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Abstract

Fuel efficiency improvements in vehicles reduce the cost of travel, which could stimulate drivers to travel further limiting
energy savings. Estimates of this effect, known as the rebound effect, have varied widely, partly due to data constraints
and a reliance upon highly aggregated government statistics. This paper instead uses a dataset of over 275 million vehicle
roadworthiness tests. The high level of detail in our dataset can reveal, for the first time, how the response to changes
in travel costs may differ across types of vehicles and socio-economic areas in Great Britain.

We find that the rebound effect in Great Britain is just 4.6%, meaning efficiency improvements are unlikely to stimulate
increased mileage in the short-run. We find that larger, less fuel efficient vehicles are more responsive to fuel price changes
than smaller vehicles and that drivers in urban areas are more responsive to fuel price changes than drivers in rural
areas. Our findings shed light on the effects that policies such as fuel taxation and fuel economy standards may have on
vehicle mileage. This has implications for both CO2 emissions savings and social equity.

1. Introduction

Improving the energy efficiency of passenger cars is con-
sidered an important measure to reduce energy demand
and combat the effects of climate change. Given the un-
met potential for efficiency improvements in vehicles [1],
regions ranging from the European Union (EU) to the USA
have implemented fuel economy and CO2 emissions stand-
ards to stimulate manufacturers to produce more efficient
cars. Equally, several national governments have adopted
fuel taxes to shift consumers to more efficient travel al-
ternatives. The energy saving potential of these policies
depends upon how drivers react to vehicle efficiency im-
provements and fuel price changes.

Improvements in the energy efficiency of vehicles, and
the resulting fuel cost savings, may stimulate drivers to
travel more. This phenomenon is known as the rebound
effect, and if large, could offset potential energy savings
from efficiency improvements. Quantifying the magnitude
of the rebound effect reliably is important to estimate real-
istic emissions savings and societal benefits from energy
efficiency policies such as fuel economy standards.

However, estimates of the rebound effect in passenger
transport have varied widely due to different methods and
types of data [2, 3]. Part of this uncertainty may be due
to studies estimating rebound effects using travel data at
a high level of aggregation (e.g. at the national level) [2].
This risks omitting important underlying variables and be-
ing dependent upon historical data from periods with dif-
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ferent characteristics of transport demand. Highly aggreg-
ated data also masks social and geographical differences
in how drivers react to efficiency improvements. Under-
standing these differences is important in policy appraisal
for both quantifying rebound effects and addressing social
equity concerns.

To overcome these limitations, this paper uses a novel
and more detailed dataset of vehicle roadworthiness tests
to investigate the rebound effect in Great Britain. Us-
ing odometer readings for over 50 million unique vehicles,
tracked over time between 2006 and 2017, we further in-
vestigate how rebound effects may differ geographically
and between different types of vehicles.

2. Literature Review

2.1. The rebound effect and the effects of fuel price

Energy efficiency improvements can have the effect of
reducing the costs of an energy service S. For an energy
service like passenger transport, efficiency improvements
in vehicles can reduce the price of travel (PS) and thereby
stimulate travel demand. The cost of driving is dependent
upon the price of fuel, PE (with units price/energy) and
the efficiency of the vehicle ε (with units energy/distance
traveled) according to:

PS = PE/ε (1)

The rebound effect in passenger transport is the effect that
a change in energy efficiency (ε) has on travel demand (typ-
ically expressed as vehicle miles traveled, VMT). This is
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generally expressed as the elasticity ηε(S) of travel demand
with respect to efficiency:

∂S

S
= ηε(S)

∂ε

ε
(2)

This elasticity shows how much a percentage change in
energy efficiency ε changes travel demand S. With an
elasticity of ηε(S)=0.5, a 10% increase in energy efficiency
would lead to a 0.5×0.1=5% increase in mileage. This
would therefore offset 50% of the potential energy sav-
ings. However, using ηε(S) as a measure of the rebound
effect is often problematic due to the possibility that en-
ergy efficiency is not an exogenous variable; independent
of energy prices, travel demand S and other confounding
variables [2]. If consumers buy vehicles with better en-
ergy efficiency in times of high oil price, or because they
expect to drive a greater annual distance (perhaps due to
a change of employment or living circumstances), then es-
timates of efficiency elasticities could be biased. Empirical
constraints mean it is often not possible to control for these
factors sufficiently to calculate the impact of an exogenous
efficiency improvement. For these reasons, fuel price elast-
icities ηPE

(S) are often used as a measure of the rebound
effect:

∂S

S
= ηPE

(S)
∂PE

PE
(3)

Empirically, calculating ηPE
(S) has the advantage that the

price of fuel can be considered exogenous in a way that
efficiency ε rarely can. Another advantage is fuel prices
typically have greater temporal variation as explanatory
variables than efficiencies. The elasticity ηPE

(S) can be
assumed to be equal in magnitude and opposite in sign to
ηε(S) under certain assumptions:

1. drivers react to changes in travel costs (PS) from fuel
price changes (PE) and from efficiency improvements
(ε) in the same way,

2. drivers are limited in shifting travel to other types of
transport [4],

3. fuel prices PE and efficiency ε are exogenous and in-
dependent of travel demand or other variables.

