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The crystallisation of entangled polymers from their melt is investigated using computer

simulation with a coarse-grained model. Using hybrid Monte Carlo simulations enables

us to probe the behaviour of long polymer chains. We identify solid-like beads with a

centrosymmetry local order parameter and compute the nucleation free-energy barrier at

relatively high supercooling with adaptive-bias windowed umbrella sampling. Our results

demonstrate that the critical nucleus sizes and the heights of free-energy barriers do not

significantly depend on the molecular weight of the polymer; however, the nucleation rate

decreases with increasing molecular weight. Moreover, an analysis of the composition of

the critical nucleus suggests that intra-molecular growth of the nucleated cluster does not

contribute significantly to crystallisation for this system.
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I. INTRODUCTION

As the first step of the crystallisation process of polymers, nucleation can often determine the

final morphologies of polymer materials; moreover, it can affect mechanical, electrical and optical

properties of systems.1–4 Both theoretical and experimental investigations into nucleation behaviour

started over a century ago.5 Due to its simplicity, classical nucleation theory (CNT) continues to be

widely applied to explain the nucleation process qualitatively,6,7 even though it is well established

that deviations from its predictions of the nucleation rate are widespread in many systems,6,8

particularly in cases where the nucleation free-energy barrier is multi-stage or structured.9

Nucleation is a rare event, and as such it can be difficult to investigate both experimentally

and computationally. The probability of a nucleation event occurring depends on the height of

the free-energy barrier to nucleation, which can be investigated in computer simulations using

rare-event methods such as umbrella sampling,10,11 metadynamics12 or forward-flux sampling.13

Barrier crossings have been investigated for a range of systems, from colloids to proteins, ionic

crystals and water, and such simulation studies have provided useful insights into the nucleation

process especially at the spatial and temporal resolutions which present particular challenges to

experiment.14

In the context of polymer crystallisation from the melt, Hu et al. investigated single-chain

nucleation using a lattice Monte Carlo simulation and showed that although the chain length

determined the free-energy barrier to melting, the free-energy barrier to nucleation was insensitive

to it.15 Yi et al. studied the nucleation free-energy barrier of a range of polymer melts as a function

of the degree of supercooling;16–18 they showed that for relatively short polymers, interfacial

free-energy densities are largely temperature independent,17 suggesting that the nucleation barrier is

largely enthalpic in origin, whilst for longer chains, the converse holds, perhaps indicating that chain

folding and looping that are possible with longer chains result in complex entropic contributions

to the free-energy barrier.18 Muthukumar and co-workers investigated the role of the entropy

of folding of long molecules on the free-energy barrier to nucleation, and showed that for ring

polymers, there is a significant free-energy barrier to secondary nucleation that is not present for

linear polymers.19–21 In each of these studies, a different order parameter was used to track and

drive the nucleation process. A unified order parameter in polymer systems is difficult to attain,

perhaps in part because structures form hierarchically, molecular chains are often very flexible,

and numerous intermediate states exist along the crystallisation pathway. Such problems become
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progressively worse as the length of polymer chains increases, making simulations of polymer

systems considerably more difficult. Simulations are also impeded by the very slow dynamics that

arise from the inter-connectedness of polymer chains. Often, special types of simulation moves

are used to improve sampling efficiency.22 The relaxation time of long-chain polymers increases

exponentially with molecular weight,23,24 and thus long, expensive simulations are necessary to

attain equilibrium. The construction of nucleation free-energy profiles of long-chain polymers

therefore remains a challenging task using molecular simulations.

