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Abstract— Dense and distributed tactile sensors are critical
for robots to achieve human-like manipulation skills. Soft
robotic sensors are a potential technological solution to obtain
the required high dimensional sensory information unobtru-
sively. However, the design of this new class of sensors is
still based on human intuition or derived from traditional flex
sensors. This work is a first step towards automated design of
soft sensor morphologies based on optimization of information
theory metrics and machine learning. Elementary simulation
models are used to develop the optimized sensor morphologies
that are more accurate and robust with the same number
of sensors. Same configurations are replicated experimentally
to validate the feasibility of such an approach for practical
applications. Furthermore, we present a novel technique for
drift compensation in soft strain sensors that allows us to obtain
accurate contact localization. This work is an effort towards
transferring the paradigm of morphological computation from
soft actuator designing to soft sensor designing for high per-
formance, resilient tactile sensory networks.

I. INTRODUCTION

Soft strain sensors are becoming increasingly important
for soft robotics and wearable electronic devices [1]. They
are vital to obtain intrinsic state information like contact,
deformation, pressure and stress. Modelling these soft strain
sensors is still a major challenge due to their high nonlin-
earity and time-variant properties [2]. Recent developments
in data-driven modelling seems to be a viable solution to
circumvent this problem [3], [4], [5], [6]. However, the
morphological design of these sensors have largely been
overlooked, mainly because of the lack of analytical models.
Soft strain sensors, unlikely traditional sensing technologies,
provide immense flexibility in its shape and placement.
Coupled with its uniform whole-body receptivity, they could
potentially be designed to produce high performance sys-
tems. This work investigates an information theoretics-based
approach to design better soft strain sensors. Specifically, we
look into the design of sensor morphologies that are more
robust to damages/loss of data.

The role of sensor morphology and its adaptation is a well
observed phenomenon in nature. Consequently, researchers
have tried to apply design principles from nature to robotic
sensor systems [7]. The core idea behind these works is
that the dynamic and geometric properties of the sensor
morphology helps in the pre-processing and structuring of
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sensory information. Examples of this are the facial whiskers
of rodents [8] or the sensilla morphology of the crayfish
antennular flagellum [9]. Another interesting implementation
of this is how the body morphology can aid external sensor in
discerning physical parameters like temperature and stiffness
[10]. With the rise in novel materials, technologies and
designs in the field of soft robotics, it is crucial that we
look into other design methodologies for the development of
soft sensors.

The fabrication of soft strain sensors is a rapidly growing
field with diverse material-based solutions and manufacturing
techniques. They are typically resistance based sensors that
respond to geometric changes. Some of the commonly used
sensors are based on conductive particles in an elastomeric
medium [11], [12] and liquid metal based sensors [13],
[14], [15]. Due to their omni-directional compliance they
respond to strain change in all directions. This complicates
the modelling process and dilates directional strain sensing
properties. However, we gain freedom in the design range
and the capability to have the unavoidable rigid wiring far
from the sensing region.

Our specific task of interest is in the single-point contact
localization using a soft strain sensor based skin [16]. The
typical design of such sensory networks is in the shape
of a square grid (See Figure 1). More complex sensor
morphologies has never been investigated due to the lack of
accurate analytical models of soft strain sensors. This paper
investigates a novel method to design sensor morphologies
that perform better in terms of robustness and accuracy. This
would allow us to develop sensor networks that maintain
functionality during loss of sensory signal or sensor damage.
Note that the functionality is not recovered as shown with
smart materials [17], [18], but maintained because of redun-
dancy in the system [19]. A similar study was investigated
by Culha et. al. to find optimal sensor morphologies for
detecting specific kinematic parameters [20], however the
sensor morphologies were extracted using exact deformation
models.

This work uses metrics from information theory (IT)
to evaluate sensor morphologies rapidly with approximate
deformation models without the need of accurate sensor
models. This is because some of the IT metrics are indepen-
dent from the actual physics and allows us to easily transfer
such models on to the real-world [21]. A purely geometric
sensor model with practical constraints is used to develop
robust contact localization soft sensor arrays. The optimized
networks are first evaluated in simulation for robustness
to loss of sensors using machine learning techniques. The



derived sensor network is then evaluated experimentally
using conductive thermoplastic elastomer-based soft sensors.
We present a novel algorithm for sensor drift compensation
for quasi-static loading and a perspective on the process of
scaling-up tactile sensing ability to larger complex surfaces.
Our work is an initial step towards the direction of a scalable
approximate methodology for designing better strain-based
tactile sensor arrays for soft robotic and wearable applica-
tions.

