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We consider the model of random walk on dynamical percolation
introduced by Peres, Stauffer and Steif in [28]. We obtain compari-
son results for this model for hitting and mixing times and for the
spectral-gap and log-Sobolev constant with the corresponding quan-
tities for simple random walk on the underlying graph G, for general
graphs. When G is the torus Zd

n, we recover the results of Peres et al.
and we also extend them to the critical case. We also obtain bounds
in the cases where G is a transitive graph of moderate growth and
also when it is the hypercube.

1. Introduction. In this paper we consider the model of random walk
on a dynamically evolving environment introduced in [28]. Fix a base graph
G = (V,E) and let each edge e refresh at rate μ to open with probability p
and closed with probability 1− p independently of other edges and previous
states of the same edge. Let X be a continuous time random walk that
moves as follows: at rate 1 it chooses one of its neighbours uniformly at
random and only jumps there if the edge connecting the neighbour to its
current location is open. Otherwise it stays in place. We denote the state
of the full system at time t by (Xt, ηt), where Xt ∈ V and ηt ∈ {0, 1}E

with 0 representing a closed edge and 1 an open one. We refer to ηt as the
environment at time t. We emphasise that (Xt, ηt)t≥0 is Markovian, while the
location of the walker (Xt)t≥0 is not. One readily checks that πfull,p = π×πp

is the unique stationary distribution and that the process is reversible; here
π is the degree biased distribution on V , i.e. π(x) = deg(x)/(2|E|) for all
x and πp is product measure of Ber(p) on the edges. Moreover, even if the
environment process {ηt}t≥0 is fixed, π is a stationary distribution for the
resulting time inhomogeneous Markov process (Xt)t≥0.

There has been a lot of interest recently in studying these processes.
The case where G = Zd

n was studied in [28, 27]. The subcritical regime
seems to be fully understood [28], while the supercritical case still poses
challenges. In [3], the authors established precise mixing time results for the
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non-backtracking random walk on a dynamic configuration model and in [30]
the authors studied the case where G is the complete graph. In this paper, we
study mixing and hitting times for random walk on dynamical percolation on
general graphs. We develop general machinery that allows for a comparison
of these quantities with the corresponding ones for simple random walk
(SRW) on the base graph G. Recall that the simple random walk (SRW)
on G = (V,E) is a Markov chain on V with transition probabilities given
by P (x, y) = 1({x, y} ∈ E)/ deg(x), where deg(x) is the degree of x (i.e. at
each step the walk picks a neighbour uniformly at random and jumps to it).
We emphasise that from now on, whenever we write SRW, we refer to simple
random walk on the (static) graph G, i.e. where all edges in E are present.
Below, we shall consider its continuous-time version with jump rate 1. We
note that our upper bounds on the hitting and mixing times hold for all μ
and all p ∈ (0, 1] with no difference between the subcritical and supercritical
regimes. This is in sharp contrast to previous works.

Let P be a transition matrix with stationary distribution π. We define
the total variation and L∞ mixing times as follows

tmix(ε) = min{t ≥ 0 : max
x

∥
∥P t(x, ∙) − π

∥
∥

TV
≤ ε}

t
(∞)
mix (ε) = min{t ≥ 0 : max

x
‖P t(x, ∙) − π‖∞,π ≤ ε},

where the total variation and L∞ norms of a signed measure a are given
by ‖a‖TV = 1

2

∑
x |a(x)| and ‖a‖∞,c = maxx |a(x)/c(x)|. We are primarily

interested in the total variation and L∞ mixing times of the full system and
we denote them by

tfull
mix(ε) = t

full,(μ,p)
mix (ε) and t

full,(∞)
mix (ε) = t

full,(μ,p),(∞)
mix (ε).

We denote the corresponding mixing times for the SRW on G by tSRW
mix (G, ε)

and t
SRW,(∞)
mix (G, ε). We omit G when clear from context, and ε when ε = 1/4.

Let Px,η be the law of the full process, started from initial environment η
and initial location x for the walk. We denote the corresponding expectation
by Ex,η. When p and μ are not clear from context, we write P(μ,p)

x,η and

E(μ,p)
x,η . We write Pt

x,η as a shorthand for the law of the full process at time
t, Px,η((Xt, ηt) = (∙, ∙)).

We are also interested in hitting times by the full process of the form

tfull
hit = t

full,(μ,p)
hit = max

x,y∈V,η∈{0,1}E
Ex,η[T{y}×{0,1}E ],

where for a set A ⊂ V × {0, 1}E its hitting time TA = inf{t : (Xt, ηt) ∈ A}
is defined to be the first time the process visits the set A. Our Theorem 1.1
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bounds tfull
hit in terms of the hitting times for the SRW which are denoted by

tSRW
hit (G) = maxx,y∈V ESRW

x [Ty].
For functions f, g we will write f(n) . g(n) if there exists a constant

c > 0 such that f(n) ≤ cg(n) for all n. We write f(n) & g(n) if g(n) . f(n).
Finally, we write f(n) � g(n) if both f(n) . g(n) and f(n) & g(n). We
write �a,.a and &a when the implied constant depends on a.

Peres and Steif [29] asked whether t
full,(μ,p)
hit .μ,p |V |3, which is the natural

analog of the classical bound tSRW
hit . |V |3 (see e.g., [1, 22]). In the following

theorem we give an upper bound on t
full,(μ,p)
hit in terms of tSRW

hit . Using tSRW
hit .

|V |3 this answers affirmatively their question.

Theorem 1.1 (Hitting time comparison with SRW). For every μ there
exists a positive constant c1 such that for all graphs G and all p we have that

(1.1) t
full,(μ,p)
hit ≤

c1

p
∙ tSRW

hit .

Moreover, there exists a constant c2 so that for all graphs G and all (μ, p) ∈
(0, 1]2 we have that

(1.2) t
full,(μ,p)
hit ≤ c2(μ

−1t
full,(1,p)
hit + t

full,(μ,p)
mix ).

We believe the t
full,(μ,p)
mix term in (1.2) in most cases satisfies t

full,(μ,p)
mix .

μ−1t
full,(1,p)
hit and can thus be removed from (1.2), see Remark 2 in Section 1.1.

The Dirichlet form associated to the transition matrix P (respectively,
generator L) is defined to be

EP (f, f) =
1
2

∑

x,y

π(x)P (x, y)(f(x) − f(y))2 = π ((I − P )f ∙ f)

for all f : Ω → R (respectively, EL(f, f) = 1
2

∑
x,y π(x)L(x, y)(f(x) −

f(y))2 = π (−Lf ∙ f)).
For ε > 0 we denote the spectral profile

(1.3) Λ(ε) = min{E(h, h) : h ∈ RΩ, Varπ(h) = 1, π(supp(h)) ≤ ε},

where supp(h) = {x ∈ Ω : h(x) 6= 0} is the support of h and Varπ(h) =
Eπ[(h − Eπh)2] is the variance w.r.t. π.

For ε > 0, the ε-spectral-profile time is given by

(1.4) tspectral−profile(ε) =
∫ 4/ε

4π∗

2dδ

δΛ(δ)
,
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where π∗ = minx π(x).

Goel et al. [13] showed that t
(∞)
mix (ε) ≤ tspectral−profile(ε) (this refines the

evolving sets bound of Morris and Peres [25]). Let tSRW
spectral−profile be tspectral−profile

defined w.r.t. simple random walk. We recall a result of Kozma [21] that for

all (simple) finite graphs tSRW
spectral−profile . t

SRW,(∞)
mix log log |V |. However, there

are many families of graphs for which tSRW
spectral−profile � t

SRW,(∞)
mix � tSRW

mix . For
instance, this is the case for the hypercube and for vertex-transitive graphs
of moderate growth.

Theorem 1.2 (Mixing time comparison with SRW). There exists a pos-
itive constant c1 such that for all graphs G and all (μ, p) ∈ (0, 1]2 we have
for all ε ∈ (0, 1)

(1.5) t
full,(μ,p),(∞)
mix (ε) ≤

c1

μp
∙ tSRW

spectral−profile(ε) +
c1

μ
| log (1 − p) |.

Remark 1.3. We note that the term | log (1 − p) |/μ is necessary, be-
cause the L∞ mixing time of the environment is at least of this order. How-
ever, if we were considering the total variation mixing time of the full system,
then we would get rid of this extra term. We explain this at the end of the
proof of this theorem in Section 6.

We recall that the spectral-gap of a reversible transition matrix P (resp.
generator L) is defined as the smallest positive eigenvalue of I − P (resp.
−L). Its inverse is called the relaxation-time. We denote the relaxation-time

of the full process by tfull
rel = t

full,(μ,p)
rel and that of the SRW by tSRW

rel . We recall
that generally for a continuous-time reversible Markov chain on a finite state
space Ω with stationary distribution π the relaxation-time determines the
asymptotic exponential rate of convergence to equilibrium in the following
precise sense (cf., [22, Lemmas 20.5 and 20.11]) for all ε ∈ (0, 1)

trel| log ε| ≤ tmix(ε/2) ≤ t
(∞)
mix (ε) ≤ trel| log(π∗ε)|, where π∗ := min

x∈Ω
π(x).

The inequality above together with Theorem 1.2 and the fact that
tSRW
spectral−profile(ε) � | log(ε)|tSRW

rel for ε < 1/|V | imply the following corollary.

Corollary 1.4. Uniformly in (μ, p) ∈ (0, 1]2 and in G = (V,E) we
have that for all k ∈ N

1
k
t
full,(μ,p),(∞)
mix

(
1

|V |k

)

. (μp)−1tSRW
rel log |V | +

1
μ
| log(1 − p)|

� (μp)−1tSRW
mix

(
1
|V |

)

+
1
μ
| log(1 − p)|.
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Remark 1.5. The following quenched statement follows easily from
Corollary 1.4:
Let t = t(μ, p, C) := C(μp)−1tSRW

rel log |V |. Define d(t, x, {ηs}s≥0) to be the
total variation distance from π of the walk co-ordinate Xt at time t of the
full process, given the environment {ηs}s≥0 and given X0 = x. Then for
some choice of universal constant C > 0 for all (μ, p) ∈ (0, 1] we have that

max
η
P(μ,p)

η

(
max

x
d(t, x, {ηs}s≥0) > 1/|V |2

)
< 1/|V |.

Indeed, this follows by Markov’s inequality and a union bound over x.

Recall that the log-Sobolev constant of a continuous-time Markov chain
on a finite state space Ω, with generator L and stationary distribution π is
given by

cLS = inf{ EL(h,h)
Entπ(h2) : h2 ∈ [0,∞)Ω and non-constant},

where Entπ(f) = Eπ[f log(f/Eπ[|f |])] (with the convention that 0 log 0 = 0).

Theorem 1.6. There exist positive constants c1 and c2 so that for every
graph G and all values of (μ, p) we have that

c
full,(μ,p)
LS ≥ c1μ min

{

pcSRW
LS ,

1

log(1/π∗) log( 1
p(1−p))

}

,

where π∗ above is defined to be minv∈V π(v). Moreover, we have that

t
full,(μ,p)
rel ≤ c2

1
μp

tSRW
rel .

Remark 1.7. We note that for a simple random walk if hv(u) := 1u=v√
π(v)

,

then

cSRW
LS ≤ min

v

EL(hv, hv)
Entπ(h2

v)
=

1
log(1/π∗)

,

and hence if p is bounded away from 1, then the lower bound above for the
log-Sobolev constant of the full process becomes c3μpcSRW

LS .

Let G = (V,E) be an n-vertex connected graph. We say that G is vertex-
transitive if the action of its automorphism group on its vertices is transitive.
Denote the volume of a ball of radius r in G by V (r). Denote the diameter of
G by γ = inf{r : V (r) ≥ n}. Following Diaconis and Saloff-Coste [7] we say
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that G has (c, a)-moderate growth if V (r) ≥ cn(r/γ)a for all r. Breuillard and
Tointon [6] proved that for Cayley graphs of fixed degree, this condition is
equivalent in some quantitative sense to the simpler condition that n ≤ βγα

for some α, β > 0. Tessera and Tointon recently extended this result to
vertex-transitive graphs [31]. We note that Diaconis and Saloff-Coste [7]
proved that for vertex-transitive graphs of (c, a)-moderate growth and of
degree d

d−1t
SRW,(∞)
mix .a,c γ2 .a,c tSRW

rel ≤ t
SRW,(∞)
mix .

Denote the percolation cluster of vertex x by Kx and its edge boundary
by ∂Kx. We identify the cluster with the vertices lying in it, and denote the
cardinalities of Kx and ∂Kx by |Kx| and |∂Kx|, respectively. We also denote
Mp = πp(|∂Kx||Kx|2) ≤ πp(d|Kx|3) and Np = πp(|Kx|) (by transitivity
these quantities are independent of x), where d is the degree and where
πp(f) =

∑
η πp(η)f(η) denotes expectation w.r.t. πp of f : {0, 1}E → R.

Theorem 1.8 (Moderate growth vertex-transitive graphs, subcritical regime).
Let a, b, c ∈ R+. Let G = (V,E) be a connected vertex transitive graph of de-
gree d, (c, a)-moderate growth and diameter γ. Suppose that | log(1−p)| ≤ γ2,
Mp ≤ b and Np ≤ γ/8. Then

t
full,(μ,p),(∞)
mix �a,b,c,d (μp)−1tSRW

rel �a,b,c t
full,(μ,p)
rel .

Moreover, even if p is not subcritical, we still have that t
full,(μ,p),(∞)
mix .a,c,d

(μp)−1tSRW
rel .

We note that the condition | log(1 − p)| ≤ γ2 is very mild, and typically
follows from either of the two other conditions (provided b is much smaller
than n). In applications γ � 1 and we think of b as a constant. In this case
the conditions Np ≤ γ/8 and | log(1 − p)| ≤ γ2 follow from the condition
Mp ≤ b. A more refined statement, with an explicit dependence on b is given
in Lemma 7.1.

Theorem 1.9 (Hypercube). Let G be the hypercube {0, 1}d. Then uni-
formly in (μ, p) ∈ (0, 1]2 we have that

t
full,(μ,p),(∞)
mix .

1
μp

d log d +
1
μ
| log (1 − p) |.

It is conjectured [32, p. 59] that when p = c/d for c > 1 the mixing time
of the SRW on the giant component is w.h.p. Θ(d2), however no polynomial
in d upper bound is known for the static case.
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1.1. Remarks and open problems. (1) Comparison with previous re-
sults: We are able to extend the results of Peres, Stauffer and Steif [28]
about Zd

n to the more general setup of vertex-transitive graphs of moderate
growth via a simpler proof, while also eliminating the requirement that p
is subcritical. Our results for the supercritical case complement the results
on Peres, Sousi and Steif [27, 26]. When μ is of order 1 our Theorem 1.8
provides better bounds, but their results are quenched and hence not di-
rectly comparable to ours (also, the main result from [27] required p to be
supercritical in a certain quantitative way, namely that the expected size of
the giant component is at least |V |/2). We note that we give the first bounds
about the mixing time in the critical case.

