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C*-SIMPLICITY AND THE UNIQUE TRACE
PROPERTY FOR DISCRETE GROUPS

EMMANUEL BREUILLARD, MEHRDAD KALANTAR,
MATTHEW KENNEDY, AND NARUTAKA OZAWA

Abstract. A discrete group is said to be C*-simple if its reduced
C*-algebra is simple, and is said to have the unique trace property
if its reduced C*-algebra has a unique tracial state. A dynamical
characterization of C*-simplicity was recently obtained by the sec-
ond and third named authors. In this paper, we introduce new
methods for working with group and crossed product C*-algebras
that allow us to take the study of C*-simplicity a step further, and
in addition to settle the longstanding open problem of character-
izing groups with the unique trace property. We give a new and
self-contained proof of the aforementioned characterization of C*-
simplicity. This yields a new characterization of C*-simplicity in
terms of the weak containment of quasi-regular representations.
We introduce a convenient algebraic condition that implies C*-
simplicity, and show that this condition is satisfied by a vast class
of groups, encompassing virtually all previously known examples
as well as many new ones. We also settle a question of Skandalis
and de la Harpe on the simplicity of reduced crossed products.
Finally, we introduce a new property for discrete groups that is
closely related to C*-simplicity, and use it to prove a broad gener-
alization of a theorem of Zimmer, originally conjectured by Connes
and Sullivan, about amenable actions.
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1. Introduction

Let G be a discrete group. Recall that the reduced C*-algebra C∗
r(G)

of G is the norm closure of the algebra of operators on ℓ2(G) generated
by the left regular representation λG of G. The group G is said to
be C*-simple if C∗

r(G) is simple, meaning that the only norm-closed
two-sided ideals in C∗

r(G) are zero and C∗
r(G) itself. Recall further that

a trace on C∗
r(G) is a tracial state, i.e. a unital positive G-invariant

linear functional on C∗
r(G). The group G is said to have the unique

trace property if C∗
r(G) has a unique trace, namely the canonical trace

τλ defined by τλ(a) := 〈aδe, δe〉 for a ∈ C∗
r(G).

Since Powers’ proof [53] in 1975 that the free group on two genera-
tors is both C*-simple and has the unique trace property, it had been a
major open problem to characterize groups with either of these proper-
ties, and in particular to determine whether they are equivalent (see e.g.
[18] for this fact, and for a nice general survey of the subject matter).
It has long been recognized that the simplicity of the reduced C*-

algebra C∗
r(G), and more generally of reduced crossed product C*-

algebras of the form C(X) ⋊r G, where X is a compact G-space, is
related to the topological dynamics of the G-action on X (see in par-
ticular the work of Kawamura and Tomiyama [35], and the work of
Archbold and Spielberg [3]).

Recently, the second and third named authors [37, Theorem 6.2]
established that the dynamical properties of the Furstenberg boundary
∂FG of G, a compact G-space that is well known to researchers in
dynamics, completely determines whether G is C*-simple.

Theorem 1.1 ([37]). A discrete group is C*-simple if and only if its
action on the Furstenberg boundary ∂FG of G is free.

In this paper, we introduce new methods for working with group
and crossed product C*-algebras. We take a dynamical point of view,
beginning with a preliminary study of the Furstenberg boundary. In
particular, we obtain a new and self-contained proof of Theorem 1.1,
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which proceeds essentially from first principles, and requires no ad-
vanced operator-algebraic material. This new proof yields as a by-
product the following new characterization of C*-simplicity:

Theorem 1.2. A discrete group G is C*-simple if and only if for every
amenable subgroup H ≤ G, the quasi-regular representation λG/H is
weakly equivalent to the left regular representation λG.

Recall (see e.g. [21, Section 3.4.4] or [18, Section 7]) that a discrete
group G is C*-simple if and only if every unitary representation that
is weakly contained in λG is weakly equivalent to λG. The above result
says that it is enough to consider quasi-regular representations with
respect to amenable subgroups.
In turn, these new methods allow us to completely settle the problem

of characterizing groups with the unique trace property.

Theorem 1.3. A discrete group has the unique trace property if and
only if its amenable radical is trivial. In particular, every C*-simple
group has the unique trace property.

The proofs of these results occupy the first three sections of this
paper, and are remarkably short and self-contained. The last result
is also used (in combination with an observation from [59, Theorem
5.14]) to obtain another proof of the fact, recently proved in [5], that
amenable invariant random subgroups of a discrete group concentrate
on the amenable radical.
The remainder of the paper is devoted to a thorough investigation of

C*-simplicity. First we show that C*-simplicity is stable under group
extensions, answering a question of de la Harpe and Préaux [19, Section
2, Question (Q)].

Theorem 1.4. Let G be a discrete group and let N ≤ G be a normal
subgroup. Then G is C*-simple if and only if both N and CG(N) are C*-
simple, where CG(N) denotes the centralizer of N in G. In particular,
C*-simplicity is closed under extension.

We then introduce a convenient algebraic condition, the absence of
amenable normalish subgroups, that implies C*-simplicity (see Theo-
rem 6.2). This criterion is easy to work with, and allows us to give a
short proof of the C*-simplicity of a large class of groups that encom-
passes virtually all previously known examples (e.g. [7, 47, 54]) as well
as many new ones. In particular, we prove:

Theorem 1.5. A discrete group with trivial amenable radical having
either non-trivial bounded cohomology or non-vanishing ℓ2-Betti num-
bers is C*-simple.
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We also recover the following result from [54]. Recall that a linear
group is a subgroup of GLd(K) for some field K.

Theorem 1.6. A linear group is C*-simple if and only if its amenable
radical is trivial.

Using a different argument, we also handle the following class of
groups:

Theorem 1.7. A discrete group with only countably many amenable
subgroups is C*-simple if and only if its amenable radical is trivial.

The last result applies, for example, to torsion and torsion-free Tarski
monster groups, as well as to free Burnside groups B(m,n) for m ≥ 2
and n odd and sufficiently large. Thus we recover a recent result of Osin
and Olshanski [47] that yields in particular the existence of C*-simple
groups without non-abelian free subgroups (see also [40] for another
example).
We emphasize that, prior to our work, essentially the only method

available for proving C*-simplicity was the method introduced by Pow-
ers in his 1975 paper [53], which consists of proving a certain spectral ra-
dius estimate, and which often requires exhibiting “ping-pong partners”
for certain boundary actions of the group. As the case of linear groups
exemplifies, this method is usually difficult to implement in practice.
Our no amenable normalish subgroup criterion (Theorem 6.2) leads to
a considerably simplified analysis in each example. We note however,
that there is no conceptual limitation to Powers’ method, since we
now know that Powers’ criterion is in fact equivalent to C*-simplicity
[29, 36].
Further in the paper, we investigate reduced crossed products. We

show that the reduced crossed product over a C*-simple group is simple
whenever the underlying C*-algebra has no invariant closed ideals. This
answers a question of de la Harpe and Skandalis [20, page 242], and
applies in particular to the C*-algebra of commutative functions on a
compact space equipped with a minimal group action.

Theorem 1.8. Let G be a discrete C*-simple group. For any unital G-
C*-algebra A having no non-trivial G-invariant closed ideal, the reduced
crossed product A⋊r G is simple.

We also recover and generalize an observation of Haagerup and Ole-
sen [30] relating the amenability of Thompson’s group F to the C*-
simplicity of Thompson’s group T .
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Proposition 1.9. If X is a G-boundary such that the point stabilizer
Gx is amenable for some x ∈ X, then G is C*-simple if and only if X
is topologically free.

We then further study the relation between the C*-simplicity of G
and the size of point stabilizers of boundary actions. In particular, we
show that if the stabilizer of some point on a G-boundary is C*-simple,
then G is C*-simple as well (see Proposition 7.8).
Finally, in the last section, we introduce a new operator-algebraic

property of discrete groups that we call the Connes-Sullivan property,
or property (CS) for short. It is a stronger property than C*-simplicity,
in the sense that every group with property (CS) and trivial amenable
radical is C*-simple.

Definition 1.10. A discrete group G is said to have the Connes-
Sullivan property, or property (CS) for short, if for every unitary rep-
resentation π : G → B(H) weakly contained in the left regular repre-
sentation of G there exists a neighborhood U of the identity in B(H)
such that π−1(U) belongs to the amenable radical Ra(G) of G.

We establish the following result:

Theorem 1.11. Let G be a discrete group. If G is linear or if the
bounded cohomology of G satisfies H2

b (G, ℓ
2(G/Ra(G))) 6= 0, then G

has property (CS).

The Connes-Sullivan conjecture, which was proved by Zimmer [60],
asserts that subgroups of a Lie group that act amenably on it must be
dense in a Lie subgroup with solvable identity component. The above
theorem turns out to be a broad generalization of Zimmer’s theorem,
in the sense that Zimmer’s theorem follows easily from the fact that
linear groups have property (CS).
In addition to the introduction, this paper has seven other sections.

In Section 2 we recall the notion of Furstenberg boundary ∂FG for a
discrete group G and we establish some of its basic topological proper-
ties, which we then translate into operator algebraic properties of the
C*-algebra of continuous functions C(∂FG). In Section 3 we give a self-
contained proof of Theorem 1.1 and establish Theorem 1.2. Section 4
is devoted to the unique trace property and Section 5 to Theorem 1.4.
Normalish subgroups are introduced in Section 6, where Theorems 1.5,
1.6 and 1.7 are proven. Finally, Section 7.1 is devoted to reduced cross-
products, while the last section deals with property (CS) and Theorem
1.11.
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New developments. Several new developments have occurred since
the first draft of this paper appeared in October 2014. First, in a
dramatic turn of events, Le Boudec [39] exhibited the first examples of
groups that have trivial amenable radical (and hence unique trace by
Theorem 1.3) but are not C*-simple. The existence of such an example,
whose proof utilizes Proposition 1.9 to disprove C*-simplicity, has put
an end to a longstanding question and a posteriori justifies the relevance
of the various sufficient criterions for C*-simplicity expounded in the
present paper and elsewhere.
Subsequently, Kennedy [36] and Haagerup in a posthumous preprint

[29] independently discovered a new characterization of C*-simplicity.
They showed that a group is C*-simple if and only if its reduced C*-
algebra satisfies an averaging property similar to the one used by Pow-
ers in [53]. Additionally, in [36] a group is shown to be C*-simple if and
only if it has no non-trivial amenable uniformly recurrent subgroups in
the sense of Glasner and Weiss. This latter criterion has been recently
used by Le Boudec and Matte Bon [40] to study the C*-simplicity
of various groups of homeomorphisms and to show that Thompson’s
group V is C*-simple, while the C*-simplicity of T is equivalent to the
non-amenability of F .
Bryder and Kennedy [9] studied the ideal structure of (twisted) crossed

products over C*-simple groups. In particular, they established a bi-
jective correspondence between maximal ideals of the reduced crossed
product and maximal invariant ideals of the underlying C*-algebra. Fi-
nally, recent work of Raum explores the C*-simplicity of non-discrete
groups [55, 56], and very recent work of Ivanov and Omland [34] pro-
vides further examples of non-C*-simple groups, among other things.

