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Abstract

We show that information overload contributes to confirmation bias. In

an experiment, we vary the difficulty of information processing as subjects

receive a sequence of signals of an unknown state. In the treatment condition,

the preceding signal disappears as the next signal appears. In the control

condition, the preceding signal remains visible. We find stronger confirmation

bias among subjects in the treatment condition. Our results provide empirical

support for models that emphasize the role of limited information processing

in confirmation bias (Wilson (2014), Leung (2018), Jehiel and Steiner (2018)).
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1 Introduction

Confirmation bias refers to the tendency to seek or interpret evidence in ways that af-

firm one’s existing beliefs, expectations, or a hypothesis in hand (Nickerson (1998)).

The bias has been well-documented in different contexts, including medical diag-

noses (Croskerry (2003), Pang et al. (2017)), judicial decisions (Roach (2010)), fi-

nancial markets (Farmer (1999)), political polarization (Iyengar and Hahn (2009),

Flaxman et al. (2016)) and many others. Understanding its underlying mechanism

and driving force is important for improving decision-making and enhancing social

welfare.

Many existing explanations for confirmation bias proposed in the economics lit-

erature are preference-related. For instance, Akerlof and Dickens (1982), Kőszegi

(2003) and Brunnermeier and Parker (2005) show that anticipatory utility or belief-

dependent utility leads to the confirmation bias; Carrillo and Mariotti (2000) and

Bénabou and Tirole (2002) demonstrate that confirmation bias is a remedy for time

inconsistent preferences; Crémer (1995) and Aghion and Tirole (1997) explain it

with interpersonal strategic concerns. However, we are not aware of direct experi-

mental tests showing that these mechanisms lead to belief formation that exhibits

confirmation bias.

In this paper, we follow a nascent literature that emphasizes the role of cognitive

constraints in giving rise to confirmation bias. A small, but growing theoretical

literature analyzes how limited ability/information overload can explain a number

of behavioral biases, including confirmation bias and wishful processing (Compte and

Postlewaite (2012), Wilson (2014), Leung (2018) and Jehiel and Steiner (2018)).

We draw our hypotheses based on Leung (2018), who formalizes the intuition that

limited information processing ability can lead to confirmation bias. To understand

the intuition behind the mechanism, consider an individual who has to form a belief

about an unknown binary state. Suppose the individual receives two sequential

signals, which can either be belief-confirming or belief-challenging (but of equal

strength). However, the individual can only process one of the two signals due to

cognitive constraints. If the first signal were belief-confirming, processing it would

yield a posterior that would be difficult to alter by the subsequent signal. Conversely,

if the first signal were believe-challenging, the individual’s posterior would be closer

to 50-50, in the sense that there is more uncertainty. In this case, being able to

process the second signal would yield a large benefit. Given that the decision-

maker can only process one signal, processing belief-confirming information in the

first signal has a lower opportunity cost of passing on the second signal than for

belief-challenging information. Therefore, limited capacity to process signals leads

individuals to (optimally) adopt a processing strategy that is belief confirming.

In our experiment, subjects receive a sequence of numbers, which are drawn

from either a “low” or “high” distribution. The “low” distribution is more likely to
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generate small numbers while the “high” distribution is more likely to generate large

numbers. Subjects have to navigate through the sequence within 30 seconds and

then report their beliefs of the underlying distribution that generated the numbers

they have seen. In each round of the experiment, two subjects are matched and

are assigned to either the treatment or control condition. To isolate the effect of

information overload on belief updating, we hold constant the available signals for

the matched subjects in the treatment and control conditions but vary the difficulty

of belief-updating. Thus, a Bayesian subject will form the same belief in both

conditions. In the treatment condition, subjects navigate through the sequence by

clicking the “next” button and they only see one signal at a time; while in the control

condition, they advance through the sequence only when their matched subject in

the treatment condition have clicked the “next” button. The important distinction

is that as the control subjects advance through the sequence, the preceding numbers

remain visible and they observe multiple numbers at the same time.

This experimental design allows us to compare how two individuals, who observe

the same signals at the same time, update their beliefs differently when exposed

to different magnitudes of information overload. We define information overload

according to Speier et al. (1999)1, which is not on the absolute amount of the

information, but on the amount of the information relative to processing capacity of

the individuals. As belief updating is less cognitively taxing in the control condition

(i.e., subjects do not have to remember the numbers they have seen, and as they

see multiple numbers at the same time, it is easier to develop an idea about the

aggregate information conveyed by the numbers), it imposes weaker information

overload on the subjects than the treatment condition.