It has been shown that in polyethylene melts, the nucleation rate J decreases with increasing

molecular weight (MW) and obeys the power law J ∝ M−H
n , where Mn is the number-averaged MW

and the parameter H > 0 is related to the morphology of the crystal.25 By contrast, in poly(ethylene

succinate) samples, J is observed initially to decrease with MW and subsequently to increase beyond

some critical value,26 suggesting that nucleation may change from an intermolecular regime to an

intramolecular one, where cluster growth results from further attachment of segments of molecules

whose other segments are already part of the cluster. Despite the complex interplay of initial

nucleation, intramolecular nucleation and entanglement,27 the height of the free-energy barrier to

initial nucleation does not appear to vary with chain length.25,27

In this work, we use umbrella sampling within the framework of hybrid Monte Carlo simulations

to compute the free-energy barrier to primary nucleation of a polymer and investigate the effect

of the molecular weight on the nucleation process and the nucleation rate. By investigating the

structure of the critical nucleus, we suggest that for the chain lengths considered here, there is no

transition from intra-molecular nucleation to inter-molecular nucleation with increasing molecular

weight.

II. MODEL AND SIMULATION DETAILS

A. Simulation models

Polymer crystals are polymorphic; for instance, there exist α, β and γ forms of polypropylene

crystals. The polymorphism remains a challenging task when studying polymer crystallisation using

MD simulations, as it typically requires expensive all-atom simulations. As we are not at this stage

investigating the fine structure of the polymer crystal, but are instead interested in generic behaviour

of relatively long polymer chains, we use a variant of a widely used coarse-grained poly(vinyl
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alcohol) (PVA) model28–33 to study the free-energy landscape of nucleation, and thus reduce the

computational expense.34 This PVA potential was parameterised by coarse-graining atomistic PVA

models and from experimental results.28,29 We use reduced units throughout, so that r∗ = r/f,

U∗ = U/Y and T∗ = kBT/Y. In the original parameterisation, these can be converted into real units

by using f = 0.52 nm, corresponding roughly to the chain diameter of PVA, and mapping T∗ = 1 to

a real temperature of T = 550 K.30 Non-bonded interactions are approximated by a Lennard-Jones

(LJ) 9-6 potential,29

U∗non-bond(r) = 1.5114
[(f0

r∗
)9
−

(f0
r∗

)6
]
, (1)

where r∗ is the interparticle distance and f0 = 0.89. Adjacent beads in a polymer chain, each

corresponding roughly to a PVA monomeric unit,29 are bonded with a harmonic potential

U∗bond(r) =
1
2

kbond
(
r∗ − b0

)2
, (2)

where kbond = 2704 and b0 = 0.5, where these parameters are again derived from comparison to

atomistic simulations of PVA.30 Finally, the bending of the polymer is described by a tabulated

angular potential (see Supporting Data) based on the original parameterisation.28–30

In the coarse-grained PVA potential, the LJ potential is cut and shifted to zero at the minimum

of the potential, r∗min = 1.02. The potential is therefore completely repulsive,29,30 which improved

its computational efficiency. Effective attractions can then qualitatively be tuned by increasing the

pressure of the system. The angular part of the potential has attractive wells and so the polymer

chain becomes stiffer as the temperature is decreased,29,35 which in turn can lead to an Onsager-

rod-like entropy-driven crystallisation of largely parallel chains at lower temperatures. However,

crystallisation can be, and indeed usually is, driven by attractive interactions between monomers.

To account for this behaviour, we have therefore modified the PVA potential by increasing the cutoff

to r∗cutoff = 1.5, thus allowing favourable non-bonded interactions with the first neighbour shell of

monomers. We stress that, whilst the results that we obtain using a generic coarse-grained model

can provide general insights into the crystallisation of polymer melts, our findings are not expected

to reproduce the behaviour of any specific polymer system, not even PVA. Nevertheless, we have

verified that at sensible temperatures and pressures, the local structure of this modified potential is

similar to that of the original PVA potential for both the melt and the crystalline states.
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B. Hybrid Monte Carlo simulations

We use a combination of brute-force molecular dynamics (MD) simulations that allow us

to probe the natural dynamics of systems on the one hand, and hybrid Monte Carlo (HMC)36

simulations to probe thermodynamic properties on the other. Monte Carlo simulations37 directly

sample the statistical ensemble of choice, and are thus very convenient for probing thermodynamics.