2. The Furstenberg boundary

In this section we recall the notion of the Furstenberg boundary of
a discrete group. We also give a new direct proof of two important
properties: its extremal disconnectedness and the amenability of point
stabilizers, which were first proved in [37] using operator-algebraic tech-
niques.

2.1. Definitions. Let G be a discrete group and X a compact1 topo-
logical space. A G-action on X is a group homomorphism from G to
the group of homeomorphisms of X . A G-map between two compact
G-spaces is a continuous G-equivariant map. The G-action on X is
said to be minimal if the G-orbit Gx is dense for every x ∈ X . It is

1In this paper, compact spaces are assumed to be Hausdorff.
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said to be proximal if for every pair x, y ∈ X there is a net ti ∈ G such
that lim tix = lim tiy. It is said to be strongly proximal if the induced
G-action on the space P(X) of probability measures on X , is proximal.
Furstenberg [24] (see also [27]) introduced the following notion.

Definition 2.1 (G-boundary). A compact Hausdorff G-space X is
called a G-boundary if it is minimal and strongly proximal.

Boundary actions arise in many natural geometric contexts, begin-
ning with the classical example of non-elementary discrete subgroups of
PGL2(R) acting on the projective line. But, as Furstenberg observed,
they arise whenever one has an affine G-action on a compact convex
space.

Proposition 2.2 ([27, Theorem III.2.3]). Suppose G acts by affine
maps on a locally convex topological vector space, and let K be a G-
invariant compact convex subset. Then K contains a G-boundary X.
It is unique if K is irreducible. Conversely, if K is the closed convex
hull of X, then K is irreducible.

Irreducibility for K means that there is no proper G-invariant com-
pact convex subspace. The converse part is not stated explicitly in [27],
but is clear from the proof. In fact, if K is irreducible, then X is the
closure of the extreme points of K.
Every G-boundary X arises in this way, because X can be identified

with the point masses in the space P(X) of probability measures on X .
We will always view X as a subspace of P(X) in this way.

Furstenberg showed [24] that every groupG admits a universal bound-
ary ∂FG, i.e. a boundary such that every G-boundary is a continuous
G-equivariant image of ∂FG. Moreover he showed that it is unique
up to G-equivariant homeomorphism. It is now called the Furstenberg
boundary ∂FG of G. The uniqueness is a consequence of the following
important property:

Proposition 2.3 ([24, Proposition 4.2]). Every G-map from a compact
G-space Y into P(X), where X is a G-boundary, must contain X in
its range. If Y is minimal, then there is at most one such map.

Proof. We may clearly assume that Y is minimal for the first assertion.
Then it is enough to show that two such maps will take the same value
at some point of Y , and that this value is a point mass. If φ1, φ2 : Y →
X are G-maps, then µy :=

1
2
(δφ1(y)+ δφ2(y)) is a probability measure on

X . Strong proximality implies that the G-orbit of µy contains a point
mass in its closure, which ends the proof.
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In particular, the only G-map between X and P(X) is the identity
map x 7→ δx. An important immediate consequence of Proposition 2.2
and the universal property of ∂FG is the existence of boundary maps.
Namely given any compact G-space X , there exists a boundary map,
i.e. a G-equivariant continuous map

(2.1) b : ∂FG→ P(X).

2.2. Extremal disconnectedness. Recall that a topological space is
called extremally disconnected (or Stonean) if the closure of every open
set is open.
Gleason [28] proved that a compact space X is extremally discon-

nected if and only it is a projective object in the category of compact
spaces with continuous maps as morphisms. This means that given
Y, Z compact spaces and continuous maps a : X → Y and p : Z ։ Y
with p surjective, there is a map c : X → Z with a = p ◦ c.
Proposition 2.4. The Furstenberg boundary ∂FG of a discrete group
G is extremally disconnected.

Proof. We adapt an argument of Gleason [28, Theorem 1.2]. Let U be
an open subset of ∂FG and let Y be the compact subset of ∂FG×{0, 1}
obtained by taking the disjoint union of U × {0} and U c × {1}. Pick
x0 ∈ ∂FG and define φ : G → Y by φ(g) = (gx0, 0) if gx0 ∈ U and
φ(g) = (gx0, 1) otherwise. By the universal property of the Stone-Cech
compactification βG of G, φ extends to a continuous map from βG
to Y that we continue to denote by φ. By (2.1) there is a boundary
map b : ∂FG → P(βG). For x ∈ ∂FG, let µx = φ∗ ◦ b(x) ∈ P(Y ). By
Proposition 2.3, the push-forward of µx on ∂FG via the projection onto
the first factor is the point mass δx. In other words, µx is supported on
{x} × {0, 1}. Hence µx(U

c × {1}) = 0 if x ∈ U , and µx(U
c × {1}) = 1

if x /∈ U . Since the map x 7→ µx(U
c × {1}) is continuous, this implies

that U is open.

This proposition was first observed in [37, Remark 3.16] by other
means. Applying Gleason’s theorem [28], we conclude that ∂FG is
projective in the category of compact spaces with continuous maps.
We now prove a G-equivariant analogue of this property, which also
follows easily from Furstenberg’s Propositions 2.2 and 2.3.

Proposition 2.5. Let K and K ′ be compact convex G-spaces and let
p : K ′

։ K be a surjective affine G-map. Then any G-map a : ∂FG→
K lifts to a G-map c : ∂FG→ K ′, i.e. a = p ◦ c.
Proof. Note that a(∂FG) is a G-boundary. Its convex hull C is a
compact convex G-invariant subspace of K, and hence so is p−1(C).
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Thus by Proposition 2.2, p−1(C) contains a G-boundary X , C is irre-
ducible and a(∂FG) is the unique G-boundary in C. It follows that
p(X) = a(∂FG). By the universal property of ∂FG, there is a G-map
c : ∂FG → X . Proposition 2.3 implies that a and p ◦ c coincide, as
desired.

2.3. Amenability of stabilizers. A point y ∈ ∂FG gives rise to an in-
jective G-equivariant unital positive linear map σy : C(∂FG) →֒ ℓ∞(G)
defined by σy(f)(g) = f(gy) for f ∈ C(∂FG) and g ∈ G. The positiv-
ity of σy means that it sends non-negative functions to non-negative
functions.
Dual to the existence of the boundary map (2.1) is the existence of a

G-equivariant unital positive linear map β : C(X) → C(∂FG) defined
by β(f)(y) =

∫
X
f db(y) for f ∈ C(X) and y ∈ ∂FG. Together with

Proposition 2.3, this yields the following result.

Lemma 2.6. There is a G-equivariant unital positive retraction r :
ℓ∞(G) → C(∂FG), i.e. r ◦ σy = id|C(∂FG) for every y ∈ ∂FG.

Proof. Note that ℓ∞(G) = C(βG), where βG is the Stone-Cech com-
pactification of G. The dual β : ∂FG → P(βG) of the boundary map
yields the desired retraction.

We obtain the following result as a direct consequence.

Proposition 2.7. For every x ∈ ∂FG, the point stabilizer Gx = {g ∈
G : gx = x} is amenable.

Proof. Let ex : C(∂FG) → C denote the evaluation map at x. Since G
is discrete, ℓ∞(Gx) embeds naturally into ℓ∞(G). Given the retraction
r from the previous lemma, the composition ex ◦ r is a Gx-invariant
unital positive linear functional on ℓ∞(Gx), as desired.

This also yields a quick proof, for discrete groups, of the following
result of Furman [23]. Recall that the amenable radical Ra(G), intro-
duced by Day, [17] is the largest amenable normal subgroup of G.

Proposition 2.8. The kernel of the action of G on ∂FG coincides with
the amenable radical of G.

Proof. Being amenable, Ra(G) fixes a probability measure µ on ∂FG.
Also, being normal it fixes gµ for every g ∈ G. Since ∂FG is strongly
proximal, Ra(G) must fix a point, and hence must fix every point by the
minimality of ∂FG. The converse follows immediately from Proposition
2.7.
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Consequently we see that ∂FG is reduced to a point if and only if G
is amenable [27], and that ∂F (G/Ra(G)) = ∂FG. Also, it is easy to see
that every strongly proximal compact G-space which is not reduced
to a point, has no isolated points. In particular, this is the case for
∂FG. Finally, unless reduced to a point, extremally disconnected spaces
are not second countable [28, Theorem 1.3]. In particular, if G is
non-amenable, then ∂FG is not metrizable and hence C(∂FG) is not
separable.

2.4. Injectivity, rigidity and essentiality. The two important prop-
erties of ∂FG proved by Furstenberg and recalled in Proposition 2.2 and
Proposition 2.3 dualize to yield crucial operator-algebraic properties of
the commutative C*-algebra C(∂FG).
Recall that a G-C*-algebra A is a unital C*-algebra endowed with a

G-action by automorphisms. A state of A is a unital positive functional,
and the state space S(A) is the compact convex space consisting of all
states on A. A linear map between C*-algebras is positive if it sends
positive elements to positive elements, and it is unital if it sends the
unit to the unit.
If X and Y are compact spaces, then there is a correspondence be-

tween unital positive linear maps φ : C(X) → C(Y ) and continuous

maps φ̃ : Y → P(X) given by the rule

φ(f)(y) =

∫

X

fdφ̃(y), f ∈ C(X), y ∈ Y.

It is clear that this correspondence is G-equivariant if X and Y are

G-spaces. It is also clear that the map φ is an isometric embedding if φ̃
contains all the point masses in its image. The situation is analogous
if C(Y ) is replaced by an arbitrary G-C*-algebra A, and Y is replaced
by the state space S(A) of A. Consequently, the following result is an
immediate translation of Proposition 2.3.

Proposition 2.9 (G-rigidity and G-essentiality). The identity map is
the only G-equivariant unital positive linear map from C(∂FG) to itself.
Moreover every G-equivariant unital positive linear map from C(∂FG)
to a unital G-C*-algebra is an isometric embedding.

Note that this isometric embedding need not be an algebra homo-
morphism. This proposition and the next were first obtained in [37] as
consequences of Hamana’s theory of injective envelopes of C*-algebras.
In this language, the first assertion above means that C(∂FG) is a
G-rigid extension of C, while the second means that C(∂FG) is a G-
essential extension of C. One of the key findings of that paper was
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the realization that the Hamana boundary of a discrete group is the
same thing as the Furstenberg boundary. In the current text, we re-
verse this point of view and start with the topological properties of the
Furstenberg boundary in order to deduce the desired operator algebraic
results.
Along the same lines, Proposition 2.5 immediately yields the follow-

ing result.

Proposition 2.10 (G-injectivity). The algebra C(∂FG) is G-injective.
Namely, given two unital G-C*-algebras A ⊂ B, any G-equivariant
unital positive map A→ C(∂FG) lifts to a G-equivariant unital positive
map B → C(∂FG).

Proof. Apply Proposition 2.5 to the state spaces K = S(A) and K ′ =
S(B).

Remark 2.11. Proposition 2.10 also holds (with the same proof) as-
suming only that A and B are G-operator systems, i.e. self-adjoint
subspaces of a unital C*-algebra containing the unit and endowed with
a G-action by unital complete order isomorphisms, i.e. maps that pre-
serve the matrix order structure (see [37]).