Biskup and Rodriguez [5] study continuous-time random walk on Zd for
d ≥ 2 with random, symmetric jump rates which are time dependent, sta-
tionary, ergodic and bounded from above, but are not assumed to be positive.
Under mild assumptions on the environment (meant to eliminate the possi-
bility that a certain edge has rate 0 for a long period of time) they prove a
quenched invariance principle.

We consider a particular case of this model in remark (9) below, but do
so on general vertex-transitive graphs (we also do not require the weights
to be bounded). We consider the mixing time of the walk co-ordinate in
this model. The main difference is that while we consider the less general
(and simpler) case in which the rates of different edges are independent, we
provide an upper bound on the mixing time with an explicit dependence on
the update rate of the rates.
(2) Refining (1.2): It is quite possible that for all regular and all bounded
degree graphs one has that tSRW

spectral−profile . tSRW
hit . We strongly believe this

to be the case when G is a Cayley graph. Whenever this is the case, (1.2)
reads as

t
full,(μ,p)
hit . (μp)−1tSRW

hit .

This follows from Theorem 1.2 and Remark 1.3. We note that this always
holds up to a log log |V | factor, as by Kozma [21] for all graphs tSRW

spectral−profile .

t
SRW,(∞)
mix log log |V |, while t

SRW,(∞)
mix . tSRW

hit [22, Theorem 10.22].
(3)Hitting times lower bound for subcritical p: It is reasonable to ex-
pect that for p which is subcritical, say in the sense that the second moment
M of the size of a cluster is bounded, we have that t

full,(μ,p)
hit &M (μp)−1tSRW

hit .
(Note that M is increasing in p. Hence the p−1 term on the r.h.s. is meant to
capture the dependence on p for p close to 0. Namely, for such p we expect
that t

full,(μ,p)
hit & (μp)−1tSRW

hit .)
(4) Heuristics for the (μ, p) dependence: The following heuristics explain
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the appearance of the terms μ and p in our main results when the maximal
degree is bounded. Informally, when p is subcritical, viewing the walk when
it moves from one cluster to another gives a new random process with small
increments, which (as a discrete-time process) we expect in many cases to
have the same order mixing time as SRW. However, as we now explain,
the time between consecutive steps of this process is typically of order 1

μp .
Indeed, the walk co-ordinate of the full process is typically at a cluster C
of size O(1). Using the fact that the degree is bounded, it requires order

1
|C|μp = Ω( 1

μp) time units until an edge adjacent to C becomes open.
(5) Direct comparison of mixing times: It is natural to wonder whether

stronger results of the form t
full,(μ,p)
mix . (μp)−1tSRW

mix +μ−1 log |V | and t
full,(μ,p),(∞)
mix

. (μp)−1t
SRW,(∞)
mix +μ−1| log(1−p)| hold. Alas, it appears that small variants

of the examples from [10, 18, 15] can be used to show that this does not hold
in general. However, if G is vertex-transitive we believe this should indeed
be the case with the implicit constant depending on the degree.
(6) Commute-times: It follows from our argument that for every x, y ∈ V
the expected time it takes the walk component of the full process to reach
y from x and then return to x is at most Oμ(p−1ESRW

x [Ty] + ESRW
y [Tx]) and

also at most O( 1
μp [ESRW

x [Ty]+ESRW
y [Tx]+tSRW

spectral−profile]) for p bounded away
from 1.
(7) Extending Theorem 1.9 to self-products: The Cartesian product
G1 × G2 = (V ′, E′) of two graphs Gi = (Vi, Ei) is defined via V ′ := V1 × V2

and

E′ := {{(v1, v2), (u1, u2)} : v1 = u1 ∈ V1 and v2u2 ∈ E2, or vice-versa}.

For a graph G = (V,E) we denote the n-fold self (Cartesian) product of
G with itself by G⊗n = (V n, E(G⊗n)). That is G⊗n = G⊗(n−1) × G =
G×∙ ∙ ∙×G. Note that the n-dim hypercube is the n-fold self-product of the
complete graph on two vertices with itself. The proof of Theorem 1.9 can
easily be extended to show that uniformly in (μ, p) ∈ (0, 1]2, for G⊗n with
G = (V,E) we have that

t
full,(μ,p),(∞)
mix .|V |

1
μp

n log n +
1
μ
| log (1 − p) |.

In fact, this can be derived as an immediate corollary from either (1.5) (in
a similar fashion to the derivation of Theorem 1.9) or from Theorem 1.6.
(8) Allowing μ > 1: We assume throughout that μ ∈ (0, 1]. Our analysis of
the case μ = 1 can be used almost verbatim to treat μ > 1, in which case
terms of the form 1

μ should be replaced by 1+μ
μ .
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(9) Random rates model: We now discuss a certain extension of our
results to a random walk on dynamical random rates model. Let ν be some
law supported on R+. Consider the case that each edge e is updated at
rate μ and when it is updated, it is assigned a random rate re with law ν
independently. Given that the current location of the walk co-ordintae is x,
and that the current environment is η, where η(e) denotes the rate of the
edge e, the walk co-ordinate moves to vertex y at rate η(xy) for all xy ∈ E.
Observe that the case that ν is Bernoulli(p) gives rise to random walk on
dynamical percolation. Let X ∼ ν.

We consider the case that the base graph G = (V,E) is vertex-transitive
of degree d, that ν(0) = 1 − p, that E[X] < ∞ and that E[ea(X/E[X])] ≤ b
for some a, b > 0. Let κ(μ) be the expected time until the walk co-ordinate
leaves the origin for the first time in the variant of the model in which
for each vertex v, at rate μ all of the rates of the edges incident to v are
refreshed simultaneously, independently according to the law ν. Let M :=
C ′(a, b)dE[X2|X>0]

E[X] , where C ′(a, b) is a constant depending only on a, b, to be
determined later. (Note that M implicitly depends on ν(0).)

Our analysis of Theorem 1.2 can be extended to this model. With some
additional effort one can show that (for some appropriate C ′(a, b) above)
the total variation mixing time of the walk co-ordinate is at most

C(a, b)d(M + μ)κ(μ ∨ M)
μ

tSRW
spectral−profile,

where C(a, b) depends only on (a, b), and where A ∨ B := max{A,B}.
Moreover, if ν has a finite support, this is also an upper bound on the

total variation mixing time of the full process, whereas the L2 mixing time
of the full process is at most

(1.6)
C(a, b)d(M + μ)κ(μ ∨ M)

μ
tSRW
spectral−profile +

Cd| log minx:x 6=0 ν(x)|
μ

.

This extension of Theorem 1.2 to the random rates model is not at all
straightforward. We provide the details in [20, §6.1].

Question 1.10. Let G be an infinite connected vertex-transitive graph.
Assume that initially the environment is stationary. Let Pt(o, o) and Qt(o, o)
be the return probability to the origin by the (continuous-time) SRW and by
the walk co-ordinate of the full process, respectively. Is it the case that for
some C = C(G, p, μ) ≥ 1 we have

∀ t ≥ 0, 1
C PCt(o, o) ≤ Qt(o, o) ≤ CPt/C(o, o) ?
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Question 1.11. What is the order of t
full,(μ,p)
mix for G = Zd

n when p is the
critical probability pc for Bernoulli bond percolation on Zd

n?

We believe that for all d the order of the mixing time when p = pc and
μ = o(1) lies strictly between its values in the subcritical and supercritical
regimes (for the same μ), and that it has a complicated dependence on μ and
d. (It is possible that the dependence on d becomes simple once mean-field
behavior kicks in.) This might seem surprising at first glance due to the lack
of exceptional times (i.e. times at which an infinite cluster exists) for critical
dynamical percolation on Zd in high dimension [14]. We wish to express our
immense gratitude to Gabor Pete for relevant discussions.

The cover time τSRW
cov (G) of a graph G = (V,E) is the first time by

which every vertex v ∈ V has been visited by SRW on G. Let tSRW
cov (G) :=

maxv∈V Ev[τSRW
cov (G)] be its worst case expectation. We can similarly define

τ
(μ,p)
cov (G) to be the first time by which every vertex v ∈ V has been visited

by walk co-ordinate of the full process with parameters (μ, p) (i.e. (v, η) has

been visited for some η) and t
(μ,p)
cov (G) := max(v,η) E

(μ,p)
(v,η)t

(μ,p)
cov (G).

Question 1.12. Is it the case that there exist constants C(μ) > 0 such
that for all finite graphs G we have that

∀μ ∈ (0, 1], p ∈ (0, 1], t(μ,p)
cov (G) ≤

C(μ)
p

tSRW
cov (G) ?

We comment that if G = (H,E) is a Cayley graph of an Abelian group H,
then the auxiliary process from § 3 is reversible (see Remark 3.7). In [9] the
authors give a general comparison principle for cover times (of two reversible
Markov chains on the same state space, provided the effective resistances of
one chain are pairwise smaller than some constant multiple of those of the
other). Thus using our comparison of the transition probabilities between
the auxiliary chain and the SRW from Lemma 4.4 (together with Theorem
4.1 which relates this to a comparison of effective resistances), it follows

from [9] that t
(μ,p)
cov (G) ≤ C(μ)

p tcov(G), by considering the cover time of G for
the auxiliary walk. We omit the details.

2. Overview of our approach. We believe that our approach may be
relevant for other models of random walks on evolving graphs, in situations
in which the mixing time of the environment is smaller than that of the
walk co-ordinate. We first explain why we may concentrate on the case that
μ = 1. Let L(μ,p) be the infinitesimal generator of the full process with edge
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probability p and update rate μ. One can readily see that if μ1 < μ2 then
the corresponding rates satisfy

∀x, x′ ∈ V, η, η′ ∈ {0, 1}E , L(μ2,p)((x, η), (x′, η′)) ≤ μ2
μ1
L(μ1,p)((x, η), (x′, η′)).

Using this and some general theory we are able to transfer hitting time
estimates from μ = 1 to ones for μ < 1, at a cost of a μ−1 multiplicative
term and an additive term of order of t

full,(μ,p)
mix . As for the mixing time, we

obtain an upper bound on the spectral-profile bound when μ = 1 by a certain
comparison with SRW. Again, general theory allows us to then translate this
into a bound for general μ < 1 at a cost of a μ−1 multiplicative term.

Now consider the case that μ = 1. As we now explain, we may also
consider the case that η0 ∼ πp. It is tempting to argue that it suffices
to wait until every edge is updated once, which takes order log |E| time
units, and then the environment is stationary. However, since the walk co-
ordinate is dependent on the environment some difficulties arise when trying
to formulate this. Using the fact that μ = 1 we show that at some stopping
time slightly larger than the first time at which each edge is updated at least
once, the environment is stationary and is independent of the position of the
walk. This explains why when bounding hitting times we may assume that
η0 ∼ πp.

We define a sequence of increasing stopping times (w.r.t. an enlarged
filtration) (τi : i ∈ Z+) such that the following hold:

(1) ητi ∼ πp and is independent of Xτi for all i.
(2) τ0 = 0 and τi+1 − τi are i.i.d. such that E

[
eδτ1

]
< ∞ for some δ > 0.

(3) Yi = Xτi is a Markov chain with the same stationary distribution as
SRW. We call each such τi a regeneration time.

By construction, we will have for all i ∈ N that all of the edges examined
by the walk co-ordinate (i.e. that the walk co-ordinate attempted to cross)
at some time during (τi−1, τi) have been refreshed since the last time in
(τi−1, τi) at which they were examined. This, along with the assumption
that η0 ∼ πp, imply the crucial property (1) above.

While we do not believe the auxiliary chain (Yi)i∈Z+ to be reversible in
general, we show that π is its stationary distribution, and that the transition
matrix Q of its additive-symmetrization satisfies that Q(u, v) & 1

p deg u which
turns out to be sufficient in order to obtain a comparison of its hitting times
(more precisely, of its commute times) and of its spectral-profile with that
of SRW (at a price of an O( 1

p) factor). To turn these into upper bounds on
expected hitting times for (Yi)i∈Z+ (rather than for its additive symmetri-
sation) we use the fact that the commute times for the symmetrisation are
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always as large as they are for the original chain. As the chain (Yi)i∈Z+ is
constructed by viewing the chain (Xt)t∈R+ at a nice sequence of stopping
times, we then easily translate hitting time bounds for Y into ones for X
(for hitting times of the form Ty×{0,1}E ).

For the mixing time, we derive a comparison of the spectral profile bound
t
full,(1,p)
spectral−profile for the full process with parameters (1, p) with that of SRW

tSRW
spectral−profile. The comparison method is a standard method for compar-

ing analytic quantities that have an extremal characterization involving the
Dirichlet form, between two Markov chains. Despite the fact that the auxil-
iary chain may be non-reversible, using the comparison method we are able
to effortlessly compare the spectral-profiles of SRW with that of the auxil-
iary chain. We wish to use the auxiliary chain as a link to relate the SRW
with the full process.

A major obstacle in doing so is that the former has state space V , while
the latter V × {0, 1}V . Unfortunately, the comparison method requires the
two considered chains to have the same state space, or at least similar state
spaces (e.g., random walks on two quasi-isometric graphs might have dif-
ferent state spaces, but with more effort can still be compared). We are
unaware of any previous works establishing a comparison argument between
Markov chains with very different state spaces.

Our solution to this difficulty hinges on a probabilistic interpretation of
the spectral profile in terms of the rate of exponential decay of the tail of
hitting times starting from the stationary distribution of the chain, which
we review in Section 5. This interpretation allows us to use the the auxiliary
chain as a link between the full process and the SRW.

For each set A ⊆ V × {0, 1}E we construct a certain set B ⊆ V such
that π(Bc) . πfull,p(Ac) and show that the rate of exponential decay of
the tail of TA for the full process can be controlled via that of TB for the
aforementioned auxiliary chain Y . The set B is defined to be the set of all
vertices v ∈ V such that {w ∈ {0, 1}E : (v, w) ∈ A} has πp probability at
least 1/4. Let C ≥ 1 be some absolute constant. Let

γA := sup{a : Eπ[eaTD ] < ∞ for all D ⊂ V such that π(Dc) ≤ Cπfull,p(A
c)},

where the expectation is taken w.r.t. SRW. The connection of this quantity
to the spectral-profile of SRW is explained in Section 5. It follows from
this connection that to prove Theorem 1.2 it suffices to show that for some
absolute constant c > 0 we have that Eπfull,p

[exp(cpγATA)] < ∞ (recall that
we consider μ = 1).

