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Abstract— Soft strain sensors are becoming increasingly pop-
ular for obtaining tactile information in soft robotic applica-
tions. Diverse technological solutions are being investigated to
design these sensors. Simultaneously, new methods for modeling
these sensor are being proposed due to their highly nonlin-
ear, time varying properties. Among them, machine learning
based approaches, particularly using dynamic recurrent neural
networks look the most promising. However, these complex
networks have large number of free parameters to be tuned,
making it difficult to apply them for real-world applications.
This paper introduces the concept of transfer learning for
modelling soft strain sensors, which allows us to utilize infor-
mation learned in one task to be applied to another task. We
demonstrate this technique on a passive anthropomorphic finger
with embedded strain sensors used for two regression tasks. We
show how the transfer learning approach can drastically reduce
the number of free parameters to be tuned for learning new
skills. This work is an important step towards scaling of sensor
networks (algorithm-wise) and for using soft sensor data for
high-level control tasks.

I. INTRODUCTION

Arguably, all tactile sensing capabilities like contact lo-
calization, deformation sensing, force/pressure sensing, etc.
can be developed using strain-based sensors [1]. Hence, soft
strain sensors are appealing as a general purpose unobtrusive
tactile sensing solution. Soft strain sensors are commonly
developed using conductive elastomers like Conductive Poly-
dimethylsiloxane [2], [3], liquid metal channels [4], etc.
Due to the nonlinear viscoelastic properties of the materials
involved in their manufacturing, all of these sensors exhibit
complex time varying behavior up to varying extends [5].
Hence, the design and modelling of these sensing systems is
currently one of the challenging problems in the field.

The design of soft sensory networks is one of the least
addressed problems. Current techniques are based on heuris-
tics and human knowledge [6]. Learned models, due to their
black-box nature, are not applicable for sensor design, or
at least there have been no attempts to do so. Analytical
models, on the other hand, are difficult to develop for
complex systems [7]. Added to the fact that current sensor
technologies are varied and often individually manufactured,
the performance of a sensor network and their information
content can have higher variability. This means that for a
high dimensional sensory networks embedded in a complex
body, as in this work (Figure 2), it becomes difficult to
know a priori the sensing capabilities of the system. This
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Fig. 1. Proposed transfer learning approach for quick drift-free represen-
tation of soft strain sensors

is especially true when each sensing unit has a large sensing
region, which is enforced to simplify the wiring procedure.
This means that these soft sensor networks can respond to
an infinitely large number of tactile cues. By restricting the
kind of interactions the body can perform, desired tactile
information can be obtained.

For a certain set of interactions performed by the body,
certain set of tactile information is obtained. The mapping
from the parameterized set of actions and the sensor readings
is well defined. The inverse mapping may or may not be
well defined. Assuming that a dense and distributed sensory
network can be fabricated, the design problem can be par-
tially solved and be condensed to an action parameterization
problem.

Machine learning-based solutions have shown promise for
the inverse mapping problem. Han et. al. used a type of dy-
namic recurrent neural network (RNN) called long short-term
memory (LSTM) to estimate pressure values and discrete
contact localization [8]. This work was further extended to
a full-body wearable suit for human motion detection [9].
Similarly, LSTMs were used for proprioception and contact
force estimation in [1]. Although, they are highly effective
in learning time-series functions, they have large number of
network parameters to be estimated. Hence, they are data
hungry and prone to overfitting. Classic RNNs could reduce
the number of network parameters to be tuned, however, they
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Fig. 2. Experimental setup used for this work. The passive anthropomorphic
finger has six strain sensors embedded inside and is attached to a UR5
robotic arm.

are highly prone to the vanishing gradient or the gradient
explosion problem.

A. Drift-free latent space representation

In summary, given a dense and distributed sensor network
and using any kind of recurrent neural network architec-
ture, various tactile sensing capabilities can be achieved for
their corresponding range of interactions. Therefore multiple
models can be learned for estimation based on the type of
interaction. However, this means that for every new model,
a large number of samples have to be obtained and the
network has to be retrained. This is cumbersome for data
hungry models networks like LSTMs. Yet, the reason for
using recurrent networks is due to the time varying dynamics
of the soft sensors, which can be assumed to be consistent
across all models. Hence, the information about the sensor
drift and noise should be transferable across various models.
This paper presents the concept of transfer learning for
such cases [10]. Transfer learning is a concept in machine
learning where learned knowledge from solving one problem
is leveraged to solve another related problem. Similarity
between two problems depends on the functional form of the
underlying function that machine leraning model is trying to
approximate.