3. Two characterizations of C*-simplicity

In this section, we establish two characterizations of C*-simplicity.
The first (Theorem 3.1) is due to Kalantar and Kennedy [37]. Our goal
here will be to give a new, entirely self-contained proof. As a payoff,
this will yield a second characterization (Theorem 3.8 below), that is
new. Recall that a compact G-space X is called topologically free, if
the set of fixed points of each non trivial element g ∈ G has empty
interior.

Theorem 3.1. Let G be a discrete group. The following are equivalent:

(1) G is C*-simple,
(2) G acts freely on its Furstenberg boundary ∂FG,
(3) there exists a topologically free G-boundary.

The Furstenberg boundary is not easy to describe concretely. On
the other hand, G-boundaries often appear naturally in geometry. So
in practice, (3) is typically used to prove C*-simplicity.
We split the proof of this theorem into three independent parts.

3.1. Proof of Theorem 3.1 ((2) ⇔ (3)). Since (2) implies (3) by
definition, we need to show that if G admits a topologically free bound-
ary X , then it acts freely on ∂FG. Lemma 3.2 below implies that G
acts topologically freely on ∂FG, and Lemma 3.3 that it acts freely.



12 E. BREUILLARD, M. KALANTAR, M. KENNEDY, AND N. OZAWA

Lemma 3.2. A G-map π : Y → X between two minimal compact
G-spaces sends open sets to sets of non-empty interior.

Proof. If U is open in Y , the minimality of Y implies that it is covered
by all translates of U , and hence by finitely many since Y is also com-
pact. The image of these translates under π covers X , hence they have
non-empty interior.

Lemma 3.3. The G-action on ∂FG is free if and only if it is topologi-
cally free.

Proof. Recall that ∂FG is extremally disconnected (Proposition 2.4).
But the fixed point set of any homeomorphism of an extremally discon-
nected space is open (see [22] or [52, Proposition 2.7]).

3.2. Proof of Theorem 3.1 ((1) ⇒ (3)). The proof will follow easily
from the following proposition.

Proposition 3.4. Let G be a non-trivial discrete group and let X be a
G-boundary. Suppose there is s ∈ G \ {e} such that the set Xs = {x ∈
X | sx = x} of fixed points of s has non-empty interior. Then the left
regular representation λG is not weakly contained in the quasi-regular
representation λG/Gx

corresponding to Gx.

Remark 3.5. Recall that a discrete group G is C*-simple if and only if
the following property holds: Every unitary representation of G which
is weakly contained in the regular representation of G is weakly equiv-
alent to it (for a proof see [21, Section 3.4.4] or [18, Section 7]).

Proof of (1) ⇒ (3) in Thm. 3.1. Apply the proposition to X = ∂FG.
If the action is not topologically free, then λG is not weakly contained
in λG/Gx

. However, λG/Gx
is weakly contained in λG, because Gx is

amenable by Proposition 2.7. Hence G is not C*-simple.

We now focus on the proof of Proposition 3.4. We require the follow-
ing lemma.

Lemma 3.6. Let G be a non-trivial discrete group and let X be a G-
boundary. For every non-empty open subset U ⊂ X and ε > 0, there
is a finite subset F ⊂ G \ {e} such that for every probability measure
µ on ∂FG, there is t ∈ F satisfying µ(tU) > 1− ε.

Proof. Fix x ∈ U . For each probability measure µ on X , strong proxi-
mality and minimality implies there is tµ ∈ G \ {e} such that

1− µ(tµU) = (δx − t−1
µ µ)(U) < ε.

By continuity there is an open neighborhood Vµ of µ in the compact
space P(X) of probability measures on X such that 1− ν(tµU) < ε for
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every ν ∈ Vµ. The open sets Vµ cover P(X), so by compactness there is
a finite subcover Vµ1

, . . . , Vµn
, and we may take F = {tµ1

, . . . , tµn
}.

Proof of Proposition 3.4. If ξ = δe ∈ ℓ2(G) denotes the point mass at
e, then the matrix coefficient 〈λG(g)ξ, ξ〉 is zero if g 6= e. We are going
to show that it cannot be approximated by convex combinations of
matrix coefficients of λG/Gx

. To this end, let U be the interior of the
fixed point set Xs, fix ε = 1/3 and let F ⊂ G be the finite set given by
Lemma 3.6. Assume, by way of contradiction, that there exist finitely
many unit vectors ξ1, . . . , ξm in ℓ2(G/Gx) such that

(3.1)

∣∣∣∣∣〈λG(g)ξ, ξ〉 −
1

m

m∑

j=1

〈λG/Gx
(g)ξj, ξj〉

∣∣∣∣∣ < ε,

for every g in the finite set {tst−1 : t ∈ F}. Define probability measures
on X by

µ :=
1

m

m∑

j=1

µj, µj :=
∑

y∈G·x

|ξj(y)|2δy,

where we have identified the orbit G · x with G/Gx. By Lemma 3.6
there is t ∈ F such that µ(tU c) < ε. Hence

(3.2)
1

m

m∑

j=1

∑

y/∈U

|ξj(ty)|2 =
1

m

m∑

j=1

µj(tU
c) = µ(tU c) < ε.

Denoting λG/Gx
(t−1)ξj by vj for each j, we obtain

〈λG/Gx
(s)vj, vj〉 =

∑

y∈G·x

vj(s
−1y)vj(y) =

∑

y∈U

|vj(y)|2+
∑

y/∈U

vj(s
−1y)vj(y).

Now applying Cauchy-Schwarz and the fact that U is s-invariant, we
conclude

|1− 〈λG/Gx
(tst−1)ξj, ξj〉| ≤ 2

∑

y/∈U

|vj(y)|2 = 2µj(tU
c).

Averaging over j, and using (3.2) gives a contradiction to (3.1) for
g = tst−1.

3.3. Proof of Theorem 3.1 ((2) ⇒ (1)). Since we require the notion
of the reduced crossed product of a C*-algebra, we first briefly recall
this construction.
Let A be a G-C*-algebra, i.e. a unital C*-algebra endowed with an

action of G by automorphisms. Let π : A → B(H) be a faithful *-
representation of A into the space of bounded operators on a Hilbert
space H.



14 E. BREUILLARD, M. KALANTAR, M. KENNEDY, AND N. OZAWA

Let ℓ2(G,H) be the Hilbert space of square summable H-valued func-
tions on G. The group G acts unitarily on ℓ2(G,H) by left translation,

λxf(g) := f(x−1g), f ∈ ℓ2(G,H), x, g ∈ G.

We define a *-representation σ : A→ B(ℓ2(G,H)) by

σ(a)(f)(g) := π(g−1 · a)f(g), a ∈ A, f ∈ ℓ2(G,H), g ∈ G.

The reduced crossed product C*-algebra A ⋊r G is the closure in
B(ℓ2(G,H)) of the subalgebra generated by the operators σ(a) and λx.
Note that G acts isometrically on A⋊r G via conjugation:

(3.3) λxσ(a)λ
∗
x = σ(x · a), a ∈ A, x ∈ G.

for all x ∈ G and a ∈ A.
The isomorphism class of A ⋊r G does not depend on the represen-

tation π (see [13, Proposition 4.1.5]). Since the *-representation σ is
faithful, we will identify A with its image under σ. For a ∈ A, we will
denote σ(a) by a.
We also recall that a completely positive map φ : A→ B between two

C*-algebras A and B is a linear map such that each of the induced maps
φn : Mn(A) → Mn(B) for n ∈ N is positive. Here, Mn(A) ≃ Mn ⊗ A
denotes the C*-algebras of n × n matrices with coefficients in A, and
φn ≃ idMn

⊗φ. Clearly, every ∗-homomorphism between A and B is
completely positive. Arveson’s Extension Theorem (see [13, Theorem
1.6.1]) states that if A ⊂ B, then every completely positive map A →
B(H) lifts to a completely positive map B → B(H).
Although we will not use it directly, we also recall Stinespring’s fun-

damental structure theorem for completely positive maps (see [13, The-
orem 1.5.3]), according to which every completely positive map φ : A→
B(H) is of the form φ(a) = V ∗π(a)V , where V : H → K is a linear
map between Hilbert spaces, and π : A → B(K) is a *-representation
of A.
The reduced crossed product A⋊rG is equipped with a G-equivariant

unital completely positive map E : A ⋊r G → A, the canonical con-
ditional expectation. For a finitely supported element

∑
x∈G axλx ∈

A⋊r G,

(3.4) E

(
∑

x∈G

axλx

)
= ae.

The commutative C*-algebra C(X) of continuous functions on a com-
pact G-spaceX is a G-C*-algebra with respect to the action (g ·f)(x) =
f(g−1x). When X is a single point, then C(X) ≃ C, and the resulting
reduced crossed product coincides with the reduced C*-algebra C∗

r(G).
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Finally, we recall the notion of multiplicative domain Dφ of a com-
pletely positive map φ : A→ B. Let

(3.5) Dφ := {a ∈ A : φ(a∗a) = φ(a)∗φ(a) and φ(aa∗) = φ(a)φ(a)∗}.
Then φ(ab) = φ(a)φ(b) and φ(ba) = φ(b)φ(a) for every b ∈ A and
a ∈ Dφ, and so Dφ is a C*-subalgebra (see [13, Proposition 1.5.6]).

Proof of Theorem 3.1 ((2) ⇒ (1)). Let π : C∗
r(G) → B(H) be a non-

trivial unital *-representation of the reduced C*-algebra of G. We need
to show that π is injective. We view C∗

r(G) as a G-subalgebra of the
reduced crossed product C(∂FG)⋊rG. Since π is completely positive we
can apply Arveson’s Extension Theorem to lift π to a unital completely
positive map φ : C(∂FG)⋊r G→ B(H).
Notice that C∗

r(G) belongs to the multiplicative domain (see (3.5)) of
φ, since φ extends π. Hence φ(λyaλx) = π(λx)φ(a)π(λy) for all x, y ∈ G
and a ∈ C(∂FG)⋊r G, and in particular φ is G-equivariant.
We are going to show that every G-equivariant unital completely

positive map φ from C(∂FG)⋊r G to B(H) is faithful, i.e. is nonzero
on positive elements. This will clearly imply that π is injective, as de-
sired. Proposition 2.9 implies that the restriction φ|C(∂FG) of φ to the
subalgebra C(∂FG) is an isometry onto its image. Applying Proposi-
tion 2.10 again (along with Remark 2.11) to the inverse (φ|C(∂FG))

−1,
we obtain a G-equivariant unital positive map τ : Im(φ) → C(∂FG).
Then ψ := τ ◦φ is a G-equivariant unital completely positive map from
C(∂FG)⋊r G to C(∂FG).
We claim that ψ is the canonical conditional expectation, i.e. that

ψ(λs) = 0 for every s ∈ G \ {e}. Since the canonical conditional
expectation is faithful, this will imply that φ is faithful, and hence that
π is faithful. To see the claim, note that ψ is the identity on C(∂FG) by
Proposition 2.9, and thus C(∂FG) belongs to the multiplicative domain
of ψ. In particular, for every s ∈ G and f ∈ C(∂FG) we have

(3.6) ψ(λs)f = ψ(λsf) = ψ((s · f)λs) = (s · f)ψ(λs).
But if the G-action on ∂FG is free, then for s ∈ G \ {e} and every
x ∈ ∂FG, there is f ∈ C(∂FG) such that f(x) 6= 0 but (s · f)(x) =
f(s−1x) = 0. It follows that ψ(λs)(x) = 0, and hence ψ(λs) = 0, as
desired.