When only local moves are used, such simulations can also yield dynamic information.38 However,

the efficiency of single-particle moves can rapidly decrease when collective motion becomes

important.39 Since the relaxation time of polymer molecules increases exponentially with molecular

weight, the longer the polymer chains we wish to simulate, the more important collective molecular

motion becomes. We therefore use the HMC scheme, where short MD simulations are used instead

of the usual single-particle trial moves within an overarching Monte Carlo simulation. These short

MD simulations must be time-reversible and symplectic to obey detailed balance.36 We therefore

use MD simulations in the microcanonical ensemble with a velocity Verlet time integrator, and

we assign initial velocities to particles from a normal distribution with zero mean and a variance

of kBT/m to satisfy the Maxwell–Boltzmann distribution at the temperature of interest. We use

an in-house code to perform all calculations, except that molecular dynamics simulations, both

brute-force and within HMC, are performed using Lammps.40 In HMC simulations, Lammps is

interfaced as a Python library.

We use a time step of δt = 0.001g and δt = 0.01g in HMC and brute-force MD simulations,

respectively, where g = (f2m/Y)1/2 is the effective unit of time. The mass m does not generally

correspond to the molecular mass of each bead, since coarse-graining removes some degrees of

freedom which can slow a system’s dynamics, resulting in a larger effective value for m when

mapping back to real time. For the original PVA model, g ≈ 3 ps,32 which can give an indication of

the typical relevant timescales; however, we report our results in terms of g for generality.

The polymer chain lengths range from l = 20 to l = 300 across simulations. The entanglement

length, Ne, of the original PVA model is ∼30 monomers,41 and so the chain lengths in this work

cover both unentangled and entangled states. We use approximately 10000 polymer beads in each

simulation, but the systems have different numbers of chains, namely b10000/lc, where b·c denotes

the floor function. In order to verify that finite-size effects are not significantly affecting our results,

we have confirmed that a simulation of 5000 polymer beads with a chain length of l = 100 results in

essentially identical behaviour (see Supporting Data), indicating that the systems are sufficiently
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large to probe primary nucleation under the conditions studied.

In HMC simulations, in which only the MC simulation is subjected to a biassing potential (see

Subsect. II D), we typically use 10 MD steps for each MC move so as to achieve a ∼60 % acceptance

rate. In order to minimise finite-size effects on nucleation,42 we perform these simulations in an

isobaric ensemble at P = 2f3/Y, which we implement by scaling the box using trial moves in

ln(V).43,44 In brute-force MD simulations, we implement the isothermal-isobaric ensemble with a

Nosé–Hoover thermostat45 and a Parrinello–Rahman-like barostat.46 Sample input scripts detailing

all parameters used are provided in the Supporting Data.

C. Local order parameter

In nucleation studies, a significant challenge is the identification of particles in the two phases of

interest. In previous simulation studies, several distinct order parameters were used to track and

drive the nucleation process: the total number of disordered monomer units;15 the largest number

of neighbouring chains with the same orientation;16–18 and the lamellar thickness.19,20 To enable a

comparison to classical nucleation theory, a convenient order parameter to use is the size of the

largest crystalline cluster; however, such an order parameter can only be computed if solid particles

have been correctly identified. Since ‘phases’ are macroscopic concepts, identifying individual

particles as being solid-like or liquid-like at the microscopic scale is fraught with difficulties. One of

the most commonly used approaches of achieving such an identification for spherical particles is the

Steinhardt–Ten Wolde order parameter,47,48 which has successfully been used both in simulations

and in experiment.49

There is no well established local order parameter used in the polymer community to achieve

cluster classification because polymer molecules are conformationally very flexible, and many

polymorphs of polymer crystals exist.50–52 In the present case, the simplified coarse-grained

polymer model exhibits hexagonal symmetry in the plane perpendicular to the direction of

backbones (Fig. 1(a)). Particle identification can therefore be achieved more readily than would

be the case with more complex models. We use the centrosymmetry parameter P proposed by

Hamilton and co-workers,53

P =
N/2∑
i=1
|ri + rN/2 |, (3)

where ri is the bond vector from the central particle to the ith neighbouring particle and N is the

6



FIG. 1. A schematic illustration of the (a) top and (b) side view of the crystalline structure of a polymer using

the coarse-grained PVA model. Orange circles represent beads in the polymer, and thick blue lines indicate

bonds between the beads. One pair of the bond vectors used in the order parameter calculation is illustrated

in panel (a).

