversibly consumed to form this initial
surface layer (Figures 3d and S11); a similar effect is seen with
SEI-forming additives such as fluorethylene carbonates.51,54

The peak beginning around 2.5 V in the voltammetry sweep
corresponds to O2 reduction on the Cu electrode prior to Li
nucleation (Figure 3e).
In order to identify surface species formed prior to Li

nucleation, FTIR was measured on Cu electrodes biased to 0.3
V vs Li/Li+ under O2, Ar, and N2 (Figure 3f). LiOH was
observed only in O2 samples. No significant amount of LiOH
was observed when biasing to 0.3 V in an N2 environment and
subsequently exposing to O2 at open-circuit potential (Figure
3e, green). This indicates that LiOH was formed electro-
chemically. These LiOH morphologies are visible in SEM
images of the Cu surface when plating in O2 environments
(Figure S12a), whereas under Ar, the Cu surface remains
rougher (Figure S12b).
To test the hypothesis that the LiOH-rich SEI formed in O2

promotes more uniform Li nucleation, we explored a
pretreatment method whereby the cell was first cycled in O2
for 5 cycles before purging and continuing to cycle in Ar. Cells
cycled in Ar have low initial CE of 60% which drops rapidly to
below 5% after 5 cycles (Figure S13), whereas similar cells
cycled in O2 maintained a CE of >90% for more than 60 cycles
(where cycling was stopped). Cycling in O2 and then swapping
to an Ar atmosphere extended the cycle life to 30 cycles while
maintaining high efficiencies of >90% (Figure S13). However,
the cell still fails, indicating that O2 continues to play a role in
SEI formation during cycling.
Ef fect of Mixed Gas on SEI Formation. Lithium was next

cycled in mixed O2/N2 environments to determine the effect of
O2 at different O2 partial pressures. Impressively, CE values in
O2/N2 environments were comparable to those of samples
cycled in O2 (Figure 4a), dropping to 80% for a 25:75 O2/N2
ratio. The initial Li nuclei in a mixed O2/N2 environment were
also round and nondendritic (Figures 4c and S14a for the
25:75 and 50:50 ratio, respectively). The plating overpotentials
drop steadily with decreasing O2/N2 ratio (Figure 4b), and the
overall SEI composition for the 25:75 sample is closer to that
cycled in N2 (Figure 4d). LiOH is still detected by FTIR and
SEM (Figure S14).
Discussion. The XPS, XRD, and FTIR results all suggest that

the SEI formed in Ar and N2 contains multiple inorganic
products from LiTFSI reduction. This heterogeneous SEI,
following the mosaic model,16 leads to nonuniform ion

diffusion through the SEI, uneven Li plating, and dendritic
growth,45,50 consistent with the observed dendritic morphol-
ogies (Figure 3b). In constrast, the O2 SEI contains large
LiOH crystallites that form before the onset of plating; this SEI
results in much smoother and rounder Li deposits, also coated
with LiOH. The positive effects of O2 persist even when either
swapping to an Ar atmosphere after the initial cycling (for up
to 25 cycles) or when using a lower O2 partial pressure.
From the impedance measurements and equivalent circuit

modeling,55 bulk SEI resistances were similar across all
samples; however, the SEI formed in O2 had a larger resistance
modeled via a second resistor/capacitor component, likely
relating to grain boundaries and the formation of the LiOH
layer. Lower grain boundary resistivities were observed in Ar
and N2 samples by more than 60 Ω, indicating higher total
ionic conductivity and is reflected in the lower plating
overpotentials (Figure 1c). The higher grain boundary
resistivity observed in the O2 sample is consistent with a
homogeneous and full covering layer of LiOH (SEM, Figure
S12) that ions must travel through as discussed in more detail
in the Supporting Information (Figure S4 and Table S1).
Two mechanisms have been proposed for SEI formation in

the presence of O2 (Figure S15). The first involves the
reduction of O2 to form superoxides and then Li2O2, which can
then attack the ether solvent, forming Li-carbonates, Li alkoxy
species, and LiOH.38,56 Li2O2 may directly deposit on the Cu
surface as well; however, this was not detected with the
characterization methods used. Although glymes have
improved stability against reduced oxygen species compared
to carbonate solvents, the highly reductive potentials during
lithium plating may also affect the reactivity of glymes,
resulting in radical formation, the radicals then react with
O2.