These assumptions can be used to gauge an estimate of the
rebound effect ηε(S), by estimating -ηPE

(S). If efficiency
improvements are affected by fuel prices, ε = f(PE), as
shown for example by [5, 6], then the following equation
can be derived (derivation in SI):

ηPS
(S) = ηPE

(S)× 1

1− ηPE
(ε)

(4)

where ηPE
(ε) is the elasticity of fuel prices on efficiency

and is expected to be greater than zero if higher fuel
prices stimulate higher efficiency. This means estimates
of ηPE

(S) are likely to underestimate the rebound effect[7]
since:

|ηPE
(S)| ≤ |ηPS

(S)| (5)

Literature estimates of ηPE
(ε) lie between 0.005-0.04 in the

short-run, rising to 0.1-0.2 in the long-run [5, 6, 8, 9]. This
means estimates of ηPE

(S) are likely to underestimate the
rebound effect by just 0.5-4% in the short-run and 11-25%
in the long run meaning ηPE

(ε) is a close approximation
to the rebound effect in the short-run. In this paper, the
rebound effect is estimated as -ηPE

(S).

2.2. Empirical estimates of the rebound effect

Sorrell et al. [2] present a comprehensive review of stud-
ies investigating the rebound effect building upon earlier
reviews [10, 11]. Table 1 presents a selection of more re-
cent studies quantifying the rebound effect in passenger
vehicle transport by means of ηPE

(S). Estimates of re-
bound effects vary widely in the academic literature due
to differences both in the type of data, geographic re-
gion, time period and estimation technique. Data can
broadly be classified into aggregate and micro-level, based
on the cross-sectional detail of the data. In turn, micro-
level panel data can be further split into survey data and
vehicle testing data with odometer readings. The former
often benefits from data on socio-economic characteristics
about drivers. The latter often lacks this data but benefits
from much larger sample sizes.

To date, the majority of rebound studies have made use
of aggregate national statistics due to the availability of
data [2]. However, using aggregate data to estimate the
effects of efficiency improvements or fuel prices on mileage
presents three main limitations.

Firstly, using aggregate data often requires long time
series in order to have a sufficient number of sample points
to yield statistically significant results. Several authors
[8, 19–21] have shown that the rebound effect may decrease
as average incomes rise over time and drivers reach ‘satur-
ation’ in demand for travel. Hughes et al. [21] for example
find that ηPE

(S) in the USA decreased from between -0.21
and -0.34 in 1975-1980 to between -0.034 and -0.077 in the
2001-2006 period. The use of long time series data may
therefore cover time periods in the past which are no longer
appropriate for policy-making on future travel demand.

Secondly, it is difficult to account for the many other
underlying geographical and social trends affecting travel
while using aggregate data. These can be controlled to a
greater extent using micro-level panel data such as house-
hold surveys and vehicle odometer readings.

Finally, micro-data can help to reveal heterogeneity as
certain drivers may be more susceptible to fuel price or
fuel efficiency changes, than others, based on their abil-
ity to pay or their ability to choose alternative modes of
transport.

This social and geographical heterogeneity is useful for
comparing the results of studies in different countries. For
example, Gillingham et al. [18] used odometer data and
found fuel price elasticities were lower in the USA than
in Denmark. The authors suggest this difference can be
explained by the extremities of the mileage distribution
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Authors Years Country/Region Data Type Observations ηPE
(S)

Stapleton et al.[12] 1970-2011 Great Britain Aggregate 41 -0.152
Frondel & Vance[13] 1997-2009 Germany HH Survey 4,097 -0.574
Knittel & Sandler [14] 1996-2010 California,USA Odometer 3,640,433 -0.117,-0.265
Gillingham et al.[15] 2001-2009 California,USA Odometer 5,038,554 -0.22
Langer et al.[16] 2009-2013 Arizona,USA Odometer 228,910 -0.15
Gillingham et al.[17] 2000-2010 Pennsylvania,USA Odometer 30,621,721 -0.10

Gillingham et al.[18] 1998-2011 Denmark
Odometer &
HH Survey

5,855,446 -0.3

Table 1: Selected recent studies quantifying fuel price elasticities in different countries split by data type: aggregate national time series data,
household (HH) survey panel data, vehicle testing odometer panel data.

(drivers with particularly high or low mileage) being more
sensitive to fuel price in Europe than in the USA, perhaps
due to greater public transport provision.

Understanding the spectrum of responses to fuel prices
and efficiency improvements is important to factor into
policy design. For example both Knittel & Sandler [14]
and Langer et al. [16] use odometer level data to show
owners of higher fuel consumption vehicles are more sens-
itive to fuel price changes in California and Arizona in the
USA respectively. This suggests fuel taxes could affect the
mileage of larger vehicles more than small vehicles, though
there is yet to be a similar study in a European context,
where fuel taxes are already high.

To date there have been limited studies estimating the
rebound effect and fuel price elasticities in Great Britain.
Stapleton et al. [12] use national aggregate data covering
1970-2011 and estimate rebound effects in the order of
15%. Dargay et al. [22] use a UK family expenditure
survey for years 1976-1995, though the survey tracks fuel
expenditure rather than distance traveled per year. There
has neither been an estimate of the rebound effect, nor
of the effects of fuel prices on mileage, in Great Britain
using micro-data. Additionally, there is yet to be a study
of how these may differ across different British drivers or
geographically.