II. MODELLING
The main aim of this work is to develop a general

framework for evaluation and optimization of sensor mor-
phologies. We are specifically investigating sensor arrays for
contact localization. The typical sensor morphology adopted
for this purpose is shown in Figure 1, which will be referred
to as the square grid from now. Each sensor has a straight
morphology in this case. As we are using statistical tools to
evaluate a sensor morphology, exact models of the sensors
and the enclosing body is not vital. Hence, we can employ
simple, static, geometrical models to design our sensor
morphology.

A. Morphology parameterization
To investigate different sensor morphologies, we parame-

terize each sensor with N variables. The number of sensors
in a grid is denoted by 2M , where M is the number of
sensors on each side. For this study we always consider
the symmetric grid shape and hence the number of sensors
on each side would be same throughout. Each parameter
corresponds to a point (with coordinates x, y) in the grid. The
starting point and end point of each sensor is always fixed
and corresponds to its counterpart in the square grid morphol-
ogy. The piecewise cubic hermite interpolating polynomial
(PCHIP) interpolation is then used to derive the shape of the
sensor from the N variables. The MATLAB fit function is
used for this operation. The PCHIP interpolation function is
a shape-preserving interpolation and therefore ensures that
the sensor network does not leave the grid. Through this
parameterization, the complexity of the sensor morphology
can be increased easily by just increasing the value of N . The
complete sensor network is hence fully defined by 2×MN
variables (Figure 2).
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Fig. 1: Typical square grid pattern for soft strain sensors used
in contact localization.
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Fig. 2: Parameterization of the sensor morphology. For the
above case, each sensor is parameterized by 5 variables in
the planar coordinate space (represented by stars). Shape-
preserving interpolation is used to obtain the final shape.
This is the final sensor morphology used for our experimental
validation.

B. Deformation Model

The deformation model determines the strain values ob-
served in each of the sensor for a given morphology. For
simplicity, we study only the static response of the sensors
to a single contact. We assume that the strain observed in the
sensors is only a function of the shape of the sensor within
the deformation area. Any effect of stress concentration due
to pre-strain, uneven material distribution and crosstalk is
assumed to be absent. We parameterize the deformation area
as the polygon formed by a set of points as shown below:

Dx(i) = K.cos(2πD/i) + Posx

Dy(i) = K.sin(2πD/i) + Posy

∀ i = 1 .. D

(1)

Where [Posx, Posy], is the center of the deformation,K
is the size of object that causes the deformation, and D
determines the shape of the deformation. A large value of
D approximates a circle and a perfect square is defined by
a D of 4.

Once the deformation shape and location is defined, the
strain values in each sensor can be determined. We will
employ a numerical method to obtain the deformation-to-
strain values. The model determines the strain values from
the length of the sensor within the deformation area scaled by
the inverse of its distance from the center of the deformation
(2).

sm =

P∑
p=1

∆dp/distp

∀ m = 1 .. 2M

(2)

Here, ∆dp is the length of each numerically quantized
segment within the deformation area, P is the number
of quantized segments, and distp is the distance of each
segment from the deformation center.
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Fig. 3: Optimized shapes of varying complexities.

C. Morphology Assessment and Optimization

Morphology assessment refers to the evaluation of a
certain morphology based on a predefined performance met-
ric. It could be based on localization accuracy, robustness
to damage, classification accuracy, etc. Ideally, this would
involve developing further models to map the raw strain
sensor values to meaningful physical variables. However, this
is a computationally demanding process and would make it
practically impossible to search and optimize through all the
design parameters.

One way to speed up the sensor morphology assessment is
to use information theoretic measures. We employ entropy,
a measure of information content, to guide our sensor mor-
phology optimization. Specifically, we will be using the joint
entropy measure of the sensor variables. Increasing the joint
entropy would increase the information content in the set of
sensors and hence makes the sensory array more robust to
the loss of individual sensors. For non-redundant localization
tasks (where the sensor distribution is sparse with respect to
the contact area), increasing the joint entropy would also
results in an average increase in localization accuracy.