21,57−59 The increased Li2CO3 content for SEI formed in
O2 is consistent with increased glyme decomposition (Figure
2b). Oxygen and nitrogen can also chemically react with
lithium metal; this appears to be a minor effect compared to
electrochemical SEI formation as shown in EDX measurments
of Li metal exposed to gas environments under OCV
conditions (Table S2).27,28,39,60

Water contamination is another potential source for
LiOH,19,20 and efforts were made in order to minimize this
in our study (see Experimental Methods in the Supporting

Figure 4. Effect of mixed gas on SEI formation. (a) Coulombic
efficiencies and (b) plating overpotentials as a function of O2/N2
ratio. (c) SEM image after Li plating in O2/N2 (25:75). Scale bar =
10 μm. (d) XPS atomic percentage for the SEI formed in O2, N2,
and 25:75 O2/N2.

ACS Energy Letters http://pubs.acs.org/journal/aelccp Letter

https://dx.doi.org/10.1021/acsenergylett.0c00257
ACS Energy Lett. 2020, 5, 1088−1094

1091

http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.0c00257?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.0c00257?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.0c00257?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.0c00257?fig=fig4&ref=pdf
http://pubs.acs.org/journal/aelccp?ref=pdf
https://dx.doi.org/10.1021/acsenergylett.0c00257?ref=pdf


Information). Interestingly, adding 1% H2O to the electrolyte
while plating/stripping lithium in an Ar environment showed
no improvement to the CE nor suppressed dendritic growth
(Figure S17), suggesting that LiOH formed from H2O is not
responsible for the large improvements to Coulombic
efficiency seen when cycling in an O2 environment. This
result has significant implications for understanding lithium−
air batteries in the presence of water: multiple studies have
shown that these cells cycle even when the Li metal electrode
is not protected.11,38,61 The results presented here indicate that
O2 and not simply water is key in protecting the Li metal
(Figure S18).
In conclusion, our work demonstrated improved Coulombic

efficiencies when cycling lithium in the presence of O2. Even in
a mixed O2/N2 gas environmentwith an O2/N2 ratio close
to that in air (and in a dry room)O2 helped form a more
homogeneous LiOH-containing SEI layer on the Cu substrate
surface, enabling uniform Li nucleation and improving
subsequent plating−stripping efficiencies. While LiOH is the
major component of the SEI, it is the SEI formed in the
presence of O2 rather than water that is key to the improved
performance. In the absence of O2 or other additives, a more
heterogeneous SEI is formed containing a more diverse range
of species, which results in nonuniform plating and dendrite
growth. Gas crossover could therefore potentially be used as a
pretreatment method for promoting homogeneous SEI layers
in Li metal anodes. The effects of gas crossover on SEI
formation and overall cell performance posit design questions
for electrode fabrication in future Li metal batteries, including
practical Li−air batteries.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsenergylett.0c00257.

Experimental methods and supplemental figures and
tables (PDF)

■ AUTHOR INFORMATION
Corresponding Author
Clare P. Grey − Department of Chemistry, University of
Cambridge, Cambridge CB2 1EW, U.K.; orcid.org/0000-
0001-5572-192X; Phone: (+44)1223336509;
Email: cpg27@cam.ac.uk; Fax: (+44)1223336362

Authors
Evelyna Wang − Department of Chemistry, University of
Cambridge, Cambridge CB2 1EW, U.K.; orcid.org/0000-
0002-5697-474X

Sunita Dey − Department of Chemistry, University of
Cambridge, Cambridge CB2 1EW, U.K.

Tao Liu − Department of Chemistry, University of Cambridge,
Cambridge CB2 1EW, U.K.; orcid.org/0000-0002-6515-
0427

Svetlana Menkin − Department of Chemistry, University of
Cambridge, Cambridge CB2 1EW, U.K.

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsenergylett.0c00257

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank EPSRC-EP/M009521/1 and the Cam-
bridge Trust (E.W.) for research funding. The X-ray
photoelectron (XPS) data collection was performed at the
EPSRC National Facility for XPS (“HarwellXPS”), operated by
Cardiff University and UCL, under Contract No. PR16195.