Remark 3.7. In Section 7 we will present yet another proof of the
implication (2) ⇒ (1) of Theorem 3.1, which is closer to the original
argument in [37]. It runs as follows: by Archbold-Spielberg [3, The-
orem 1], if X is a topologically free minimal compact G-space, then
the reduced crossed product C(X) ⋊r G is simple. We will show in
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Lemma 7.2 that if X is a boundary, even non-topologically free, then
this implies that G is C*-simple.

3.4. Another characterization of C*-simplicity. IfG is C*-simple,
then for every amenable subgroup H ≤ G, the quasi-regular representa-
tion λG/H is weakly equivalent to λG. It turns out that this is actually
a characterization of C*-simplicity.

Theorem 3.8. A discrete group G is C*-simple if and only if for every
amenable subgroup H ≤ G, the quasi-regular representation λG/H is
weakly equivalent to λG.

Proof. The “only if” direction is clear from the definition of C*-simplicity
(see Remark 3.5), since λG/H is weakly contained in λG whenever H
is amenable. The converse follows from Proposition 3.4, which we
can apply to X = ∂FG because of Theorem 3.1, Lemma 3.3 and the
amenability of point stabilizers (Proposition 2.7).

4. Uniqueness of the trace and amenable IRS

We recall that a discrete group is said to have the unique trace prop-
erty if its reduced C*-algebra has a unique tracial state, i.e. if the
canonical trace τλ defined by

τλ(a) = 〈aδe, δe〉, a ∈ C∗
r(G),

is the only G-equivariant state on C∗
r(G).

Theorem 4.1. Let G be a discrete group. Then every tracial state τ
on the reduced C*-algebra C∗

r(G) concentrates on the amenable radical
Ra(G). That is, s /∈ Ra(G) implies that τ(λs) = 0 for every s ∈ G.

Proof. The proof is similar to the proof of the implication (2) ⇒ (1) of
Theorem 3.1. Let τ : C∗

r(G) → C be a G-equivariant state. Identify C

with the scalar subalgebra of C(∂FG). Then by Theorem 2.10, we can
extend τ to a G-equivariant unital positive map ψ : C(∂FG) ⋊r G →
C(∂FG). Note that ψ is actually completely positive (see [49, Theorem
3.9]).

Observe that ψ(λs) = τ(λs) is a constant function on ∂FG for each
s ∈ G. If s /∈ Ra(G), then Proposition 2.8 shows that it does not
act trivially on ∂FG, and hence there is x ∈ ∂FG such that s · x 6= x.
Choosing f ∈ C(∂FG) such that f(x) 6= 0 but f(s−1x) = 0 as before
shows that ψ(λs) = 0, as desired.

Remark 4.2. More generally, if A is any G-C*-algebra, then it fol-
lows as in the proof of Theorem 4.1 that every G-equivariant positive
functional φ on A⋊r G concentrates on A⋊r Ra(G).
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Corollary 4.3. A discrete group has the unique trace property if and
only if its amenable radical is trivial. In particular, every C*-simple
group has the unique trace property.

Proof. The “if” direction follows immediately from Theorem 4.1. Con-
versely, if N is a non-trivial amenable normal subgroup of G, then any
trace τ0 on the reduced C*-algebra C∗

r(N) gives rise to a trace τ on
the reduced C*-algebra C∗

r(G) via τ = τ0 ◦ EN , where EN denotes the
canonical conditional expectation from C∗

r(G) onto C
∗
r(N) that satisfies

EN(λg) = 0 for g ∈ G \N . Since N is amenable, λN weakly contains
the trivial representation, and hence the unit character on N that sends
every element to 1 extends to a non-canonical trace τ0 on C∗

r(N).

Let G be a discrete group, and let S(G) denote the set of subgroups
of G. The set S(G) is compact with respect to the Chabauty topology,
which corresponds to the product topology on {0, 1}G, and S(G) forms
a G-space with respect to the conjugation action of G.
An invariant random subgroup of G is a probability measure µ on

S(G) that is invariant with respect to the adjoint of the conjugation
action of G on S(G). Let Sa(G) denote the set of amenable subgroups
of G. Then µ is said to be amenable if Sa(G) is µ-measurable and
µ(Sa(G)) = 1.
The notion of an invariant random subgroup was introduced in [1],

and the problem was raised whether every amenable invariant random
subgroup is concentrated on the amenable radical. This problem was
recently solved affirmatively in [5]. Combining Theorem 4.1 and [59,
Corollary 5.15], we obtain a different proof.

Corollary 4.4. Every amenable invariant random subgroup on a dis-
crete group is concentrated on the amenable radical.

5. Stability under group extensions

In this section, we establish Theorem 1.4 from the introduction. In
particular, this yields the stability of C*-simplicity under group exten-
sions. This will require some preliminary lemmas. For a group G and
a subgroup H ≤ G, the centralizer of H is denoted by CG(H) = {s ∈
G | st = ts ∀t ∈ H}.
Lemma 5.1. Let N be a discrete group, let X be an N-boundary, and
let U ⊂ X be a non-empty open subset. Then the set {t ∈ N | tU ∩U 6=
∅} generates N .

Proof. LetH ≤ N denote the subgroup generated by {t ∈ N | tU∩U 6=
∅}. ThenHU is a non-empty open subset ofX such that tHU∩HU = ∅



18 E. BREUILLARD, M. KALANTAR, M. KENNEDY, AND N. OZAWA

for all t ∈ N \ H . By minimality and compactness, (tHU)tH∈N/H is
necessarily a finite partition of X . Note in particular that N/H is
finite. The corresponding equivalence relation on X induces a contin-
uous equivariant map from X to N/H . Since X is proximal, N/H is
proximal. Being finite, it follows that N/H is a singleton, and hence
that H = N .

Lemma 5.2. Let G be a discrete group and let N ≤ G be a normal sub-
group with universal N-boundary ∂FN . The N-action on ∂FN extends
to a G-boundary action on ∂FN .

Proof. For s ∈ G, define σs ∈ Aut(N) by σs(t) = sts−1 for t ∈ N .
Mapping N into Aut(N) via σ, it follows from [27, Proposition II.4.3]
that the N -action on ∂FN has an extension to an action of Aut(N)
on ∂FN . Composing this action with the map from G into Aut(N)
gives a G-action on ∂FN that extends the N -action. Since ∂FN is an
N -boundary, it is clear that this is a G-boundary action

Lemma 5.3. Let G be a discrete group and let N ≤ G be a C*-simple
normal subgroup with universal N-boundary ∂FN . Then the action of
s ∈ G on ∂FN is either trivial or free, where the G-action on ∂FN is
defined as in Lemma 5.2. The former possibility occurs if and only if
s ∈ CG(N).

Proof. If s ∈ G belongs to CG(N), then the automorphism σs ∈ Aut(N)
defined as in the proof of Lemma 5.2 is trivial, and it follows from the
construction of the G-action on ∂FN that s acts trivially on ∂FN .
For the converse, fix s ∈ G such that the set of s-fixed points Fix(s)

is non-empty. For every t ∈ N such that tF ix(s) ∩ Fix(s) 6= ∅, the
actions of the elements sts−1 and t coincide on Fix(s) ∩ t−1Fix(s).
However, since N is C*-simple, Theorem 3.1 implies that N acts freely
on ∂FN . Thus sts−1 = t. By Lemma 5.1, the elements with this
property generate N . Hence s ∈ CG(N).

We are now ready for the proof of Theorem 1.4.

Proof of Theorem 1.4. For brevity, let K = CG(N) and let L = NK.
Note that K and L are normal in G.
Consider the following three G-boundary actions. First, by Lemma

5.2, the N -action on ∂FN extends to a G-boundary action on ∂FN .
Similarly, the K-action on ∂FK extends to a G-action on ∂FK. Finally,
we have a G-boundary action on ∂F (G/L).

By the construction of these G-actions, N acts trivially on ∂FK and
∂F (G/L), but minimally on ∂FN . On the other hand, K acts trivially
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on ∂FN and ∂F (G/L), but minimally on ∂FK. Since G acts minimally
on ∂F (G/L), it is not difficult to see that the diagonal G-action on

X := ∂FN × ∂FK × ∂F (G/L)

is a boundary action.
First suppose that both N and K are C*-simple. Then by Theorem

3.1, the N -action on ∂FN and the K-action on ∂FK are free. If s ∈ G
does not act freely on X , then in particular s does not act freely on
either ∂FN or ∂FK. Hence by Lemma 5.3, s ∈ K. Then since K acts
freely on ∂FK, it follows that s = e. Therefore, G acts freely on X ,
and hence G is C*-simple by Theorem 3.1.
Conversely, suppose that G is C*-simple. For (x, y, z) ∈ X , consider

the stabilizer G(x,y,z). Lemma 2.7 implies that G(x,y,z)∩L = NxKy and
G(x,y,z)/(G(x,y,z) ∩ L) ⊂ (G/L)z are both amenable. Hence G(x,y,z) is
amenable. Therefore, by Proposition 3.4, the G-action on X is topo-
logically free. It follows that the N -action on ∂FN and the K-action
on ∂FK are also topologically free. Hence by Theorem 3.1, N and K
are C*-simple.
Finally, to see that C*-simplicity is closed under extension, suppose

that N and G/N are C*-simple. Observe that N necessarily has trivial
center, so CG(N) is isomorphic to a normal subgroup of G/N . The
above results imply that CG(N) is C*-simple, and hence that G is
C*-simple.

Remark 5.4. Note that Theorem 1.4 provides a negative answer to
[19, Question (Q)]. Also note that the analogous result for the property
of having trivial amenable radical is proved in [59, Lemma B.6].

Remark 5.5 (stability under finite index subgroups). Theorem 1.4
also straightforwardly implies that if H has finite index in G, then C*-
simplicity of G implies that of H , while vice versa the C*-simplicity of
H and the absence of non trivial finite normal subgroup in G implies
the C*-simplicity of G, (see also [18, Proposition 19]).

6. Examples of C*-simple groups

In this section, we put forward a simple criterion, which implies C*-
simplicity, and can be used to easily prove the C*-simplicity of many
groups.

Definition 6.1 (Normalish subgroups). Let G be a group. A subgroup
H ≤ G is said to be normalish if for every n ≥ 1 and t1, . . . , tn ∈ G the
intersection ∩itiHt

−1
i is infinite.
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This notion is slightly stronger than the notion of an n-step s-normal
subgroup, which was introduced in [6]. Note that a subgroup that is
n-step s-normal for every n ≥ 1 is normalish. Our main observation is
the following.

Theorem 6.2. A discrete group G with no non-trivial finite normal
subgroups and no amenable normalish subgroups is C*-simple.