Building on the theoretical insights, we define confirmation bias as an asymmet-

ric belief updating behavior. We say that a stronger information overload drives a

stronger confirmation bias if subjects update more with belief-confirming informa-

tion and less with belief-challenging information in the treatment condition than in

the control condition. Indeed, we find that upon receiving belief-challenging infor-

mation, subjects in the treatment condition update less compared to the subjects in

the control condition. On the other hand, upon receiving a belief-confirming signal,

subjects’ belief updating behaviors do not differ significantly across the two condi-

tions. Thus, holding the available signals constant, stronger information overload

(empirically) leads to more biased processing behavior. The stronger bias is driven

by a stronger under-reaction to belief-challenging information, but not the updating

behavior with belief-confirming information. As a result, subjects in the treatment

condition are also less likely to switch between guessing “high” and “low” than in

the control condition, even when they receive strong belief-challenging signals.

1Speier et al. (1999) stated that ”Information overload occurs when the amount of input to a
system exceeds its processing capacity.”. For example, grading thirty assignments within one hour
is much more demanding than grading thirty assignments within a week.
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Our findings constitute the first direct evidence linking a particular mechanism

to confirmatory bias, and have novel implications. Our findings that information

overload makes individuals more prone to confirmation bias suggests that besides

preferences, informational environment also contributes to the bias. This novel chan-

nel leads to different policy implications from that of the utility-based mechanisms.

Much like in the experiment reported here, our results imply that one way to weaken

confirmation bias is to make information easier to process. Lastly, our findings are

particularly pertinent to different social issues in this information age, with the lead-

ing example being ideological polarization (Gentzkow and Shapiro (2011), Flaxman

et al. (2016)).

Our paper also contributes to the experimental literature on how individuals

update their beliefs. Eil and Rao (2011), Ertac (2011), Grossman and Owens (2012)

and Möbius et al. (2014) study how subjects’ beliefs about their task performances,

IQ or beauty scores evolve with information, and find evidence supporting the phe-

nomenon of overconfidence. Enke and Zimmermann (forthcoming) finds that large

proportion of their subjects neglect correlation between signals when they form their

beliefs. Liang (2019) shows that subjects substantially discount the signals when

the quality of information source is ambiguous.

The remainder of this paper is organized as follows. In the next section, we

present a simple theoretical model to motivate our hypotheses. In section 3, we

outline the experimental design. In section 4, we present descriptive statistics for

our sample, as well as our analysis strategy and hypotheses. In section 5, we present

the results. Section 6 offers some concluding remarks.

2 Model and Intuition

To motivate the intuition that information overload could give rise to confirmation

bias, we present an (toy model) example of Leung (2018). While the example does

not perfectly match our experimental design, it comprises all the key feature of our

experimental design and illustrates the theoretical foundation of our hypotheses.

Consider a subject who has to guess whether the “high” distribution or “low” dis-

tribution was randomly chosen in each round to generate the numbers he observes

as signals. If he makes the correct guess, he gets 1 util; otherwise, he gets 0. His

prior belief is denoted by (pH , 1− pH) where pH is the prior probability assigned to

the “high” distribution. Without loss of generality, we assume pH > 0.5.

Before he makes a guess, he receives two signals, denoted by s1 and s2. Each

signal is either a high or low number, denoted by h and l respectively. The “high”

distribution is more likely to generate a high number while the “low” distribution

is more likely to generate a low number. Formally, si = h with probability f when

the “high” distribution is true and correspondingly, with probability 1−f when the
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“low” distribution is true, where2 f > pH > 0.5.

We first analyze the Bayesian benchmark where there is no information overload

and the subject can update his belief perfectly with both s1 and s2. His posterior

belief, denoted by p̃BH , is given by the following Bayesian formula:

p̃BH =



pHf
2

pHf 2 + (1− pH)(1− f)2
if s1 = s2 = h,

pHf(1− f)

pHf(1− f) + (1− pH)f(1− f)
if s1 6= s2,

pH(1− f)2

pH(1− f)2 + (1− pH)f 2
if s1 = s2 = l.