2.3. The MOT dataset

This paper uses data from annual vehicle roadworthi-
ness tests, known as MOT tests in the UK, between years
2006-2017 [23] from over 50 million individual vehicles.
This dataset has not yet been used for longitudinal ana-
lysis to estimate changes in vehicle mileage over time.
Past work using this data focused on cross-section ana-
lysis between different areas in Great Britain for the year
2011. This showed, for example, that British vehicle own-
ership and mileage is lower in urban centres than in rural
areas [24, 25]. The use of geographic information in the
MOT data also permitted studies into socio-economic dif-
ferences in vehicle mileage. Chatterton et al. [26] study the
financial implications of vehicle ownership by quantifying
annual vehicle tax and fuel expenditure by income groups
and geographical areas. This work was complemented by
Mattioli et al.[27] who developed an index describing the

financial vulnerability of drivers to further price increases.
The present study adds to this work by quantifying how
drivers react to fuel price changes over time and thus how
quickly different drivers may be able to adjust to changes
in travel costs.

To summarise, there are few studies to date investigating
the rebound effect using micro-level data, and none have
analysed driving patterns in Great Britain. This paper
quantifies the rebound effect by estimating the response
to changes in fuel price, with the side benefit of estimat-
ing how drivers might react to changes in fuel taxation.
We use the detail of the MOT dataset to investigate dif-
ferences in responsiveness to fuel price changes between
vehicles of different size, fuel efficiency and geographical
location. This aids the comparison between literature es-
timates and helps to better evaluate the effects of efficiency
improvements and fuel taxation policies.

3. Method

This section begins with a discussion of the model spe-
cification and independent variables chosen for this invest-
igation. Section 3.2 then presents the details of the MOT
data and other data sources used in this study.

3.1. Model specification

This paper makes use of vehicle roadworthiness testing
data which includes odometer readings at the time of test-
ing. The miles traveled (S) by vehicle i in each driving
period t is calculated as the change in odometer readings
between test dates divided by the time between tests. This
is modeled as a function of the average price of fuel in
Great Britain (Pricet), national gross domestic product
(GDPt) and vehicle age (Ait). To capture seasonal effects,
we control for the average rainfall in each postcode (Rit)
and heating degree months (HDMit), a measure of how
cold the weather is over the time period in each postcode
(explained further in SI). Dummy variables are used to
control for the month of each test (Mit) as well as the
time between tests (γit), and are included to account for
remaining seasonal effects (for example a driving period
covering two Christmas holidays may have lower average
mileage), as well as other unobserved heterogeneity (e.g.
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vehicles tested much earlier than the average 52 weeks may
have abnormal mileage if they have technical issues requir-
ing premature testing). To capture structural differences
and any remaining unobserved heterogeneity, we include
vehicle fixed effects (θi), which is equivalent to using a
dummy variable for each vehicle and captures the aver-
age mileage of each individual vehicle. This results in the
following logarithmic form:

ln(Sit) = βX + εit (6)

where X is a vector of variables:

X = [ln(Pricet), ln(GDPt), ln(HDMit),

ln(Rit),Ait, Mit, γit, θi]
(7)

β is a vector of the coefficients for each variable and εit is
an idiosyncratic error term with zero mean. The elasticity
of fuel price on mileage (βPrice) is our primary interest as
it is equal to ηPE

(S).
The vehicle fixed effects (θi) capture any time-invariant

differences between vehicles meaning variables that do not
change over time cannot be used as regressors. Any effects
associated with the type of vehicle, rated fuel consumption
and location of each vehicle are therefore absorbed into the
fixed effects. The effects of these variables can be invest-
igated separately by running regressions on subsets of the
data or by using dummy variable interaction.

Since vehicle fixed effects are used, the coefficients
shown in equation 6 are ‘within’ estimates (measured at
the individual vehicle level) and represent the change in
mileage from a temporal change in the explanatory vari-
ables rather than ‘between’ estimates which would meas-
ure cross-sectional differences in the data. These elasticit-
ies could differ from household elasticities due to substitu-
tion effects if multiple vehicle households use a more effi-
cient car in times of high oil price. We investigate whether
these substitution effects may occur by considering hetero-
geneity by vehicle type.

The interest of this paper is the effect that an exogenous
change in fuel prices may have on the mileage of vehicles.
However, there is a possibility that short term increases in
the mileage of British vehicles may have an effect on the
price of fuel at the pump. If this were true, then the fuel
price would not be exogenous and the effects of demand
changes on prices would have to be accounted for. The
price of fuel at the pump in the UK is comprised of the
underlying price of oil on the international market, an ad-
ditional government duty and a value added tax (VAT).
The international price of fuel is unlikely to be affected by
short term fluctuations in the mileage of a small country
such as the UK. Similarly, fuel price duty and VAT have re-
mained relatively constant over the period of investigation,
though it is possible these may have changed in response
to changes in travel demand. To ensure that this is not the
case, the Europe Brent spot price is used in a model run as
an instrumental variable. This removes the possible effects
of government fuel duties and VAT changes. Finally, our

model specification estimates an average response to fuel
price changes and does not account for any differences in
fuel price increases versus decreases.

Many studies distinguish between short-run and long-
run elasticities. The former is a change in the order of
one year and doesn’t account for changes in the stock.
Long-run effects are calculated over larger time periods,
typically using dynamic models, and therefore account for
longer-term social and behavioural changes from changes
in travel costs. Estimates of the long-run rebound effect
are generally larger than short-run effects [2]. A review
by Dimitropoulos et al. [3] suggests rebound effects in
transport are around 0.12 in the short-run and 0.32 in the
long-run, though the majority of studies covered use ag-
gregate data. There are also distinctions between ‘direct’
and ‘indirect’ rebound effects [28, 29]. The latter looks
into how financial savings from efficiency improvements
in one service may be spent on other services and goods
which have an energy impact, though there is a limited
consensus of the magnitude of these effects[30]. Given the
relatively short time series and data constraints used in
this study, we choose to focus on short-term, ‘direct’ re-
bound effects. Finally, we focus on rebound effects on
vehicle miles traveled (VMT) rather than passenger miles
traveled [31].