Let t = C′

γAp . Loosely speaking, we show that for some choice of (C,C ′),
for all i ∈ N, the full process started from its stationary distribution has a
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regeneration time during the time interval [2it, (2i + 1)t], with probability
bounded from below. Moreover, at each such regeneration time, with proba-
bility bounded from below, the full process is in A. Furthermore, this holds
even conditioned on the information gathered at the previous time intervals
[2jt, (2j + 1)t], where for each such time interval we expose if there was a
regeneration time during it, and if there was one, we take the first one and
expose whether the walk is in A at that time.

(In the actual proof we do not restrict to one regeneration time per time
interval, although we could have done so; For technical reasons we make
several other small modifications in the proof to what is written above.)

This is achieved by treating the walk co-ordinate and the environment sep-
arately. For the walk co-ordinate we use the comparison method to compare
the auxiliary chain with the SRW. By comparing their spectral-profiles, and
applying a certain inductive argument (which we sketch below) we are able
to show that at each time interval [2it, (2i + 1)t] the chain has probability
bounded from below to visit B, even when conditioning on the information
exposed during the previous time intervals. This gives us a sequence of visits
to B at regeneration times by the walk co-ordinate, which are separated by
at least t time units.

For the environment, note that by definition, at every visit of the walk
co-ordinate to B, if the environment is distributed according to πp and in-
dependent of the walk, the full process would have probability at least 1/4
of being in A. By property (1) above, the distribution of the environment
is indeed stationary at all regeneration times and in particular at the re-
generation times at which the walk visits B. However, (generally) if (Yi) is
a stationary Markov chain, and for each j, Dj is an event which is deter-
mined by Yj , then given the values of the indicators of D1, . . . , Di we no
longer have that Yi+1 has the same law as its unconditional law (i.e., its law
might differ from the invariant distribution). In particular, if at some of the
previous visits to B at regeneration times we expose if the full process is in
A, this affects the law of the environment at the current regeneration time,
making it no longer stationary. It turns out that the fact that we consider
a sequence of such visits which are separated by an amount of time units
which is larger than the relaxation-time of the environment allows us to
control such dependencies. We now review the general principle from which
this follows.

For a Markov chain (Wt)t∈R+ on a finite state space, reversible w.r.t. a
distribution π̂, starting from its invariant distribution, if s is a large multiple
of its relaxation-time, then samples of the chain at times 0, s, 2s, . . . are
uncorrelated (e.g. [22, §12.7]). In fact, if D0, D1, D2, . . . is a sequence of sets
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such that inf{min{π̂(Di), π̂(Dc
i )} : i ≥ 0} =: δ > 0, then as we explain

below, using L2 considerations and an inductive argument, one can show
that if s ≥ C1trel log(1/δ) for some absolute constant C1 then a.s.

E[1Wis∈Di | (1Wjs∈Dc
j

: j < i)] ≥ δ/2.

Note that this statement is obvious is we replace Ctrel log(1/δ) by the δ/2
mixing time. As two more complicated variants of this inductive argument
will be used in the proof of Theorem 1.2, we now give a sketch of the proof
of this fact, in order to emphasise the main idea behind the proof.

Let μ be a distribution with ‖μ − π̂‖2,π̂ ≤ δ. Let ξi be the indicator of
Wis ∈ Di. Then for all i and all a0, a1 . . . ∈ {0, 1}, such that Pμ[E`] > 0 for
all `, where E` = {ξj = aj for all j ≤ `}, we have that

Pμ[Wis ∈ Di | Ei−1] ∈

[

π̂(Di) −
δ

2
, π̂(Di) +

δ

2

]

.

This is proven by proving by induction that for all i ∈ N

Υi := ‖Pμ(Wis ∈ ∙ | Ei)‖
2
2,π̂ ≤ 4

δ2 + 1
min{π̂(Di), π̂(Dc

i )}
2
,

and that

|Pμ(W(i+1)s ∈ Di+1 | Ei)−π̂(Di+1)| ≤ ‖Pμ(W(i+1)s ∈ ∙ | Ei)−π̂‖2,π̂ =: %i ≤ δ.

The induction step follows by combining the following simple observations
(in proving the induction step, first use (3) then (2) and then (1)):

(1) By the definition of the total-variation distance (‖ν − ν ′‖TV = maxD

|ν(D)− ν ′(D)|), and the fact that 2‖ν − ν ′‖TV ≤ ‖ν − ν ′‖2,π, we have

|Pμ(W(i+1)s ∈ Di+1 | Ei) − π̂(Di+1)| ≤ 1
2
%i.

(2) By the Poincaré inequality

ρi ≤ Υie
−s/trel = δCΥi.

(3) For any distribution ν and any set D we have ‖νD − π̂‖2
2,π̂ + 1 ≤

‖ν−π̂‖2
2,π̂+1

ν(D)2
, where νD(b) :=

ν(b)1{b∈D}

ν(D) is ν conditioned on D (see (6.10)).

Hence by (1) Υ2
i ≤

%2
i−1+1

min{π̂(Di)−
1
2
%i−1,π̂(Dc

i )− 1
2
%i−1}2

.



RANDOM WALK ON DYNAMICAL PERCOLATION 15

To argue that at each time interval [2it, (2i + 1)t] the chain has probability
bounded from below to visit B, even when conditioning on the informa-
tion exposed during the previous time intervals, we use a more complicated
version of this inductive argument sketched below, in which 1

pγA
and the

spectral-profile bound on the decay of the L2 distance from equilibrium
play the roles of the relaxation-time and the Poincaré inequality above, re-
spectively.

Consider a sequence of visits to the set B by the walk co-ordinate of the
full process at regeneration times, say to vertices b1, b2, . . ., at times that are
separated apart by t ≥ C2 time units, for some large absolute constant C2.
At the i-th visit, if the environment is in Di := {w ∈ {0, 1}V : (bi, w) ∈ A},
then the full process visits A at that time. Let ξi be the indicator of the
event that the environment is in Di at this time.

We start with a stationary environment, since we start from the sta-
tionary distribution on the full process, as we are seeking to show that
Eπfull,p

[exp(cpγATA)] < ∞. Since t is large in terms of the relaxation-time of
the environment, which is O(1), in light of the above discussion it is intuitive
that ξ1, ξ2, . . . is approximately a sequence of independent Bernoulli trials.
Making this intuition precise turns out to be quite subtle, and is among
the main technical challenges in the proof of Theorem 1.2. Indeed, a major
obstacle is the fact that the sets D1, D2, . . . are random and depend on the
walk co-ordinate, and thus also on the environment.

3. Auxiliary chain. Recall that G = (V,E) with V the set of vertices
and E the set of edges. We fix an ordering of the edges E = {e1, e2, . . . , en}.

For every edge ei we create an infinite number of copies denoted ei,1, ei,2, . . ..
We emphasize that the copies will not be considered as edges of E. We start
(X0, η0) ∼ π × πp. For every time t we now define a set of “infected edges”
Rt as follows: R0 = ∅ and if Rt− = A and the exponential clock of X rings
at time t, we then add to Rt the edge that X examines to cross at time t. If
this edge already exists in A, then we add its lowest numbered copy that is
not in A. We next assign an ordering to the edges in Rt using the ordering
of the edges of E in the following way: assign label 1 to the edge (or copy)
contained in Rt with the lowest label in the ordering of E. If both the edge
and some of its copies are contained in Rt, then we assign label 1 to the
edge and then we give the next label to the lowest numbered copy and so
on. If there are only copies of that edge, then assign label 1 to the lowest
numbered copy of this edge and label 2 to the second lowest numbered copy
and so on, until we exhaust all the copies of the edge. Then we continue in
the same way, by finding the second edge (or copy of it) from E with the
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second lowest label and assign to it the next label and so on. (We note that
any ordering of Rt would work, but we choose to specify one to make the
construction clearer.)

When Rt− = A, then assign exponential clocks of rate μ to the edges of
E that are not in A and we also generate an exponential clock of rate |A|μ.
When a clock of an edge in E \A rings, refresh the state of the edge to open
with probability p and closed with probability 1−p. If the exponential clock
of rate |A|μ rings at time t, choose an index from {1, . . . , |A|} uniformly at
random and remove the edge with this label from the set Rt− in order to
obtain the set Rt. If the edge that was chosen to be removed was an edge of
E, then we also refresh its state.

With this construction (X, η) has the correct transition rates. This con-
struction also enables us to couple different systems by keeping their infected
sets of the same size. More specifically, suppose that (X1, η1), . . . , (Xm, ηm)
are such that at time 0 they are i.i.d. and distributed according to π × πp

and take R1
0 = ∅, . . . , Rm

0 = ∅. Then we couple them all together by using
the same exponential clocks of rate 1 for the walk components and in order
to remove edges from the sets Ri

t− we use the same exponential clocks of
rate |Ri

t−|μ and choose the same uniform number from {1, . . . , Ri
t−}. For the

edges not in Ri
t−, we assign independent exponential clocks to the different

systems. Finally, when a clock rings (either of the walk or of an edge of the
set R), the vertex to which the walk components jump or the new states of
the edges chosen are independent for the different systems. With this cou-
pling, indeed the sizes of the sets Ri

t remain equal throughout for different
i’s.

We now want to consider the jump chain of the full process. This is defined
to be the full process (X, η) observed at the sequence of jump times, which
are the points of a Poisson process of parameter 1 + μn.

The following lemma (whose proof follows immediately by induction on
k) shows that with the coupling described above the jump chains of the full
processes are independent at every discrete time step.

Lemma 3.1. Suppose that (X1
k , η1

k)k∈N, . . . , (Xm
k , ηm

k )k∈N start indepen-
dently according to π × πp and suppose that an adversary prescribes in ad-
vance at which discrete time steps the X or the η coordinate will make a
jump (i.e. the jumps of all of the systems occur simultaneously, and either
in all of them, the walk co-ordinate attempts a move, or in all of them the
environment is updated). When the adversary chooses the η coordinate to
update, he also prescribes which edge is going to be updated in each system
(not necessarily the same edge!). At times at which the X coordinate is cho-
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sen, where the X coordinate jumps to is independent for the different chains.
At times when the environment is chosen, the states of the chosen edges are
also i.i.d. and become open with probability p and closed with probability
1 − p. Then for all k we have that (X1

k , η1
k), . . . , (X

m
k , ηm

k ) are independent.

Lemma 3.2. Consider a continuous time Markov chain with generator
Q = eλ(P−I) for λ > 0. Let X1, . . . , Xm be continuous time Markov chains
with generator Q which start from i.i.d. states distributed according to the
invariant distribution π. Suppose that their exponential clocks are coupled
in some way and at every discrete time step the jump chains (that evolve
according to the transition matrix P ) are independent. Then for every t we
have

P
(
X1

t = x1, . . . , X
m
t = xm

)
=

m∏

i=1

π(xi).

Proof. Let N1, . . . , Nm be the Poisson processes of rate λ associated to
each Markov chain X1, . . . , Xm that are coupled as in the statement of the
lemma. Let Y 1, . . . , Y m be the independent jump chains that start at time
0 independently according to π. Then we have

P
(
X1

t = x1, . . . , X
m
t = xm

)

=
∑

k1,...,km

P
(
Y 1

k1
= x1, . . . , Y

m
km

= xm, N1
t = k1, . . . , N

m
t = km

)

=
∑

k1,...,km

P
(
Y 1

k1
= x1, . . . , Y

m
km

= xm

)
P
(
N1

t = k1, . . . , N
m
t = km

)

=
∑

k1,...,km

π(x1) ∙ ∙ ∙ π(xm)P
(
N1

t = k1, . . . , N
m
t = km

)
= π(x1) ∙ ∙ ∙ π(xm)

and this completes the proof.

Definition 3.3. We define the auxiliary chain Y starting from x0 as
follows: start η0 ∼ πp and X0 = x0. Set R0 = ∅ and for every t consider the
set of infected edges Rt as defined above. We define the regeneration times
by letting τ0 = 0 and for every i ≥ 0 we set

τi+1 = inf{t ≥ τi + Si : Rt = ∅},

where τi + Si is the first time after time τi that Rt becomes nonempty. The
auxiliary chain is defined to be the discrete time chain given by Yi = Xτi for
all i.



18 J. HERMON & P. SOUSI

Remark 3.4. Note that the (Si)’s are i.i.d. having the exponential dis-
tribution with parameter 1 and are independent of (Xτi)i.

Lemma 3.5. We have that (τi − τi−1)i≥1 are i.i.d., have mean e1/μ and
have exponential tails. Moreover, the process (Xs, ηs, Rs)s is positive recur-
rent.

Proof. The first claim follows from the fact that |Rt| evolves as a birth
and death chain with transition rates q(i, i + 1) = 1 and q(i, i − 1) = μi.

We now prove that the chain (X, η,R) is positive recurrent. It suffices
to prove that the state (x, η,∅) with x ∈ V and η ∈ {0, 1}E is positive
recurrent. Let T be the first return time to (x, η,∅). Consider the chain
Zi = (Xτi , ητi). This is clearly irreducible and positive recurrent, since it
takes values in a finite state space. Let TZ be the time it takes for Z to
return to (x, η). Then TZ has exponential tails and we have

E[T ] ≤
∞∑

i=1

E [(τi − τi−1)1(TZ ≥ i)] .

Using Cauchy-Schwarz and the exponential tails of both TZ and (τi − τi−1)
proves the result.

Lemma 3.6. The invariant distribution of Y is π.

Proof. In order to prove this result, we let (X1, η1), . . . , (Xm, ηm) be
m systems started independently from stationarity and coupled in the way
described above using the infected sets, so that at every time t they are
independent and their infected sets all have the same size |Rt|. Then by
Lemmas 3.1 and 3.2 we get that (X1

t , η1
t ), . . . , (X

m
t , ηm

t ) are independent at
every time t and are distributed according to π × πp.

Fix x ∈ V and define

Sm(t) =
1
m

m∑

i=1

1(X i
t = x).

Then E[Sm(t)] = π(x) and by the strong law of large numbers we get that
as m → ∞

Sm(t) → π(x) almost surely.

Using this and dominated convergence gives that as m → ∞

E[Sm(t) | |Rt| = 0] =
E [Sm(t)1(|Rt| = 0)]

P(|Rt| = 0)
→
E [π(x)1(|Rt| = 0)]

P(|Rt| = 0)
= π(x).
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Using that

E [Sm(t)1(|Rt| = 0)] = P(|Rt| = 0)E[Sm(t) | |Rt| = 0]

and taking the limit as m → ∞ we now obtain

P
(
X1

t = x, |Rt| = 0
)

= P(|Rt| = 0) π(x).(3.1)

If we now take the limit as t → ∞, then (X1
t , η1

t , Rt) will converge to its
invariant distribution μ, which exists by Lemma 3.5. So we obtain

μ(x, {0, 1}E ,∅) = ν(∅)π(x),

where ν is the marginal for R of the invariant distribution μ.
In order to find the invariant distribution of Y we use the ergodic theorem.