FIG. 2. (a) Distributions of centrosymmetry values P of the melt (red circles), semi-crystalline (blue squares)

and crystalline (green diamonds) states with a histogram bin width of 0.04. The snapshots extracted from

brute-force MD trajectories (b) and (c) are coloured by centrosymmetry values. The corresponding solid-like

particles only are shown in (b’) and (c’), respectively.

number of neighbouring particles. This parameter divides all the bond vectors into N/2 pairs, and

the sum across all pairs adds up to zero in a perfect crystal [Fig. 1(a)]. The lower the value of P
is, the more ordered the structure in question is. The distribution of P is shown in Fig. 2(a). We

classify particles whose centrosymmetry value is lower than 1 as solid-like, and melt-like otherwise.

In Fig. 2, we show how such phase identification works in practice. The isolated beads in Fig. 2(b’)

indicate that only very small ‘solid-like’ clusters exist in the molten state. On the other hand, large

solid clusters can be observed in the semi-crystalline state. We consider solid-like beads within a
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distance of 1.05f of one another as belonging to the same crystalline cluster, and the number of

beads within one cluster represents the cluster size n. We use the size of the largest such cluster,

nmax, as our order parameter. Of course these choices may affect the final nucleation free-energy

profile, and we return to this point in the Results section.

D. Umbrella sampling with an adaptive biassing potential

The free-energy barrier to nucleation is ΔG(n)/kBT ≡ − ln(Nn/N), where Nn is the number of

clusters of size n and N is the total number of particles. For small clusters, this free energy can

be computed from brute-force MD simulations in the isothermal-isobaric ensemble. However, for

larger cluster sizes, Nn/N rapidly decreases and approaches the probability that the largest cluster in

the system is of size n.54 For sufficiently large clusters, we can therefore compute the free energy

G(nmax) only. However, such clusters are usually very rare, and to find this free energy, we use

the umbrella sampling technique,10 which allows us to sample regions of phase space with a low

sampling probability by introducing a biassing potential. We split the region of cluster sizes of

interest into several partially overlapping windows to speed up equilibration.55–57 In practice, we

use eight windows along the order parameter 1 ≤ nmax < 120; each window overlaps with its

neighbours by 4 units. We compute the free energy within the first window (nmax ∈ [1, 15)) directly

with brute-force MD, and that of the remaining windows with umbrella sampling.

Instead of traditional quadratic biassing potentials, we use adaptive umbrella sampling,58 where

the bias is gradually adapted between simulations to enable the entire window in order-parameter

space to be sampled. The initial biassing potential Ub(nmax) is set to zero. To update the biassing

potential, we combine the biassing potential used in a set of simulations (Ub
old(nmax)) with the

frequency distribution of the order parameter (f (nmax)) to give

Ub
new(nmax) = Ub

old(nmax) + kBT ln f (nmax). (4)

In practice, in the initial stages of a simulation, kBT ln f (nmax) can fluctuate drastically if the entire

region is not properly sampled, and to minimise hysteresis effects, we limit any update of the

biassing potential to a maximum of 1kBT in a single iteration. The biassing potential is updated

until equilibrium is reached, when f (nmax) is uniformly distributed in the entire window and so

any update to the biassing potential adds only a constant term for all nmax and is thus no longer

meaningful. The biassing potential is then expected to be the negative of the free energy for each
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FIG. 3. Umbrella sampling equilibration. By way of illustration, we show results for a single post-critical

window with nmax ∈ [55, 74]. In (a), we show the frequency distribution of nmax of successive umbrella

sampling iterations (as labelled in the legend) within the window. In (b), we show the biassing potential and

its variation at the end of each umbrella sampling iteration.

nmax. We show an illustration of how the biassing potential is updated in Fig. 3. In our simulations,

we run simulations for 12000 MC steps between each successive update to the biassing potential.