■ REFERENCES
(1) Yu, S. H.; Feng, X.; Zhang, N.; Seok, J.; Abruña, H. D.
Understanding Conversion-Type Electrodes for Lithium Recharge-
able Batteries. Acc. Chem. Res. 2018, 51 (2), 273−281.
(2) Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G.
Advances in Understanding Mechanisms Underpinning Lithium-Air
Batteries. Nat. Energy 2016, 1, 16128.
(3) Li, Y.; Lu, J. Metal-Air Batteries: Will They Be the Future
Electrochemical Energy Storage Device of Choice? ACS Energy Lett.
2017, 2 (6), 1370−1377.
(4) Lee, J.-S.; Kim, S. T.; Cao, R.; Choi, N.-S.; Liu, M.; Lee, K. T.;
Cho, J. Metal-Air Batteries with High Energy Density: Li-Air versus
Zn-Air. Adv. Energy Mater. 2011, 1 (1), 34−50.
(5) Geng, D.; Ding, N.; Hor, T. S. A.; Chien, S. W.; Liu, Z.; et al.
From Lithium-Oxygen to Lithium-Air Batteries : Challenges and
Opportunities. Adv. Energy Mater. 2016, 6, 1502164.
(6) Yao, X.; Dong, Q.; Cheng, Q.; Wang, D. Why Do Lithium−
Oxygen Batteries Fail: Parasitic Chemical Reactions and Their
Synergistic Effect. Angew. Chem., Int. Ed. 2016, 55 (38), 11344−
11353.
(7) Abraham, K. M.; Jiang, Z. A. Polymer Electrolyte-Based
Rechargeable Lithium/Oxygen Battery. J. Electrochem. Soc. 1996,
143 (1), 1−5.
(8) Gao, X.; Chen, Y.; Johnson, L. R.; Jovanov, Z. P.; Bruce, P. G. A
Rechargeable Lithium-Oxygen Battery with Dual Mediators Stabiliz-
ing the Carbon Cathode. Nat. Energy 2017, 2, 17118.
(9) Zhou, B.; Guo, L.; Zhang, Y.; Wang, J.; Ma, L.; Zhang, W.-H.;
Fu, Z.; Peng, Z. A High-Performance Li-O2 Battery with a Strongly
Solvating Hexamethylphosphoramide Electrolyte and a LiPON-
Protected Lithium Anode. Adv. Mater. 2017, 29, 1701568.
(10) Liu, T.; Liu, Z.; Kim, G.; Frith, J. T.; Garcia-Araez, N.; Grey, C.
P. Understanding LiOH Chemistry in a Ruthenium-Catalyzed Li-O2
Battery. Angew. Chem., Int. Ed. 2017, 56, 16057−16062.
(11) Liu, T.; Leskes, M.; Yu, W.; Moore, A. J.; Zhou, L.; Bayley, P.
M.; Kim, G.; Grey, C. P. Cycling Li-O2 Batteries via LiOH Formation
and Decomposition. Science (Washington, DC, U. S.) 2015, 350
(6260), 530−533.
(12) Xiao, J.; Wang, D.; Xu, W.; Wang, D.; Williford, R. E.; Liu, J.;
Zhang, J.-G. Optimization of Air Electrode for Li/Air Batteries. J.
Electrochem. Soc. 2010, 157 (4), A487−A492.
(13) Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm,
S.; Leitgeb, A.; Strohmeier, G. A.; Wilkening, M.; Fontaine, O.;
Kramer, D.; et al. Singlet Oxygen Generation as a Major Cause for
Parasitic Reactions during Cycling of Aprotic Lithium-Oxygen
Batteries. Nat. Energy 2017, 2 (5), 17036.
(14) Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K.
Redox Mediators for Li−O2 Batteries: Status and Perspectives. Adv.
Mater. 2018, 30 (1), 1704162.
(15) Hojberg, J.; McCloskey, B. D.; Hjelm, J.; Vegge, T.; Johansen,
K.; Norby, P.; Luntz, A. C. An Electrochemical Impedance
Spectroscopy Investigation of the Overpotentials in Li-O2 Batteries.
ACS Appl. Mater. Interfaces 2015, 7, 4039−4047.
(16) Peled, E.; Menkin, S. Review - SEI: Past, Present and Future. J.
Electrochem. Soc. 2017, 164 (7), A1703−A1719.
(17) Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nanoscale Nucleation
and Growth of Electrodeposited Lithium Metal. Nano Lett. 2017, 17,
1132−1139.
(18) Ding, N.; Zhou, L.; Zhou, C.; Geng, D.; Yang, J.; Chien, S. W.;
Liu, Z.; Ng, M. F.; Yu, A.; Hor, T. S. A.; et al. Building Better Lithium-
Sulfur Batteries: From LiNO2 to Solid Oxide Catalyst. Sci. Rep. 2016,
6 (1), 33154.