The joint entropy of the sensor morphology is estimated
by a short, continuous and uniform sampling across the
sensor surface. Each sample leads to a change in strain
values of certain sensors. Here, we are assuming this strain
value is measured using a strain-based soft resistive sensor.
Usual soft strain sensors work on changes in resistance
induced by strain due to geometric effects, piezoresistive
effects, disconnection mechanism, crack propagation and/or
tunneling effects [1].

The strain values are then normalized and quantized to
the resolution of the measurement device (4096 in our case,
as we will be using a 12-bit analog-to-digital converter for
our experiments). This would correspond to the resistance
values in the sensors. We are using an open source toolbox
for measuring the joint entropy [22]. For Q samples from the
sensor network of size 2M , the joint entropy is measured as:

J.E = H(S1, S2 ... S2M )

S1 = [s1, s2 ... sQ]
(3)

Note that the actual resistance value is not used for
measuring the joint entropy values. We assume that the
actual resistance values are a monotonic function of the strain
values and hence would have similar entropy estimates. In-
creasing the joint entropy of the set of sensors would increase
the robustness of the sensor morphology to loss of sensors

and potentially the accuracy of the network. However, there
are other practical constraints that must be considered for
the network to be effective in real-world scenarios. First, the
modelling of an optimized sensor morphology would have to
be data-driven. The morphology is too complex to develop
analytical models. Hence, there are constraints imposed by
a learning system on the morphology of the sensor. Second,
fabrication of these sensor networks tend to be more difficult
when the sensors crisscross each other.

The nonlinear transfer function used in neural networks
and normalization of data imposes smoothness constraints
on the data. In other words, if the change in sensor response
is not smooth with respect to small changes in location of
contact, the training algorithms used in the learning process
will be affected. Hence the sharpness of the sensor readings
is also added as a constraint for optimization. The initial
sampling is continuous for this reason.

Sharpness(Z) =

2M∑
1

P−2∑
1

|∆2S|

S = [S1, S2 ... S2M ]

(4)

The amount of crisscrossing among sensors is purely geo-
metric and can be numerically measured. For brevity, we
are not including the algorithm. The scalar value which
provides a measure of the cumulative area of sensor crossing
is denoted as C. Now the objective for our optimization
problem would be to increase the joint entropy (J.E), while
trying to decrease the sharpness (Z) and the sensor crossing
area (C). The multi-objective optimization problem can be
reformulated as a minimization problem:

min
z

α
1

J.E
+ βZ + γC

z = [(x1, y1), (x2, y2), ...(x2MN , y2MN )]

xmin < x < xmax

ymin < y < ymax

(5)

The boundaries of the sensor network determine the values
of xmin, xmax, ymin, ymax. α, β, and γ have to be tuned to
get the right trade-off between information content, learn-
ability and ease-of-fabrication. Genetic algorithm is used to
find the minima of our objective function (5). For other
tasks, appropriate constraints and objectives can be added.
Note that the optimized morphology might change with the
random initialization of the genetic algorithm and the number
of iterations used for optimization.



III. SIMULATION RESULTS

The main objective of this paper is to design sensor mor-
phologies that are more robust to loss of sensory information.
It is expected that a more complex sensor morphology would
be able to span a larger sensing area while maintaining the
constraints imposed on it. The simulation tests are used to
verify this. The optimized shapes used for the simulation test
are shown in Figure 3.

A. Optimization of sensor morphology

Once the optimized sensor network is obtained after
the optimization process, a larger randomized sampling is
performed to test its performance. The results are shown
for a grid size (distance between each neighboring sensor)
of one unit. The parameters used for the study are shown
in table I. A simple single layer neural network is used
for learning the mapping from the sensor values to the
location of contact, defined by its X and Y coordinates. The
Levenberg-Marquardt backpropagation algorithm is used for
training with the data divided in the ratio of 70:15:15 for
training, testing and validation respectively. To simulate loss
of sensory data, we train the neural networks again with
lesser number of sensor data. All different combinations of
sensory losses are evaluated to find the average performance
of the sensor network. For example, for the case of one
sensor being damaged, all eight possibilities of sensory loss
are considered and evaluated. Using a single network that is
robust to loss of input data is still a challenge in machine
learning and hence we do attempt to do so. The localization
error (root-sum-of-squares) of the neural network is then
calculated to evaluate each sensor morphology.