First of all it is easy to see that Y is an irreducible Markov chain. Let b be
its invariant distribution. Then by the ergodic theorem we will have that
almost surely as n → ∞

1
n

n∑

i=1

1(Yi = x) → b(x).

Using the ergodic theorem for (X, η,R) we get that almost surely as t → ∞

1
t

∫ t

0
1(Xs = x,Rs = ∅) ds → μ(x, {0, 1}E ,∅) = ν(∅)π(x).

Let Nt = sup{i : τi ≤ t} and let (Si) be i.i.d. exponential random variables
of parameter 1. Then

1
t

Nt−1∑

i=1

1(Xτi = x)Si ≤
1
t

∫ t

0
1(Xs = x,Rs = ∅) ds ≤

1
t

Nt∑

i=1

1(Xτi = x)Si.

Using the above convergence this now implies that almost surely as t → ∞

Nt

t
∙

1
Nt

Nt∑

i=1

1(Xτi = x)Si → ν(∅)π(x).

Since Nt is a renewal process with inter-arrival times having mean 1/ν(∅)
we get almost surely

1
Nt

Nt∑

i=1

1(Xτi = x)Si → π(x) as t → ∞.
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Now we notice that since Nt can increase by 1 at every jump, we get that
the sequence an = n is a subsequence of (Nt)t, and hence almost surely

1
n

n∑

i=1

1(Xτi = x)Si → π(x) as n → ∞.

Now to conclude we write L(n) =
∑n

i=1 1(Xτi = x) and by relabelling Si

using the independence between (Xτi)i and (Si)i we obtain almost surely

1
n

L(n)∑

i=1

Si → π(x) as n → ∞.

Using the strong law of large numbers for the i.i.d. sequence (Si) and that
L(n) → ∞ as n → ∞ we finally get almost surely

L(n)
n

→ π(x) as n → ∞.

This shows that b(x) = π(x) for all x and concludes the proof.

Remark 3.7. Consider a graph G = (V,E) with the property that for
all x, y ∈ V there is an automorphism ϕ of G such that ϕ(x) = y and
ϕ(y) = x. Any Cayley graph of an Abelian group has this property. It is
not hard to verify that graphs with this property satisfy that the transition
matrix of the auxiliary chain is symmetric and hence reversible w.r.t. the
uniform distribution.

We end this section with a lemma on the holding probabilities for the
auxiliary chain that will be used later in the paper.

Lemma 3.8. Let Y be the auxiliary chain with parameters μ = 1 and
p ∈ (0, 1). Then for all x ∈ V we have that Paux(x, x) ≥ 1 − 2e2p and
(1 − p)/2 ≤ Paux(x, x) ≤ 1 − p

2 , where Paux is the transition matrix of Y .

Proof. The claim that (1 − p)/2 ≤ Paux(x, x) ≤ 1 − p/2 follows by con-
sidering the case that the first edge to be examined by the walk after a
regeneration time is closed (respectively, open), and that this edge is then
refreshed before the walk attempts to make further jumps.

We now prove minx Paux(x, x) ≥ 1 − 2e2p. In fact, we show that α =
minx αx ≥ 1 − 2e2p, where αx is the probability that after a regeneration
time at x the walk does not leave x before the next regeneration time. We
first observe that after a regeneration time at x, until the walk co-ordinate
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leaves x for the first time, every edge it examines is open with probability
at most p. To see this, by the strong Markov property, we may consider
starting at time 0 from a stationary environment with the walk co-ordinate
at x. Finally, given that the edges e1, . . . , ek were examined thus far, at times
t1 < ∙ ∙ ∙ < tk and were all closed, the probability that ek+1 is open at time
tk+1 > tk is exactly p if ek+1 /∈ {e1, . . . , ek} and is p(1 − eti−tk+1) < p if
ek+1 = ei and ek+1 /∈ {ei+1, . . . , ek}.

We now consider a birth and death chain with an additional point added
to it. Its state space is Z+∪{∞}. Its transition matrix Q is given by Q(0, 1) =
1− p = 1−Q(0,∞), while for i ∈ N we have Q(i, i− 1) = i

i+1 , Q(i, i + 1) =
(1−p)
i+1 and Q(i,∞) = p

i+1 . Finally, we set Q(∞,∞) = 1. It is easy to see that

α ≥ PQ
0 (T+

0 < T∞),

where T+
0 stands for the first return to 0 and T∞ for the first hitting time

of ∞ for the chain with matrix Q. We have that

PQ
0 (T+

0 < T∞) = (1 − p)PQ
1 (T0 < T∞).(3.2)

Consider now a birth and death chain on Z+ with transition matrix W (x, y) =
Q(x,y)

1−Q(x,∞) . Let N be a geometric random variable of success probability p in-
dependent of the Markov chain W . Since the probability of jumping to ∞
for the Markov chain Q is at most p at every step, we can lower bound
PQ

1 (T0 < T∞) by the probability that the Markov chain W hits 0 starting
from 1 before time N , i.e.

PQ
1 (T0 < T∞) ≥ PW

1 (T0 < N).

We now turn to lower bound PW
1 (T0 < N). Since from now on we will only

be working with the chain W we drop the letter W from the notation. Let X
be the birth and death chain with matrix W . We let Z =

∑N
i=0 1(Xi = 0).

Then

P1(T0 < N) = P1(Z > 0) =
E1[Z]

E1[Z | Z > 0]
=
E1[Z]
E0[Z]

,(3.3)

where for the last equality we used the memoryless property of N . Using
the independence of N and X and that W (0, 1) = 1, we get

E1[Z] =
∞∑

i=1

P1(Xi = 0) (1 − p)i−1 and E0[Z] = 1 + E1[Z] .(3.4)
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We notice that W (1, 0) = 1
2−p , and so P1(Xi = 0) = P1(Xi−1 = 1) /(2 − p).

Therefore, this gives

E1[Z] =
1

2 − p

∞∑

i=0

P1(Xi = 1) (1 − p)i =
1

2 − p

∞∑

i=0

P1(X2i = 1) (1 − p)2i.

Solving the detailed balance equations it is straightforward to see that X
has an invariant distribution satisfying ν(1) ≥ e−2. Using that P1(X2i = 1)
is decreasing as a function of i and converges to 2ν(1) as i → ∞, we obtain

E1[Z] ≥
2ν(1)
2 − p

∞∑

i=0

(1 − p)2i =
2ν(1)

p(2 − p)2
≥

1
2pe2

.

Substituting this bound and (3.4) into (3.3) we deduce

P1(T0 < N) ≥
1

2e2p + 1 − p
≥ 1 − (2e2 − 1)p.

Substituting this into (3.2) we finally get α ≥ 1 − 2e2p and this concludes
the proof.

4. Comparison of hitting times. In this section we prove Theo-
rem 1.1. Before doing so, we review some results about hitting and commute
times.

Let (Yk)k∈N be an irreducible discrete time Markov chain on a finite state
space Ω with transition matrix P and stationary distribution π. For a ∈ Ω
we write

Ta = inf{t ≥ 0 : Yt = a} and T+
a = inf{t ≥ 1 : Yt = a}.

For distinct states a, b ∈ Ω we write Tab for the commute time between a
and b (for the chain starting at a), i.e.

Tba = inf{t > Tb : Yt = a}.

We write P ∗ for the time-reversal of P , i.e. it is the transition matrix given
by

π(x)P ∗(x, y) = π(y)P (y, x).

Let λ(A) be the smallest eigenvalue of QA, the generator of the chain killed
upon exiting A. Writing Q = γ(P − I) for some transition matrix P and
γ > 0 and using the Perron Frobenius Theorem we have that [1, Chapter 3]

λ(A) = min
{
EQ(h, h) : h ∈ RΩ, ‖h‖2 = 1, supp(h) ⊆ A

}
,(4.1)
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where ‖h‖2 = (Eπ[|h|2])1/2.
We next recall Dirichlet’s principle for effective resistance. For a proof

see [1, Theorem 3.36].

Theorem 4.1. Let Y be a reversible Markov chain on a finite state
space Ω with transition matrix P and stationary distribution π. Then for all
a, b ∈ Ω we have

1
Ea[Tba]

= inf
f∈RΩ: f(a)=1,f(b)=0, 0≤f≤1

EP (f, f).

The following result is due to Doyle and Steiner [11] and was also redis-
covered by Gaudillière and Landim [12]. We include its short proof for the
reader’s convenience.

Lemma 4.2. Let Y be a Markov chain on a finite state space Ω with
transition matrix P and stationary distribution π. Let P ∗ be its time reversal
and S = (P + P ∗)/2. Then for all a, b ∈ Ω we have

ES
a [Tba] ≤ E

P
a [Tba]

Proof. Let v(x) = Px(Ta < Tb). Then using that v is harmonic off {a, b}
(and that 1

EP
a [Tba]

= π(a)PP
a [Tb < T+

a ], which can be derived using Wald’s
equation, by considering the number of returns of a before the first excursion
that visits b) we get

1
EP

a [Tba]
= EP (v, v) = ES(v, v) ≥

1
ES

a [Tba]
,

where the inequality follows from Theorem 4.1 applied to the reversible
matrix S using that v(b) = 0 and v(a) = 1.

The following is similar to [16, p. 12]. We give the proof for the sake of
completeness.

Lemma 4.3. There exists a positive constant c so that for every reversible
Markov chain on a finite state space Ω with stationary distribution π, for
all A ⊂ Ω we have that

max
x∈Ω

Ex[TA] ≤ Eπ[TA] + ctmix.
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Proof. We start by recalling another notion of mixing introduced by
Aldous [2] in the continuous time case, and later studied in discrete time by
Lovász and Winkler [23]. We let

tstop = max
x

inf{Ex[T ] : T randomised stopping time

s.t. Px(XT = y) = π(y) for all y}.
(4.2)

Note that for every x there is a randomised stopping time that achieves the
infimum above (see [2] and [23]). Let x ∈ Ω and let T be a stopping time
such that Px(XT ∈ ∙) = π(∙) and Ex[T ] ≤ tstop. Writing a+ = max{0, a} we
then get

Ex[TA] ≤ Ex[T ] + Ex[(TA − T )+] ≤ tstop + Eπ[TA],

where we have used Ex[(TA −T )+] ≤ Ex[inf{t ≥ T : Xt ∈ A}−T ] = Eπ[TA].
The proof is now concluded using the result of Aldous [2] that there exists
a positive constant c so that for all reversible chains tstop ≤ ctmix.

Lemma 4.4. Consider the auxiliary chain Y from Definition 3.3 with
parameters μ and p. Denote its transition matrix by Paux,(μ,p). Then for all
x, y such that {x, y} ∈ E we have that

Paux,(μ,p)(x, y) ≥ PSRW(x, y)p
μ

1 + μ
and

Paux,(μ,p)(x, y) + P ∗
aux,(μ,p)(x, y)

2
≥ PSRW(x, y)p

μ

1 + μ
.

Proof. Start the environment at time 0 from its stationary distribution,
and the walk co-ordinate of the full process from x. Now consider the event
that the first attempt of a jump of the walk co-ordinate is to y, that the
edge {x, y} is open at that time, and that before the walk attempts to make
its second jump the edge {x, y} is refreshed. The probability of this event is
at least PSRW(x, y)p μ

1+μ and at most Paux,(μ,p)(x, y).
Using the first inequality, the fact that the invariant distribution for the

auxiliary chain is the same as for the simple random walk on G by Lemma 3.6
and that the simple random walk is a reversible chain, we get that for all
{x, y} ∈ E

Paux,(μ,p)(x, y) + P ∗
aux,(μ,p)(x, y)

2
≥ PSRW(x, y)p

μ

1 + μ

and this concludes the proof.



RANDOM WALK ON DYNAMICAL PERCOLATION 25

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let X0 = x, η0 = η and suppose that the in-
fection process R starts with all edges of G infected, i.e. |R0| = |E|. Let τ
be the first regeneration time, i.e. the first time that the size of R becomes
0. Then for all x, η using that |Rt| evolves as a birth and death chain with
q(i, i + 1) = 1 and q(i, i − 1) = μi we get that

E[τ ] �μ log |E|.(4.3)

We now claim that ητ is distributed according to πp and is independent of
Xτ . Indeed, considering for every edge examined by the walk the last time
before τ that this happened proves the claim, since edges that were not
examined are distributed according to Ber(p). Therefore we obtain that

t
full,(μ,p)
hit ≤ E[τ ] + max

x,y∈V
E(μ,p)

x,πp

[
Ty×{0,1}E

]
.(4.4)

Consider the auxiliary chain with parameters μ and p and denote its
transition matrix by Paux,(μ,p) and let S = (Paux,(μ,p) + P ∗

aux,(μ,p))/2 be its
additive symmetrisation. Let PSRW denote the transition matrix of the sim-
ple random walk on G.

Lemma 4.4 immediately implies that ES(f, f) ≥ pμ
1+μEPSRW

(f, f) for all

f ∈ RV . This together with Theorem 4.1 gives that for all x, y ∈ V

p μ
1+μE

S,(μ,p)
x [Tyx] ≤ ESRW

x [Tyx].

Applying Lemma 4.2 we obtain that

Eaux,(μ,p)
x [Tyx] ≤ ES,(μ,p)

x [Tyx].

We next let
T̃yx = inf

{
t > Ty×{0,1}E : Xt = x

}
.

Let τi be the i-th regeneration time. Then by Lemma 3.5 the variables
σi = τi − τi−1 are i.i.d. of mean e1/μ. Using the natural coupling of the full
process started from (δx, πp) with the auxiliary chain started from x, we
obtain

T̃yx ≤
Tyx∑

i=1

σi,

and hence using Wald’s identity

p μ
1+μE

πp,(μ,p)
x [T̃xy] ≤ e1/μESRW

x [Txy].



26 J. HERMON & P. SOUSI

This together with (4.3) and (4.4) now implies

t
full,(μ,p)
hit .μ

1
p
tSRW
hit + log |E|.

Using the fact that tSRW
hit ≥ |V |−1 we can absorb the log |E| term inside the

first term and this proves (1.1).
Next we prove (1.2). Let x, y ∈ V and η ∈ {0, 1}E . By Lemma 4.3

(4.5) E(μi,p)
x,η [T{y}×{0,1}E ] ≤ ct

full,(μi,p)
mix + E(μi,p)

πfull,p
[T{y}×{0,1}E ].