A simple methodology for transferring drift compensation
information from one learned model to the other is presented
here (see figure 1). This is based on the idea that the
latent-space representation of the LSTM layer would have
to contain drift-free information of the tactile sensors before
it is sent to the fully-connected layer. Note that the fully-
connected layer does not have any recurrent connections
and has to predict the desired outputs using only the current
information provided by the LSTM layer. Therefore all the
layers preceding the fully-connected layer can be ’recycled’
as such for further models. The only caveat being that task-0
should involve the usage of all the sensors that will be used
for the later tasks. We are referring to the layer before the
fully connected layer as the recurrent layer and the rest as
the static layer for conciseness.

The proposed methodology provides an easy way to re-
duce the number of parameters to be tuned and subsequently
the data requirements of learning-based approaches for drift
compensation. Additionally the latent space representations

are highly amenable for the reinforcement learning problems
where the tactile sensor information is used to decide the
next action [11]. Latent space representations have been
previously used for a low-dimensional sensor-space represen-
tation by [12]. It was observed that control policies learned
using this latent space inputs required fewer roll-outs and
were more robust to noise. These methods come under the
emerging concept of state representation learning [13].

II. EXPERIMENTAL SETUP

The experiments are conducted on a passive anthropo-
morphic finger (Figure 2). The skeleton of the finger is
3D printed and attached with compliant joints. The skeleton
is then spin coated with a layer of Ecoflex-10. The strain
sensors strands are then placed on the skin uniformly and
with varying lengths. We use Conductive Thermoplastic
Elastomer (CTPE), a thermoplastic elastic matrix which is
homogeneously mixed with carbon black powder under high
pressure and temperature for our purpose [14]. Six such
sensors are placed. All the sensor ends come to the base
of the finger for ease of wiring. Silver Conductive Adhesive
Epoxy (MG Chemicals) is used to connect the soft sensor
wire and the metallic wire. The finger is around 12 cm
in length in the unbend state. The passive finger is then
mounted on a UR5 robot arm (Universal Robotics). The
sensors readings are measured using the Native Instruments
USB-6212 data acquisition system after going through a
voltage divider circuit.

A passive finger is used for this study to remove uncer-
tainties produced in the system due to the finger actuation
system. As we employ an industrial grade robotic arm for
our motions, the repeatability and reliability of the finger
motion can be guaranteed. Therefore all the observed noise
in the system and other nonlinear time varying effects can
be attributed to the sensor dynamics itself.

III. LEARNING PROCEDURE

A. LSTM Network

The learning of the sensor models is done using a LSTM
network as shown in Figure 1. The inputs to the LSTM
network are the sensor signals and the desired output depends
on the task. The input layer takes in the raw sensor values (of
size n), normalizes the values and passes them to the Tanh
Layer. The Tanh layer uses the hyperbolic tangent activation
function to bound the inputs to the LSTM layer. There are
no weights multiplied to the layer and hence this layer does
not have any tunable parameters. The number of inputs, n,
is 6 in our case.

From the Tanh Layer the processed signals xt ∈ Rn go
to the LSTM layer of size h (50, in our case). With every
forward pass of the LSTM network the states of the network
at time step t are updated as follows:



Z Axis

Y Axis

X 
Ax

is

Task 1 Task 2

Fig. 3. The two tasks evaluated for the study. Task-1 is a simple linear
motion of the finger in the Z Axis. Task-2 is a planar sliding motion
performed on a flat surface. The three DoF combination of the both is
used as Task-0.

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

ot = σ(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σ(Wcxt + Ucht−1 + bc)

ht = ot ◦ σ(ct)

Where it is the input gates activation vector, ft is the
forget gates activation vector, ot is the output gates activation
vector, ct is the cell state vector and ht is the output vector.
W ∈ Rn×h, U ∈ Rh×h and b ∈ Rh are the corresponding
weight and bias matrices to be learned during training for
each of the cell, input gate, output gate and forget gate.
Hence the number of free parameters in the LSTM network
would be 4 × (h2 + h ∗ n + h) . The initial condition for
the dynamic network is set as c0 = 0 and h0 = 0. For all
the tasks, we use a LSTM layer of fixed size of 50. That
corresponds to a number of 4 ∗ (502 + 50 ∗ 6 + 50) number
of parameters to be tuned in the LSTM layer only.