LocalizationError =

√√√√1024∑
i=1

(Ŷi − Y act
i )2

Ŷi = nn
(
Xi)

(6)

Here, Ŷi is the estimated contact location by the neural
network (nn) based on the sensor readings Xi. The actual
contact location is Y act

i . The average error of the learned
model using the optimized sensor network and its robustness
to loss of sensory data is shown in Figure 4. For comparison,
a randomly generated sensor grid is shown. The results
show that the optimization method guarantees an increase
in robustness with an increase in sensor complexity. Note
that the increase is accuracy is a byproduct of the fact that
the localization problem is non-redundant and ill-defined in
certain regions for the square grid. For larger deformations,
as shown later, this is no longer the case.

To visualize the dependence between localization error
and the contact location, the error distribution across the
sensor network is shown in Figure5. The error heatmap
reveals locations where the sensor density is not sufficient
or where the sensor readings are not unique. This is clear
from the error distribution in the square grid network. The
error distribution along the grid for loss of sensory data is
also shown for comparison. It can be seen, as expected,

TABLE I: Parameters for the simulation study

Parameter Value
Grid Size 1 Unit

Number of Sensors 8
Grid Dimension 4x4 Units
Object Size (K) 0.6 Units

Object Shape Parameter (D) 30
α, β, γ 1, e−7,5e−6

No. of Samples 1024
Neural Network Size 50

Square Grid N=1 N=5 N=10 N=20 N=30
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Fig. 4: Performance of the sensor network for different
complexity and to the loss of sensory data.

that the error distribution becomes more localized and less
symmetric with a more complex morphology. Importantly,
the new regions of error increase does not correspond with
the original error heatmap. Hence they can not only provide
higher overall accuracy but can potentially be better at
anomaly/damage detection. The detection and localization
of sensory damage is easy if the damages are total. Cases
where the damage to the sensor affects the performance, but
is not disruptive, is more difficult to detect. Here, anomaly
detection algorithm using prior learned models are required
and morphologies that have unique failure patterns with
respect to the baseline performance are better suited for these
algorithms.

B. Sensitivity Analysis

The optimized sensor morphology is obtained for specific
deformation models with several additional assumptions.
In reality, however there will be considerable differences
between the models. It would be difficult and impractical
to develop more accurate models to bridge the reality-gap as
this weakens the generality of the methodology. The reason-
ing behind using an information theoretics-based approach is
to gain performance improvements without losing generality
and by using simple models. The downside being that the
derived networks will not be the optimal design for the given
task.

To evaluate the dependence of the optimized network on
the deformation model we simulate the performance of the
optimized morphologies on other deformation parameters.
The results are shown in Figure 6. The performance shows
similar trends as observed in the original case. As expected,
the accuracy of localization increases as the object size
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Fig. 5: Localization error distribution for different sensor
morphologies. The change in error distribution for an ex-
ample case is shown below for comparison.

increases due to involvement of more sensors. The shape
of the object has very little role in the performance. An
interesting observation is the drastic accuracy improvement
in the performance of the square grid once the object size
becomes greater than or equal to the grid size. This is
because for this condition, the number of sensors being active
becomes greater than three and this helps in removing all the
ill-defined inverse mappings where the same sensor readings
correspond to different location of contact. Additionally, the
linear shape along with the circular deformation provides
smooth sensor readings. Non-uniqueness of the sensor-to-
location mapping is highly improbably in the complex mor-
phologies due to its asymmetric nature and is therefore not
considered as a constraint in the optimization.

C. Perspective: Scaling-up

A potential advantage of the square grid sensor mor-
phology is its ability to scale-up easily. Here, we are re-
ferring to ease in terms of modelling difficulty. For an
analytical approach, modelling a square grid network does
not introduce additional complexities and model complexity
would increase linearly with increase in size of the sensor
network. The question we are interested is if this property is
preserved in a data-driven modelling approach and how we
can correspondingly scale-up a complex sensor morphology
with practical limits on sampling size.