Finally, we note that there is no absolute zero for the Gibbs energy, and so the free energies

obtained from different umbrella sampling windows can be shifted by a constant from one another.

Since the windows by construction have ranges that overlap with one another, the free energy of one

pair of such overlapping points can be matched up across windows. If the remaining points are also

well matched up, this is a useful indicator that the windows are well equilibrated. More complex

procedures, such as the weighted-histogram59 or multi-Bennett acceptance ratio60 methods, can

alternatively be used.

III. RESULTS

A. Free-energy profiles of primary nucleation

Classical nucleation theory provides a qualitative description of the homogeneous nucleation

process, and the relation between crystallisation temperature and the height of the free-energy

barrier has been investigated in some detail in the field of polymer crystallisation.61 Here, we focus

in particular on the effect of molecular weight, or, equivalently, the chain length l, of the polymer on

its primary nucleation.

The equilibrium melting temperature of each system considered is not known, and this temperature

generally depends on the chain length. In order to compare nucleation behaviour under similar

conditions, we first determine the hysteresis behaviour of polymer melts as the system is gradually
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FIG. 4. Nucleation free-energy profiles of polymers with different chain lengths.

TABLE I. Simulation temperatures used for different chain lengths.

Chain length l 20 50 100 150 200 250 300

Temperature T∗ 0.80 0.81 0.82 0.83 0.84 0.84 0.84

cooled until it forms a (semi)crystalline state, and then subsequently heated until it melts again. The

temperatures at which freezing and subsequent melting occur bracket the thermodynamic melting

point of the system. The temperature at which spontaneous crystallisation is observed increases

with chain length, and so, in order to compare nucleation at a similar degree of supercooling, we

study the nucleation behaviour at slightly different temperatures for each chain length, as listed in

Table I. The temperatures listed in the table are estimates based on the behaviour of each system

in brute-force simulations rather than the true thermodynamic melting temperature, which is not

known. However, although the details of the nucleation behaviour can change as a function of

supercooling, the supercooling in each case is large and so the qualitative behaviour is unlikely to

be significantly affected by the precise simulation temperature chosen.

The temperatures chosen in this way result in similar free-energy barriers to nucleation, as

shown in Fig. 4 for different chain lengths; the heights of the free-energy barriers are all fairly

close to ∼9kBT , with the relatively low barrier heights not unexpected because the simulations are

performed at high supercooling. Interestingly, the size of the critical nucleus (n∗) is close to 40

across all chain lengths. To benchmark this result, we also performed brute-force MD simulations

starting from the critical nuclei (nmax ≈ 40) of each system. Of the forty simulations performed for
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each system, roughly half resulted in cluster growth and the other half in shrinkage, demonstrating

that the critical cluster was indeed obtained.

Since the coarse-grained potential we use is largely governed by excluded volume interactions,

the potential energy does not significantly change during the primary nucleation process, indicating

that the nucleation free-energy barrier arises from a disfavourable change in entropy.62 If we

assume, to a first order of approximation, that classical nucleation theory applies in this case, we

can estimate an approximate interfacial free-energy density by using a non-linear least-squares fit of

the free-energy profile of Fig. 4 to the polynomial VΔG(nmax) = a0nmax + a1n2/3
max + a2 to account

for the bulk and surface contributions to the free energy, where a2 shifts the origin of the curve. For

the l = 100 case, the fitting parameters were determined to be a0 = −0.4, a1 = 2.0 and a2 = 0.5.

If we further hypothesise that the nucleus is spherical – which is not an unreasonable first-order

estimate (see Fig. 6), but which is unlikely to be very accurate for polymer nucleation17 –, the

isotropic interfacial free-energy density can be estimated as W = a1kBT × (36π/d2)−1/3, where d

(∼2.8f−3) is the number density of the beads in the crystal phase. In this case, we can estimate the

interfacial free-energy density to be W ≈ 0.7Yf−2.