3.2. Data

In the United Kingdom, all vehicles over 3 years old
undergo mandatory annual roadworthiness tests known
as MOT tests. From 2005 onwards, the Department for
Transport moved to storing the MOT results on a digital
system. These results were released in the public domain
and the latest 2019 release [23] covers years 2005-2017,
though the 2005 year was incomplete meaning the year
2006 is chosen as the start year of the data. In total, there
are 275,866,597 test entries in the dataset for 50,155,603
unique cars who passed MOT tests.

Information on vehicle registration plates of each vehicle
is removed by the Department for Transport to ensure the
data remains anonymous. Instead, each vehicle is given
a unique vehicle id number. Other fields of interest in-
clude the vehicle manufacturer and model, engine capa-
city, fuel type, date of first registration and the odometer
reading at each test date. This final entry can be used
with the vehicle id to track the mileage of each vehicle
between tests. Each observation in the dataset there-
fore consists of a driving period between two MOT tests
(e.g. 04/01/2007 - 05/02/2008) for each individual vehicle
(e.g. vehicle id=789, Volkswagen Golf 2004 turbo 1200cc
Diesel) and the mileage driven (the difference between odo-
meter readings). The data is cleaned to remove erroneous
entries (such as removing entries where the mileage rate
exceeds 100,000 miles/year or is negative) as performed
by past studies [32]. A full list of cleaning procedures is
included in the SI.

The publicly available MOT data also includes the gen-
eral postcode area of the garage performing the test. It is

4



Petrol

Diesel

1.0

1.2

1.4

1.6

2006 2008 2010 2012 2014 2016

F
ue

l P
ric

e 
(£

 2
01

7 
P

P
P

)

GDP

90

95

100

2006 2008 2010 2012 2014 2016

G
D

P
 (

In
de

x 
20

16
 =

10
0)

Figure 1: Left=Price of petrol (gasoline) and diesel fuel at pump (including government fuel taxes) and converted to 2017 £ PPP. Right=UK
National Gross Domestic Product (indexed to 2016 levels).
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Figure 2: Left=Histogram of vehicle mileage in MOT data (grey) and frequency plots of petrol (red) and diesel vehicles (green). Right=Heating
degree months and monthly average precipitation across Great Britain (mm).

reasonable to assume that drivers test their vehicles close
to home, and for the majority of tests, the garage and
location of residence fall within the same relatively large
postcode area. This approach was also taken by past stud-
ies using the MOT data [24]. In the absence of data on the
socio-economic characteristics of the drivers in the data,
the average characteristics of the postcode can be used
as a rough proxy for the general social and geographical
context of the vehicle.

Weekly fuel price data is sourced from UK BEIS [33] (fig.
1, left) and Europe Brent spot price data is sourced from
the US Energy Information Administration [34]. Both are
corrected to pounds Sterling and 2017 purchasing price
parity using OECD consumer price indices [35]. Due to

data availability, we use the average UK fuel price rather
than any more detailed geospatial differences. Monthly,
seasonally adjusted GDP data for the UK is sourced from
the ONS [36] and shown in figure 1 (right).

Monthly weather data (average temperatures and rain-
fall) for 2006-2017 is sourced from the UK Centre for En-
vironmental Data Analysis (CEDA) [37] as a 12km resol-
ution raster and then aggregated to postcode level using
shapefiles [38]. Postcode temperature data is used to cal-
culate heating degree months for each postcode (HDM,
explained further in SI). The national average HDM and
rain are shown in figure 2 (right). Fuel price, GDP and
weather variables are averaged at monthly level and as-
sociated with the driving period of each vehicle. Median
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income data for the year 2011 is sourced from Experian
[39] and aggregated to postcode level. A consistent time
series of income by postcode for the period studied is un-
fortunately not available.

Figure 2 (left) shows a histogram of the annual mileage
of the vehicles in the dataset. This resembles a shifted
gamma distribution [32] with a long tail where a minority
of vehicles have particularly high mileages. Diesel vehicles
have, on average, higher mileages than Petrol vehicles.

A previous paper by the authors [40] built a dataset of
vehicles sold between 2001 and 2018 using a combination
of publicly available data sources [41–43]. Using this data,
we attribute a size segment (e.g. Small Sedan, SUV) to
91% of vehicles in the MOT data based on the vehicle man-
ufacturer (e.g. BMW) and generic model (e.g. 3 series).
Some vehicles in the MOT data could not be assigned a
size segment because they are either old with model names
that were no longer sold after the year 2000 (e.g. Jaguar
E-Type), or have erroneous name entries.

The dataset created in [40] sourced driver reported, real-
world fuel consumption records for new British vehicles
sold between 2001 and 2018 and was able to determine
a sales-weighted estimate of new car, real-world fuel con-
sumption for the first time. This showed that the differ-
ence between manufacturer reported (type-approval) fuel
consumption and driver reported (real-world) fuel con-
sumption has been increasing over time. This meant that
vehicles sold in later years had a real-world fuel consump-
tion that was on average over 30% worse than the type-
approval value. Failure to account for this fact could bias
investigations into the rebound effects of different types of
vehicle. For vehicles registered after the year 2000, we at-
tempt to match a ‘real-world’ fuel consumption estimate
using fuzzy matching algorithms (see [40]) by vehicle man-
ufacturer, model, engine size, fuel type and year of first
registration. Since no data on transmission type (Manu-
al/Auto) or drivetrain (AWD) are available in the MOT
data, the sales-weighted average data for each group of
matched vehicles is used. We are able to match a real-
world fuel consumption estimate to 82% of vehicles re-
gistered after the year 2000.