To study this we obtain samples for learning the localiza-
tion mapping for sensors of increasing size. We start with the
original 4x4 grid and test until a size of 128x128. For each
sensor network 4096 samples are obtained and a single layer
multilayer perceptron of hidden layer size of 70 is used for
learning. The same deformation model and size is used for
all the sensor networks. The localization error for different
sensor network sizes are shown in Figure 7. It is clear that for
the case of 64x64 grid and the 128x128 grid, there has to be
loss of information once it enters the network. Nonetheless,
the results indicate that the same network size and number of
samples is sufficient to attain identical localization accuracy
for a square grid sensor morphology. The absolute errors
are less the half the grid size unit length up to a sensor
grid of size 64x64. The generalization property of neural
networks and the symmetry of a square grid makes this
feasible. Interestingly, the performance of the sensor grid

improves with respect to the sensor network size (localization
error goes to 0.24 percent of the network length for the case
of 64x64 square grid). This analysis is important because
it also indicates that we can potentially reduce the number
of wiring to the sensors, based on these simple models and
simulation studies. The error distribution along the surface
for each sensor network size is shown in Figure 8. It is also
interesting that the error distribution is not just dependent on
the local morphology of sensor grid (mainly regions where
the same sensor readings are obtained at different contact
locations), but also reliant on the global morphology (eg. the
non repeating error pattern in the 32x32 Grid). Errors due to
the local morphology will have repeating patterns due to the
symmetry of the design.

Locally, a square grid morphology is not ideal for max-
imizing entropy. However, global symmetry in a sensor
network is beneficial to reduce the effects of the ’curse of
dimensionality’ in the modelling process. This is not a trivial
problem to solve. We are also hampered by the fact that
these sensor networks are meant to be embedded in a robotic
structure or in wearable devices that have complex geometric
shapes. A potential avenue to investigate are fractal structures
which are prevalent in nature and in the human nervous
system [23]

D. Multi-contact Localization

The study of multi-contact localization using continuous
soft strain sensors have never been investigated before.
This is because sensor arrays based on continuum strain
sensors are not ideal for multi-contact localization. As a
single sensor fibre can be activated in the same manner
with contacts at different locations, discrimination of contacts
become difficult. This is ,of course, one of the drawbacks of
using continuous strain sensors for contact localization. For
discriminating N contact points without a priori knowledge,
N independent contact sensors would be required.

Nonetheless, the sensor arrays optimized for single point
contact localization can still be tested for multi-point dis-
crimination. As we rely on a learning-based method for
localization, the procedure is straightforward. For this study,
we investigate the localization accuracy for two-point contact
discrimination. Similar to the previous tests, samples are
obtained for two independent contacts on the sensor grid.
The object size and shape is kept as the default. The samples
are increased to 8192 and the network size is increased to
60. The average localization error for both points are shown
in Figure 9.

Although, the sensor arrays are not optimized for two
simultaneous and independent contacts, it is seen that the
complex morphologies still perform better than the square
grid morphology. This is not surprising as any break in
symmetry and higher area of coverage would most likely
improve the discrimination process. For extending the pro-
posed methodology for multi-point optimization, only the
sampling process has to modified. Depending on the number
of contacts, uniform and unique sampling has be performed
for measuring the joint entropy values. Nonetheless, it will
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Fig. 7: Localization error with sensor grid dimension for a
square grid sensor morphology. The right side shows the
average error normalized with the grid dimension. Refer to
figure 8 for the error heatmap

be increasingly difficult to perform multi-contact localization
with continuous strain sensors. An interesting research ques-
tion would be analyse how hybrid sensory structures with
both discrete and continuous strain sensors can be developed
with the help of soft highly conductive material (conductive
thread, for example) as bridges.