Proof. Let G be a discrete group with no non-trivial finite normal sub-
group. To show that G is C*-simple, it is enough to prove that G acts
topologically freely on ∂FG, according to Theorem 3.1. If that is not
the case, we claim that each Gx, x ∈ ∂FG is normalish. Indeed let
s ∈ G \ {e} have a fixed point set Fix(s) with non empty interior. By
strong proximality any finite set of points x1, . . . , xk in ∂FG can be
mapped into the interior of Fix(s) by some g ∈ G, so that g−1sg fixes
each xi. In particular this applies to xi = tix, showing that the inter-
section ∩itiGxt

−1
i is non trivial. If this is finite for some choice of ti’s,

but non trivial for all choices of ti’s, then ∩g∈GgGxg
−1 is a non trivial

finite group normal subgroup, contrary to our assumption. Hence Gx

is normalish for each x ∈ ∂FG. Finally since point stabilizers are also
amenable by Lemma 2.7, this ends the proof.

We note however that the converse does not hold (see Subsection
6.3). In the next two subsections we apply this criterion to show the
C*-simplicity of many new groups and recover that of virtually all
previously known examples.

6.1. Bounded cohomology and ℓ2-Betti numbers. We recall that
a group is said to be C*-simple if its reduced C*-algebra is simple.
In this section we will prove the C*-simplicity of discrete groups with
trivial amenable radical, supposing that they have either non-trivial
bounded cohomology, or non-vanishing ℓ2-Betti numbers. The key idea
is that these conditions preclude the existence of amenable normalish
subgroups.

Let G be a discrete group. For n ≥ 0, let β
(2)
n denote the n-th ℓ2-

Betti number of G (see e.g. [41]). For the result about non-vanishing
ℓ2-Betti numbers, we require the following special case of [6, Theorem
1.3].

Proposition 6.3. Let G be a discrete group. If G contains an amenable

normalish subgroup, then β
(2)
n = 0 for every n ≥ 0.

Next, we consider the case when G has non-trivial bounded coho-
mology. Recall (see e.g. [43]) that a coefficient G-module (π, E) is an
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isometric linear G-representation π on a dual Banach space E (specifi-
cally, the dual of a separable Banach space) such that the operators in
the image of π are weak*-continuous.
For n ≥ 0, the bounded cohomology group Hn

b (G,E) of G with coeffi-
cient module (π, E) is the n-th cohomology group of the homogeneous
cochain complex

0 −→ ℓ∞(G,E)G
d1−→ ℓ∞(G2, E)G

d2−→ ℓ∞(G3, E)G
d3−→ · · ·

consisting of boundedG-invariant functions. TheG-action on ℓ∞(Gn, E)G

is given by (s · f)(x0, . . . , xn) = f(s−1x0, . . . , s
−1xn) and

(dnf)(s0, . . . , sn) =

n∑

j=0

(−1)jf(s0, . . . , sj−1, sj+1, . . . , sn)

for s ∈ G and f ∈ ℓ∞(Gn, E)G. Namely, Hn
b (G,E) = ker dn+1/ ran dn.

See [43] for details.
The dual Banach G-module E is said to be mixing if the stabilizer

subgroup Gx = {s ∈ G | sx = x} is finite for every x ∈ E \ {0}.
Examples of such G-modules include ℓp(G) for 1 ≤ p <∞.
The proof of the next result is similar to the proofs of [43, Corollary

7.5.9, Corollary 7.5.10].

Proposition 6.4. Let G be a discrete group, and let (π, E) be a coef-
ficient G-module with E mixing. If G contains an amenable normalish
subgroup, then Hn

b (G,E) is trivial for every n ≥ 0 and every mixing
dual Banach G-module.

Proof. Let H ≤ G be an amenable normalish subgroup. We can com-
pute the bounded cohomology of G using the complex

0 −→ ℓ∞(G/H,E)G −→ ℓ∞((G/H)2, E)G −→ ℓ∞((G/H)3, E)G −→ · · ·
We claim that ℓ∞((G/H)n, E)G vanishes, and hence that Hn

b (G,E)
also vanishes. To see this, fix f ∈ ℓ∞((G/H)n, E)G. Then for every t =
(t1, . . . , tn) ∈ (G/H)n, the element f(t) ∈ E is left invariant by every
element in ∩itiHt

−1
i . Since E is mixing, it follows that f(t) = 0.

We will say that a discrete group G has non-trivial bounded cohomol-
ogy if there is a coefficient G-module (π, E) with E mixing such that
Hn

b (G,E) is non-trivial for some n ≥ 0.

Theorem 6.5. Let G be a discrete group with trivial amenable radical
such that either

(1) G has non-trivial bounded cohomology, or
(2) G has non-vanishing ℓ2-Betti numbers.
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Then G is C*-simple.

Proof. Proposition 6.3 and Proposition 6.4 imply thatG has no amenable
normalish subgroup. The conclusion follows from Theorem 6.2.

The class of groups Creg was introduced in [44, Notation 1.2]. It con-
sists of those countable discrete groups G satisfying H2

b (G, ℓ
2(G)) 6= 0,

which can be seen as a cohomological analogue of the property of having
negative curvature. This includes groups admitting a non-elementary
proper isometric action on some Gromov-hyperbolic graph of bounded
valency, groups admitting a non-elementary proper isometric action on
some proper CAT(-1) space, and groups admitting a non-elementary
simplicial action on some simplicial tree.
The closely related class of groups Dreg was introduced in [57, Defini-

tion 2.6] as a variation on the class Creg. It consists of those countable
discrete groups with the property that there exists an unbounded quasi-
cocycle from G to ℓ2(G).
The classes Creg and Dreg both properly contain the class of acylin-

drically hyperbolic groups introduced in [48]. This latter class includes
all non-elementary hyperbolic and relatively hyperbolic groups, outer
automorphism groups of free groups on two or more generators, all but
finitely many mapping class groups of punctured closed surfaces and
most 3-manifold groups. It was proved in [16, Theorem 2.32] that an
acylindrically hyperbolic group is C*-simple if and only if its amenable
radical is trivial.
By [57, Lemma 2.8], every group in Dreg has either non-vanishing

first ℓ2-Betti number or non-trivial second bounded cohomology with
coefficients in ℓ2(G). Therefore, Theorem 6.5 implies the following
generalization of [16, Theorem 2.32].

Corollary 6.6. A group in Creg or Dreg is C*-simple if and only if its
amenable radical is trivial.

Recall that a discrete group is said to be strongly non-amenable if it
has positive first ℓ2-Betti number.

Corollary 6.7. A strongly non-amenable group is C*-simple if and
only if its amenable radical is trivial.

We note that by [25, Lemme V.3], if a group G contains an amenable
1-step s-normal subgroup, then the cost is zero for every probability
measure preserving action of G.

6.2. Linear groups. A linear group is a subgroup of GLn(K) for some
field K. A discrete linear group is a linear group endowed with the
discrete topology.
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Theorem 6.8. Let G be a discrete linear group. If H ≤ G is an
amenable subgroup, then there is a finite subset F ⊂ G such that⋂

t∈F tHt
−1 is contained in the amenable radical of G. In particular, if

G has trivial amenable radical, then every normalish subgroup of G is
non-amenable.

Proof. Let G be a subgroup of GLn(K) for some algebraically closed
field K and let H ≤ G be an amenable subgroup. We may assume that
Ra(G) ≤ H .
For a finite subset F ⊂ G, let HF = ∩t∈F tHt

−1, and let LF denote
the Zariski closure of HF , which is an algebraic subgroup of GLn(K).
Applying the descending chain condition for varieties, the intersection
L = ∩FLF over finite subsets F ⊂ G is actually a finite intersection,
and hence L = LF0

for some finite subset F0 ⊂ G.
Observe that for t ∈ G, tLF0

t−1 = LtF0
. But by construction, LF0

⊂
LtF0

. Thus, L ⊂ tLt−1, and it follows that L is normalized by G. Hence
L∩G is a normal subgroup of G. We will show that L∩G is amenable.
Since HF0

⊂ L ∩G, this will prove the result.
Suppose for the sake of contradiction that L ∩ G is not amenable.

Let A = HF0
. Then A is an amenable subgroup of G with the property

that AF is Zariski dense for every finite subset F ⊂ G. Hence by
replacing G with L ∩ G, we may assume that G is a subgroup of the
algebraic group L containing an amenable subgroup A such that AF is
Zariski-dense in L for every finite subset F ⊂ G.
Replacing G with L0 ∩ G, where L0 is the connected component of

the identity in L, we may further assume that L is connected as an
algebraic group. Observe that L is not solvable, for otherwise G would
be amenable. Hence L admits a center-free simple quotient. Projecting
G to that quotient, we see that we may assume additionally that L is
a connected center-free simple algebraic K-group.
Recall that according to the Tits alternative [58] every amenable

finitely generated linear group is virtually solvable. In characteristic
zero this remains true without the finite generation assumption. So first
suppose that K has characteristic zero. Then we may conclude that A
is virtually solvable. Hence L is also virtually solvable, contradicting
our assumption that L is simple.
Now suppose that K has characteristic p > 0. We first claim that

A is locally finite. To see this, we require the following definition. For
an arbitrary subgroup Γ of GLn(K), let core(Γ) denote the inductive
limit

core(Γ) = lim−→ cls(Λ)0,
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as Λ ranges over all finitely generated subgroups of Γ, where cls(Λ)0

denotes the connected component of the identify of the Zariski closure
of Λ. Then core(Γ) is a connected algebraic subgroup of GLn(K) that is
normalized by Γ and core(Γ)∩Γ is Zariski-dense in core(Γ). Moreover,
Γ is locally finite if and only if core(Γ) is trivial.
Now core(A) is a connected algebraic subgroup that is normalized

by A, and hence by L. According to the Tits alternative every finitely
generated subgroup of A is virtually solvable. Hence its Zariski closure
has a solvable connected component of the identity. It follows that
core(A) is solvable. Since L is simple, we conclude that core(A) is
trivial, and hence that A is locally finite.
Let Fp denote the algebraic closure of the prime field Fp in K. Let

GLn(K) act on Mn(K) by left multiplication. We claim that there
is a G-invariant K-vector subspace W in Mn(K), which admits a Fp-
structure, i.e. an Fp-vector subspaceW0 such thatW =W0⊗Fp

K, such
that A preserves W0. SinceW is G-invariant, it is also L-invariant, and
making L act on W , we obtain an embedding of L as an algebraic sub-
group of GLm(K), m = dimW . Under this embedding G ≤ GLm(K)
and A ≤ GLm(Fp) are Zariski-dense in L. Hence, up to changing n

into m, and modulo the claim, we may assume that A ≤ GLn(Fp).
Now it is easy to reach a contradiction: for every t ∈ G, A∩ tAt−1 is

Zariski-dense in L. In particular, since L is center-free, the intersection
of the centralizers CL(h) := {x ∈ L; xa = ax} for a varying in A∩tAt−1

is trivial. And by the descending chain condition, there is a finite set
of a’s, say a1, . . . , ak in A ∩ tAt−1 such that ∩k

1CL(ai) is trivial. By
assumption t−1ait ∈ GLn(Fp) for each i = 1, . . . , k. Thus there is a
Galois automorphism σ of K, a power of the Frobenius map x 7→ xp,
such that σ(t−1ait) = t−1ait for each i = 1, . . . , k. This implies that
σ(t)t−1 commutes with each ai, and hence is trivial. This means that
σ(t) = t, i.e. that t ∈ GLn(Fp). Hence G ≤ GLn(Fp), and G is locally
finite, hence amenable, which is a contradiction.
It remains to verify the claim. Note that since every element a of A

has finite order, its eigenvalues belong to Fp. Now consider the trace
tr(xy) on Mn(K) as a non-degenerate bilinear form. Let W be the
K-vector subspace of Mn(K) generated by all matrices a ∈ A. Pick a
basis a1, . . . , am ∈ A of W . Then the linear map sending w ∈ W to
the m-tuple (tr(wa1), . . . , tr(wam)) is a K-linear isomorphism, which
sends the Fp-linear span of the ai’s to (Fp)

m. This gives the desired

Fp-structure on W . Since A is Zariski-dense in G and L, it follows that
W is fixed by L, proving the claim. This ends the proof.
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In an important paper [7], Bekka, Cowling and de la Harpe proved
that lattices in semi-simple real Lie groups with trivial center are C*-
simple. This was vastly extended by Poznansky [54] to all linear groups
in the form below. Combining Theorem 6.8 with Theorem 6.2, we thus
obtain a new proof of this result.