B. Comparison with brute-force MD

Using HMC with umbrella sampling enables us to compute the free-energy profiles of polymers

as a function of their molecular weight. Although the natural dynamics of the system are significantly

affected by coarse-graining, we can also gain further insight into the nucleation process without

using a biassing potential in brute-force molecular dynamics simulations. The mean first-passage

time (MFPT)63 is a useful measure of the dynamics of activated processes, including polymer

primary nucleation. Information about the critical size of the nucleus and the rate of nucleation can

be extracted directly from the trajectories of brute-force MD simulations using this method, provided

that these rare events are accessible in MD simulations. In the light of the high supercooling

considered here, nucleation events can indeed be observed in brute-force MD simulations, and the

results obtained by the two approaches can be compared directly.

Forty individual brute-force MD simulations were run for each polymer length considered over a

total simulation time is 106 MD steps, during which some of the trajectories remain in the molten

state whilst others crystallise. We measure the MFPT from these nucleation events by fitting to63

g(nmax) =
gJ
2
{1 + erf [(n − n∗)c]}, (5)
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FIG. 5. MFPT of systems with different chain lengths. The critical nucleus size fluctuates around 40,

consistent with the HMC umbrella sampling results. Mean first-passage times (in black) are computed from

forty independent brute-force MD trajectories in each case. Error bars give the standard error of the mean.

We estimate n∗ by fitting these times to Eq. (5), with gJ , n∗ and c being free fitting parameters, and we plot

the fitted curve in red.

where g(nmax) is the MFPT of every nmax, gJ = 1/JV is a parameter associated with the nucleation

rate J and volume V , n∗ is the critical nucleus size, and c is the scaled Zeldovich factor,64,65

Z ≡
√
|G′′ (n∗) |/2πkBT = c/

√
π.

In Fig. 5, we show the MFPT as a function of cluster size for a range of chain lengths. There

is a considerable standard error of the MFPT; such a large error is the result of limited sampling

points, as only forty individual brute-force MD are performed for each system, and only those

which resulted in successful nucleation are considered in the MFPT calculation.16 Moreover, as the

free-energy barrier is not very high (∼9kBT), it is not straightforward to separate the nucleation

and growth processes precisely.63 Nevertheless, Fig. 5 shows that n∗ fluctuates around 40 in all
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brute-force MD simulations, which is consistent with the results of hybrid MC simulations with

umbrella sampling. Interestingly, gJ increases with increasing chain length, which suggests that the

rate of nucleation will decrease with molecular weight; we discuss this in more detail below.

C. Choice of reaction co-ordinate

The free-energy profile is reconstructed as a function of a particular order parameter. The

free energy computed is effectively a projection of the potential energy landscape onto this order

parameter; however, there is no guarantee that the chosen order parameter is in fact the true reaction

co-ordinate. Choosing a different order parameter can drastically affect the free-energy profile,66

and so the choice of a suitable parameter is of particular importance.

When calculating the order parameter nmax in this work, we used two cutoffs in our definitions

of clusters. Namely, we identified solid-like particles as those with P < 1, and we used a neighbour

cutoff of rcut = 1.05f in cluster analysis. It has been shown that although choosing a more

conservative cutoff results in a smaller critical cluster size, when chosen within reason, it does not

significantly affect the rate of nucleation.63 However, the choice of cutoff for the centrosymmetry

parameter may affect the results more significantly. A smaller value of P corresponds to a more

ordered structure; however, in the initial stages of primary nucleation, and particularly so in

polymer systems, the conformational flexibility of molecules precludes very significant positional

ordering.50,67,68The height of the free-energy barrier may therefore be overestimated if too small a

cutoff is used.

Based on the distribution of centrosymmetry values (Fig. 2(a)), we used P < 1 as the criterion

to classify particles. We show several snapshots of the nucleation process of the l = 20 system

in Fig. 6 using this criterion. Many isolated beads exist throughout the nucleation process, and

several short molecular segments are embedded in the nucleus. As the centrosymmetry criterion is

not overly strict in particle classification, the free-energy barrier would be underestimated if the

umbrella sampling were performed in the first window. Therefore, all the clusters are considered in

the first window and the free-energy difference is calculated from the distribution of cluster sizes.