IV. MATERIALS AND METHOD

A. Conductive Thermoplastic Elastomer

The sensing material used for the development of these
soft pads, Conductive Thermoplastic Elastomer (CTPE) is a
thermoplastic elastic matrix which is homogeneously mixed
with carbon black powder under high pressure and temper-
ature [24]. This process produces an electrically conductive
material whose resistance varies with the strain applied [25].
The change in the resistance of materials is caused by the
structural deformations of the sensor. CTPE can be extruded
into a wide range of shapes or morphologies, including
highly elastic fibers typically of 0.3mm diameter, which
can undergo strains of above 80% without reaching their
tensile limit. This allows the morphology and structure of
CTPE sensors to be easily varied. Due to this flexibility,
there has been some existing integration into soft robots,
and exploration of the optimum sensor morphology for
this[26][27].

B. Fabrication

The soft sensor pads which incorporate the sensor net-
works has been developed by casting silicone. To accurately
fix the sensors in the required position, an inverse mould
was made which has small tracks for the sensors to lie in. By
exporting the sensor morphologies as images, CAD software
was used to create a mould, with these lines extruded slightly
above the surface. After 3D printing the moulds EcoFlex 00-
20 was cast into the moulds and released after curing. The
CTPE sensors were then individually fixed in the tracks using
a Dow Corning silicone adhesive to fix them in place and
prevent shorts between crossing sensors. Fig. 10 shows the
two sensor morphologies which were fabricated.

C. Experimental Setup

To physically test the sensor morphologies, an indentation
probe was attached to a UR5 robot arm, with the sensor
structures placed in the operation area of the robot. To mon-
itor the changing resistance of the CTPE sensors, they were
connected via a matched potential divider to the analogue to
digital converters on an Arduino Due. This microcontroller
was chosen as it provides the ADC has a 12-bit resolution,
allowing small changes in strain to be measured. The control
PC was used to read from the Arduino and also control
the position of the UR5 robot arm. Fig. 11 shows the
experimental setup and a block diagram of the system. The
experimental setup is designed to emulate the simulation
model. The experimental parameters are shown in Table II.
Experimentally, reducing the probe size led to non-repeatable
behaviors or damages in the strain sensors, possibly because
of high stress concentration. From the simulations, it was
clear that increasing the probe size essentially neutralizes the
effect of the optimization as more sensors become active. So,
we have conducted our experiments only for a single probe
size.

V. EXPERIMENTAL RESULTS

The validation of the proposed methodology is done by
experimentally comparing the performance of the square
grid and the optimized sensor morphology with a N value
of 5 (Fig. 10). The sensor morphologies are evaluated by
measuring the localization accuracy of the network and its
robustness to loss of sensory information. The experimental
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TABLE II: Parameters of the experimental setup

Parameter Value
Grid Size 11.25 mm

Number of Sensors∗ 6
Grid Dimension 4x4 Units
Object Size (K) 0.75 mm

Object Shape Circular Dome
Indentation depth 4mm
No. of Samples 7400

Neural Network Size 50

procedure was designed to closely match the simulation pro-
cedure for comparison. The localization models are trained
using the parameters shown in Table II. During, the complete
sampling process some of the sensors got damaged internally.
Therefore, the results are obtained after removing two sensor
readings from each of the sensor networks (S1 and S2).
As the simulation framework was built on a static model
between deformation and strain values, we try to emulate
the same on the real sensors. To do so we introduce a novel
method for compensation of the time dependent drift based
on the uniqueness of the typical drift cycle [28].

A. Drift Compensation

The actual response of a single CTPE sensor to a cycling
loading and the actual values during indentation is shown
in Figure 12. Due to the drift in the sensor, the absolute
values of the sensor resistance do not correspond to the
actual strain values. There are few works on dynamic drift
compensation [3], [29]. However, here we propose a simpler
method for static drift compensation. The proposed learning-
based method can work even for high hysteresis sensors.
In fact, our sensors are affected by a combination of drift,
hysteresis and other nonlinear effects. The method relies
on the fact that the time period of the indentation cycle is
constant.

First, the sensor values are filtered with a method called
total variation denoising. This allows us to reduce noise
without smoothing away edges. The drift compensation
method relies on the fact that for a fixed period loading cycle,
the sensor readings cycle would correspond to the actual
strain induced during the process. Hence, given the strain
state of the material can be inferred from a rough estimate
of the sensor resistance cycle. This information is provided
to the neural network as the inputs [xi−1, xi, xi+1]. Where,

xi−1 is the sensor resistance before indentation, xi is the
sensor resistance during indentation and xi+1 is the sensor
value during indentation. An example is shown in Figure 12.
The localization model, hence is slightly different from the
simulated one with the input size being increased by a factor
of three.