(1)

It could also be rearranged to the following “odds ratio” form:

p̃BH
1− p̃BH

=



pH
1− pH

× f 2

(1− f)2
if s1 = s2 = h,

pH
1− pH

× 1 if s1 6= s2,

pH
1− pH

× (1− f)2

f 2
if s1 = s2 = l.

(2)

That is, the posterior relative likelihood of the “high” instead of the “low” distribu-

tion being chosen equals the prior relative likelihood times the relative probability

of receiving the two signals with the “high” instead of the “low” distribution.

Next, we turn to a setting with information overload, where the subject has

limited ability to process and update his belief. More specifically, we assume that

the subject can process and update his belief with only one of the two numbers. After

seeing the first number s1, he decides whether to process or to ignore the number. If

he chooses to process it, he updates his belief with s1, at the cost of forgoing s2. If

he chooses to ignore s1, he proceeds to process the next signal s2. After processing

either signal s1 or s2, he makes an optimal guess given his posterior belief p̃IOH . For

simplicity, we assume that he “naively”3 neglects the information conveyed by his

processing strategy, thus the posterior under information overload p̃IOH follows:

p̃IOH
1− p̃IOH

=


pH

1− pH
× f

(1− f)
if he processes h,

pH
1− pH

× (1− f)

f
if he processes l.

(3)

Proposition 1. With information overload, the subject processes (ignores) s1 if

it is belief-confirming (belief-challenging) information, i.e. his processing strategy

exhibits confirmation bias.

2f > pH ensures the signals are convincing enough such that the subject switches to guessing
“low” after he updates his belief with a low number.

3The result holds when we extend this assumption so that the DM rationally infer information
from his processing strategy.
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Proof. Note that if the subject is Bayesian, he will guess “low” if and only if s1 =

s2 = l. In all other cases, he will guess “high”. In the following, we refer to

the Bayesian choice as the optimal choice as it maximizes the expected utility

given s1 and s2. On the other hand, in this setting with information overload,

he will guess “high” if he processes h and will guess “low” if he processes l.

If the subject sees s1 = h, he knows that his optimal guess is to guess “high” no

matter what the second number is. However, if he ignores the first high number and

sees s2 = l, his future self will guess “low” (as he discarded the high number) which

is sub-optimal. Hence, he processes the high number, which is belief-confirming, in

order to prevent himself from switching sub-optimally.

On the other hand, if the subject sees s1 = l, he knows that his future self will

guess “low” if he processes it. However, if he ignores it, he will guess “high” if s2 = h

and guess “low” if s2 = l, which is the same as the optimal choice. Thus he ignores l,

which is belief-challenging.

Note that this result of confirmation bias holds qualitatively in more general

settings, for example when the belief-challenging information is (slightly) more con-

vincing than the belief-confirming information, or with a more general information

structure (see Leung (2018)).

To understand the intuition of the result, note that the decision-maker (DM)

trades off between allocating his processing capacity to the current signal s1 and

the future signal s2. Roughly speaking, he compares the value of the current and

future information. When s1 confirms his belief, he becomes more confident that

the “high” distribution was drawn. As a result, the value of the future signal s2

decreases (to 0 in this simple example). In contrast, when s1 is belief-challenging, the

DM’s belief moves towards (1
2
, 1
2
). This increases the value of the future information

s2 as he becomes more uncertain about the state. This asymmetry in the value of

future information drives confirmation bias, as the subject tends to update his belief

with a belief-confirming signal and stop looking for future information, but ignore

a belief-challenging signal and save his cognitive resources for future information.

The result suggests that information overload leads to biased processing behavior

(also see Wilson (2014), Jehiel and Steiner (2018)).

3 Experimental Design

In the experiment, subjects have to complete 12 rounds of a guessing task, which

involves belief-updating with multiple signals.
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3.1 States and Information of The Guessing Task

The guessing task is designed to investigate how subjects update their beliefs in the

face of information overload. In each round of the guessing task, subjects receive

two sequences of numbers which are drawn independently from either a “high” or

“low” distribution. The set of numbers are integers from 1 to 8, inclusive. The

probability distribution of a drawn number given a “high” or “low distribution is

shown in figure 1.

prob

1 2 3 4 5 6 7 8

8%
9%10%

12%
13%

14%
16%

18%

(a) The “high” distribution.

prob

1 2 3 4 5 6 7 8

8%
9%10%

12%
13%

14%
16%

18%

(b) The “low” distribution.

Figure 1: The two distributions shown in bar charts.