The output vector (ht) from the LSTM network goes into
the fully connected layer which multiplies the inputs it gets
with a weight matrix and adds a bias as shown below:

Ot =Wfcht

Where Ot ∈ Rm is the desired output from the network
and Wfc ∈ Rh×m is the weight matrix for the fully
connected layer. Note that a nonlinear activation function
can be added to this layer, if needed.

B. Transfer Learning

We try to evaluate our transfer learning procedure on two
different tasks. In this paper we look into two regression
tasks, where the objective is to estimate the state of the
robot using the strain sensor data. The same approach can
be extended to more complex tasks, like in a reinforcement
learning framework.

Task-1 is a one degree of freedom motion, where the
robotic arm moves in straight line in the Z-axis (See figure
3). The motions are random and the learned model has to
predict the Z axis position of the UR5 end-effector using
only the strain sensor data. Note that this is not a trivial task
due to the noise, non-linearity and drift in the sensor data.
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Fig. 4. Comparison between the direct learning approach and the proposed
transfer learning approach. The layers before the fully connected layer
are referred to as the recurrent layer and the rest as the static layer for
conciseness.

The second task is a two DoF task with more computational
complexity. The robotic arm moves along the XY plane with
a fixed Z-axis position such that the finger is in contact with
the flat surface and slides along the surface. As the finger
slides along the surface the learned model has to implicitly
keep track of the sensor drift state and the arm state. The
inputs to the network, hence, is the same 6 sensor values and
the output is the current X and Y coordinates of the UR5 end-
effector. To achieve accurate predictions, the learned model
has to implicitly estimate the deformations of the finger in
the two directions, predict the time at which the finger slips
and integrate the moved distance to the current estimate of
the global arm location. To simplify the learning procedure
and due to the low sampling rate of the sensors, the velocity
of the UR5 arm is restricted within a range.

For obtaining the initial network for transfer learning
(Model-0), a task-0 is defined. This is essentially a com-
bination of task-1 and task-2, involving motions in all three
directions. The mapping between the sensor readings and the
three motion variables in not well-defined, in this case, and
not accurately learnable. However, it still serves as a good
source to obtain drift-free latent space representations. The
tanh layer and the LSTM layer of model-0 is then fixed to
be later trained on task-1 and task-2 (See figure 8).

All the models use a data sample of 30,000 points col-
lected at 5 Hz. The MATLAB deep learning toolbox is used
for modelling and training the LSTM networks. The Adam
optimization algorithm is used for training and all the models
are trained till 200 epochs. A test set which contains the
last 20 percent of the sample data is used for estimating the
performance of each model. The same training parameters
are used for training the subsequent models using the transfer
learning approach. The parameters to be tuned are however
reduced to the parameters of the fully connected layer. The
number of variables hence would be proportional to the size
of the LSTM layer multiplied by the size of the output
variables. Note that this is a drastic reduction in the number
of parameters as the LSTM layers have parameter space
which increases quadratically with the size of the network.



IV. EXPERIMENTAL RESULTS
A. Direct Learning

The output predictions of the LSTM network using the
direct learning method is shown for both the tasks in Figure
5 and Figure 6. Task-1 has very good prediction accuracy
because of the simplicity of the target and the obvious
relation between the strain values and the finger deformation.
The mean test accuracy of the task was 0.4 mm for a total
deformation covering 10 mm. The sensor readings during the
task are also shown in Figure 5. The drifting of the sensors
can be observed. As the motion is one-dimensional, high cor-
relation among the sensors can be found. In other words, for
the given task, the sensor configuration is redundant. Hence,
such tasks may not be appropriate for the developing the
base model (model-0) for transfer learning. This is because
the latent space might have a low-dimensional representation
of the sensor space due to the redundancy in the base task.
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Fig. 5. Network performance for Task-1. The corresponding sensor values
are shown above.