Due to the presence of drift and our model-free technique
for drift compensation, we cannot estimate the true state
of sensor strain during the sampling process. Hence, we
cannot estimate the joint entropy measure and make a
direct comparison with the simulation result. We can still
compare ideal period in each sensor in the simulation and
the experiment as shown in Table III. For the simulation,
this is simply calculated by the average percentage of time a
sensor is inactive. As expected, in the complex morphology,
the sensors are active more time on average than the grid
morphology. For the experimental setup, sensor activation is
recorded if the change in resistance for each sample is higher
than two percentage of the total variation in the resistance
obtained across all the observations. The grid morphology
performs within reasonable similarity to the simulation as the
sensor activation should be dependent only on the geometry
of deformation and not on the physical properties of the
material. However, for the complex morphology, the average
activation is similarly low. This could be because some
of the sensors have much reduced sensitivity and possible
manufacturing defects.

TABLE III: Average sensor idle stage: Simulation vs Exper-
iment

Morphology Simulation Experiment
Grid 70% 78%
N=5 57% 77%

B. Accuracy and Robustness

The localization accuracy and the robustness of the sensor
networks to loss of sensory data is shown in Figure 13.
The performance of both the sensor networks are similar
with respect to average localization accuracy. The square
grid was slightly more accurate (1.7 mm) when compared
to the complex morphology (2.1mm), when all the sensor
data was used for localization. Similar performance trends
were observed in simulations when the object deformations
had a large area. Indeed, it was observed that due to the
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Fig. 9: Two-point contact localization performance.
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Fig. 11: Experimental setup and block diagram.
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Fig. 12: Above: Typical drift observed in the soft strain
sensor and the key variables used in our drift compensation
technique. The red plot shows the filtered sensor signal.
Below: Raw sensor values used for contact localization.

high compliance of the enclosing medium, the deformation
propagated much farther than the probe size. This also leads
to a remarkable robustness of both the network to sensory
loss. Both sensor morphologies maintain an average accuracy
of 5mm even when only three sensors are active.

The complex morphology is however better suited for high
fidelity sensing as it can provide higher error tolerances as
shown by the standard deviations in Figure 13. This would
ensure consistent performances, irrespective of which sensor
is damaged. The performance of the square grid, on the other
hand, is highly dependent on this. For instance the maximum
error for loss of a single sensor was 4.2 mm for the square
grid while the complex morphology had a maximum error
of 2.5 mm. Similarly for the loss of two and three sensors
the square grid had a maximum error of 6.3mm and 8.2 mm
while the complex morphology only went up to 3.9mm and
6.7 mm, respectively.

The error distribution in the complex morphology is
shown in Figure 14 for the case of three sensors (S6,S7,S8)
removed. The error distribution does not exactly mimic the
simulation results. Yet, there are typical high error regions
along the edges. Note that it is more difficult to fabricate the
complex sensor network than the square grid sensor network.
As the sensor threads are placed by hand, localized stretching
and compression of the sensor occurs, which affects the
signal quality drastically. For the square grid, uniform pre-
strain could be achieved easily because of its geometry. With
better manufacturing techniques, we expect the complex
morphology to perform even better in terms of accuracy and
robustness.

To analyze the sensitivity of the prototypes to other
probing conditions, tests where also performed with a smaller
probe size (half of the default size), similar to the one shown
in figure 6. Large probe sizes are not of interest as an
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Fig. 14: Localization error along the surface for the removal
of three sensors from the same location.

optimized sensor network would ideally use the minimum
number of sensors and hence the maximum grid size. The
tests were performed with all the sensors active, as compared
to the previous tests. Both the sensor arrays performed poorly
for this case with the complex morphology having an average
accuracy of 6.28 mm and the square grid having an accuracy
of 6.82 mm. Note that this is with all eights sensors active.
We speculate that this is because of large concentrated strains
that the strain sensors experienced with the smaller probe.
This lead to large spikes in the sensor values and permanent
damages to the sensor itself.