ACS Energy Letters http://pubs.acs.org/journal/aelccp Letter

https://dx.doi.org/10.1021/acsenergylett.0c00257
ACS Energy Lett. 2020, 5, 1088−1094

1092

http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.0c00257?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.0c00257/suppl_file/nz0c00257_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Clare+P.+Grey"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-5572-192X
http://orcid.org/0000-0001-5572-192X
mailto:cpg27@cam.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Evelyna+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-5697-474X
http://orcid.org/0000-0002-5697-474X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sunita+Dey"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tao+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-6515-0427
http://orcid.org/0000-0002-6515-0427
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Svetlana+Menkin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.0c00257?ref=pdf
https://dx.doi.org/10.1021/acs.accounts.7b00487
https://dx.doi.org/10.1021/acs.accounts.7b00487
https://dx.doi.org/10.1038/nenergy.2016.128
https://dx.doi.org/10.1038/nenergy.2016.128
https://dx.doi.org/10.1021/acsenergylett.7b00119
https://dx.doi.org/10.1021/acsenergylett.7b00119
https://dx.doi.org/10.1002/aenm.201000010
https://dx.doi.org/10.1002/aenm.201000010
https://dx.doi.org/10.1002/aenm.201502164
https://dx.doi.org/10.1002/aenm.201502164
https://dx.doi.org/10.1002/anie.201601783
https://dx.doi.org/10.1002/anie.201601783
https://dx.doi.org/10.1002/anie.201601783
https://dx.doi.org/10.1149/1.1836378
https://dx.doi.org/10.1149/1.1836378
https://dx.doi.org/10.1038/nenergy.2017.118
https://dx.doi.org/10.1038/nenergy.2017.118
https://dx.doi.org/10.1038/nenergy.2017.118
https://dx.doi.org/10.1002/adma.201701568
https://dx.doi.org/10.1002/adma.201701568
https://dx.doi.org/10.1002/adma.201701568
https://dx.doi.org/10.1002/anie.201709886
https://dx.doi.org/10.1002/anie.201709886
https://dx.doi.org/10.1126/science.aac7730
https://dx.doi.org/10.1126/science.aac7730
https://dx.doi.org/10.1149/1.3314375
https://dx.doi.org/10.1038/nenergy.2017.36
https://dx.doi.org/10.1038/nenergy.2017.36
https://dx.doi.org/10.1038/nenergy.2017.36
https://dx.doi.org/10.1002/adma.201704162
https://dx.doi.org/10.1021/am5083254
https://dx.doi.org/10.1021/am5083254
https://dx.doi.org/10.1149/2.1441707jes
https://dx.doi.org/10.1021/acs.nanolett.6b04755
https://dx.doi.org/10.1021/acs.nanolett.6b04755
https://dx.doi.org/10.1038/srep33154
https://dx.doi.org/10.1038/srep33154
http://pubs.acs.org/journal/aelccp?ref=pdf
https://dx.doi.org/10.1021/acsenergylett.0c00257?ref=pdf