Task-2 is much more complex than task-1 and hence
the performance of the learned model is poorer compared
to Task-1. The mean test accuracy of the localization test
was 27mm for a sliding surface of 140x80 mm size. The
sensor readings during the task are also shown in Figure
6. Although, there are still sensor redundancies in this task,
it will be less than task-1. Nonetheless, new sample data is
obtained for learning the base model (model-0) to reduce the
sensor correlations. This task-0 is simply the combination of
task-1 and task-2, which means the finger moves in a three
dimensional space of 140x80x10mm. The accuracy of this
model is poor due to the complexity of the task, however, a
drift-free latent space representation is still obtained for our
purpose as show in the next subsection.

B. Latent Space Representation

After training the LSTM network on task-0 to obtain
model-0, the weights of the all the layers preceding the
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Fig. 6. Network performance for Task-2. The corresponding sensor values
are shown above.

fully connected layer is fixed. This is essentially the dynamic
component of the network. Providing new inputs from new
tasks to this network would result in arbitrary output values
and latent space values.

An example of the latent space values of the model-0,
when sensor input from task-2 is given to the network is
shown in Figure 7. This latent space representation is then
fed to a fully connected layer (static layer) to obtain the
desired outputs. In this way we are condensing the temporal
information contained in the 6 sensors into a static variable
of size 50. As the number of sensors increase, the advantage
of such an approach becomes increasingly important. The
human perceptive system contains a dense and redundant
array of tactile receptors [15]. It is hence unnecessary to
obtain all the information from these sensors for high-level
processing. There are neuronal circuitry in the body that
compresses the information from these mechanoreceptors.
Likewise, the proposed transfer learning approach can be
used to not only remove noise and drift-effects, but also to
reduce the dimensionality of the sensory input provided to
the high-level processing system [16].

The comparison of the performance between the two meth-
ods are shown in Figure 8. As expected, the direct learning
approach leads to better accuracy. This is not surprising
as the transfer learning method is severely limited by the
outputs from the LSTM layer and the number of free param-
eters to tune. These differences can however be expected to
drastically reduce when the sensor dimensionality increases,
the task complexity increases and when data samples become
scarce. It is already evident from the test results of task-2
as shown in Table I. The biggest difference between the two
methods lie in the number of free parameters to be tuned as
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Fig. 7. Latent space output to the 6 dimensional sensor input sequence.

its subsequent requirement on the number of samples. For
this study we use the same number of samples (30,000) for
training the direct model and the transfer learning model, it
can be deduced that the transfer learning approach would
require much fewer samples. It must, however, be noted that
the transfer learning approach requires a model-0 which is
trained in the same was as the direct learning approach.
Again, the advantages become more apparent when there
are numerous tasks to be learned or the latent space rep-
resentation is used for a new task where sample data is
expensive to obtain. This is especially true for the case of
direct reinforcement learning strategies for acquiring tactile
manipulation skills [17].

TABLE I
COMPARING DIRECT TRAINING WITH TRANSFER LEARNING

Direct training Transfer Learning
No. Parameters (task 1) 11450 50
No. Parameters (task 2) 11500 100
Training Time (task 1) 344 s 93 s
Training Time (task 2) 355 s 97 s
Test accuracy (task 1) 0.43 mm 0.66 mm
Test accuracy (task 2) 27 mm 26 mm

V. CONCLUSIONS
This paper presents the concept of transfer learning for

soft strain sensor modelling. The principle advantage of such
an approach is its capability to quickly adapt to novel tasks,
scenarios and conditions. This is valuable for learned models
involving dynamic recurrent neural networks, which are data
hungry and difficult to train. By reducing the number of free
parameters, the generalizing capability of the network is also
reduced. However, it is not significant with respect to the
reduction in training effort as the first dynamic layers of
the network has already been tuned to compensate for the
complex time-varying noisy sensor data. The true potential
of the approach would be more apparent with higher sensor

dimensionality; as found in the human somatosensory system
or in learning problems where each sample data point is
expensive to obtain. Tactile sensor data is essential to close-
the-loop for certain control tasks. Here, the mapping between
the soft robot state and the control action cannot be easily
framed as a regression problem (refer to [18] for a work
around). These problems can be framed as a reinforcement
learning problem, but each sample data point have to be
obtained from real-world roll-outs which can last from few
seconds to hours. This makes it almost impossible to tune
all the parameters of a RNN, like the LSTM network shown
here. The transfer learning approach shown here could be one
of the methods obtain the state information about the robot
without the additional complexity of tuning a RNN. Note
that the first model can be easily learned using a regression
task as described in this paper.