Mean Std. Min. Max.
Annual VMT 7,421 5,807 400 99,998
Age (years) 7.94 3.55 3 19
Fuel Price (£ 2017) 1.30 0.13 1.01 1.56
GDP (£ 2016)×109 1,821 52.6 1,735 1,937
HDM in Pcd. 5.37 1.09 1.38 16.1
Rain in Pcd.(mm) 72.1 26.8 14.3 379
Pcd. Population ×103 676.1 356.2 2.2 2,045.1

Table 2: Summary statistics of main variables from 23,016,519 ob-
servations. Pcd.=Postcode

Summary statistics of the data are presented in table
2 and for three example driving periods in table 3. This
shows the shares of vehicles in each size segment in the
data have remained broadly constant over time with a

slight shift to larger SUVs. On average, vehicles on the
road have become older and are driven fewer miles every
year.

2006/7 2011/12 2016/17
City % 31.4 30.7 32.5
Medium % 28.4 25.6 25.3
Small Sedan % 14.4 17.1 16.4
Small SUV % 0.6 0.6 1.6
Large Sedan % 13.8 11.3 9.6
SUV/MPV % 11.1 14.4 14.4
Sports % 0.2 0.3 0.3
Tested L/100km* 7.16 6.89 6.33
Real world L/100km* 7.38 7.32 7.15
Age (Years) 7.68 8.34 9.39
Mileage 7556 7297 6971

Table 3: Summary statistics of three test periods showing share of
vehicles by size segment, average vehicle age and annual mileage as
well as average Type-approval (Tested) and ‘Real-world’ fuel con-
sumption expressed in litres of gasoline equivalent per 100km. *note
only vehicles registered after the year 2000 could be attributed fuel
consumption estimates.

The average mileage of a group of vehicles between two
test years can be determined simply by dividing the sum
of the mileages of each vehicle by the number of vehicles.
However, this approach has flaws as explained by Wilson et
al. [32]. The average mileage of all vehicles tested between
2006 and 2007 for example will include some vehicles tested
in January 2006 and January 2007 as well as vehicles tested
between December 2006 and December 2007. This means
the driving period covered in the averaging process covers
almost 2 years of driving (Jan 2006 - Dec 2007). This
results in locally time averaged data effectively smoothing
out short term perturbations which may be of interest.
This averaging process can be useful to show general cross-
sectional differences in mileage between geographic areas
and types of vehicles but is inappropriate for estimating
short term responses to fuel price changes. For this reason
a panel data approach is necessary. The full MOT dataset
comprises 275,866,597 rows of data. For computational
reasons we take two large samples of the data:

The first sample is used purely for the descriptive results
presented in section 4.1. This consists of a random sample
of 3 million cars from each year of test data 2006-2016.
These are matched with their respective entries in the sub-
sequent test year to create sets of observations of driving
periods. This sample is averaged between test years (e.g.
2006 to 2007) to give an important overview of driving
trends in Great Britain and the cross-sectional differences
between types of vehicles. However, the trends suffer from
the smoothing effect (outlined above) and are therefore
only appropriate for comparing cross-sectional differences
between vehicles and not for analysing responses to fuel
price changes.

To estimate fuel price changes using panel methods with
fixed effects, individual vehicles need to be tracked over
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time. The data used in the regressions in section 4.2 is
created by taking a random sample of 10 million unique
vehicle ids from the full dataset across all years. These
10 million cars are then tracked through time to obtain
all driving periods available for this sample of vehicles.
After data cleaning and matching procedures this leaves
a total of 23,016,519 observations with an average of 3.8
observations for each vehicle id.

4. Results

In this section we present an overview of driving trends
in Great Britain from the MOT data. The differences
in mileage between size segments and age groups gives
greater context to the regression model results presented
in section 4.2 which investigates how drivers reacted to
changes in fuel prices between 2006 and 2017.

4.1. Overview of driving trends in Great Britain

Figure 3 shows how the average annual mileage of
vehicles varies by size segment. Larger size segments tend
to have higher mileage than smaller vehicles, they also
have a higher share of diesel engines explaining the differ-
ences in figure 2 (left). For most segments, vehicles are
used less intensively over time. This is likely due to in-
creasing vehicle age over the time period (table 2) and a
10% increase in national vehicles per household [44]. The
‘small SUV’ segment of ‘crossover’ type vehicles became
more popular over time, taking market share from Me-
dium cars in particular. This increase in popularity was
also associated with a change in the use of this type of
vehicle. New small SUVs sold after 2013 are driven more
on average than the fewer older models that once made up
this size segment. Figure 4 shows that the average mileage
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Figure 3: Average annual mileage by size segment.

of vehicles drops with age across all vintages. For every
year a car ages, it’s average annual mileage drops by ap-
proximately 330 miles per year. Similar findings have been

shown using national travel survey data by [45]. Import-
antly, these graphs show average mileage per year between
two test years and are therefore subject to the smoothing
effect detailed in section 3.2. This means short term fluc-
tuations in mileage due to fuel price changes are averaged
out.
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Figure 4: Average annual mileage by model year.