In general, defining a local order parameter is a challenging task in polymer systems, especially

in all-atom simulations, and the polymorphism of polymer crystals makes the task more difficult

still. A single order parameter can hide information from orthogonal dimensions. Given that

intermediate states may exist in such orthogonal dimensions, it may be prudent to consider multiple
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FIG. 6. Snapshots of the l = 20 system during nucleation, when the largest cluster in the system comprised 20,

60 and 110 beads. Grey beads are solid-like particles with a centrosymmetry value less than 1. These beads

are connected if they are adjacent within the same chain. Red beads and bonds show the largest crystalline

cluster in the system, which usually appears to be largely ellipsoidal.

physically reasonable order parameters and map out a free-energy landscape. However, in the case

of the coarse-grained potential we use here, the good agreement in the size of the critical cluster

between brute-force MD simulations and the free-energy calculation gives us a degree of confidence

in the robustness of the order parameter used.

IV. DISCUSSION

A. Effect of molecular weight on primary nucleation

Both HMC and brute-force MD simulation results indicate that neither the height of the free-

energy barrier nor the size of the critical nucleus for primary nucleation change significantly

with chain length (or, equivalently, with molecular weight), which is consistent with previous

experimental work,26,69 in which classical nucleation theory was used to estimate these parameters.

One possible interpretation of this is that only some sections of individual chains form the critical

cluster, and so the remainder of the chain does not play an important role in the nucleation of the

critical cluster. To test whether this explanation is borne out in our simulations, we analysed the

composition of the critical nucleus. The critical nucleus comprises approximately 40 particles, but

in Fig. 7(a) we show that the average number of distinct molecular chains embedded in the critical

nucleus for each system is relatively small and at least initially decreases with increasing chain

length. The average number of segments that are embedded in the critical nucleus is ∼7, which

for most systems considered is very short compared to the overall chain length. Since we keep the

average density of the monomeric particles of the systems constant, increasing the chain length of
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FIG. 7. (a) The number of different chains within the critical nucleus as a function of chain length, averaged

over 20 independent configurations of the critical nucleus in each case. Error bars give the standard deviation.

(b) The nucleation rate as the function of chain length. These data are calculated using the fitting results of

Fig. 5.

the polymers does not lead to any significant additional crowding, and so it is not unreasonable that

the free-energy barrier should be largely independent of the chain length. Moreover, the fact that for

sufficiently long chains, neither the size of the critical nucleus nor the number of distinct chains in

the critical nucleus significantly change strongly suggests that there is no changeover from inter-

to intra-molecular nucleation as the chain length increases for this system for the chain lengths

considered. The free-energy barrier appears to correspond to a largely inter-molecular nucleation

pathway.

How the MW affects the nucleation rate J is of particular interest given the unusual behaviour

observed in previous experimental work.25,26 In Fig. 7(b), we show the nucleation rate J = 1/VgJ

for our systems as a function of chain length, computed from the fitting parameter gJ used in the

MFPT analysis and the volume of each system. As the chain length increases, the nucleation rate

seems broadly to decrease, and there does not seem to be any turning point in this trend over

the range of chain lengths considered. Empirically, the nucleation rate is often described by the

relation J = J0 exp(−ΔG∗/kBT), where J0 is a parameter related to diffusion. In polymer melts,

the motion of a chain is restricted by neighbouring chains, and this ‘entanglement’ restriction

becomes progressively stronger as the MW increases. The entanglement length for the original

PVA model was determined to be between 30 and 50,41 which appears to lead to a significant

slowdown of chain dynamics beyond such chain lengths, consistent with the slowdown seen in

Fig. Fig. 7(b). Diffusion of polymer chains is more difficult for long-chain polymers, which results in

lower nucleation rates, as studied in rheology experiments.70,71 In order to confirm this conjecture,

we plot the time-averaged mean squared displacement of the centre of mass of each polymer chain

〈(Rcm)2〉 for each system in the molten state. In the inset of Fig. 8, the 〈(Rcm)2〉 of l = 20 and
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FIG. 8. Time-averaged mean squared displacement of the centre of mass 〈(R∗cm)2〉 as a function of time and

chain length, averaged over 10 chains for each system. The inset shows data for l = 20 and l = 50.

l = 50 exhibits linear relations with lag time, consistent with the Einstein relation 〈R2〉 = 6Dt.