This work uses LSTM networks to learn our dynamic
mapping from the sensors to the robot state, but the same
approach can be applied to any other RNN architecture. We
employed LSTMs due to their ease of training and their wide
usage in such applications. Another viable candidate that
can be particularly suited for this approach is the reservoir
computing framework [19].

The design of sensor networks for particular tasks or in an
optimal fashion is still a challenge not addressed in this work.
We rely on human knowledge for embedding the sensors
and through trial-and-error decode the sensory capabilities
of the system. Future work would involve designing sensory
architecture optimized for certain tasks either based on
mathematical models or information theoretics.
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Wood, and J. A. Lewis, “Embedded 3d printing of strain sensors within
highly stretchable elastomers,” Advanced Materials, vol. 26, no. 36,
pp. 6307–6312, 2014.

[5] L. Wang, F. Ma, Q. Shi, H. Liu, and X. Wang, “Study on compressive
resistance creep and recovery of flexible pressure sensitive material
based on carbon black filled silicone rubber composite,” Sensors and
Actuators A: Physical, vol. 165, no. 2, pp. 207–215, 2011.

[6] H. Wang, M. Totaro, and L. Beccai, “Toward perceptive soft robots:
Progress and challenges,” Advanced Science, vol. 5, no. 9, p. 1800541,
2018.

[7] U. Culha, S. Nurzaman, F. Clemens, and F. Iida, “Svas3: strain vector
aided sensorization of soft structures,” Sensors, vol. 14, no. 7, pp.
12 748–12 770, 2014.

[8] S. Han, T. Kim, D. Kim, Y.-L. Park, and S. Jo, “Use of deep learning
for characterization of microfluidic soft sensors,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 873–880, 2018.

[9] D. Kim, J. Kwon, S. Han, Y.-L. Park, and S. Jo, “Deep full-body
motion network for a soft wearable motion sensing suit,” IEEE/ASME
Transactions on Mechatronics, vol. 24, no. 1, pp. 56–66, 2018.

[10] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10,
pp. 1345–1359, 2009.

[11] H. Van Hoof, T. Hermans, G. Neumann, and J. Peters, “Learning robot
in-hand manipulation with tactile features,” in 2015 IEEE-RAS 15th

International Conference on Humanoid Robots (Humanoids). IEEE,
2015, pp. 121–127.

[12] H. Van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters,
“Stable reinforcement learning with autoencoders for tactile and visual
data,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016, pp. 3928–3934.

[13] T. Lesort, N. Dı́az-Rodrı́guez, J.-F. Goudou, and D. Filliat, “State
representation learning for control: An overview,” Neural Networks,
vol. 108, pp. 379–392, 2018.

[14] M. Melnykowycz, B. Koll, D. Scharf, and F. Clemens, “Comparison of
piezoresistive monofilament polymer sensors,” Sensors, vol. 14, no. 1,
pp. 1278–1294, 2014.

[15] J. C. Stevens, “Aging and spatial acuity of touch,” Journal of geron-
tology, vol. 47, no. 1, pp. P35–P40, 1992.

[16] O. Kroemer, C. H. Lampert, and J. Peters, “Learning dynamic tactile
sensing with robust vision-based training,” IEEE transactions on
robotics, vol. 27, no. 3, pp. 545–557, 2011.

[17] S. Tian, F. Ebert, D. Jayaraman, M. Mudigonda, C. Finn, R. Calandra,
and S. Levine, “Manipulation by feel: Touch-based control with deep
predictive models,” arXiv preprint arXiv:1903.04128, 2019.

[18] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Model-based
reinforcement learning for closed-loop dynamic control of soft robotic
manipulators,” IEEE Transactions on Robotics, vol. 35, no. 1, pp. 124–
134, 2018.

[19] H. Jaeger, “Echo state network,” scholarpedia, vol. 2, no. 9, p. 2330,
2007.


	INTRODUCTION
	Drift-free latent space representation

	EXPERIMENTAL SETUP
	LEARNING PROCEDURE
	LSTM Network
	Transfer Learning

	EXPERIMENTAL RESULTS
	Direct Learning
	Latent Space Representation

	CONCLUSIONS
	References