(19) Shui, J. L.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.;
Almer, J. D.; Liu, D. J. Reversibility of Anodic Lithium in
Rechargeable Lithium-Oxygen Batteries. Nat. Commun. 2013, 4, 2255.
(20) Sun, F.; Gao, R.; Zhou, D.; Osenberg, M.; Dong, K.; Kardjilov,
N.; Hilger, A.; Markötter, H.; Bieker, P. M.; Liu, X.; et al. Revealing
Hidden Facts of Li Anode in Cycled Lithium−Oxygen Batteries
through X-Ray and Neutron Tomography. ACS Energy Lett. 2019, 4
(1), 306−316.
(21) Assary, R. S.; Lu, J.; Du, P.; Luo, X.; Zhang, X.; Ren, Y.; Curtiss,
L. A.; Amine, K. The Effect of Oxygen Crossover on the Anode of a
Li-O2 Battery Using an Ether-Based Solvent: Insights from
Experimental and Computational Studies. ChemSusChem 2013, 6,
51−55.
(22) Younesi, R.; Hahlin, M.; Roberts, M.; Edstrom, K. The SEI
Layer Formed on Lithium Metal in the Presence of Oxygen: A
Seldom Considered Component in the Development of the Li-O2
Battery. J. Power Sources 2013, 225, 40−45.
(23) Inaba, M.; Kinumoto, T.; Kiriake, M.; Umebayashi, R.; Tasaka,
A.; Ogumi, Z. Gas Crossover and Membrane Degradation in Polymer
Electrolyte Fuel Cells. Electrochim. Acta 2006, 51 (26), 5746−5753.
(24) Gittleson, F. S.; Jones, R. E.; Ward, D. K.; Foster, M. E. Oxygen
Solubility and Transport in Li-Air Battery Electrolytes: Establishing
Criteria and Strategies for Electrolyte Design. Energy Environ. Sci.
2017, 10, 1167−1179.
(25) Hartmann, P.; Grubl, D.; Sommer, H.; Janek, J.; Bessler, W. G.;
Adelhelm, P. Pressure Dynamics in Metal-Oxygen (Metal-Air)
Batteries: A Case Study on Sodium Superoxide Cells. J. Phys. Chem.
C 2014, 118, 1461−1471.
(26) Lindberg, J.; Endrodi, B.; Avall, G.; Johansson, P.; Cornell, A.;
Lindbergh, G. Li Salt Anion Effect on O2 Solubility in an Li-O2
Battery. J. Phys. Chem. C 2018, 122, 1913−1920.
(27) Schiemann, M.; Bergthorson, J.; Fischer, P.; Scherer, V.;
Taroata, D.; Schmid, G. A Review on Lithium Combustion. Appl.
Energy 2016, 162, 948−965.
(28) Barnett, D. S.; Gil, T. K.; Kazimi, M. S. Lithium Mixed-Gas
Reactions. Fusion Technol. 1989, 15 (2P2B), 967−972.
(29) Wang, H.; Zhang, W. D.; Deng, Z. Q.; Chen, M. C. Interaction
of Nitrogen with Lithium in Lithium Ion Batteries. Solid State Ionics
2009, 180, 212−215.
(30) McFarlane, E. F.; Tompkins, F. C. Nitridation of Lithium.
Trans. Faraday Soc. 1962, 58, 997−1007.
(31) Momma, T.; Nara, H.; Yamagami, S.; Tatsumi, C.; Osaka, T.
Effect of the Atmosphere on Chemical Composition and Electro-
chemical Properties of Solid Electrolyte Interface on Electrodeposited
Li Metal. J. Power Sources 2011, 196, 6483−6487.
(32) Stark, J.; Ding, Y.; Kohl, P. A. Role of Dissolved Gas in Ionic
Liquid Electrolytes for Secondary Lithium Metal Batteries. J. Phys.
Chem. C 2013, 117, 4980−4985.
(33) Li, Y.; Li, Y.; Sun, Y.; Butz, B.; Yan, K.; Koh, A. L.; Zhao, J.; Pei,
A.; Cui, Y. Revealing Nanoscale Passivation and Corrosion
Mechanisms of Reactive Battery Materials in Gas Environments.
Nano Lett. 2017, 17, 5171−5178.
(34) Bieker, G.; Winter, M.; Bieker, P. Electrochemical in Situ
Investigations of SEI and Dendrite Formation on the Lithium Metal
Anode. Phys. Chem. Chem. Phys. 2015, 17, 8670−8679.
(35) Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.-H.; Zhang,
J.-G.; Thornton, K.; Dasgupta, N. P. Dendrites and Pits: Untangling
the Complex Behavior of Lithium Metal Anodes through Operando
Video Microscopy. ACS Cent. Sci. 2016, 2, 790−801.
(36) Aurbach, D.; Weissman, I.; Zaban, A.; Chusid, O. Correlation
Between Surface Chemistry, Morphology, Cycling Efficiency and
Interfacial Properties of Li Electrodes in Solutions Containing
Different Li Salts. Electrochim. Acta 1994, 39, 51−71.
(37) Qiu, F.; Zhang, X.; Qiao, Y.; Zhang, X.; Deng, H.; Shi, T.; He,
P.; Zhou, H. An Ultra-Stable and Enhanced Revesibility Lithium
Metal Anode with a Sufficient O2 Design for Li-O2 Battery. Energy
Storage Mater. 2018, 12, 176−182.
(38) Aurbach, D. The Correlation Between Surface Chemistry,
Surface Morphology, and Cycling Efficiency of Lithium Electrodes in