Recall [1, Ch. 3] that for a general reversible Markov chain on a finite state
space with stationary distribution π, for every set A there exists a distribu-
tion μA, known as the quasi-stationary distribution of A, such that

(4.6) Eπ[TA] ≤ EμA [TA] = 1/λ(A) ≤ max
x
Ex[TA],

where λ(A) is the smallest eigenvalue of the generator of the chain killed
upon exiting A. Applying this to A = {y} × {0, 1}E we have that

E(μ1,p)
πfull,p

[T{y}×{0,1}E ] ≤
1

λ(μ1,p)({y} × {0, 1}E)

≤
μ2

μ1λ(μ2,p)({y} × {0, 1}E)
≤

μ2

μ1
t
full,(μ2,p)
hit ,

where for the second inequality we used (4.1) together with the fact that if
μ1 < μ2, then

L1((x, η), (x′, η′)) ≤ μ2

μ1
L2((x, η), (x′, η′))

with Li denoting the generator of the full process when the rate at which
the edges update is μi. This together with (4.5) concludes the proof.

5. The spectral-profile. We now recall a couple of results from [13].
While some of the results below were originally stated in the case where the
infinitesimal generator L is of the form K−I, where I is the identity matrix
and K is a transition matrix of a discrete-time Markov chain (possibly with
non-zero diagonal entries), they hold for general L when the state space
is finite, as we can always write L := c(K − I) for some c > 0 and some
transition matrix K, possibly with positive diagonal entries. (Namely c =
max(−L(x, x)) and K = L/c+I.) (All the quantities considered below scale
linearly in c.)
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Consider an irreducible continuous-time Markov chain on a finite state
space Ω with infinitesimal generator L and stationary distribution π. Let
Pt := etL. Recall that the time t transition probabilities are given by Pt(∙, ∙)
and that the corresponding rates are given by L(x, y) := limh→0 h−1(Ph(x, y)−
1(x = y)). Denote the infinitesimal generators of the time-reversal and
additive-symmetrization by L∗ and Ls := 1

2
(L + L∗), respectively, where L∗

is the dual operator of L in (L2(Ω), 〈∙, ∙〉π), whose rates are given explicitly
by π(x)L∗(x, y) := π(y)L(y, x), where 〈f, g〉π := Eπ[fg] is the inner-product
on RΩ induced by π and Eπ[h] :=

∑
x∈Ω π(x)h(x) the stationary expectation

of h ∈ RΩ. We say that L (and the corresponding Markov chain) is reversible
if L = L∗. One can readily check that π is stationary also for L∗ and that
Ls is reversible w.r.t. π, as (L∗)∗ = L.

Recall that for ε > 0 we denote the spectral profile

(5.1) Λ(ε) = min{E(h, h) : h ∈ RΩ, Varπ(h) = 1, π(supp(h)) ≤ ε},

where supp(h) = {x ∈ Ω : h(x) 6= 0} is the support of h. We write λ = Λ(1)
for the Poincaré constant. We recall that in the reversible setting λ is equal
to the spectral gap. A related notion is

(5.2) Λ0(ε) = min{E(h, h) : h ∈ RΩ, ‖h‖2 = 1, π(supp(h)) ≤ ε},

where for h ∈ RΩ, ‖h‖∞ = maxx∈Ω |h(x)| and ‖h‖p = (Eπ[|h|p])1/p are the
L∞ and Lp (p ∈ [1,∞)) norms respectively. By Cauchy-Schwarz

‖h‖2
1 = ‖h1(supp(h))‖2

1 ≤ ‖h‖2
2π(supp(h)),

and so 1 − π(supp(h)) ≤ Varπ(h)
‖h‖2

2
≤ 1. Hence we get that

(5.3) (1 − ε)Λ(ε) ≤ Λ0(ε) ≤ Λ(ε).

As we now explain, Λ0 has a probabilistic interpretation, which we shall
exploit later on. For each A ( Ω we define LA to be the generator of the chain
that is killed upon exiting A, whose rates are given explicitly by LA(u, v) =
L(u, v)1(u, v ∈ A), and define λ(A) to be the smallest eigenvalue of −Ls

A =
− 1

2
(LA + L∗

A). Under reversibility
(5.4)

λ(A) = sup

{

c : max
a∈A

Ea[exp(cTAc)] < ∞

}

= sup {c : Eπ[exp(cTAc)] < ∞} .

Indeed, if B = sup{c : maxa∈A Ea[exp(cTAc)] < ∞} and C = sup{c :
Eπ[exp(cTAc)] < ∞}, then by definition C ≥ B, but as π has full support
we actually have that C = B. Now, it is classical ([1, Ch. 4] or [4, §3]) that
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under reversibility the law of TAc under initial distribution π is a mixture of
an atom at 0 of mass π(Ac) and of exponential distributions whose minimal
parameter is exactly λ(A). From which we easily get that λ(A) = C.

Writing L = c(P − I) for some transition matrix P and c > 0 and using
the Perron-Frobenius Theorem (to argue that the minimum can be attained
by some non-negative h) we also have that (e.g. [1, Ch. 3])

λ(A) = min{E(h, h) : h ∈ RΩ, ‖h‖2 = 1, supp(h) ⊆ A}

= min{E(h, h) : h ∈ RΩ
+, ‖h‖2 = 1, supp(h) ⊆ A},

(5.5)

and so

(5.6) Λ0(ε) = min{λ(A) : π(A) ≤ ε}.

5.1. Decay of L2 distances via the spectral-profile and the Poincaré con-
stant. Recall that the Lp norm (w.r.t. π) of a signed measure σ is defined
as

‖σ‖p,π = ‖σ/π‖p, where (σ/π)(x) = σ(x)/π(x).

In particular, for a distribution ν its L2 distance from π satisfies

‖ν − π‖2
2,π = ‖ν/π − 1‖2

2 = Varπ(ν/π).

Let νt = Pt
ν := νeLt and ut = νt/π = etL∗

( ν
π ) (where νeLt(x) =

∑
y ν(y)Pt(y, x),

while etL∗
f(x) =

∑
y etL∗

(x, y)f(y)). For f ∈ RΩ, writing ft = etL∗
f we have

d
dtVarπ(ft) = 〈L∗ft, ft〉π + 〈ft,L∗ft〉π = 2〈Lft, ft〉π = −2E(ft, ft) (cf. [22, p.
284]) and so

(5.7)
d

dt
Varπ(ut) =

d

dt
Varπ(etL∗

( ν
π )) = −2E(ut, ut).

By (5.1) we get E(ut, ut) ≥ λVarπ(ut) from which it follows that d
dtVarπ(ut) ≤

−2λVarπ(ut), and so by Grönwall’s lemma

(5.8) ‖νt − π‖2
2,π ≤ ‖ν − π‖2

2,π exp(−2λt).

This is the well-known Poincaré inequality. The ε Lp-mixing time is defined
as

t
(p)
mix(ε) = inf{t : max

x
‖P t(x, ∙) − π‖p,π ≤ ε}.

It is standard (e.g. [13] or [22, Prop. 4.15]) that for reversible Markov chains,
for all x ∈ Ω and t we have

(5.9) max
y,z∈Ω

|Pt(y,z)
π(z) − 1| = max

y

Pt(y,y)
π(y) − 1 and ‖P t

x − π‖2
2,π = P2t(x,x)

π(x) − 1.
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Thus t
(∞)
mix (ε2) = 2t

(2)
mix(ε) for all ε ≤ (maxx

1−π(x)
π(x) )1/2.

Theorem 1.1 in [13] asserts that

(5.10) ∀ ε ∈ (0, 1/π∗], t
(∞)
mix (ε) ≤ tspectral−profile(ε).

We shall use a variant of this where we want to bound the L2 mixing-time
starting from some initial distribution ν for which we have a decent upper
bound on ‖ν − π‖2,π.

Proposition 5.1 ([13] Lemma 2.1). For any (non-zero) u ∈ RΩ
+ we

have that
E(u, u)
Varπ(u)

≥ 1
2
Λ
(
4‖u‖2

1/Varπ(u)
)
.

We recall the proof from [13] for the reader’s convenience.

Proof. Let M = Varπ

(
u√

4‖u‖1

)

and B = {x : u(x) ≥ M}. The set B is

non-empty by Hölder’s inequality. Considering û := (u−M)1B = (u−M)+
we now have E(u, u) ≥ E(û, û). Also,

Varπ(û) ≥ Eπ[(u − M)2+] − (Eπ[u])2 ≥ ‖u‖2
2 − 2M‖u‖1 − ‖u‖2

1

= Varπ(u) − 2M‖u‖1 = 1
2
Varπ(u).

Finally, 2 E(u,u)
Varπ(u) ≥

E(û,û)
Varπ(û) ≥ Λ (π(supp(û))) ≥ Λ( 4‖u‖2

1
Varπ(u)), since by Markov’s

inequality π(supp(û)) ≤ ‖u‖1

M = 4‖u‖2
1

Varπ(u) .

Recall that ut := νt/π and νt := Pt
ν . Using Proposition 5.1 and (5.7) it is

not difficult to verify the assertion of the following proposition, which refines
(5.8) and (5.10).

Proposition 5.2 ([13] Theorem 1.1). For any initial distribution ν we
have that

(5.11) ‖νt − π‖2
2,π ≤ M, if t ≥

∫ 4/M

4/‖ν−π‖2
2,π

dδ

δΛ(δ)
.

In particular, for all 0 < β < 1 we have that

(5.12) ‖νt − π‖2
2,π ≤ β‖ν − π‖2

2,π, if t ≥
log(1/β)

Λ
(
4/(β‖ν − π‖2

2,π)
) .
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We shall sometimes use the following simple variant of (5.12).

Lemma 5.3. If ‖ν − π‖2
2,π ≤ M then for all 0 < β < 1 we have that

(5.13) ‖νt − π‖2
2,π ≤ βM, if t ≥

log(1/β)
Λ (4/(βM))

.

Proof. If ‖ν−π‖2
2,π ≤ βM this follows from the fact that Pt is a contrac-

tion in L2, i.e. ‖νt−π‖2
2,π ≤ ‖ν−π‖2

2,π ≤ βM . If ‖ν−π‖2
2,π ∈ (βM,M ] then by

(5.12) for β′ = βM
‖ν−π‖2

2,π
≥ β, s = log(1/β′)

Λ(4/(β′‖ν−π‖2
2,π)) = log(1/β′)

Λ(4/(βM)) ≤ log(1/β)
Λ(4/(βM))

we have ‖νt − π‖2
2,π ≤ β′‖ν − π‖2

2,π = βM .

5.2. A lower bound on L2 distances in terms of small sets probabilities.
Let P(Ω) be the collection of all distributions on Ω. Let A ( Ω and δ ∈ (0, 1).
Let

PA,δ := {ν ∈ P(Ω) : ν(A) ≥ π(A) + δπ(Ac)}.

Note that
νA,δ := δπA + (1 − δ)π ∈ PA,δ,

where πA(a) :=
1{a∈A}π(a)

π(A) is π conditioned on A. Moreover, min{δ′ : νA,δ′ ∈
PA,δ} = δ. It is thus intuitive that for a convex distance function between
distributions, νA,δ is the closest distribution to π in PA,δ.

Proposition 5.4 ([17] Proposition 4.1). Let A ( V . Denote νA,δ =
δπA + (1 − δ)π. Then

(5.14) ∀ δ ∈ (0, 1) min
ν∈PA,δ

‖ν − π‖2
2,π = ‖νA,δ − π‖2

2,π = δ2π(Ac)/π(A).

The proof is an exercise in Lagrange multipliers (see [17] Proposition 4.1).

5.3. A mixing time bound for the p-tilted hypercube. We call the hyper-
cube {0, 1}d equipped with the product measure πp the p-tilted hypercube.
The natural dynamics associated with it is the one at which each co-ordinate
is updated at rate μ and takes the value 1 with probability p and 0 with
probability 1 − p. This is precisely the evolution of the environment η.

Lemma 5.5. Denote by Pt the time t transition kernel of the p-tilted
hypercube with update rate μ for each co-ordinate. Let α := p ∧ (1 − p). Let
t(δ) = tp,μ(δ) := 1

μ log(d 1−α
α log(1+δ)). Then

(5.15) max
x,y∈{0,1}d

∣
∣
∣
∣
Pt(δ)(x, y)

πp(y)
− 1

∣
∣
∣
∣ ≤ δ.
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Proof. By scaling we can assume μ = 1. Denote the transition kernel
of a single co-ordinate by Qt. Let νp(1) := p =: 1 − νp(0). Then Qt(a, a) =
e−t + (1 − e−t)ν(a) for a ∈ {0, 1}. Now

Pt(x, x)
πp(x)

=
∏

i∈[d]

Qt(xi, xi)
νp(xi)

≤
∏

i∈[d]

(

1 +
1 − α

αet

)

≤ exp

(

d
1 − α

αet

)

(using 1+x ≤ ex). The proof is concluded using (5.9) by substituting t = t(δ)
above.

6. Proof of Theorem 1.2.

Definition 6.1. Let A ⊂ V × {0, 1}E . For every a ∈ V we define

Env(a,A) = {η ∈ {0, 1}E : (a, η) ∈ A}.

For α ∈ [0, 1] we say that a ∈ V is (A,α)-environmentally friendly if
πp(Env(a,A)) ≥ α. We denote the collection of (A,α)-environmentally friendly
vertices by A(α).

From now on we fix a set A ⊂ V × {0, 1}E with πfull,p(A) ≥ 1
2

and
set B = A( 1

4). For every b ∈ B let Ênv(b) ⊆ Env(b, A) be some set of

environments such that πp(Ênv(b)) ∈ [ 14 ,
1
2 ]. Suppose that η0 ∼ πp. Recall

from Definition 3.3 that (τi) is the sequence of regeneration times with τ0 =
0. Let τ̂i := τinf{`:

∑`
j=1 1{Xτj ∈B}=i} be the i-th regeneration time at which

the walk co-ordinate is in B. We now take a subsequence defined as follows:
σ1 = τ̂1 and inductively

σi+1 = inf{τ̂j : τ̂j ≥ σi + κ},

where κ is a constant to be determined later. Finally we let

T = inf
{

j : ησj ∈ Ênv(Xσj )
}

.

Lemma 6.2. Let η0 ∼ πp. Then ησ1 is independent of Xσ1 and distributed
according to πp.

Proof. If an edge has not been examined by the walk during [0, σ1],
then at time σ1 it is distributed according to Ber(p). For the edges that
were examined by the walk, considering the last time before time σ1 that
this happened we get that at time σ1 they are also distributed according to
Ber(p) independently over different edges and of the location of the walk.
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Lemma 6.3. If κ in the definition of (σi) is taken sufficiently large, then

∀ i ∈ N, P(T = i | T ≥ i) ≥ 1
8 .