4.2. Fuel price elasticities of vehicle mileage

Regression results are presented in table 4 for four dif-
ferent regression models. In the first model (1) Base, the
effects of fuel price, GDP and vehicle age on mileage are
estimated. The sensitivity of these effects to the addition
of controls is then investigated. The second model (2) adds
controls for the month of each MOT test and the length
of the driving period between tests for each vehicle. These
controls are performed by means of dummy variables. The
third model (3) additionally controls for weather effects in
each postcode using heating degree months (HDM) and
total rainfall. Cold weather (increasing HDMs) has a small
negative coefficient suggesting vehicle mileage is lower dur-
ing cold periods. A period with increased rain has a small
positive effect on mileage. This effect may be larger with
data at a higher degree of temporal resolution. The low
R2 values highlight the difficulty in predicting changes in
the mileage of individual vehicles with such noisy data.
There are an innumerable number of factors that could
affect the mileage of individual drivers year-on-year that
are not possible to explain with the given data (or perhaps
any data). We also note that when using data with such a
large number of observations it becomes increasingly pos-
sible to obtain statistically significant results (p<0.05) on
variables of interest [46, 47]. For this reason we place par-
ticular emphasis upon checking that the findings remain
robust to the addition/removal of different variables and
subsetting data. The appendices detail further investiga-
tions including controls for the effects of population growth
and removing the effects of GDP. Over all the model for-
mulations, the coefficients of the main variables remain
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Parameter (1) Base (2) Time Effects (3) Weather Effects (4) IV 2SLS
lnPrice -0.045 (0.002)∗∗∗ -0.048 (0.002)∗∗∗ -0.046 (0.002)∗∗∗ -0.04 (0.001)∗∗∗

lnGDP 0.12 (0.006)∗∗∗ 0.15 (0.006)∗∗∗ 0.089 (0.006)∗∗∗ 0.15 (0.007)∗∗∗

Age -0.035 (1e-04)∗∗∗ -0.035 (1e-04)∗∗∗ -0.035 (1e-04)∗∗∗ -0.036 (1e-04)∗∗∗

lnHDM -0.021 (0.001)∗∗∗ -0.018 (0.001)∗∗∗

lnRain 0.004 (7e-04)∗∗∗ 0.004 (7e-04)∗∗∗

Month Effects X X X
Period Effects X X X
Vehicle Effects X X X X
Observations 23,016,519 23,016,519 23,016,519 23,016,519
R2 0.03 0.03 0.03 0.03

Table 4: Regression results for various model formulations. Dependent variable is the natural logarithm of vehicle mileage. Standard errors
in parentheses. X indicates effects are included in a model. Statistical significance: ∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001

relatively constant suggesting the results are robust. Our
preferred model specification is Model (3).

To ensure that the UK fuel price is an exogenous variable
(independent of vehicle mileage in the UK) the Europe
Brent spot price is used as an instrumental variable using 2
stage least-squares regression (2SLS). Model (4) in table 4
shows βPrice and other coefficients are similar to the results
of previous model specifications, thereby confirming that
changes in British vehicle mileage are unlikely to influence
British fuel prices or government fuel duties. The first
stage results are presented in the SI.

The average response to fuel prices across all vehicles
in the dataset is ηPE

(S) ≈ −0.046. This is lower than
the estimate of ηPE

(S) = −0.152 reported by Stapleton et
al. [12] using British aggregate data for years 1970-2011.
We believe there are two likely reasons for this difference.
Firstly, the later period of study investigated in this paper
likely entails a greater degree of satiation for driving and
consequently a lower elasticity (as seen in the USA [21]).
Secondly, our elasticity reflects changes on an annual level
(a short-run effect), the estimates of Stapleton et al. [12]
are a long-run effect. Our estimate is similarly smaller
than that found by Gillingham et al. [18] of ≈ -0.3 for
Denmark which may again be due to their estimate using
data on driving periods over 2-4 years.

Following equation 4, our short-run estimate of
ηPE

(S) = −0.046 is likely to be similar in magnitude to the
short-run rebound effect ηε(S). Our elasticities of GDP
(which can be considered to be a measure of income) on
vehicle mileage are in the range 0.089-0.15. Goodwin et
al. [11] report an average income effect on per vehicle
VMT of 0.06 from studies using static models. Stapleton
et al. [12] report an average long-run estimate of 0.51.
Whilst our estimates lie within this range, we are cautious
to place too much significance upon them as firstly, we use
national average GDP data, which is only a rough measure
of real income data and secondly, GDP had relatively low
variance over the short time period studied.

Although the average response to fuel prices is small,
this may differ between drivers based on their type of
vehicle or socio-economic circumstances. To investigate

possible heterogeneity in βPrice by vehicle type and geo-
graphical region, regressions are run with dummy variable
interactions on fuel price in the following sections.