a Few Polar Aprotic Systems. J. Electrochem. Soc. 1989, 136 (11),
3198.
(39) Giordani, V.; Walker, W.; Bryantsev, V. S.; Uddin, J.; Chase, G.
V.; Addison, D. Synergistic Effect of Oxygen and LiNO3 on the
Interfacial Stability of Lithium Metal in a Li/O2 Battery. J.
Electrochem. Soc. 2013, 160 (9), A1544−A1550.
(40) Kim, Y.; Koo, D.; Ha, S.; Jung, S. C.; Yim, T.; Kim, H.; Oh, S.
K.; Kim, D.-M.; Choi, A.; Kang, Y.; et al. Two-Dimensional
Phosphorene-Derived Protective Layers on a Lithium Metal Anode
for Lithium-Oxygen Batteries. ACS Nano 2018, 12 (5), 4419−4430.
(41) Lu, D.; Tao, J.; Engelhard, M. H.; Zheng, J.; Yan, P.; Wang, C.;
Liu, B.; Xu, W.; Zhang, J.-G. Enhanced Cyclability of Lithium-Oxygen
Batteries with Electrodes Protected by Surface Films Induced via In
Situ Electrochemical Process. Adv. Energy Mater. 2018, 8 (11),
1702340.
(42) Farooqui, U. R.; Ahmad, A. L.; Hamid, N. A. Challenges and
Potential Advantages of Membranes in Lithium Air Batteries: A
Review. Renewable Sustainable Energy Rev. 2017, 77, 1114−1129.
(43) Roberts, M.; Younesi, R.; Richardson, W.; Liu, J.; Zhu, J.; Edstr,
K. Increased Cycling Efficiency of Lithium Anodes in Dimethyl
Sulfoxide Electrolytes For Use in Li-O2 Batteries. ECS Electrochem.
Lett. 2014, 3 (6), 62−65.
(44) Asadi, M.; Sayahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.;
Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P.; et al. A
Lithium-Oxygen Battery with a Long Cycle Life in an Air-like
Atmosphere. Nature 2018, 555 (7697), 502−506.
(45) Aurbach, D.; Granot, E. The Study of Electrolyte Solutions
Based on Solvents from the “Glyme” Family (Linear Polyethers) for
Secondary Li Battery Systems. Electrochim. Acta 1997, 42 (4), 697−
718.
(46) Camacho-Forero, L. E.; Balbuena, P. B. Elucidating Electrolyte
Decomposition under Electron-Rich Environments at the Lithium-
Metal Anode. Phys. Chem. Chem. Phys. 2017, 19 (45), 30861−30873.
(47) Saito, M.; Fujinami, T.; Yamada, S.; Ishikawa, T.; Otsuka, H.;
Ito, K.; Kubo, Y. Effects of Li Salt Anions and O2 Gas on Li
Dissolution/Deposition Behavior at Li Metal Negative Electrode for
Non-Aqueous Li-Air Batteries. J. Electrochem. Soc. 2017, 164 (12),
A2872−A2880.
(48) Xu, C.; Sun, B.; Gustafsson, T.; Edstrom, K.; Brandell, D.;
Hahlin, M. Interface Layer Formation in Solid Polymer Electrolyte
Lithium Batteries: An XPS Study. J. Mater. Chem. A 2014, 2, 7256−
7264.
(49) Schmitz, R.; Ansgar Müller, R.; Wilhelm Schmitz, R.; Schreiner,
C.; Kunze, M.; Lex-Balducci, A.; Passerini, S.; Winter, M. SEI
Investigations on Copper Electrodes after Lithium Plating with
Raman Spectroscopy and Mass Spectrometry. J. Power Sources 2013,
233, 110−114.
(50) Jurng, S.; Brown, Z. L.; Kim, J.; Lucht, B. L. Effect of
Electrolyte on the Nanostructure of the Solid Electrolyte Interphase
(SEI) and Performance of Lithium Metal Anodes. Energy Environ. Sci.
2018, 11 (9), 2600−2608.
(51) Zhang, X.-Q.; Cheng, X.-B.; Chen, X.; Yan, C.; Zhang, Q.
Fluoroethylene Carbonate Additives to Render Uniform Li Deposits
in Lithium Metal Batteries. Adv. Funct. Mater. 2017, 27, 1605989.
(52) Andersson, A. M.; Edström, K. Chemical Composition and
Morphology of the Elevated Temperature SEI on Graphite. J.
Electrochem. Soc. 2001, 148 (10), 1100−1109.
(53) Ko, J.; Yoon, Y. S. Recent Progress in LiF Materials for Safe
Lithium Metal Anode of Rechargeable Batteries: Is LiF the Key to
Commercializing Li Metal Batteries? Ceram. Int. 2019, 45 (1), 30−49.
(54) Zhang, X. Q.; Chen, X.; Xu, R.; Cheng, X. B.; Peng, H. J.;
Zhang, R.; Huang, J. Q.; Zhang, Q. Columnar Lithium Metal Anodes.
Angew. Chem., Int. Ed. 2017, 56 (45), 14207−14211.
(55) Peled, E.; Golodnitsky, D.; Ardel, G. Advanced Model for Solid
Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes.
J. Electrochem. Soc. 1997, 144 (8), L208.
(56) Sharon, D.; Hirshberg, D.; Afri, M.; Garsuch, A.; Frimer, A. A.;
Aurbach, D. Lithium-Oxygen Electrochemistry in Non-Aqueous
Solutions. Isr. J. Chem. 2015, 55, 508−520.