Corollary 6.9. A discrete linear group is C*-simple if and only if its
amenable radical is trivial.

Remark 6.10. Another route for proving this fact is to use Theo-
rem 3.1 by exhibiting a topologically free boundary action. As in the
proof of the Tits alternative [58], or as in [7], passing to a finite index
subgroup if necessary, and looking at various linear representations,
one can let the linear group G act proximally and strongly irreducibly
on projective spaces over local fields. The associated limit sets (i.e.
the closure of the top eigendirections of all proximal elements) are G-
boundaries and they are topologically free modulo the kernel of the
projective representation. One can then proceed in stages using the
stability under group extensions (Theorem 5) and induction on the
dimension of the Zariski closure of G.

6.3. Amalgamated free products and Baumslag-Solitar groups.
In [19, Theorem 2] de la Harpe and Préaux consider the C*-simplicity
of certain amalgamated free products and HNN extensions including
the Baumslag-Solitar groups BS(n,m) = 〈a, t | t−1amt = an〉 with
|n| 6= |m| and |n|, |m| ≥ 2. Their analysis implies that the action of
these groups on the boundary of their Bass-Serre tree is a topologically
free boundary action. Thus C*-simplicity follows from Theorem 3.1.
We note that the cyclic subgroup 〈a〉 ≤ BS(n,m) is amenable and
normalish.

6.4. Groups with few amenable subgroups. In this subsection, we
present another criterion, which implies C*-simplicity and applies to
certain new family of groups.

Theorem 6.11. A discrete group with only countably many amenable
subgroups is C*-simple if and only if its amenable radical is trivial.

Proof. Suppose that the amenable radical of G is trivial, but that G is
not C*-simple. Then by Theorem 3.1, the G-action on ∂FG is faithful
(see Proposition 2.8) but not topologically free. Let s ∈ G be such
that the set of s-fixed points Fix(s) has non-empty interior. We claim
that there is y ∈ Fix(s) such that stabilizer Gy fixes a non-empty open
subset of ∂FG pointwise.
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For x ∈ ∂FG, let Fx = ∩t∈Gx
Fix(t) denote the set of points in

∂FG fixed by every element in the stabilizer Gx. Note that Fx is
closed and contains x. By Lemma 2.7, the stabilizer Gx is amenable.
Therefore, by the assumption that G contains only countably many
amenable subgroups, there is a countable sequence (xk) ∈ ∂FG such
that ∪x∈Fix(s)Fx = ∪kFxk

. Since ∪x∈Fix(s)Fx contains Fix(s) and thus
has non empty interior, the Baire category theorem implies that there
is y ∈ Fix(s) such that Fy has non-empty interior, say U . This means
that Gy fixes U pointwise and proves the claim.
On the other hand, by compactness and minimality, there are s1, . . . , sn

in G such that s1U, . . . , snU cover ∂FG. Notice that the elements in
skGys

−1
k fix every point in skU . Therefore, the elements in the inter-

section ∩kskGys
−1
k fix every point in ∂FG. But Gy is normalish (see

the proof of Theorem 6.2). So this contradicts the faithfulness of the
action and ends the proof.

For a prime number p, a Tarski monster group of order p is an infinite
group with the property that every non-trivial subgroup is cyclic of
order p. Tarski monster groups of order p were first constructed in [45]
for p > 1075 as a counterexample to the Day-von Neumann conjecture
about the amenability of groups which do not contain free subgroups.
In [46], torsion-free Tarski monster groups were constructed. These
are infinite groups with the property that every non-trivial subgroup
is cyclic of infinite order.
It was shown in [37, Corollary 6.6], using an ad hoc argument, that

Tarski monster groups are C*-simple. However, since both Tarski mon-
ster groups and torsion-free Tarski monster groups are finitely gen-
erated and have trivial amenable radicals, they satisfy the hypothe-
ses of Theorem 6.11. Thus we obtain the following generalization of
[37, Corollary 6.6].

Corollary 6.12. Tarski monster groups and torsion-free Tarski mon-
ster groups are C*-simple.

The free Burnside group of rank m and exponent n, written B(m,n)
is an infinite group that is, in a certain specific sense, the “largest”
group with m generators such that every element in the group has
order n. It was recently shown in [47] that B(m,n) is C*-simple for
m ≥ 2 and n odd and sufficiently large.
It was shown in [33] that for n sufficiently large, every non-cyclic

subgroup of the free Burnside group B(m,n) contains a subgroup iso-
morphic to B(2, n). By [2], if n is odd, then B(2, n) is non-amenable.
Thus for m ≥ 2 and n odd and sufficiently large, B(m,n) satisfies the
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hypotheses of Theorem 6.11, and we recover the following result from
[47].

Corollary 6.13. For m ≥ 2 and n odd and sufficiently large, the free
Burnside group B(m,n) is C*-simple.

7. Reduced crossed products and point stabilizers

In this section, we further investigate the simplicity of reduced crossed
product C*-algebras over C*-simple groups, and collect further infor-
mation about the point stabilizers of boundary actions.

7.1. Simplicity of reduced crossed products. Let A be a G-C*-
algebra, i.e. a C*-algebra equipped with a G-action. The reduced
crossed product A ⋊r G is then also a G-C*-algebra with respect to
the action of G by conjugation (3.3). Recall the canonical conditional
expectation E : A⋊r G→ A defined in (3.4).
The following theorem answers a question of de la Harpe and Skan-

dalis and generalizes [20, Theorem I].

Theorem 7.1. Let G be a discrete C*-simple group. Then for any
unital G-C*-algebra A having no non-trivial G-invariant closed ideal,
the reduced crossed product A⋊r G is simple.

The proof of Theorem 7.1 is divided into several steps.

Lemma 7.2. Let A be a unital G-C*-algebra and let X be a G-boundary.
Then for any non-trivial closed ideal I of A⋊rG, the ideal J of (A⊗ C(X))⋊r

G generated by I is non-trivial.

Proof. We proceed as in the proof of (2) ⇒ (1) in [37, Theorem 6.2].
Let π : A⋊r G→ B(H) be a *-representation such that ker π = I. We
extend π to a unital completely positive map π̄ from (A⊗ C(X))⋊rG
into B(H).
Note that A⋊rG is contained in the multiplicative domain of π̄, that

is π̄(afb) = π(a)π̄(f)π(b) for every a, b ∈ A ⋊r G and f ∈ C(X) (see
[13, Proposition 1.5.6]). In particular, π(A) and π̄(C(X)) commute.
If π̄ were multiplicative on C(X) we would be done, because then π̄

would be a *-homomorphism and its kernel would contain I. This may
not be the case, but since X is a G-boundary, it is easy to check that
π̄ is completely isometric on C(X). Since π̄ extends to a completely
isometric map on the injective envelope of C(X), it follows as in the
proof of [15, Thm 3.1] that there is a *-homomorphism Q from the C*-
subalgebra C∗(π̄(C(X))) generated by π̄(C(X)) onto C(X) such that
Q ◦ π̄ = idC(X). The C*-subalgebra C∗(π̄(C(X))) is a G-C*-algebra
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with the conjugation G-action through π, and the ideal K = kerQ is
G-invariant.
We consider

D = C∗
(
π̄
(
(A⊗ C(X))⋊r G

))
= C∗(π̄(C(X))) · π(A⋊r G)

and the ideal L of D defined by

L = K · π(A⋊r G).

An element d ∈ D belongs to L if and only if eid → d for an approx-
imate unit (ei) of K. This implies that L ∩ C∗(π̄(C(X))) = K. Let
Q now denote the quotient map from D onto D/L. Then Q ◦ π̄ is a
*-homomorphism, since it is a unital completely positive map which is
multiplicative on A⊗C(X) and G-equivariant. The ideal ker(Q ◦ π̄) is
proper and contains I.

Let B be a G-C*-algebra and let K be a G-invariant closed ideal
of B. Then, letting K ⋊̄r G denote the kernel of the map B ⋊r G →
(B/K)⋊r G,

K ⋊̄r G = {b ∈ B ⋊r G : E(bλ∗s) ∈ K ∀s ∈ G},
and K ⋊̄rG is a closed ideal in B⋊rG which contains K⋊rG. (In fact,
these two ideals coincide whenever G is exact.) The following lemma
is inspired by [3].

Lemma 7.3. Let G be discrete C*-simple group with universal G-
boundary ∂FG. Let A be a unital G-C*-algebra and let J be a closed
ideal in (A⊗ C(∂FG))⋊r G. Then setting JA = J ∩ (A⊗ C(∂FG)),

JA ⋊r G ⊂ J ⊂ JA ⋊̄r G.

Proof. For x ∈ ∂FG, let Jx
A = (idA ⊗δx)(JA), where idA ⊗δx is the

homomorphism from A ⊗ C(∂FG) onto A given by evaluation at x.
Then Jx

A is a (potentially non-proper) ideal of A.
Let πx denote the induced homomorphism from (A ⊗ C(∂FG))/JA

ontoA/Jx
A. Note that any irreducible representation of (A⊗C(∂FG))/JA

factors through some πx, and hence the set {πx | x ∈ ∂FG} is a faithful
family of representations.
Let x ∈ ∂FG be such that Jx

A 6= A. Consider the composition of the
map

J + A⊗ C(∂FG) → (J + A⊗ C(∂FG))/J

∼= (A⊗ C(∂FG))/JA
πx→ A/Jx

A
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with any faithful representation of A/Jx
A into B(H). By Arveson’s

extension theorem, this extends to a unital completely positive map
Φx from (A⊗ C(∂FG))⋊r G into B(H).

We claim that Φx = Φx ◦ E, where E is the canonical conditional
expectation onto A ⊗ C(∂FG). Since A⊗ C(∂FG) is contained in the
multiplicative domain of Φx and Φx(f) = f(x) for f ∈ C(∂FG), it
suffices to show that Φx(λs) = 0 for every s ∈ G \ {e}. By Theorem
3.1, G acts freely on ∂FG. Hence there is h ∈ C(∂FG) such that
h(x) = 1 and supp(h) ∩ s supp(h) = ∅. Then Φx(λs) = Φx(hλsh) =
Φx(h(sh)λs) = 0, which proves the claim.

Thus, we see that Φx(E(J)) = Φx(J) = 0 for all x ∈ ∂FG. Since
E(J) ⊂ A ⊗ C(∂FG), one obtains E(J) ⊂ JA, or equivalently that
J ⊂ JA ⋊̄r G. The other inclusion, JA ⋊r G ⊂ J is obvious.