As shown in figure 1, the “high” distribution is more likely to generate larger

numbers, while the “low” distribution is more likely to generate smaller numbers.

Therefore, subjects can infer which distribution generates the numbers they observe

in a particular round. The reasoning behind the parameters of two distributions

is explained in detail in Appendix A.1. Briefly speaking, the two distributions are

designed to be sufficiently informative so that subjects could easily make inferences,

while not to being too informative to ensure that the probability of receiving belief-

challenging information is significant for the analysis. Lastly, the informativeness of

a signal should increase steadily as it goes towards the two extremes (number 1 and

8).

To make the task more accessible to subjects, we call the distributions that

generate the numbers “computers” where the “high” (“low”) computer is more likely

to generate high (low) numbers.

3.2 The procedure of the guessing task

Pairing and assignment of treatment and control. All subjects play 12

rounds of the guessing task and are assigned to the treatment and control condition

alternately. In the beginning of each round, each treatment subject is randomly

matched with a control subject to form a pair, and two pairs are randomly matched
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super-pair pair subject condition
underlying
distribution

numbers

super-pair 1

pair 1
subject 1 Treatment “Low” 2, 3, 1, 4, 5, 3, 6, 1, · · ·
subject 4 Control “Low” 2, 3, 1, 4, 5, 3, 6, 1, · · ·

pair 2
subject 2 Treatment “High” 7, 6, 8, 5, 4, 6, 3, 8, · · ·
subject 3 Control “High” 7, 6, 8, 5, 4, 6, 3, 8, · · ·

Table 1: An example of the underlying distributions and numbers for subjects in
two pairs which belong to the same super-pair.

to form a super-pair4. During the respective round, the two matched subjects in a

pair observe the same sequence of numbers drawn from the same underlying distri-

bution, which is either the “high” or “low” distribution with equal probability. This

is illustrated in table 1 as subject 1 and 4 (or 2 and 3), who belong to the same pair,

see the same numbers drawn from the same underlying distribution. As mentioned

in the introduction, it allows us to single out the effect of information overload, by

keeping the two subjects’ available information constant.

On the other hand, the two matched pairs in a super-pair see numbers drawn

from different underlying distributions, and the numbers received by the two pairs

are symmetric around 41
2

(and add up to 9). Given the symmetry of the two distri-

butions5, the numbers they receive are of the same strength but support different

underlying distributions. This is illustrated in table 1. The numbers seen by pairs

1 and 2, which belong to the same super-pair, are symmetric around 41
2

and drawn

from different distribution. First, by comparing the beliefs of subjects in the two

matched pairs, it allows us to test whether there is any intrinsic bias towards either

of the two distributions. Second, if there is no bias towards either of the two distri-

butions, the subjects in the two matched pairs should have exactly opposite beliefs,

i.e., if subject 1 believes the “low” distribution has been chosen with probability x

after seeing a sequence of numbers, subject 2 should believe the“high” distribution

has been chosen with probability x. Thus, with careful normalization, it allows us to

leverage on the symmetry of the two distributions to increase our statistical power,

as it essentially doubles the observations of belief-updating with the same sequence

of numbers.

The timeline of a round of the guessing task is illustrated in figure 2 and we

explain in detail below.

First belief elicitation and belief elicitation mechanism. Before the subjects

have seen any numbers, we conduct the first belief elicitation at the beginning of

4The numbers of subjects of every sessions are restricted to even numbers, but not to multiple
of 4.

5The probability of seeing a number x with the “low” distribution is equal to the probability
of seeing a number 9− x with the “high” distribution.

8



Subjects are matched

to pairs, and as-

signed to one of the

two distributions

First belief

elicitation

Phase 1 of information

(numbers) provision

Belief elicitation

after phase 1

Phase 2 of information

(numbers) provision

Belief elicitation

after phase 2

Next Round

Figure 2: Sequence of a round.

each round. We use a variant of the Becker-DeGroot-Marschak method (Becker

et al. (1964)), which is shown in figure 3. First, subjects have to guess whether the

“high” or “low” distribution has been selected. Second, they have to choose between

the following two options: earn 8e if their chosen distribution is selected, or earn 8e

with probability x%, where x starts at 50% and increases in 5% increments per row.

The mechanism is incentive compatible. As an example, if a subject believes the

“high” distribution has been chosen with 66%, he should choose “high” for the first

question and for the second question switch from option 1 to option 2 when x = 70

as shown in the figure.