ACS Energy Letters http://pubs.acs.org/journal/aelccp Letter

https://dx.doi.org/10.1021/acsenergylett.0c00257
ACS Energy Lett. 2020, 5, 1088−1094

1093

https://dx.doi.org/10.1038/ncomms3255
https://dx.doi.org/10.1038/ncomms3255
https://dx.doi.org/10.1021/acsenergylett.8b02242
https://dx.doi.org/10.1021/acsenergylett.8b02242
https://dx.doi.org/10.1021/acsenergylett.8b02242
https://dx.doi.org/10.1002/cssc.201200810
https://dx.doi.org/10.1002/cssc.201200810
https://dx.doi.org/10.1002/cssc.201200810
https://dx.doi.org/10.1016/j.jpowsour.2012.10.011
https://dx.doi.org/10.1016/j.jpowsour.2012.10.011
https://dx.doi.org/10.1016/j.jpowsour.2012.10.011
https://dx.doi.org/10.1016/j.jpowsour.2012.10.011
https://dx.doi.org/10.1016/j.electacta.2006.03.008
https://dx.doi.org/10.1016/j.electacta.2006.03.008
https://dx.doi.org/10.1039/C6EE02915A
https://dx.doi.org/10.1039/C6EE02915A
https://dx.doi.org/10.1039/C6EE02915A
https://dx.doi.org/10.1021/jp4099478
https://dx.doi.org/10.1021/jp4099478
https://dx.doi.org/10.1021/acs.jpcc.7b09218
https://dx.doi.org/10.1021/acs.jpcc.7b09218
https://dx.doi.org/10.1016/j.apenergy.2015.10.172
https://dx.doi.org/10.13182/FST89-A39818
https://dx.doi.org/10.13182/FST89-A39818
https://dx.doi.org/10.1016/j.ssi.2008.12.001
https://dx.doi.org/10.1016/j.ssi.2008.12.001
https://dx.doi.org/10.1039/tf9625800997
https://dx.doi.org/10.1016/j.jpowsour.2011.03.095
https://dx.doi.org/10.1016/j.jpowsour.2011.03.095
https://dx.doi.org/10.1016/j.jpowsour.2011.03.095
https://dx.doi.org/10.1021/jp4001303
https://dx.doi.org/10.1021/jp4001303
https://dx.doi.org/10.1021/acs.nanolett.7b02630
https://dx.doi.org/10.1021/acs.nanolett.7b02630
https://dx.doi.org/10.1039/C4CP05865H
https://dx.doi.org/10.1039/C4CP05865H
https://dx.doi.org/10.1039/C4CP05865H
https://dx.doi.org/10.1021/acscentsci.6b00260
https://dx.doi.org/10.1021/acscentsci.6b00260
https://dx.doi.org/10.1021/acscentsci.6b00260
https://dx.doi.org/10.1016/0013-4686(94)85010-0
https://dx.doi.org/10.1016/0013-4686(94)85010-0
https://dx.doi.org/10.1016/0013-4686(94)85010-0
https://dx.doi.org/10.1016/0013-4686(94)85010-0
https://dx.doi.org/10.1016/j.ensm.2017.12.011
https://dx.doi.org/10.1016/j.ensm.2017.12.011
https://dx.doi.org/10.1149/1.2096425
https://dx.doi.org/10.1149/1.2096425
https://dx.doi.org/10.1149/1.2096425
https://dx.doi.org/10.1149/2.097309jes
https://dx.doi.org/10.1149/2.097309jes
https://dx.doi.org/10.1021/acsnano.8b00348
https://dx.doi.org/10.1021/acsnano.8b00348
https://dx.doi.org/10.1021/acsnano.8b00348
https://dx.doi.org/10.1002/aenm.201702340
https://dx.doi.org/10.1002/aenm.201702340
https://dx.doi.org/10.1002/aenm.201702340
https://dx.doi.org/10.1016/j.rser.2016.11.220
https://dx.doi.org/10.1016/j.rser.2016.11.220
https://dx.doi.org/10.1016/j.rser.2016.11.220
https://dx.doi.org/10.1149/2.007406eel
https://dx.doi.org/10.1149/2.007406eel
https://dx.doi.org/10.1038/nature25984
https://dx.doi.org/10.1038/nature25984
https://dx.doi.org/10.1038/nature25984
https://dx.doi.org/10.1016/S0013-4686(96)00231-9
https://dx.doi.org/10.1016/S0013-4686(96)00231-9
https://dx.doi.org/10.1016/S0013-4686(96)00231-9
https://dx.doi.org/10.1039/C7CP06485C
https://dx.doi.org/10.1039/C7CP06485C
https://dx.doi.org/10.1039/C7CP06485C
https://dx.doi.org/10.1149/2.0151713jes
https://dx.doi.org/10.1149/2.0151713jes
https://dx.doi.org/10.1149/2.0151713jes
https://dx.doi.org/10.1039/C4TA00214H
https://dx.doi.org/10.1039/C4TA00214H
https://dx.doi.org/10.1016/j.jpowsour.2013.01.105
https://dx.doi.org/10.1016/j.jpowsour.2013.01.105
https://dx.doi.org/10.1016/j.jpowsour.2013.01.105
https://dx.doi.org/10.1039/C8EE00364E
https://dx.doi.org/10.1039/C8EE00364E
https://dx.doi.org/10.1039/C8EE00364E
https://dx.doi.org/10.1002/adfm.201605989
https://dx.doi.org/10.1002/adfm.201605989
https://dx.doi.org/10.1149/1.1397771
https://dx.doi.org/10.1149/1.1397771
https://dx.doi.org/10.1016/j.ceramint.2018.09.287
https://dx.doi.org/10.1016/j.ceramint.2018.09.287
https://dx.doi.org/10.1016/j.ceramint.2018.09.287
https://dx.doi.org/10.1002/anie.201707093
https://dx.doi.org/10.1149/1.1837858
https://dx.doi.org/10.1149/1.1837858
https://dx.doi.org/10.1002/ijch.201400135
https://dx.doi.org/10.1002/ijch.201400135
http://pubs.acs.org/journal/aelccp?ref=pdf
https://dx.doi.org/10.1021/acsenergylett.0c00257?ref=pdf