Proof of Theorem 7.1. Let A be a unital G-C*-algebra and let I be
a non-trivial closed ideal in A ⋊r G. By Lemma 7.2, the ideal J of
(A⊗ C(∂FG))⋊rG generated by I is non-trivial, and by Lemma 7.3, for
JA = J∩(A⊗C(∂FG)) we have J ⊂ JA⋊̄rG. It follows that IA = J∩A
is a proper ideal such that I ⊂ IA ⋊̄rG. By the assumption that A has
no non-trivial G-invariant closed ideal, it follows that IA = {0}, and
hence that I = {0}.
Remark 7.4. Theorem 7.1 applies in particular when A = C(X) for
a minimal compact G-space X .

The next result was first established in [37].

Corollary 7.5. Let G be a discrete group and X a G-boundary. Then
G is C*-simple if and only if C(X)⋊r G is simple.

Proof. The “only if” direction follows from the previous theorem. The
“if” direction is immediate from Lemma 7.2.

7.2. Stabilizer subgroups. Let G be a discrete group and let X be a
G-boundary. In this subsection, we relate the C*-simplicity of G to the
structure of stabilizer subgroups Gx for x ∈ X . If X is topologically
free, then G is C*-simple by Theorem 3.1. We note that the converse
is not true, even if we assume the G-action on X to be faithful (for
example, Thompson’s group V is C*-simple but its action on the circle
is not topologically free [40]). However the following holds:

Proposition 7.6. Let G be a discrete group and let X be a G-boundary.
Assume there is x ∈ X such that the point stabilizer Gx is amenable.
Then the following are equivalent:

(1) G is C*-simple,
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(2) X is topologically free.

Proof. If X is not topologically free, then Proposition 3.4 shows that
λG is not weakly contained in λG/Gx

. However, Gx is amenable, and
hence G is not C*-simple (see Remark 3.5).

Remark 7.7. The implication (1) =⇒ (2) holds more generally when
X is assumed only to be a minimal compact G-space. To see this,
note that the amenability of Gx allows us to define a *-representation
πx : C(X)⋊r G→ B(ℓ2(G/Gx)) by

πx(λs) = λG/Gx
(s), s ∈ G,

πx(f)δp = f(px)δp, f ∈ C(X), p ∈ G/Gx.

This representation cannot be faithful if X is not topologically free, be-
cause there will be s ∈ G \ {e} and x ∈ X such that s fixes a neighbor-
hood of x, and πx(λsf) = πx(f) for any function f ∈ C(X) supported
on the fixed points of s. However, this contradicts the simplicity of
C(X)⋊r G obtained from Theorem 7.1.

When the G-boundary X is topologically free, then Gx may or may
not be amenable. For example, the action of PSLd(Z) on P(Rd) is a
topologically free boundary action with Gx = {e} for all but countably
many x, but with Gx non-amenable for some points x, when d ≥ 3.
If we assume that X is not topologically free (which is typically the
case in practice when one does not know if G is C*-simple), then this
proposition shows that if G is C*-simple, then all stabilizer subgroups
are non-amenable. The converse assertion is not true, even if we assume
that the G-action is faithful on X (this relies on Le Boudec’s example
of a non C*-simple group without amenable radical, see [40, Example
3.15]). However, the following proposition provides a partial converse.

Proposition 7.8. Let G be a discrete group and let X be a G-boundary.
If there is x ∈ X with Gx C*-simple, then G is C*-simple.

The remainder of this section is devoted to the proof. LetH ≤ G be a
subgroup and let EH denote the canonical conditional expectation from
C∗

r(G) onto C∗
r(H) defined by EH(λs) = λs for s ∈ H and EH(λs) = 0

for s ∈ G\H . Thus the canonical tracial state τλ on C∗
r(G) corresponds

to E{e}.
For every non-trivial closed ideal I of C∗

r(G), the subspace EH(I)
is a (possibly non-closed) non-zero ideal of C∗

r(H). Indeed, EH(I) is
an ideal since EH is a C∗

r(H)-bimodule map, and it is non-zero since
τλ = τλ ◦ EH is faithful on C∗

r(G), i.e. does not vanish on non-zero
positive elements.
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For x ∈ X , the conditional expectation EGx
extends to a conditional

expectation Ex from C(X) ⋊r G onto C∗
r(Gx) satisfying Ex(fλs) =

f(x)EGx
(λs) for f ∈ C(X) and s ∈ G. The proposition follows imme-

diately from the following lemma.

Lemma 7.9. Let I be a non-trivial closed ideal in C∗
r(G). Then for

every x ∈ X, the closure of EGx
(I) is a non-trivial closed ideal of

C∗
r(Gx), where EGx

denotes the conditional expectation from C∗
r(G)

onto C∗
r(Gx).

Proof. Let x ∈ X be given. It suffices to show EGx
(I) is not dense in

C∗
r(Gx). By Lemma 7.2, the closed ideal J of C(X)⋊r G generated by

I is a proper ideal which has zero intersection with C(X). As usual,
we consider the state on C(X) + J obtained by composing the map

C(X) + J → (C(X) + J)/J ∼= C(X)

with point evaluation at x. Let φx be a state extension on C(X)⋊r G.
Since C(X) is contained in the multiplicative domain (see (3.5)) of

φx, we have φx(fλs) = f(x)φx(λs) for every f ∈ C(X) and s ∈ G.
We claim that φx(λs) = 0 for every s ∈ G \ Gx. Indeed, there is
h ∈ C(X) such that h(x) = 1 and supp(h) ∩ s supp(h) = ∅, and hence
φx(λs) = φx(hλsh) = φx(h(sh)λs) = 0. It follows that φx = φx ◦ Ex.
Since φx(I) = 0, the ideal EGx

(I) = Ex(I) is not dense.

Remark 7.10. The recent preprint [40, Corollary 3.14] proves another
result of this kind: if the boundary X is extreme, in the sense that every
proper closed subset can be sent into any given open subset by a group
element, then the existence of a point x with non-amenable neighbor-
hood stabilizer G0

x (i.e. the subgroup of elements a neighborhood of x
pointwise) implies the C*-simplicity of G.

8. Connes-Sullivan conjecture

In this section we discuss a new operator algebraic property of dis-
crete groups, which is stronger than C*-simplicity and still holds for
many of the examples of Section 6.1 and Section 6.2. It is connected
to the following theorem of Zimmer [60], which had been conjectured
by Connes and Sullivan.

Connes–Sullivan Conjecture (Zimmer’s Theorem). Let L be a
connected Lie group, H ≤ L a closed subgroup, and m a L-quasi-
invariant Borel measure on L/H. If G is an abstract subgroup of L,
whose action on (L/H,m) is amenable in the sense of Zimmer, where
G is regarded as a discrete group, then (G)0 is solvable, where (G)0
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denotes the connected component of the identity of the closure G of G
in L.

This conjecture was proved by Carrière and Ghys [14] for the case
when G is a free group, and by Zimmer [60] in general. Breuillard and
Gelander [11, 12] gave an alternative proof along the lines of Carrière
and Ghys. We will give a new interpretation of the Connes–Sullivan
conjecture and generalize it.
Recall that if a non-singular action G y (X,m) is amenable, then

the Koopman unitary representation π of G on L2(X,m) is weakly
regular [4, 38]. (For the purposes of this paper, this is essentially all
that one has to know about the amenability of a non-singular action.)
A unitary representation π of G on H is said to be weakly regular if
it is weakly contained in the regular representation λ of G on ℓ2(G),
i.e., if ‖π(f)‖B(H) ≤ ‖λ(f)‖B(ℓ2(G)) for every f ∈ C[G]. We observe
that if (X,m) = (L/H,m), then the Koopman representation π : G→
B(H) extends to a continuous unitary representation of the ambient
group L. Here the continuity is with respect to the strong operator
topology (SOT, in short). A subbase of open sets for the SOT is given by
U(S, ξ, ε) := {T ∈ B(H) : ‖(T −S)ξ‖H < ε} for S ∈ B(H), ξ ∈ H, and
ε > 0. Therefore, Zimmer’s theorem (the Connes–Sullivan conjecture)
follows (see Remark 8.5 below) if G as above has the property (CS)
defined below. We recall that the amenable radical Ra(G) of G is the
largest amenable normal subgroup of G.

Definition 8.1. We say a discrete group G has property (CS) if the
following statement holds: For every weakly regular unitary representa-
tion π : G→ B(H), there exists an SOT-neighborhood U of the identity
in B(H) such that π−1(U) ⊂ Ra(G).

Proposition 8.2. Every discrete group G with property (CS) and triv-
ial amenable radical is C*-simple.

Proof. We will prove that (CS) implies the absence of amenable nor-
malish subgroups. The proposition will then follow from Theorem 6.2.
If H ≤ G is amenable, then the quasi-regular representation π = λG/H

of G on ℓ2(G/H) is weakly regular, but if H is normalish, then π(G)
is clearly not discrete.

Remark 8.3. The converse is not true. The Baumslag-Solitar groups
G = BS(m,n) from Section 6.3 are C*-simple, but do not have prop-
erty (CS). In fact, the subgroup Λ := 〈a〉 < G is not only amenable
and normalish, but also commensurated in G, i.e., for every t ∈ G, the
subgroup Λ∩tΛt−1 has finite index in Λ. This implies that the Schlicht-
ing completion G (which is the closure of G in Sym(G/Λ) with respect
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to the pointwise convergence topology) is a locally compact group, and
the action of G on (G,m) is amenable (because it has G/Λ as a factor).

As we have explained above, the following theorem generalizes Zim-
mer’s theorem. The proof relies on the Strong Tits Alternative [10] and
the fact from Theorem 6.8 that a linear group with a trivial amenable
radical has no amenable normalish subgroups.

Theorem 8.4. Every linear group G has property (CS).

Proof. Let G ≤ GLd(K) be any linear group and let π : G→ B(H) be
a weakly regular unitary representation of G. Fix a unit vector ξ ∈ H
and let U0 := U(1, ξ, ε) = {T ∈ B(H) : ‖(T − 1)ξ‖ < ε}. We claim
that there is ε > 0 (in fact ε will depend only on d, and not on K, G,
π, nor ξ) such that π−1(U0) generates an amenable subgroup of G.
By the Strong Tits Alternative [10, Theorem 1.1], there is N =

N(d) ∈ N such that for any symmetric subset S ⊂ G containing 1,
either SN contains two elements {g1, g2} which freely generate a non
abelian free group or the subgroup 〈S〉 generated by S is amenable.
(Note that by the Tits Alternative, the group 〈S〉 is amenable if and
only if every finitely generated subgroup of it is virtually solvable.)
Suppose the former possibility occurs and let h := (g1 + g−1

1 + g2 +
g−1
2 )/4 ∈ C[G]. By Kesten’s theorem, one has ‖π(h)‖ ≤ ‖λ(h)‖ =√
3/2. It follows that for any unit vector ξ ∈ H, one has

‖π(g1)ξ − ξ‖2 + ‖π(g2)ξ − ξ‖2 = 4(1− 〈π(h)ξ, ξ〉) ≥ 4− 2
√
3.