Let Y be the auxiliary chain with parameters μ = 1 and p ∈ (0, 1). We
take its continuous time version, i.e. we consider the continuous time chain
which stays at every vertex for an exponential time of parameter 1 and then
makes a jump according to Paux. We write (P aux,cts

t )t∈R+ for its transition
semigroup, i.e. P aux,cts

s = es(Paux−I), and define for δ > 0

r(δ) = inf

{

s ∈ R+ : max
x,y∈V

P aux,cts
t (x, y) ≤ 1 − δ for all t ≥ s

}

.(6.1)

Lemma 6.4. There exists δ0 ∈ (0, 1) such that for all p ∈ (0, 1) we have

r(δ0) ≤
1
p
.(6.2)

Proof. We write Jt = P aux,cts
t . We first note that maxx,y∈V Jt(x, y) is

non-increasing in t and so r(δ) = inf{s ∈ R+ : maxx,y∈V Js(x, y) ≤ 1 − δ}.
Now, let s = 1/p and let T1 be the first time the continuous time auxiliary
chain jumps out of x. Then T1 is exponential of parameter 1−Paux(x, x) � p
by Lemma 3.8. We then get

Js(x, x) ≥ P(T1 > s) = e−s(1−Paux(x,x)) ≥ c1.

Let T2 be an exponential random variable independent of T1 of parameter
maxy(1 − Paux(y, y)) � p. We then get

1 − Js(x, x) ≥ Px(T1 < s, T2 > s) ≥ c2

for a positive constant c2. Noting that Js(x, y) ≤ 1 − Js(x, x) for x 6= y
concludes the proof.

Below we write Λfull,(μ,p), Λaux,(μ,p) and ΛSRW for the spectral profile of
the full chain, the auxiliary chain with parameters (μ, p) and the simple
random walk respectively. Note that Λaux,(μ,p) is defined with respect to the
generator Paux,(μ,p) − I. We write Lμ,p for the generator of the full process
with parameters (μ, p). Finally, for A ⊂ V × {0, 1}E we write λ(μ,p)(A) for
the smallest eigenvalue of the restriction of −Lμ,p to A, as in the paragraph
preceding (5.4).
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Proposition 6.5. There exist positive constants M and L so that the
following holds. Let A ⊂ V × {0, 1} be such that πfull,p(Ac) ≤ 1/2, let
B = A( 1

4) ⊆ V be as above, let δ0 be as in Lemma 6.4 and (Ys)s≥0 be
the continuous time chain with generator Paux,(1,p)− I with p ∈ (0, 1). There
exists a sequence of stopping times T1 < T2 < ∙ ∙ ∙ (w.r.t. the chain (Ys)s≥0)

such that for all i we have YTi ∈ B and Ti/
⌈

M
Λaux,(1,p)(Mπfull,p(Ac)) + r(δ0)

⌉
is

stochastically dominated by the law of
∑i

j=1 Zj, where Z1, Z2, . . . are i.i.d.
Geometric random variables with mean at most L, where r(δ0) is as in (6.1).

We defer the proofs of Lemma 6.3 and Proposition 6.5 until after the
proof of Theorem 1.2.

Proof of Theorem 1.2. To simplify notation we write r = r(δ0).
The proof is mostly a formal exercise involving translating the assertion

of Proposition 6.5 concerning the rate of exponential decay of the tail of

Ti/
(
i
⌈

M
Λaux,(1,p)(Mπfull,p(Ac)) + r

⌉)
into one about the rate of exponential de-

cay of the tail of σi/
(
i
⌈

M
Λaux,(1,p)(Mπfull,p(Ac)) + r

⌉)
. This is straightforward

in light of the fact that the spacings between the regeneration times are i.i.d.
with an exponentially decaying tail, and that each such spacing is at least
κ w.p. at least e−κ. We now give the formal details.

Let t = 1
2μ log (|E|(1 − α)/(α log 2)), where α = p∧ (1− p). Then it is not

hard to see that

max
x,η

‖Pt
(x,η) − πfull,p‖

2
2,πfull,p

≤
2

minv∈V π(v)
.(6.3)

Indeed, let Pt = P
(μ,p)
t and Qt = Q

(μ,p)
t be the transition kernels for time t

of the full process and of the environment, respectively. The latter is simply
a continuous-time SRW on the p-tilted hypercube, and its 1-L2 mixing time
(i.e. t

(2)
mix(ε) with ε = 1) is at most t by Lemma 5.5. Thus P2t((x,η),(x,η))

πfull,p(x,η) ≤
Q2t(η,η)

πp(η) minv∈V π(v) ≤ 2/ minv∈V π(v) which shows (6.3).
Using (6.3) and (5.11) we get

(6.4) t
full,(μ,p),(∞)
mix (ε2) ≤ 2t + 2

∫ 4/ε

2 minv∈V π(v)

dδ

δΛfull,(μ,p)(δ)
.

Let μ1 < μ2. Then Lμ2,p((x, η), (y, η′)) ≤ μ2

μ1
Lμ1,p((x, η), (y, η′)) for all

(x, η), (y, η′) ∈ V × {0, 1}E . Using also (5.5), (5.1) and noting that both
Lμ1,p and Lμ2,p are reversible w.r.t. πfull,p we obtain

(6.5) Λfull,(μ2,p)(δ) ≤
μ2

μ1
Λfull,(μ1,p)(δ).
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By combining (6.4) and (6.5) together with (5.3) and (5.6) we see that in
order to conclude the proof of Theorem 1.2 it suffices to consider μ = 1 and
prove that for a positive constant M we have that for all A ⊂ V × {0, 1}E

with πfull,p(Ac) ≤ 1/2

(6.6)
p

Mλ(1,p)(Ac)
≤

1
ΛSRW(Mπfull,p(Ac))

(the l.h.s. is defined w.r.t. the full process). We write Λaux,(μ,p) for the spec-
tral profile of the auxiliary chain with parameters μ and p.

By Lemma 4.4 we have that for all δ > 0

p

Λaux,(1,p)(δ)
≤

2
ΛSRW(δ)

.

Hence to conclude the proof of Theorem 1.2 it suffices to show that for A as
above

(6.7)
1

Mλ(1,p)(Ac)
≤

1
Λaux,(1,p)(Mπfull,p(Ac))

.

Throughout the remainder of the section we fix μ = 1. Our strategy for
proving (6.7) is to find a set B ⊆ V with π(Bc) . πfull,p(Ac) and such that
the asymptotic rate of decay of the tail of TA can be controlled via the time
spent in B by the auxiliary chain. Roughly speaking, we want to have a
set B such that every visit of the auxiliary chain to B is a visit of the full
process to A with some probability bounded away from 0. Here we are using
the fact that the auxiliary chain can be coupled with the full process by
viewing it along regeneration times.

We next claim that it suffices to prove that for M and r as in Proposition
6.5 there exists a positive constant c such that

Eπfull,p
[e32ασi ] ≤ ei for some α s.t.

c

α
≤

1
Λaux,(1,p)(Mπfull,p(Ac))

+ r.

(6.8)

Indeed, for (σi) and T as defined earlier

Pπfull,p
(TA > t) ≤ Pπfull,p

(
σd16αte > t

)
+ Pπfull,p

(T > d16αte) .

Now by Lemma 6.3 we have Pπfull,p
(T > d16αte) ≤ (7/8)d16αte ≤ e−2αt

and Pπfull,p

(
σd16αte > t

)
≤ Eπfull,p

[e32ασd16αte ]e−32αt, which by our assump-
tion is at most e−32αted16αte ≤ e1−16αt. Therefore, this would then imply
that Eπfull,p

[
eαTA

]
< ∞, and hence λ(1,p)(A

c) ≥ α.
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So we now turn to prove (6.8). Recall that τi is the i-th regeneration time
as in Definition 3.3. We now consider the discrete time auxiliary chain Y .
Let Ỹ be the continuous time version of Y , i.e. we let N be an independent
Poisson process of rate 1 and set Ỹt = YN(t). We set

S = 8

⌈
M

Λaux,(1,p)(Mπfull,p(Ac))
+ r

⌉

.

Hence, it suffices to show that by setting L to be sufficiently large there
exists a positive constant c such that for all x ≥ 1 and all i

P
(
σi > xL3Si

)
≤ ce−10xi.

Let (Ti) be the stopping times from Proposition 6.5. Recall that N(t) ∼
Poisson(t) is the number of jumps the continuous-time version of the auxil-
iary chain makes by time t. Hence N(Ti) is the number of jumps it makes
by the stopping time Ti. We have generated the full process, the auxiliary
chain (Yj), and its continuous-time version Ỹt := YN(t) on the same probabil-
ity space (the auxiliary chain is generated by viewing the walk co-ordinate
of the full process at regenaration times, and the continuous-time version
of the auxiliary chain is generated from the auxiliary chain by using an in-
dependent rate one Poisson process (N(t) : t ≥ 0)). Hence we can consider
ρ(i) := τN(Ti), which is the time at which the N(Ti)-th regeneration time of
the full process occurs. The walk co-ordinate of the full process at time ρ(i)
is ỸTi . For all i we set Zi to be the time between ρ(i) and the first time after
ρ(i) that the walk X examines an edge. (Note Zi is an exponential variable
of parameter 1.) We also define

ξj = 1(N(Tj) − N(Tj−1) ≥ 1, Zj ≥ κ) and J` =
∑̀

j=1

ξj .

Note that the variables (ξi) are i.i.d. and since Tj − Tj−1 ≥ 1 for all j and
the two events appearing in the definition of ξj are independent, we get
that P(ξj = 1) ≥ (1− e−1)e−κ. Using the definitions above we then have the
following inclusions for all x and i

{σi ≥ xL3Si} ⊆ {ρ(dxLi/4e) ≥ xL3Si} ∪ {JdxLi/4e < i}

{ρ(dxLi/4e) ≥ xL3Si} ⊆ {N(TbxLi/4c) ≥ xL2Si} ∪ {τdxL2Sie ≥ xL3Si}

{N(TbxLi/4c) ≥ xL2Si} ⊆ {TdxLi/4e ≥ xL2Si/100} ∪ {N(xL2Si/100) ≥ xL2Si}.

(For instance, the first inclusion follows by noting that if J(j) ≥ ` and
ρ(j) ≤ t then we must have that σ` ≤ t. Indeed, if J(j) ≥ ` then among
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T1, . . . , Tj there are at least ` that contribute +1 towards increasing the
index of σ - i.e. towards inf{k : σk ≥ ρ(j)}. If moreover ρ(j) ≤ t, then Tj is
generated in the full process at some time which is smaller or equal to t.)

The proof is now concluded by taking L sufficiently large and using Propo-
sition 6.5 for the tails of the stopping times Ti, the fact that J is the sum of
i.i.d. indicators with probability bounded away from 0, large deviations for
Poisson random variables and Lemma 3.5 for the tails of (τi − τi−1).

Using that tSRW
spectral−profile(ε) & (log |V |/ε) for all ε ∈ (0, 1) shows that we

can absorb the logarithmic terms (one of which is coming from the term
∫ 4/ε
2 minv∈V π(v)

r
δdδ, using minv π(v) ≥ |V |−2, while the other one from (6.4))

and this completes the proof.

Remark 6.6. We now explain how to get rid of the log term in the
statement of Theorem 1.2 when considering total variation mixing. Let t =
2 log n

μ and A be the event that all edges of G have been updated by time t.
Define ν1 = Pt

(x,η)(∙|A) and ν2 = Pt
(x,η)(∙|A

c). Then we have

Pt+s
(x,η) = P(A)Ps

ν1
+ P(Ac)Ps

ν2
,

and hence, by convexity and Jensen’s inequality we obtain
∥
∥
∥Pt+s

(x,η) − πfull,p

∥
∥
∥

TV
≤ P(Ac) + ‖Ps

ν1
− πfull,p‖2,πfull,p

.

Similarly to (6.3) we have that

‖ν1 − πfull,p‖
2
2,πfull,p

≤
1

minv π(v)
.

The rest of the proof is identical to the proof of Theorem 1.2.

Lemma 6.7. Let π be a distribution of full support on a finite set Ω. Let
J be an Ω-valued random variable and A an event. Then

(6.9) ‖P(J ∈ ∙ | A) − π‖2
2,π ≤

‖P(J ∈ ∙) − π‖2
2,π + 1

P(A)2
− 1.

In particular, if ν is some distribution on Ω and ν̂ is ν conditioned on A ⊆ Ω,
then

(6.10) ‖ν̂ − π‖2
2,π ≤

‖ν − π‖2
2,π + 1

ν(A)2
− 1.
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Proof. We have that ‖P(J ∈ ∙) − π‖2
2,π + 1 =

∑
x π(x)

(
P(J=x)

π(x)

)2
≥

∑
x π(x)

(
P({J=x}∩A)

π(x)

)2
. By the same reasoning ‖P(J ∈ ∙ | A) − π‖2

2,π + 1 =

1
P(A)2

∑
x∈A π(x)

(
P({J=x}∩A)

π(x)

)2
.

Proof of Lemma 6.3. We need to show that

P
(
ησi ∈ Ênv(Xσi)

∣
∣
∣ T ≥ i

)
≥

1
8
.

Let Ji be the set of edges examined by the walk during the time interval
[σi−1, σi] and let Ei = E \ Ji. Crucially, given (Ji, Ei), ησi−1 and the whole
history σ(Xt : t ≤ σi) we have that the law of ησi can be described as follows:

(1) The different co-ordinates of ησi are independent;
(2) For e ∈ Ji we have that ησi(e) ∼ Bernoulli(p);
(3) For e ∈ Ei we have that ησi(e) ∼ Bernoulli(p) with probability 1 −

e−(σi−σi−1) and otherwise ησi(e) = ησi−1(e). In other words, the restric-
tion of the environment to Ei evolves during [σi−1, σi] by updating each
edge at rate 1 to be either open w.p. p or closed w.p. 1 − p.

For any sequence (xi) with xi ∈ B for all i and all sequences (Si) of subsets
of E, define Ai = {Xσ1 = x1, . . . , Xσi = xi, E1 = S1, . . . , Ei = Si}. For every
subset of edges S we denote by πS

p the Bernoulli(p) product measure on S.
By properties (1) and (2) above we then have

‖P(ησi ∈ ∙ | T ≥ i, Ai) − πp‖2,πp
=
∥
∥P(ησi |Si ∈ ∙ | T ≥ i, Ai) − πSi

p

∥
∥

2,π
Si
p

,

where η|S denotes the restriction of η on the set of edges S. For every
η ∈ {0, 1}Si we now let

νη
i (∙) = P

(
σi − σi−1 ∈ ∙

∣
∣ ησi−1 |Si = η, T ≥ i, Ai

)
.