This first belief elicitation is used to ensure that subjects hold the 50-50 belief

before seeing any numbers (and that they understand they are at the beginning

of a new round). There is a soft time limit of 30 seconds6 for the belief elicitation.

Afterwards, subjects see two sequences of numbers drawn by the selected distribution

in two phases, with a second belief elicitation in between the two phases and a third

belief elicitation after the second phase.

Phase 1 of information (numbers) provision. In the first phase, all subjects

see 5 numbers displayed on the screen for 30 seconds (figure 4). The two matched

subjects from treatment and control condition see the same 5 numbers. After 30

seconds, the subjects are redirected to the page of the second belief elicitation.

Belief elicitation after phase 1. After phase 1, we elicit subjects’ beliefs using

the same table shown in figure 3. Their choices in the first belief elicitation is shown

as a default. The first phase, which shows 5 numbers to the subjects, naturally

induces heterogeneous beliefs across all the subjects. Thus, it allows us to define

belief confirming and belief challenging information and studies how belief updating

is different with the two types of information.

Phase 2 of information (numbers) provision. In the second phase, subjects

can see up to 7 numbers with a strict time limit of 30 seconds. Paired subjects in the

6If a subject has spent more than 30 seconds, he is shown a warning message which reminds
him that time is up. However, subjects are not automatically redirected to the next page.
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Figure 3: The belief elicitation screen.

Figure 4: A screen shot of Phase 1.
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treatment and control conditions see the same numbers but with a different screen

layout.

The treatment condition The layout and flow of the treatment condition is

illustrated in figure 5. The subjects see one number at a time. They can decide when

to advance the sequence by clicking the blue “Next” button. Upon clicking “Next”,

the next number in the sequence is revealed and the preceding number disappears.

Moreover, the subject is unable to return to the preceding numbers. Subjects in

the treatment condition face a trade-off between spending more time on the current

number and saving time for the next numbers.

clicked “Next”

Figure 5: A screen shot of phase 2 in the treatment condition.

The control condition In contrast, subjects in the control condition cannot

influence when the next number appears, while the preceding numbers do not disap-

pear when additional numbers are displayed (figure 6). They start with one number

on their screen and as they advance through the sequence, they see two, three, four

(etc.) numbers on the screen at the same time. To ensure the information they

receive and the timing of information provision are the same as their counterpart in

the treatment condition, the control subjects advance in the sequence at the same

time as their matched treatment subject click “Next”. The treatment subjects, how-

ever, are not aware that they can control the other’s advancement in the sequence,

nor do the control subjects know that their advancement is controlled by others.

Figure 6: A screen shot of phase 2 in the control condition.

The main difference between the treatment and control conditions is that it is

easier for the control subjects to update their beliefs with all the signals being visible

at the same time. In other words, subjects in the treatment condition are exposed

to stronger information overload than those in the control condition, despite the fact

that they essentially receive the same information.
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Belief elicitation after phase 2. After 30 seconds of phase 2, subjects are redi-

rected to the page of the third belief elicitation. Their choices of the second belief

elicitation are shown as default. By comparing how subjects update their beliefs

in the treatment and control condition with belief confirming and belief challenging

information, we draw insights on how information overload gives rise to confirmation

bias.

New round. Following the belief elicitation after phase 2, a new round begins

where subjects are randomly re-matched and assigned to either the “high” or “low”

distribution with equal probability. Subjects are re-directed to a screen that reminds

them that a new round has started.

3.3 Procedural Details

We conducted 12 sessions of the experiment, involving 260 subjects in the Bon-

nEconLab at the University of Bonn. The participants were university students and

were recruited through the online recruitment system h-root (Bock et al. (2014)).

The experiment was coded and run in o-Tree (Chen et al. (2016)). Each sessions

took about 2h 15min. The subjects were paid according to a randomly drawn de-

cision in the first, second and third belief elicitation (figure 3) from three different

randomly chosen rounds. For example, if the first belief elicitation of round 2 is

chosen, we randomly choose one of the binary choices in the corresponding belief

elicitation table to determine the payment: if the binary choice for the first ques-

tion “Which Computer is more likely that has been selected?” is chosen, we pay

the subject 8e if the answer is correct; if the binary choice of one of the “option

1 v.s. option 2” decision is chosen, we pay according to the option chosen by the

subject. We then repeat the same process for the second and third belief elicitation

of two other randomly chosen rounds. The maximum earning is thus 24e. The

average earnings were 18.12e per subject, plus a participation fee of 7e .