(57) Bryantsev, V. S.; Uddin, J.; Giordani, V.; Walker, W.; Addison,
D.; Chase, G. V. The Identification of Stable Solvents for Nonaqueous
Rechargeable Li-Air Batteries. J. Electrochem. Soc. 2013, 160 (1),
A160−A171.
(58) Schwenke, K. U.; Meini, S.; Wu, X.; Gasteiger, H. A.; Piana, M.
Stability of Superoxide Radicals in Glyme Solvents for Non-Aqueous
Li-O2 Battery Electrolytes. Phys. Chem. Chem. Phys. 2013, 15, 11830−
11839.
(59) Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.;
Barde, F.; Bruce, P. G. The Lithium-Oxygen Battery with Ether-Based
Electrolytes. Angew. Chem., Int. Ed. 2011, 50 (37), 8609−9613.
(60) Shang, J.; Shirazian, S. Facilitated Dissociation of Water in the
Presence of Lithium Metal at Ambient Temperature as a Requisite for
Lithium-Gas Reactions. J. Phys. Chem. C 2018, 122, 16016−16022.
(61) Togasaki, N.; Momma, T.; Osaka, T. Enhancement Effect of
Trace H2O on the Charge-Discharge Cycling Performance of a Li
Metal Anode. J. Power Sources 2014, 261, 23−27.

ACS Energy Letters http://pubs.acs.org/journal/aelccp Letter

https://dx.doi.org/10.1021/acsenergylett.0c00257
ACS Energy Lett. 2020, 5, 1088−1094

1094

https://dx.doi.org/10.1149/2.027302jes
https://dx.doi.org/10.1149/2.027302jes
https://dx.doi.org/10.1039/c3cp51531a
https://dx.doi.org/10.1039/c3cp51531a
https://dx.doi.org/10.1002/anie.201102357
https://dx.doi.org/10.1002/anie.201102357
https://dx.doi.org/10.1021/acs.jpcc.8b01817
https://dx.doi.org/10.1021/acs.jpcc.8b01817
https://dx.doi.org/10.1021/acs.jpcc.8b01817
https://dx.doi.org/10.1016/j.jpowsour.2014.03.040
https://dx.doi.org/10.1016/j.jpowsour.2014.03.040
https://dx.doi.org/10.1016/j.jpowsour.2014.03.040
http://pubs.acs.org/journal/aelccp?ref=pdf
https://dx.doi.org/10.1021/acsenergylett.0c00257?ref=pdf