We note that under the conditioning above, the distribution of σi − σi−1

does not depend on {ησi−1 |Si = η}, since Si is the set of edges that the walk
does not examine during [σi−1, σi]. Therefore, we get for all η

νη
i (∙) = P(σi − σi−1 ∈ ∙ | T ≥ i, Ai) =: νi(∙).

Using again that Si is the set of edges that the walk does not examine during
[σi−1, σi] we get

μi(η) := P
(
ησi−1 |Si = η

∣
∣ T ≥ i, Ai

)
= P

(
ησi−1 |Si = η

∣
∣ T ≥ i, Ai−1

)
.

(6.11)
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Conditional on {T ≥ i} ∩ Ai, the distribution of ησi |Si is that of a p-tilted
random walk on the hypercube {0, 1}Si started from ησi−1 |Si and run for
time σi −σi−1. Let η̃ be a continuous time p-tilted random walk on {0, 1}Si .
Hence, putting all things together (and recalling that σi − σi−1 ≥ κ by
construction) we obtain

∥
∥P(ησi |Si ∈ ∙ | T ≥ i, Ai) − πSi

p

∥
∥2

2,π
Si
p

=
∑

ξ∈{0,1}Si

πSi
p (ξ)

(
P(ησi |Si = ξ | T ≥ i, Ai)

πSi
p (ξ)

− 1

)2

=
∑

ξ∈{0,1}Si

πSi
p (ξ)



 1

πSi
p (ξ)

∑

η∈{0,1}Si

μi(η)
∫ ∞

κ
P(η̃t = ξ | η̃0 = η) νi(dt) − 1





2

=
∑

ξ∈{0,1}Si

πSi
p (ξ)

(∫ ∞

κ

Pμi(η̃t = ξ)

πSi
p (ξ)

νi(dt) − 1

)2

=
∑

ξ∈{0,1}Si

πSi
p (ξ)

(∫ ∞

κ

(
Pμi(η̃t = ξ)

πSi
p (ξ)

− 1

)

νi(dt)

)2

≤
∫ ∞

κ

∑

ξ∈{0,1}Si

πSi
p (ξ)

(
Pμi(η̃t = ξ)

πSi
p (ξ)

− 1

)2

νi(dt),

(6.12)

where we used Jensen’s inequality for the last bound. The spectral gap of
the chain η̃ is 1, and hence using Poincaré’s inequality yields for all t

∑

ξ∈{0,1}Si

πSi
p (ξ)

(
Pμi(η̃t = ξ)

πSi
p (ξ)

− 1

)2

=
∥
∥Pμi(η̃t = ∙) − πSi

p

∥
∥2

2,π
Si
p

≤ e−2t
∥
∥μi − πSi

p

∥
∥2

2,π
Si
p

.

Plugging this into (6.12) gives
∥
∥P(ησi |Si ∈ ∙ | T ≥ i, Ai) − πSi

p

∥
∥

2,π
Si
p

≤ e−κ
∥
∥μi − πSi

p

∥
∥

2,π
Si
p

.(6.13)

Using (6.11) and the fact that the L2 distance does not increase under
projections, we get

∥
∥μi − πSi

p

∥
∥

2,π
Si
p

≤
∥
∥P
(
ησi−1 ∈ ∙

∣
∣ T ≥ i, Ai−1

)
− πp

∥
∥

2,πp
.
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Lemma 6.7 (with (ησi−1 ,P given T ≥ i − 1 and Ai−1, {T ≥ i} ∩ Ai−1) here
playing the roles of (J,P, A) from (6.9), respectively) gives that

∥
∥P
(
ησi−1 ∈ ∙

∣
∣ T ≥ i, Ai−1

)
− πp

∥
∥2

2,πp

≤
1

(P(T 6= i − 1 | T ≥ i − 1, Ai−1))2
∥
∥P
(
ησi−1 ∈ ∙

∣
∣ T ≥ i − 1, Ai−1

)
− πp

∥
∥2

2,πp

+
1

(P(T 6= i − 1 | T ≥ i − 1, Ai−1))2
− 1.

(6.14)

Setting θi(∙) = P(ησi ∈ ∙ | T ≥ i, Ai) so far we have shown that

e2κ ‖θi − πp‖
2
2,πp

≤
‖θi−1 − πp‖

2
2,πp

(P(T 6= i − 1 | T ≥ i − 1, Ai−1))
2(6.15)

+
1

(P(T 6= i − 1 | T ≥ i − 1, Ai−1))2
− 1.(6.16)

We next show that for all i

‖θi − πp‖2,πp
≤

1
8
.(6.17)

Since η0 ∼ πp, Lemma 6.2 gives that conditional on Xσ1 we have that
ησ1 ∼ πp. Therefore, we get that (6.17) is true for i = 1. Suppose it holds
for i− 1, we show that it also holds for i. By the definition of T we have for
all i

P(T = i | T ≥ i, Ai) = P
(
ησi ∈ Ênv(xi)

∣
∣
∣ T ≥ i, Ai

)

=
∑

η∈Ênv(xi)

P
(
ησi |Si = η|Si , ησi |Sc

i
= η|Sc

i

∣
∣ T ≥ i, Ai

)

=
∑

η∈Ênv(xi)

π
Sc

i
p (η|Sc

i
) ∙ P(ησi |Si = η|Si | T ≥ i, Ai) ,

where in the last equality we used the i.i.d. property of the different co-
ordinates of ησi and the fact that they are Ber(p) (properties (1) and (2)
from the beginning of the proof). Writing λi for the projection map from
{0, 1}E → {0, 1}Si and noting that

πp

(
Ênv(xi)

)
=

∑

η∈Ênv(xi)

π
Sc

i
p (η|Sc

i
) ∙ πSi

p (η|Si)
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we get
∣
∣
∣P(T = i | T ≥ i, Ai) − πp

(
Ênv(xi)

)∣∣
∣

≤
∑

η∈λi(Ênv(xi))

πSi
p (η)

∣
∣
∣
∣
∣
P(ησi |Si = η | T ≥ i, Ai)

πSi
p (η)

− 1

∣
∣
∣
∣
∣

≤
∥
∥P(ησi |Si ∈ ∙ | T ≥ i, Ai) − πSi

p

∥
∥

2,π
Si
p

≤ ‖P(ησi ∈ ∙ | T ≥ i, Ai) − πp‖2,πp
,

where for the second inequality we used Cauchy Schwartz and for the third
one the fact that the L2 distance does not increase under projections. From
this it now follows that if

∥
∥P
(
ησi−1 ∈ ∙

∣
∣ T ≥ i − 1, Ai−1

)
− πp

∥
∥

2,πp
≤

1
8
,

then ∣
∣
∣P(T = i − 1 | T ≥ i − 1, Ai−1) − πp(Ênv(xi−1))

∣
∣
∣ ≤

1
8
.

Since πp(Ênv(xi−1)) ≤ 1/2, the above implies that

P(T = i − 1 | T ≥ i − 1, Ai−1) ≤
5
8
.

We are now ready to show that if (6.17) holds for i−1, then it also holds for
i. Indeed, substituting the above bound into (6.15) and using the induction
hypothesis ‖θi−1 − πp‖2,πp

≤ 1
8 give

‖θi − πp‖2,πp
≤ e−κ

(
(1/8)2

(3/8)2
+

1
(3/8)2

− 1

)1/2

≤

√
56

3eκ
,

which by taking κ sufficiently large can be made smaller than 1/8 and this
completes the inductive step and the proof of the lemma.

Proof of Proposition 6.5. First we claim that for all α we have that
(1−α)π(A(α)c) ≤ πfull,p(Ac). Indeed, πfull,p(A) ≤ π(A(α))+απ(A(α)c), and
hence πfull,p(Ac) ≥ (1 − α)π(A(α)c). Since B = A(1/4), this now gives that
π(Bc) ≤ 4

3πfull,p(Ac) ≤ 2
3 . By increasing M by a 4

3 -factor, we may replace
πfull,p(Ac) in (6.7) as well as in the statement of Proposition 6.5 by π(Bc).

We write r = r(δ0) with δ0 from Lemma 6.4 and we let α = min((δ0/2), 1/4).
To simplify notation we write Λ = Λaux,(1,p). Let κ ∈ N to be chosen later.
We now define a sequence of times (tj) by setting for all j ≥ 0

tj = j

(
log(4α−2κ)

Λ(16α−2κ/‖πBc − π‖2
2,π)

∨ r

)

= j

(
log(4α−2κ)

Λ(16α−2κπ(Bc)/π(B))
∨ r

)

,
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where we write a ∨ b for max(a, b) and πD for π conditioned on D (i.e.,

πD(x) = π(x)1x∈D
π(D) ). We will now construct a sequence of random sets

D0, D1, . . . such that Bc ⊆ Di for all i and if ξi = 1(Yti /∈ Di), then for
all i almost surely

P(ξi = 1 | ξ0, . . . , ξi−1) ≥ α.

This will imply the assertion of the proposition by setting

Ti = inf

{

tj :
j∑

k=0

ξk = i

}

,

i.e. Ti is the i-th time tj such that Ytj /∈ Dj .
So now we turn to define the sets Di. We do this by induction. For i = 0

we set D0 = Bc. For i ≥ 1 we will define Di as a measurable function of
ξ0, . . . , ξi−1. Since π(Bc) ≤ 2/3 and Y0 ∼ π, we immediately get that

P(T1 = 0) = P(ξ0 = 1) = π(B) ≥
1
3
.

We note that if Y0 ∼ π, then given Y0 /∈ B, we have that Y0 ∼ πBc and
similarly if Y0 ∈ B, then Y0 ∼ πB . We now consider the measures νi(∙) =
PπBi (Yt1 ∈ ∙) for i = 0, 1, where we set B0 = B and B1 = Bc. We now argue
that

(6.18) ‖ν0 − π‖2
2,π ∨ ‖ν1 − π‖2

2,π ≤ ακ π(B)
π(Bc)

.

Indeed using (5.12) we obtain

(6.19) ‖ν1 − π‖2
2,π ≤ ακ‖πBc − π‖2

2,π = ακ π(B)
π(Bc)

.

We now verify that also ‖ν0−π‖2
2,π ≤ ακ π(B)

π(Bc) . Clearly ‖ν0−π‖2
2,π ≤ ‖πB−

π‖2
2,π = π(Bc)

π(B) . Hence it suffices to consider the case that π(Bc)
π(B) ≥ ακ π(B)

π(Bc) . In

this case, using the fact that Λ(∙) is non-increasing Λ(16α−2κπ(Bc)/π(B)) ≤
Λ(4(4α−κ)/‖πB − π‖2

2,π) and so by (5.12) we get that

(6.20) ‖ν0 − π‖2
2,π ≤

1
4
ακ‖πB − π‖2

2,π =
1
4
ακ π(Bc)

π(B)
≤ ακ π(B)

π(Bc)
,

as desired, where in the last inequality we have used the fact that π(Bc) ≤
2/3 .
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From (6.18) together with Proposition 5.4 we get that νi(Bc) ≤ π(Bc) +
ακ/2 for i = 0, 1. Fix i ∈ {0, 1}. Let Di

1 be a set in

{D ⊇ Bc : νi(D) ≥ δ0/2}

with minimal νi probability. By the definition of r and the fact that π(Bc) ≤
2/3 we have that for all i = 0, 1 and for κ sufficiently large

νi(D
i
1) ∈

[
δ0

2
,
(
π(Bc) + ακ/2

)
∨

(
δ0

2
+ 1 − δ0

)]

⊆

[
δ0

2
∧

1
4
,

(

1 −
δ0

2

)

∨
3
4

]

.

To see this, consider the cases νi(Bc) ≤ δ0/2 and νi(Bc) ≥ δ0/2. In the
latter we may take Di

1 = Bc, while in the former, by minimality νi(Di
1) ≤

δ0/2 + maxz νi(z) which is at most 1 − δ0/2 as t1 ≥ r (using the definition
of r). We set D1 = D0

1 of Y0 ∈ B0 and D1 = D1
1 of Y0 ∈ B1.

This concludes the construction of D1. We now proceed by induction. For
a ∈ {0, 1}i and j ≤ i let a(j) ∈ {0, 1}j be the first j co-ordinates of a.

Assume that for each a ∈ {0, 1}i we have defined sets D
a(j)
j ⊇ Bc for all

j ≤ i such that νa, the law of Yti given that for each j < i we have that

Ytj ∈ D
a(j)
j iff the j-th co-ordinate of a is 1, satisfies that

νa(D
a
i ) ∈ [α, 1 − α] and ‖νa − π‖2

2,π ≤ ακ

(
π(B)
π(Bc)

+
α−2

1 − ακ−2

)

.

Note that we have already checked that this holds for our distributions νi

for i = 0, 1. We now want to construct for each b ∈ {0, 1}i+1 a distribution
νb and the set Db

i+1 such that νb(Db
i+1) ∈ [α, 1 − α] and ‖νb − π‖2

2,π ≤

ακ
(

π(B)
π(Bc) + α−2

1−ακ−2

)
. For a ∈ {0, 1}i, let ν

(0)
a (respectively, ν

(1)
a ) be the

measure νa conditioned on (Da
i )c (respectively, Da

i ). Then by Lemma 6.7
for j = 0, 1 we get

‖ν(j)
a − π‖2,π ≤

‖νa − π‖2
2,π + 1

jνa(Da
i )2 + (1 − j)νa((Da

i )c)2
≤ α−2(‖νa − π‖2

2,π + 1)

≤ ακ−2 π(B)
π(Bc)

+
α−2

1 − ακ−2
=: M.

Using π(Bc) ≤ 2/3 we see that M ≤ π(B)
π(Bc)(α

κ−2 + 2 α−2

1−ακ−2 ) ≤ 3 π(B)
π(Bc)α

−2,
provided κ ≥ κ0(α). Using this bound, we see that

t1 ≥
log(α−2κ+2)

Λ (4α−2κ+2/M)
.



RANDOM WALK ON DYNAMICAL PERCOLATION 43

For b ∈ {0, 1}i+1 we now define νb(∙) = P
ν
(bi+1)

b(i)

(Yt1 ∈ ∙) with bi+1 denoting

the i + 1-st coordinate of b (and b(i) its first i co-ordinates). Using (5.13)
this time we obtain that for sufficiently large κ

‖νb − π‖2
2,π ≤ α2κ−2M ≤ ακ

(
π(B)
π(Bc)

+
α−2

1 − ακ−2

)

.

In particular ‖νb−π‖2
2,π ≤ 3ακ−2 π(B)

π(Bc) provided κ is sufficiently large. Propo-

sition 5.4 gives that νb(Bc) ≤ π(Bc) +
√

3α(κ−2)/2 ≤ π(Bc) + ακ/4 for κ
sufficiently large. In the same way as above when defining the set Di

1 we
get that if κ is sufficiently large, there exists some set Db

i+1 ⊇ Bc such that
νb(Db

i+1) ∈ [α, 1 − α]. This completes the induction and the proof of the
proposition.