We can estimate the diffusion coefficient of these two systems as approximately 0.0100f2/g and

0.0017f2/g, respectively. On the other hand, longer chain systems do not result in a linear relation

between 〈(Rcm)2〉 and the lag time, which indicates that their motion is subdiffusive within the

timescale of our simulations. Nevertheless, we may utilise the long-time behaviour of different

systems to predict their mobilities. The mean squared displacement at the final timestep decreases

monotonically when chain length increases from 100 to 300, suggesting that diffusion becomes

progressively more difficult when molecular chains are longer.

Therefore even if the height of the nucleation free-energy barrier is roughly constant as a function

of l at the same level of supercooling, the decrease in diffusivity can result in a significant reduction

in the effective nucleation rates, which can be reflected in differences in the pre-factor J0 in the

rate expression. However, whilst we have demonstrated that the diffusive behaviour of the centre

of mass of the polymer chains changes as a function of l, the microscopic nature of the effect of

slowing diffusion is not obvious, and so quantifying its effect on the nucleation behaviour is difficult.

In particular, there are likely also to be other differences in diffusivity beyond that of the centre of

mass. For example, beads closer to the end of a polymer can behave very differently from those

at the centre, and with polymer molecules, there are many hierarchical levels of distinct diffusive

behaviour as a function of lag time72 that complicate matters further. It would be interesting in

future work to investigate the statistics of which parts of polymer molecules crystallise first and
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whether anything significant can be said about the local diffusivity of beads within those parts of

the chains both in the melt and within the critical cluster of the growing crystallite.

Moreover, while we can conclude from simulations that for the range of chain lengths considered

in this work, the nucleation rates decrease as a function of increasing chain length using our model.

By contrast, in experiments on poly(ethylene succinate),26 an increase of nucleation rate with

increasing MW for sufficiently long polymers was observed. The reason for the differing behaviour

may simply be that the chain length in our simulations is not sufficiently long. However, such

behaviour might also originate from the molecular structure, where oxygen atoms in the backbones

may result in hydrogen bonding, which may significantly affect the diffusion behaviour of the

polymer chains. Indeed, although hydrogen bonding also exists in PVA systems, interactions

between molecules cannot be accurately reproduced with the generic coarse-grained model we are

using. Moreover, when crystallising, polymer chains naturally fold, and crystallised samples often

exhibit significant adjacent re-entry packing.73 Although we did not observe intramolecular primary

nucleation, this of course does not mean that subsequent polymer folding cannot occur during

crystal growth. The precise mechanism of the putative transition from inter- to intra-molecular

nucleation and the effect of chain length on the subsequent growth therefore remain unclear and

deserve further investigation.

V. CONCLUSION

We performed a set of hybrid MC simulations to study the effect of chain length on the primary

nucleation of chain polymers from the melt, and used umbrella sampling to compute free-energy

profiles using the size of the largest crystalline cluster as a local order parameter. Our simulation

results indicate that the chain length only affects the nucleation rate but not the critical nucleus size,

in agreement with previous theoretical and experimental work that formation of a critical nucleus is

not influenced by the MW. The nucleation rate broadly decreases with increasing chain length, and

a further composition analysis of the critical nucleus suggests that intra-molecular nucleation did

not occur in our simulations.

We have demonstrated that relatively simple Monte Carlo simulations can be used with coarse-

grained models of polymers to gain insight into their nucleation behaviour. Of course the polymer

model we have used is particularly simple and it would be interesting to use a more realistic model to

investigate real systems. The interplay between initial nucleation, intra- and inter-molecular growth
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and diffusion of polymer molecules and their individual segments makes for systems that exhibit

particularly rich behaviours. Hybrid Monte Carlo simulations within the framework of free-energy

calculations enable us to gain insight into such systems without having to rely on complex collective

Monte Carlo moves. We hope that this preliminary investigation will stimulate further work on

more realistic systems in the future.
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