4.3. Heterogeneity by vehicle size segment

Parameter Coefficient
lnPrice: City 0.11 (0.003)∗∗∗

lnPrice: Medium -0.038 (0.003)∗∗∗

lnPrice: Small SUV -0.077 (0.02)∗∗∗

lnPrice: Small Sedan -0.12 (0.004)∗∗∗

lnPrice: SUV/MPV -0.19 (0.004)∗∗∗

lnPrice: Large Sedan -0.22 (0.005)∗∗∗

lnPrice: Sports -0.7 (0.04)∗∗∗

lnGDP 0.081 (0.007)∗∗∗

Age -0.033 (1e-04)∗∗∗

lnHDM -0.021 (0.001)∗∗∗

lnRain 0.0042 (7e-04)∗∗∗

Month Effects X
Period Effects X
Vehicle Effects X
Observations 20,873,256
R2 0.03

Table 5: Regression results for by vehicle fuel type and size segment.
Dependent variable is the natural logarithm of vehicle miles traveled.
Standard errors in parentheses. Statistical significance: ∗ p<0.05, ∗∗

p<0.01, ∗∗∗ p<0.001

In table 5 and figure 5, the sensitivity of different
vehicle size segments to fuel price (βPrice) is presented us-
ing dummy variable interactions. The results show the
responsiveness to fuel price increases for larger vehicle
size segments and sports cars. These findings are robust
to alternative specifications including subsetting the data
based on size segment. Only 91% of vehicles in the data
could be attributed a size segment, meaning the number
of observations is less than those used in table 4. Inter-
estingly, the fuel price elasticity of City cars (the smallest
vehicle segment) is positive implying they are driven more
when fuel prices increase. This may be due to drivers
switching between multiple vehicles they own and choos-
ing the more efficient, cheaper vehicle when prices are
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high. We are unable to test this hypothesis explicitly as
there is no information in the dataset about the number of
vehicles owned by each driver. However, Knittel & Sand-
ler [14] found that drivers in California with a more effi-
cient vehicle in their household appear more responsive to
changes in fuel price than those without, suggesting that
vehicle switching does occur. If this were true in Great
Britain it would suggest the assumption of the rebound
effect being equal in magnitude to the price elasticity is
flawed, a point we discuss in greater depth in section 4.6.
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Figure 5: Heterogeneity of the price elasticity of vehicle mileage by
vehicle size segment with ±1.96×SE confidence intervals. The red
line is the average βPrice from model (3) in table 4.

The results show that increasing fuel taxation may have
a greater effect at reducing mileage of larger vehicles than
that of smaller vehicles, leading to energy savings. How-
ever, it is not clear from the outset whether these findings
are due to (i) larger vehicles being less fuel efficient, (ii)
larger vehicles being driven a higher annual mileage than
other size segments (seen in fig. 3), or (iii) the owners of
large vehicles being more likely to also own a small vehicle
to use in times of high oil price. The larger vehicles in the
data are less fuel efficient on a per mile basis and travel
a higher annual mileage (Sports cars are the exception to
this rule since they have a high fuel consumption but a low
annual mileage). Whilst we are unable to investigate (iii)
further, the importance of mileage and fuel consumption
on βPrice is investigated in section 4.4.

4.4. Heterogeneity by vehicle fuel efficiency

This section investigates how the response to fuel price
changes may change for vehicles of different fuel consump-
tion (L/100km). Table 6 reports regression results from
interacting the fuel price with a ‘real-world’ fuel consump-
tion range. The βPrice elasticities for each fuel consump-
tion range are plotted graphically in figure 6. These find-
ings show βPrice increases in magnitude for higher fuel con-
sumption vehicles suggesting they are the most responsive
to fuel price.

Data on the real world fuel consumption of cars is only
available for cars sold after the year 2000, which reduces
the number of cars in the sample. However, this is unlikely
to bias the estimates (see table A7 in SI) given we already
control for the age of the car and include vehicle fixed
effects.

To determine the effect that average annual mileage may
have, Figure 6 (right) shows the average mileage of vehicles
in each fuel consumption range for three different driving
periods. This shows that the annual mileage of vehicles in
each range of fuel consumption is broadly similar and sug-
gests that the differences in βPrice shown in Figure 6 (left)
are predominantly due to differences in fuel consumption
rather than mileage rates.

The most efficient vehicles (5.0-5.5L/100km) are also
more responsive than average. However, we are cautious to
attribute particular significance to this finding; in the early
years of 2006/7 this bin had relatively high mileage (fig.6,
right) suggesting the usage and types of these vehicles in
this group has changed over the time period studied. This
is not the case for other bins of vehicle efficiency. These
findings complement those presented in section 4.3 and
suggest that drivers of larger vehicles appear more respons-
ive to changes in fuel prices due to worse fuel efficiency.

Parameter Coefficient
lnPrice: 5-5.5 L/100km -0.12 (0.01)∗∗∗

lnPrice: 5.5-6 L/100km 0.024 (0.008)∗∗

lnPrice: 6-6.5 L/100km 0.021 (0.005)∗∗∗

lnPrice: 6.5-7 L/100km -0.045 (0.005)∗∗∗

lnPrice: 7-7.5 L/100km -0.04 (0.005)∗∗∗

lnPrice: 7.5-8 L/100km -0.1 (0.005)∗∗∗

lnPrice: 8-8.5 L/100km -0.1 (0.008)∗∗∗

lnPrice: 8.5-9 L/100km -0.15 (0.01)∗∗∗

lnPrice: 9-9.5 L/100km -0.19 (0.02)∗∗∗

lnGDP 0.14 (0.009)∗∗∗

Age -0.034 (1e-04)∗∗∗

lnHDM -0.021 (0.001)∗∗∗

lnRain 0.006 (9e-04)∗∗∗

Month Effects X
Period Effects X
Vehicle Effects X
Observations 12200570
R2 0.03

Table 6: Regression results by real world fuel consumption of
vehicles. Dependent variable is the natural logarithm of vehicle miles
traveled. Fuel consumption in litres of gasoline equivalent. Standard
errors in parentheses. Statistical significance: ∗ p<0.05, ∗∗ p<0.01,
∗∗∗ p<0.001