4 Analysis

In this section, we begin by presenting the descriptive statistics for our sample,

before constructing and introducing the main variables of interest. Thereafter, we

explain our analysis strategy and hypotheses.

4.1 Data

Across all 12 sessions, 260 subjects each played 12 rounds of the guessing task. The

average age of the subjects was 23, while the maximum age was 30. 109 subjects
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were male and 151 subjects were female. 50% of the subjects stated that they have

taken economics or statistics courses.

4.1.1 Observations

Every subject in each round gives us one observation for the guessing task. Each

of the 260 subjects played 12 rounds of the guessing task, which contributed 3120

observations in total. In the first four sessions, unfortunately there was a technical

glitch with the computer system recording how many numbers a subject saw in

phase 2. More specifically, with some small probability, the recorded number was

one fewer than it should be, e.g., the computer system may have recorded 6 while

the subject has seen 7 numbers in phase 2. Thus, we dropped the observations in

the first four sessions if the recorded numbers of signals seen in phase 2 were less

than 7, which amounts to 264 of 1008 observations7. The technical glitch was fixed

in later sessions. After dropping the observations as mentioned above, we have 2856

observations in total.

Furthermore, in the analysis, we only use the observations where choices in the

first belief elicitation are compatible with the belief that the underlying distribution

is “high” or “low” with equal probability, i.e., they chose option 2 in all rows in the

table shown in figure 3, except possibly in the first row. This is a test to ensure

that subjects understood the belief elicitation mechanism, and that they were at

the beginning of a new round and a new distribution has been drawn with equal

probability. In 615 of the 2856 observations (i.e., 21.53%), subjects’ choices in the

first belief elicitation fail the test8.

For example, in 84 observations, subjects’ choices in the first belief elicitation

indicate that they are at least 95% confident about the underlying distribution (that

they chose option 1 in all rows in the table shown in figure 3). This might be due

to misunderstanding of the belief elicitation mechanism. However, in most cases

subjects realized in later rounds that they were filling out the belief elicitation table

incorrectly and would not make the same mistake over all 12 rounds. In fact, only 6

subjects chose option 1 for all rows in the first belief elicitation in more than 6 rounds.

After excluding observations in which the first elicited belief is not (50%, 50%), we

have 2241 final observations. Unless otherwise stated, all the analyses are based on

these observations.

7As shown in table 2 in almost all (97%) of the observations, subjects have seen all 7 numbers
in phase 2. We therefore are confident that dropping the data does not affect systematically our
results.

8Among the subjects who have never taken any statistics or economics courses, 26.70% of the
observations exhibit choices in the first belief elicitation that are not compatible with belief of
equal probability on the two distribution, while the proportion is 16.27% for the subjects which
have taken statistics or economics courses.
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All Sessions
All sessions,

with only observations where
first elicited belief equals (50%, 50%)

Sessions 5 - 12,
with only observations where

first elicited belief equals (50%, 50%)

Number of signals
seen in phase 2

Frequency Percentage Frequency Percentage Frequency Percentage

4 2 0.07% 2 0.09% 2 0.12%

5 12 0.42% 9 0.40% 9 0.55%

6 49 1.72% 34 1.52% 34 2.07%

7 2793 97.79% 2196 97.99% 1691 97.27%

Table 2: Frequencies and proportion of observations where 4, 5, 6 and 7 numbers
have been seen in phase 2. Note that in this table we do not include observations in
sessions 1 to 4 where the number of signals seen in phase 2 is less than 7, but have
included the observations with non-(50%, 50%) first elicited belief .

4.1.2 Numbers of Signals Seen in Phase 2

Table 2 shows the descriptive statistics of the number of signals subjects have seen

in phase 2. We see that only a small fraction of subjects have seen less than 7

numbers in phase 2. For instance, in sessions 5 to 12, where the technical glitch

mentioned in previous section was fixed, less than 3% of the subjects saw less than

7 numbers, i.e., almost all subjects manage to reveal all 7 numbers in the 30 seconds

time limit. Thus, we are confident that the results presented in this paper is not

artificially created by the fact that we have dropped the observations in the first

four sessions where the number of signals seen is less than 7.