Hence, ‖π(gi)ξ − ξ‖ ≥
√

2−
√
3 = (

√
6 −

√
2)/2 for some i ∈ {1, 2},

and so ‖π(s)ξ − ξ‖ ≥ (
√
6−

√
2)/2N for some s ∈ S. This means that

ε = (
√
6−

√
2)/2N does the job, and the claim is proved.

Now, since Λ := 〈π−1(U0)〉 is amenable, by Theorem 6.8 one may
find a finite subset F ⊂ G such that

⋂
t∈F tΛt

−1 ⊂ Ra(G). Hence, for
U =

⋂
t∈F π(t)U0π(t)

∗, one has π−1(U) ⊂ ⋂t∈F tΛt
−1 ⊂ Ra(G).

Remark 8.5. To see that this implies indeed Zimmer’s theorem, note
that (CS) implies that there is a neighborhood of the identity U in the
Lie group L such that the subgroup generated by G ∩ U is amenable.
However every neighborhood of the identity in a connected Lie group
generates the Lie group. It is then not difficult to see that G∩ (G)0∩U
generates G ∩ (G)0, which is thus amenable, and therefore virtually
solvable. As a connected Lie group (G)0 has no subgroup of finite
index, so it must be solvable.

There are many more examples of groups with the property (CS).
Recall the definition of the n-th bounded cohomology group of G from
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Section 6.1. Hull and Osin ([32, 48]) proved that if G/Ra(G) is acylin-
drically hyperbolic, then H2

b(G, ℓ
2(G/Ra(G))) 6= 0. Thus, the next

result implies in particular that acylindrically hyperbolic groups have
property (CS).

Theorem 8.6. Every group G such that H2
b(G, ℓ

2(G/Ra(G))) 6= 0 has
property (CS).

Before presenting a proof of Theorem 8.6 in full generality, we will
first present a proof for when G is the free group Fr of rank r, since
the proof in this special case is particularly easy and illuminating.

Proof of Theorem 8.6 for G = Fr. We identify Fr with the Cayley graph
with respect to the free generators, which is a regular tree of degree 2r.
Let X be the visual boundary of Fr. Every triplet {x1, x2, x3} of dis-
tinct points in X determines the center c(x1, x2, x3) ∈ Fr of the tripod
spanned by {x1, x2, x3}. Namely, c(x1, x2, x3) is the unique point in Fr

which belongs to the intersection [x1, x2] ∩ [x2, x3] ∩ [x3, x1] of the geo-
desic paths [xi, xj] connecting distinct points xi and xj . We note that
c(sx1, sx2, sx3) = sc(x1, x2, x3) for every s ∈ Fr and every {x1, x2, x3}.
Take open subsets Ui, i = 1, 2, 3, in X such that c(x1, x2, x3) = 1 for

all (x1, x2, x3) ∈ U1×U2×U3. Since G acts minimally on X , for each i
there is a finite subset Fi ⊂ G such that X = FiUi. On the other hand,
by the equivariance of the center map,

s(U1 × U2 × U3) ∩ (U1 × U2 × U3) = ∅,

for every s ∈ G \ {e}, where G acts diagonally on X3. Now pick z ∈ X
and put Ai = {s ∈ G : sz ∈ Ui}. By the first condition, Ai is left
syndetic, i.e., G = FiAi. By the second condition,

s(A1 ×A2 × A3) ∩ (A1 × A2 ×A3) = ∅

for every s ∈ G \ {e}.
Let π : G→ B(H) be a weakly regular unitary representation. Then,

the identity map on C[G] extends to a continuous ∗-homomorphism
C∗

λ(G) ∋ λ(f) 7→ π(f) ∈ C∗
π(G). By Arveson’s Extension Theorem (see

[13, Theorem 1.6.1]), this map extends to a unital completely positive
map ϕ from B(ℓ2(G)) into B(H). Furthermore, since C∗

r(G) belongs to
the multiplicative domain of ϕ, ϕ(λ(s)Tλ(t)) = π(s)ϕ(T )π(t) for every
T ∈ B(ℓ2(G)) and s, t ∈ G (see [13, Proposition 1.5.6]).
We identify ℓ∞(G) ⊂ B(ℓ2(G)) with the subalgebra of diagonal oper-

ators and let ai := ϕ(χAi
) ∈ B(H), where χAi

denotes the characteristic
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function corresponding to Ai. Since

∑

s∈Fi

π(s)aiπ(s)
∗ = ϕ

(
∑

s∈Fi

λ(s)χAi
λ(s)∗

)
= ϕ

(
∑

s∈Fi

χsAi

)
≥ 1,

each ai is a non-zero positive operator. Thus a = a1⊗a2⊗a3 ∈ B(H⊗3)
is a non-zero positive operator satisfying

∑

s∈G

π⊗3(s)aπ⊗3(s)∗ = sup
E⊂Gfinite

ϕ

(
∑

s∈E

λ⊗3(s)χA1×A2×A3
λ⊗3(s)∗

)

= sup
E⊂Gfinite

ϕ

(
∑

s∈E

χs(A1×A2×A3)

)

≤ 1.

Hence there cannot be a sequence (sn)n in G such that π(sn) → 1 in
the SOT.
In fact, a stronger statement holds. For any unit vector ξ ∈ H⊗3

with corresponding orthogonal projection denoted by Pξ, one has
∑

s∈G

|〈π⊗3(s)a1/2ξ, a1/2ξ〉|2 =
∑

s∈G

〈π⊗3(s)a1/2Pξa
1/2π⊗3(s)∗a1/2ξ, a1/2ξ〉

≤ 〈a1/2ξ, a1/2ξ〉
≤ 1.

This means that π⊗3 contains a non-zero subrepresentation which is
unitarily equivalent to a subrepresentation of the regular representation
λ.

Proof of Theorem 8.6. Let V be a coefficient G-module, let V∗ denote
the predual of V and let π : G → B(H) be an weakly regular unitary
representation of G. The group G acts isometrically on B(H) by con-
jugation. Noting that ℓ∞(Gn, V ) = B(V∗, ℓ

∞(Gn)), we consider the
complex

0 −→ B(V∗, B(H))G
d′
1−→ B(V∗, B(H⊗2))G

d′
2−→ B(V∗, B(H⊗3))G

d′
3−→ · · · ,

where G acts on B(V∗, B(H⊗n)) by (s·F )(v∗) = π⊗n(s)F (s−1v∗)π
⊗n(s)∗

and (d′nF )(v∗) = ∂n(F (v∗)), where ∂n : B(H⊗n) → B(H⊗(n+1)) is de-
fined by

∂n(T ) =
n∑

j=0

(−1)jW ∗
j (1⊗ T )Wj,

whereWj denotes the unitary operator associated with the permutation
(j 0 · · · j − 1 j + 1 · · · n). We claim that Hn

b (G, V ) embeds into
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ker d′n+1/ ran d
′
n. Before proving the claim, we first explain how this

finishes the proof.
SinceH2

b(G, V ) 6= 0 for V = ℓ2(G/Ra(G)), one has B(V∗, B(H⊗3))G 6=
0 by the claim. Take a non-zero F ∈ B(V∗, B(H⊗3))G and vectors v∗ ∈
V∗ and ξ ∈ H such that 〈F (v∗)ξ, ξ〉 = 1. Let U0 := U(1, ξ, (4‖F (v∗)‖‖ξ‖)−1).
Then, for every s ∈ π−1(U0), one has

|〈F (sv∗)ξ, ξ〉| = |〈π(s)F (v∗)π(s)∗ξ, ξ〉| ≥ 1/2.

Let Q : G → G/Ra(G) be the quotient map. Since sv∗ → 0 weakly
as Q(s) → ∞, the subset Q(π−1(U0)) is finite. Since every nontrivial
conjugacy class of G/Ra(G) is infinite [48, Theorem 8.4], there is a
finite subset F ⊂ G such that

⋂
t∈F tπ

−1(U0)t
−1 ⊂ Ra(G). Hence, for

U =
⋂

t∈F π(t)U0π(t)
∗, one has π−1(U) ⊂ Ra(G).

For the proof of the claim, we recall the following general fact about
completely positive maps: For any Hilbert spaces K1,K2,L and any uni-
tal completely positive map θ : B(K1) → B(K2), there is a unique uni-
tal completely positive map θ⊗id : B(K1⊗L) → B(K2⊗L) that satisfies
(id⊗ PL0

)(θ ⊗ id) = (θ ⊗ id)(id⊗ PL0
) for compressions PL0

: B(L) →
B(L0) with respect to finite dimensional subspaces L0 ⊂ L. Indeed, if
we make the identification L = ℓ2(I), then elements T in B(K1 ⊗ L)
can be viewed as I×I matrices [Ti,j]i,j∈I with entries Ti,j in B(K1) such
that

‖T‖ = sup
I0⊂I finite

‖[Ti,j]i,j∈I0‖B(K1⊗ℓ2(I0)) <∞.

Under this identification, the unital completely positive map θ ⊗ id is
defined by (θ⊗ id)([Ti,j]i,j) = [θ(Ti,j)]i,j. We can similarly define id⊗θ′,
and θ ⊗ id and id⊗ θ′ will commute if at least one of θ or θ′ is weak*-
continuous. Now take unital completely positive maps Φ: B(ℓ2(G)) →
B(H) and Ψ: B(H) → B(ℓ2(G)) which are G-equivariant. (The exis-
tence of such maps follows from Arveson’s Extension Theorem as in
the Proof of Theorem 8.6 for G = Fr.)
We look at ϕ = Φ|ℓ∞(G) and ψ = E ◦ Ψ, where E is the completely

positive projection from B(ℓ2(G)) onto the diagonal ℓ∞(G). We define
the G-equivariant unital completely positive maps ϕn : ℓ

∞(Gn+1) →
B(H⊗(n+1)) by ϕ0 = ϕ and ϕn = (ϕn−1 ⊗ id)(id ⊗ ϕ). We similarly
define ψn : B(H⊗(n+1)) → ℓ∞(Gn+1).
The map ϕn extends to a map from ℓ∞(Gn+1, V ) toB(V∗, B(H⊗(n+1)))

by identifying ℓ∞(Gn+1, V ) with B(V∗, ℓ
∞(Gn+1)) and composing ϕn

with F ∈ B(V∗, ℓ
∞(Gn+1)). We continue to denote this extension by ϕn.

Similarly, ψn extends to a map from B(V∗, B(H⊗(n+1))) to ℓ∞(Gn+1, V )
that we continue to denote by ψn.
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These maps then become morphisms of complexes. Indeed, let us
verify that d′nϕn−1 = ϕndn by induction on n. The case n = 1 is
obvious, and letting ιn+1(T ) = T ⊗ 1 gives

d′n+1ϕn = (d′n ⊗ id + (−1)n+1ιn+1)ϕn

= (ϕndn ⊗ id)(id⊗ ϕ) + (−1)n+1(ϕn ⊗ 1)ιn+1

= ϕn+1(dn ⊗ id + (−1)n+1ιn+1)

= ϕn+1dn+1.

Hence, (ψnϕn)n is a G-equivariant morphism on the complex defining
the bounded cohomology. As such, it induces the identity maps on the
cohomology groups by Lemma 7.2.6 in [43]. It follows that Hn

b (G, V )
embeds into ker d′n+1/ ran d

′
n, proving the claim.
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