4.5. Heterogeneity by income and population density of
postcode

It is possible that the rebound effect/fuel price elasticity
may differ based on levels of income, annual mileage or
other geographical and social factors. We investigate this
by interacting the fuel price with each of the 118 postcodes
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Figure 6: Heterogeneity of the price elasticity of vehicle mileage by real world fuel consumption group with ±1.96×SE confidence intervals.

in the data. To aid the interpretation of these results,
figure 7 shows a map in which the colour of the postcode is
proportional to the magnitude of βPrice. We also present
scatter plots (right) where the estimated βPrice for each
postcode is plotted against the average vehicle mileage,
income and population density of each postcode in year
2011. Only statistically significant results are plotted (all
others are dark grey, no data is available for Northern
Ireland since the MOT dataset covers only Great Britain).

The responsiveness to fuel price changes is loosely re-
lated to the average income in each postcode (fig. 7,
right), while stronger relationships are found between the
average annual mileage of vehicles and the population
density in each postcode. These scatter plots would sug-
gest drivers living in more urban areas with lower annual
vehicle mileage are more responsive to fuel price changes.
It is possible this is due to a greater availability of public
transport modes. A driver with high annual mileage and
living in a more rural postcode may display less respons-
iveness in fuel price changes if they have no alternative but
to drive. It is possible that these trends could be affected
by the types of vehicles present in each postcode. How-
ever, there is no obvious correlation between the share of
large vehicles in each postcode and the responsiveness to
fuel price, making any significant bias unlikely (fig. A9).
Our results can be compared to the findings of Gillingham
et al. [15, 18] who similarly find βPrice becomes more neg-
ative (i.e. larger magnitude) for drivers in higher income,
urban areas in both California and Denmark.

These findings suggest that drivers in some rural, low
income areas of Great Britain may be unable to moderate
their mileage in response to short term fuel price changes,
leading to financial burdens. These insights from the use
of the MOT micro-data can therefore be used to aid policy
decisions on the social equity effects of fuel taxation and
fuel price changes.

4.6. Limitations and future work

The model used in this paper could be used in future re-
search to examine the effects of local policy interventions
such as congestion charges on vehicle mileage. It might
also be used to investigate the effects of changes in pub-
lic transport provision over time. Doing so would require
data at a higher level of geographical detail than the post-
code area data provided in the publicly available MOT
dataset used in this study (explained further in the SI).
One limitation in the data used in this paper is the size of
postcodes which are somewhat socially and geographically
heterogeneous. The ideal data would have the geograph-
ical resolution to better distinguish between urban and
rural areas as public transport and environmental policies
are predominantly present in urban contexts. The effects
of local policies could be investigated using dummy vari-
ables on the year of introduction in each city and public
transport trips could be introduced as an additional time
series continuous variable. More granular geographical res-
olution may also identify even higher ‘hot spots’ of price
elasticity and may be able to better control for average
income and other socio-economic factors.

If public service provision is indeed a factor determin-
ing the fuel price elasticity of mileage it would draw into
question the convention of assuming rebound effects are
of equal magnitude to fuel price elasticities and thus mer-
its further research. Similarly, possible vehicle switching
(discussed in section 4.3) would also mean ηPE

(S) may
not equal -ηε(S), though would likely still remain a sim-
ilar order of magnitude at the aggregate level across all
vehicles.

Additional considerations cover possible non-linearities
in the response to fuel prices. The average fuel price across
driving periods changed by a maximum of ±20% over the
time period investigated (see table A3). Changes outside
this range may lead to larger elasticities. This could have
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Figure 7: Heterogeneity of the price elasticity of vehicle mileage. Left= map of βPrice by postcode. Postcodes where elasticities are not
significant at the p=0.05 level are coloured grey. Right= scatters of βPrice by postcode vs. average mileage, median income and natural log
population density pp/km2 (2011 levels).

implications for rebound effects as shifting to an electric
vehicle can lead to marginal travel cost savings in the order
of 50-70%.

5. Conclusions

This paper investigates the effect that vehicle efficiency
improvements might have on stimulating higher mileage,
known as the rebound effect. We estimate the magnitude
of this effect in Great Britain between 2006 and 2017 by
estimating the response of vehicle mileage to fuel price
changes. Our findings show that vehicle efficiency im-
provements are unlikely to trigger short-term increases in
vehicle mileage. This means the rebound effect is likely
to be negligibly small and any additional mileage stimu-
lated by efficiency improvements is unlikely to significantly
reduce energy savings in the short-term.

We show that the mileage of British drivers’ is inelastic
to fuel price changes. A 10% increase in fuel price would
lead to a 0.46% decrease in mileage; for the average vehicle
traveling ≈7400 miles per year, this is equivalent to a de-
crease of just 34 miles. Fuel taxes are therefore unlikely to
have an important short-term effect on vehicle mileage.

Whilst these effects are small, we find evidence that
drivers of larger and less fuel efficient vehicles are more
responsive to fuel price changes than average. Our find-
ings also show drivers in rural areas with relatively high
annual mileage are less responsive to fuel price changes
than drivers in more populous areas, which are possibly
less dependent upon the private vehicle. Since a number
of these rural areas have lower than average income, this
raises social equity concerns. If car dependent drivers are
unable to adjust their mileage in response to changes in
fuel price (whether from changes in fuel tax or from mar-
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ket fluctuations) they may have to absorb the additional
costs of travel.
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