4.1.3 Randomization of High and Low States

Among all 2241 final observations, 48.77% are assigned to the “high” distribution

while 51.23% are assigned to the “low” distribution. The composition is not exactly

half-half because we have dropped some observations as mentioned before.

4.1.4 Treatment and Control Condition

Each subject was alternately assigned to the treatment and control conditions in the

12 rounds of the guessing task. Among the final 2241 observations, 1124 observa-

tions are from the control condition and 1117 observations are from the treatment

condition. Again, the composition is not exactly half-half because we have dropped

some observations as mentioned before.

4.2 Variables of Interest

4.2.1 Elicited Beliefs

The first elicited belief is denoted by p0, while the elicited belief after phase 1 and

phase 2 are denoted by p1 and p2 respectively. All elicited beliefs are normalized such

that p0, p1 and p2 represent the (subjective) probability of the “high” distribution
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being chosen. Note that p0 = 0.5 in all observations used in the analysis, as we

exclude those whose first elicited belief does not equal to 0.5. On the other hand,

p1 and p2 are pinned down by the point subjects switch from option 1 to option

2 in the belief elicitation table. As an example, if in the belief elicitation after

phase 1, subjects guess “high” for the first question as shown in figure 3, and switch

from option 1 to option 2 when the winning probability of the random lottery is

70%, we define p1 = 0.675, i.e., the average belief compatible with those choices.

In the analysis, p1, is treated as the prior belief of the subjects, and we investigate

how subjects update their beliefs upon receiving the belief-confirming or belief-

challenging signals in phase 2 differently in the control and treatment condition.

4.2.2 Bayesian Beliefs

The Bayesian counterpart of the first elicited belief is denoted by pB0 and correspond-

ingly, the Bayesian counterparts of the elicited belief after phase 1 and phase 2 are

denoted by pB1 and pB2 respectively.

pB0 is always equal to 0.5 as the distribution is drawn with equal probability. The

Bayesian belief after phase 1, pB1 , is constructed using the first elicited belief p0.

pB1
1− pB1

=
∏

si∈S1

fH(si)

fL(si)
× p0

1− p0
, (4)

where S1 denotes the set of the 5 numbers in phase 1, and fH(si) is the probability

that the “high” distribution generates number si while fL(si) is the probability that

the number is drawn from the “low” distribution. Since we only include observations

where p0 = 0.5, this equals to

pB1
1− pB1

=
∏

si∈S1

fH(si)

fL(si)
× 0.5

1− 0.5︸ ︷︷ ︸
=1

.

Similarly, the Bayesian belief after phase 2, pB2 , is constructed using the elicited

belief after phase 1, p1:

pB2
1− pB2

=
∏

si∈S2

fH(si)

fL(si)
× p1

1− p1
, (5)

where S2 is the set of numbers seen in phase 2. In other words, pB2 is equal to the

belief of a Bayesian individual if he takes his prior belief p1 as given and updates

his belief with S2 in a statistically optimal way.
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4.2.3 Treatment and control condition

For each observation i, the condition imposed on the subject is denoted by the

dummy variable Ti, which takes on the value of 1 if the subject is assigned to the

treatment condition, and 0 otherwise.

4.3 Empirical Strategy and Hypothesis

To examine how information overload plays a role in confirmation bias, we analyze

two indicators of confirmation bias, namely switching behavior and changes in belief.

4.3.1 Switching Behavior

The first indicator we analyze pertains to the switching decisions of the subjects. A

switch is defined as the scenario where a subject guessed “high” after phase 1 but

guessed “low” after phase 2, or vice versa. Moreover, we say that a subject has made

a switching mistake when his switching decision is different from that of a Bayesian

individual. We analyze two different switching mistakes. The first mistake is the

case where the subjects should switch if they were Bayesian but they ended up not

switching; the second mistake is the case where the subjects should not switch if

they were Bayesian but they ended up switching.

If information overload induces a stronger confirmation bias, subjects in the

treatment condition should update (weakly) more to belief-confirming information

and conversely, update (weakly) less to belief-challenging information relative to

their counterpart in the control condition. Thus, they should be less likely to switch

their decisions, which leads us to the following hypotheses:

Hypothesis 1W. Subjects in the treatment condition are weakly less likely to

switch decisions when they should, than their counterparts in the control condition.

Hypothesis 2W. Subjects in the treatment condition are weakly less likely to

switch decisions when they should not, than their counterparts in the control condi-

tion.