7. Applications: transitive graphs of moderate growth and the
hypercube. In this section we prove Theorems 1.8 and 1.9. Below we
identify a percolation cluster with the vertices lying in it. Recall that we
denote the cluster of vertex x by Kx and its edge boundary by ∂Kx. Finally,
recall that we write Mp = πp(|∂Kx||Kx|2) and Np = πp(|Kx|).

Lemma 7.1. Let c, a ∈ R. There exists a positive constant c1 = c1(a, c)
such that the following holds. Let G = (V,E) be a connected vertex-transitive
graph of (c, a)-moderate growth and diameter γ. Suppose that Np ≤ γ/4.
Then we have

t
full,(μ,p)
rel ≥ c1

(γ − 4Np)2

μpMp
.

Proof. Denote the cluster of x ∈ V w.r.t. η by Kx(η) and as usual we
identify it with the set of vertices lying in it.

Fix some o ∈ V . Let f(x, η) = 1
|Kx(η)|

∑
v∈Kx(η) dG(v, o), where dG is

the graph distance w.r.t. G. For η ∈ {0, 1}E denote by ηe the environment
obtained from η by setting e to be open if it was not already open (i.e.
ηe(e) = 1 and ηe(e′) = η(e′) for all e′ ∈ E \ {e}). Observe that the value of
f cannot change as a result of a jump in the random walk co-ordinate (as
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such a jump leaves the walk in the same percolation cluster). Thus

E(f, f) =
∑

x∈V, η∈{0,1}E , e∈∂Kx(η)

π(x)πp(η)μp (f(x, η) − f(x, ηe))2

≤ μp
∑

x,η,e∈∂Kx(η)

π(x)πp(η)|Kx(ηe)|2

= μp
∑

η,e∈∂Ko(η)

πp(η)|Ko(η
e)|2

= μp
∑

x,y: {x,y}∈E

πp

[
1(y /∈ Ko 3 x)(|Ko| + |Ky|)

2
]
,

(7.1)

where the penultimate equality follows from transitivity, and the last one
from the fact that on {y /∈ Ko 3 x} we have that |K{x,y}

o | = |Ko| + |Ky|.
Observe that for all A ⊂ V with o, x ∈ A and y /∈ A, given that Ko = A we

have that |Ky| is distributed as the size of the percolation cluster of y (with
parameter p) on the induced graph on V \A, which by an obvious coupling
with πp is stochastically dominated by the (unconditional) law of |Ky| under
πp. Thus for all such A we have that Eπp [|Ky|a | Ko = A] ≤ Eπp [|Ky|a], and
hence for all a > 0 we have that

Eπp [1(y /∈ Ko 3 x)|Ky|
a | Ko] ≤ Eπp [|Ky|

a] = Eπp [|Ko|
a].(7.2)

Plugging (7.2) in (7.1) and summing over {x, y} ∈ E yield

E(f, f) ≤ 4μpMp.(7.3)

We conclude the proof by showing that Varπfull,p
(f) ≥ ca,c(γ − 4Np)2. It

is not hard to verify that

(7.4) ∀ x, |dG(x, o) −
∑

η

πp(η)f(x, η)| ≤ πp(|Kx|) = Np.

Let (X, η) ∼ π × πp and (Y, η′) ∼ π × πp be independent. Define

A = {dG(Y, o) ≤ γ/4, dG(X, o) ≥ 3γ/4}.

Since G is of moderate growth, there exists a positive constant b such that
P(A) ≥ b. Finally, by the independence between X and η together with (7.4)
E[f(X, η) | A] ≥ 3γ/4−Np and similarly we also have that E[f(Y, η) | A] ≤
γ/4 + Np, which together yield that

2Varπfull,p
(f) = E[(f(X, η) − f(Y, η′))2] ≥ E[(f(X, η) − f(Y, η′))21(A)]
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≥ (P(A))2
(
E[f(X, η) | A] − E[f(Y, η′) | A])

)2 ≥ b2(γ − 4Np)
2/4,

where for the second inequality we used Jensen’s inequality and for the last
one we used the assumption that γ ≥ 4Np.

Proof of Theorem 1.8. Let P be the transition matrix of simple ran-
dom walk (SRW) on G. Diaconis and Saloff-Coste [7] showed that for a
Cayley graph G of (c, a)-moderate growth we have

c2γ24−2a−1 ≤ trel . t
(∞)
mix .c,a γ2.

Using this, Lemma 7.1 and the assumptions on Mp and Np we have

t
full,(μ,p)
rel &a,b,c

1
μp

γ2 �a,c
1
μp

tSRW
rel .

As proved in [19, Proposition 8.1] and previously noted in [24], for vertex-
transitive graphs of degree d and (c, a)-moderate growth one has that
tSRW
spectral−profile .a,c,d γ2. This together with Theorem 1.2 yields

t
full,(μ,p)
rel . t

full,(μ,p),(∞)
mix .a,c,d

1
μp

γ2 +
1
μ
| log (1 − p) | .

1
μp

γ2 �
1
μp

tSRW
rel ,

where for the last inequality we used the assumption | log (1 − p) | ≤ γ2.
This completes the proof.

Proof of Theorem 1.9. The proof follows from Theorem 1.2 together
with the upper bound on the spectral profile of simple random walk on the
hypercube (see [19, Section 7]).

8. Log-Sobolev constant. Theorem 1.2 in [18] asserts that for every
Markov chain on a finite state space

(8.1)
1
17

≤ inf
ε∈(0,1/2]

log(1/ε)cLS

Λ0(ε)
≤ 1.

We note that the result in [18] is stated for the case that L = P −I for some
transition matrix P , but as noted several times before, the general case can
be reduced to the case L = c(P − I) for some c > 0, and the relevant
quantities scale linearly in c. We also note that the equivalence between
(8.1) and Theorem 1.2 in [18] relies on the general fact that if A = ∪r

i=1Ai

and the sets Ai are disjoint and satisfy L(x, y) = 0 for all x ∈ Ai and y ∈ Aj

for i 6= j, then (e.g. by (5.5))

(8.2) λ(A) = min
i∈[r]

λ(Ai).
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As for every singleton x by (5.5) we have that λ({x}) = −L(x, x) it follows
that

(8.3) cLS ≤ min
x

−L(x, x)
log(1/π(x))

.

Proof of Theorem 1.6. Let M be as in (6.6). Recall that Λ0(ε) and
Λ(ε) are non-increasing in ε. Thus by increasing M if necessary, we may
assume that M ≥ 2. Using this again, as well as Λ0(1/2) ≤ Λ(1) ≤ 2Λ0(1/2)
(this is used to treat ε ∈ (π∗/M, π∗] ∪ ( 1

2M , 1
2 ]; for the first inequality see

the proof of [13, Lemma 2.2], the second inequality follows from (5.3) by
monotonicity), by (6.6) together with (8.1), we have that

μp min
ε∈[π∗/M,1/2]

log(1/ε)

Λfull,(μ,p)
0 (ε)

. min
ε∈[π∗,1/2]

log(1/ε)

ΛSRW
0 (ε)

� 1/cSRW
LS .

It is left to prove minε∈(0,π∗/M ]
log(1/ε)

Λ
full,(μ,p)
0 (ε)

.
log(1/π∗) log( 1

p(1−p)
)

μ .

Let δ ≤ 1/M and let B be such that πfull,p(B) = δπ∗. Then for all v ∈ V
we have that

πp(Env(v,B)) ≤

∑
u π(u)πp(Env(u,B))

π∗
=

πfull,p(B)
π∗

= δ.

Consider now the (reducible) Markov chain on Ω := V ×{0, 1}E in which
the walk co-ordinate cannot change, and the environment evolves in the
usual fashion by refreshing each edge at rate μ (and declaring it to be open
with probability p and closed w.p. 1 − p). Note that it is reversible w.r.t.
πfull,p. Denote the corresponding generator by L′ while that of the (usual)
full process with parameters (μ, p) by L. Let λ′(B) and λ(B) be the minimal
Dirichlet eigenvalue of B w.r.t. L′ (i.e., the minimal positive eigenvalue of
L′

B , given by L′
B(a, b) := L′(a, b)1(a, b ∈ B)) and L, respectively. Then by

(5.5) we have that

λ′(B) = min{EL′(h, h) : h ∈ RΩ
+, ‖h‖2 = 1, supp(h) ⊆ B}

≤ min{EL(h, h) : h ∈ RΩ
+, ‖h‖2 = 1, supp(h) ⊆ B} = λ(B).

(8.4)

(The first equality holds even without irreducibility). Since w.r.t. L′ the
sets ({v} × Env(v,B) : v ∈ V ) are disconnected (i.e. L′(a, b) = 0 for all
a ∈ {v}×Env(v,B) and b ∈ {u}×Env(v,B), for all v 6= u) and their union
is B, by (8.2) we have that

(8.5) λ′(B) = min
v

λ′({v} × Env(v,B)).
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As the evolution of the chain corresponding to L′ on each set of the form
{v}× {0, 1}E is simply that of the rate μ p-tilted hypercube, for every v we
have that

(8.6) λ′({v} × Env(v,B)) = λp-tilted hypercube with rate μ(Env(v,B)).

As πp(Env(v,B)) ≤ δ, by (8.1) we have that for all v (uniformly in p and μ)

(8.7) λp-tilted hypercube with rate μ(Env(v,B)) & ĉ log(1/δ),

where ĉ = ĉ(μ, p) is the log-Sobolev constant of the rate μ p-tilted hypercube
(this is a dimension free quantity [8], but here the co-ordinates of the hy-
percube are labeled by the set E). Finally, combining (8.4)-(8.7) and using
the facts that πfull,p(B) = δπ∗ and δ ≤ 1/M ≤ 1/2 we see that

λ(B)
log(1/πfull,p(B))

&
ĉ log(1/δ)

log(1/(δπ∗))
& ĉ/ log(1/π∗)

&
μ(1 − 2min(p, 1 − p))

log(max(p, 1 − p)/ min(p, 1 − p))) log( 1
π∗

)
,

where in the last inequality we have used

ĉ � μ(1 − 2min(p, 1 − p))/ log(
max(p, 1 − p)
min(p, 1 − p))

(e.g. [8], alternatively, this can be seen using the facts that (i) the log-
Sobolev constant scales linearly in μ, (ii) for product chains it is the same as
the minimal log-Sobolev constant of a single co-ordinate [8], and (iii) the log-
Sobolev constant of a single co-ordinate can be approximated using (8.1)).
We note that for p = 1/2 this should be interpreted as (1 − 2min(p, 1 −
p))/ log( max(p,1−p)

min(p,1−p)) = 1.
We now prove the result about trel. Combining (6.5) and (6.6) we have

that
(μp)−1Λ(μ,p)(1/2) & min

a
ΛSRW(a) = (tSRW

rel )−1.

Finally, using the fact that for every reversible chain Λ(1/2) ≤ 2/trel [13,
Lemma 2.2] completes the proof.
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[14] O. Häggström, Y. Peres, and J. E. Steif. Dynamical percolation. Ann. Inst. H.
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Probab. Stat., 54(1):234–248, 2018. MR3765888.

[16] J. Hermon. A spectral characterization for concentration of the cover time. To appear
in Journal of Theoretical Probab. arXiv preprint arXiv:1809.00145 , 2018.

[17] J. Hermon and Y. Peres. A characterization of L2 mixing and hypercontractivity via
hitting times and maximal inequalities. Probab. Theory Related Fields, 170(3-4):769–
800, 2018. MR3773799.

[18] J. Hermon and Y. Peres. On sensitivity of mixing times and cutoff. Electron. J.
Probab., 23:Paper No. 25, 34, 2018. MR3779818.

[19] J. Hermon and R. Pymar. The exclusion process mixes (almost) faster than inde-
pendent particles. arXiv preprint arXiv:1808.10846, 2018.

[20] J. Hermon and P. Sousi. Random walk on dynamical percolation. arXiv preprint
arXiv:1902.02770, 2019.

[21] G. Kozma. On the precision of the spectral profile. ALEA Lat. Am. J. Probab. Math.
Stat., 3:321–329, 2007. MR2372888.

[22] D. A. Levin and Y. Peres. Markov chains and mixing times. American Mathematical
Society, Providence, RI, 2017. Second edition of [MR2466937], With contributions by
Elizabeth L. Wilmer and a chapter on “Coupling from the past” by James G. Propp

http://www.ams.org/mathscinet-getitem?mr=MR2372888
http://www.ams.org/mathscinet-getitem?mr=MR3779818
http://www.ams.org/mathscinet-getitem?mr=MR3773799
http://www.ams.org/mathscinet-getitem?mr=MR3765888
http://www.ams.org/mathscinet-getitem?mr=MR2199053
http://www.ams.org/mathscinet-getitem?mr=MR3141797
http://www.ams.org/mathscinet-getitem?mr=MR1410112
http://www.ams.org/mathscinet-getitem?mr=MR1254308
http://www.ams.org/mathscinet-getitem?mr=MR3439705
http://www.ams.org/mathscinet-getitem?mr=MR3650406
http://www.ams.org/mathscinet-getitem?mr=MR3843821
http://www.ams.org/mathscinet-getitem?mr=MR657512


RANDOM WALK ON DYNAMICAL PERCOLATION 49

and David B. Wilson. MR3726904.
[23] L. Lovász and P. Winkler. Mixing times. In Microsurveys in discrete probability

(Princeton, NJ, 1997), volume 41 of DIMACS Ser. Discrete Math. Theoret. Comput.
Sci., pages 85–133. Amer. Math. Soc., Providence, RI, 1998. MR1630411.

[24] R. Lyons and S. Oveis Gharan. Sharp bounds on random walk eigenvalues via spectral
embedding. International Mathematics Research Notices, 2012.

[25] B. Morris and Y. Peres. Evolving sets, mixing and heat kernel bounds. Probab.
Theory Related Fields, 133(2):245–266, 2005. MR2198701.

[26] Y. Peres, P. Sousi, and J. E. Steif. Quenched exit times for random walk on dynamical
percolation. Markov Process. Related Fields, 2019. accepted.

[27] Y. Peres, P. Sousi, and J. E. Steif. Mixing time for random walk on supercriti-
cal dynamical percolation. Probab. Theory Related Fields, 176(3-4):809–849, 2020.
MR4087484.

[28] Y. Peres, A. Stauffer, and J. E. Steif. Random walks on dynamical percolation:
mixing times, mean squared displacement and hitting times. Probab. Theory Related
Fields, 162(3-4):487–530, 2015. MR3383336.

[29] Y. Peres and J. E. Steif. Private communication.
[30] P. Sousi and S. Thomas. Cutoff for random walk on dynamical Erdös Rényi graph.
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