VI. DISCUSSIONS AND CONCLUSION

The main aim of the paper is to show that just by opti-
mizing the shape of each strain sensor fiber we can achieve
better performance without additional sensors or circuitry.
We demonstrate a way to achieve this without an actual
model of the strain sensor, but with a purely geometrical
model and information theory metrics. Such an approach
can be easily adopted to different tasks and structures and
would be less susceptible to modelling differences. This
paper demonstrates how such a method can be used to
develop sensor networks that are robust to damages. We are
able to achieve this performance improvement solely by the
morphology of the sensors, which is unprecedented in the
literature. We incur no additional electronics or processing
costs. Further, with the use of Information Theory we can

rely on very simple geometric models to develop our sensor
morphologies. The models are developed without any knowl-
edge about the physical sensor, physical properties of the
sensor matrix, the data processing mechanism and accurate
deformation values. Extending the work to shape recognition
or contact force prediction is also possible with appropriate
deformation models and entropy-based metrics. Moreover,
we have proposed a novel static drift compensation technique
for soft strain sensors(section V A) and perspectives on how
such learning-based approaches scale with increasing sensors
(section III C). Our current work is limited to static tasks.
Considerable improvements can be attained by characterizing
the information content from the real soft sensors and their
dependence on the deformation parameters. Noise in the
signals and the characteristic drift are the main challenges
to be overcome to do such studies.

One of the main disadvantages of the complex morphology
was the fabrication process. Our current sensor array are
made by manually placing sensor threads into cavities in
embedding matrix. As the sensor morphology becomes more
complex, the fabrication of the sensors become more difficult
and introduces undesired pre-strain in the material. However,
with the development of new fabrication techniques and
materials for 3D printing soft strain sensors [30], [31], this
problem can be easily addressed. An alternate approach
would be to cast sensor grid using inverse molds. However,
additional care has to be taken to ensure uniform distribution
and response of the sensor material.

A fascinating result from the experiments is that the
observed accuracy of the square grid structure (around 4.5
percent of the network length) was slightly better than the
predicted accuracy of the simulated model ( around 5 percent
of the body length), even though the real-world scenario is
noisy and nonuniform. We hypothesize that these minute
variations and non-uniformity, either to the material proper-
ties or the fabrication technique actually helps in improving
accuracy for the square grid. Theoretically, the accuracy of
the square grid is limited for an object size of less than
2 times the grid size because of the non-uniqueness of the
sensors to contact locations, as observed through our simula-
tion results. This will be reflected in their entropy measures
too. The non-uniformity along the sensor network, therefore,
helps in resolving this uniqueness issue. Ironically, with
consistent material properties and manufacturing techniques
we might see a decline in the performance of the square grid
sensor morphologies.

Soft strain sensors are highly susceptible to damage. This
can be addressed in multiple ways; by smart materials [32],
[33], exploiting redundant multi-modal information [3], or
finally by smart structures as shown in this paper. Moreover,
the effort in wiring and processing the sensor reading with
low latency imposes limits on the number of sensors we
can deploy in our robotic structures. Hence, an alternative
would be the use of optimized sensor morphologies that can
provide the same performance with better robustness to loss
of sensory data.

A straightforward extension of this work is to extend



the design of sensor morphologies for actuated systems.
Here, the geometrical effects due to motions of the body
and contact with the environment has to be considered.
The fundamental difference between deformation induced
by intrinsic motion and external environment is the new
information provided by the control signals to the actuators.
The same methodology can be easily extended to detect
multiple contacts with a modified sampling strategy for
entropy measurement. Our simulations results show that even
the sensor arrays optimized for single-point contact works
better for multi-point contact. This is intuitive because by
optimizing the joint-entropy for single-point localization,
we are increasing the redundancy in the system, which
would most likely (not necessarily) lead to better multi-
point discrimination. Another possible topic to investigate
is the optimization of the three dimensional structure of soft
sensors and superficial damage detection using the optimized
sensor networks.

APPENDIX

The complete dataset of the simulations and ex-
periments along with the code can be found here:
https://github.com/tomraven1/sensor morphology
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