The strong form of hypotheses 1W and 2W are as follows:

Hypothesis 1S. Subjects in the treatment condition are strictly less likely to switch

decisions when they should, than their counterparts in the control condition.

Hypothesis 2S. Subjects in the treatment condition are strictly less likely to switch

decisions when they should not, than their counterparts in the control condition.

Given the theoretical insights from Leung (2018), we expect both hypotheses 1W

and 2W to hold and at least one of the two strong hypotheses 1S and 2S to hold9.

9Note that if both hypotheses 1W and 2W hold, while both strong hypotheses 1S and 2S do not
hold, subjects’ switching decisions do not differ significantly in treatment and control condition.
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It is worth noting that a subject should switch when he receives belief-challenging

signals of sufficient strength, while he should not switch when he receives belief-

confirming signals or weak belief-challenging signals. Thus hypothesis 1W/1S and

hypothesis 2W/2S corresponds to different scenarios: the former examines the sub-

jects’ belief updating behavior with strong belief-challenging signals while the latter

analyzes the subjects’ belief updating behavior with belief-confirming or weak belief-

challenging signals.

Next, we present the regression specifications for our analysis. The notation is

as follows: i denotes the observation while m(i) denotes the pair that observation i

belongs to. As mentioned before, Ti indicates whether observation i is assigned

to the treatment or control condition. αm(i) is the fixed effect for pair m(i) that

observation i belongs to, so as to account for the numbers seen by each pair in

phases 1 and 2. Furthermore, as we have multiple observations per subject since they

play 12 rounds of the guessing task, we cluster standard errors at the subject level.

Lastly, we denote Switchi = 1 if the subject switched decisions in observation i, and

Switchi = 0 otherwise. For hypothesis 1W/1S, we estimate the following regression

for all observations i where a theoretical Bayesian subject should switch, i.e., where

(pB2 − 0.5)(p1 − 0.5) < 0:

1− Switchi = β0 + β1Ti + αm(i) + εi. (6)

β1 measures the treatment effect on switching mistake (not switching when the

subject should switch), and hypothesis 1W (1S) translates to β1 ≥ (>)0. Similarly,

for hypothesis 2W/2S, we estimate the follow regression for all observations i where

a theoretical Bayesian subject should not switch:

Switchi = β0 + β1Ti + αm(i) + εi, (7)

and similarly hypothesis 2W (2S) translates to β1 ≤ (<)0.

4.3.2 Quantifying Bias

For the second indicator, we quantify subjects’ biases in belief formation. We

proceed by drawing an analogy between the evolution of the elicited belief to the

Bayesian formula.

Consider a subject whose elicited belief after phase 1 is equal by p1. After he has

seen n numbers in phase 2, in which the set is denoted as S2, his Bayesian belief

after phase 2, pB2 , is given by:

pB2
1− pB2

=
∏

si∈S2

fH(si)

fL(si)
× p1

1− p1
, (8)

where fH(si) and fL(si) are the probabilities of seeing number si when the “high”
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and “low” distribution is chosen respectively. The product of the odds ratios∏
si∈S2

fH(si)
fL(si)

measures the relative likelihood of seeing the numbers in S2 with

the “high” distribution over that with the “low” distribution. For the simplicity of

notation, we denote
∏

si∈S2

fH(si)
fL(si)

by yobj, or as the “objective odds ratio”. Note that

the objective odds ratio is a sufficient statistic for a Bayesian individual to update

his belief.

We now use the elicited beliefs after phase 1 (p1) and the elicited beliefs after

phase 2 (p2) to characterize the subjective counterpart of the objective odds ratio,

which is denoted as ysub:

p2
1− p2

= ysub ×
p1

1− p1
ysub =

p1
1− p1

× 1− p2
p2

.
(9)

ysub measures the subject’s perceived relative likelihood of seeing the numbers in S2

with the “high” distribution over that with the “low” distribution. When ysub > yobj,

the perception of the subject is biased towards the “high” distribution; when ysub <

yobj, the perception of the subject is biased towards the “low” distribution.

As mentioned before, if the treatment condition induces a stronger confirmation

bias, the treatment subjects update (weakly) more to belief-confirming information

but update (weakly) less to belief-challenging information than subjects in the con-

trol condition. We denote the subjective odds ratio of the subjects in the treatment

and control condition by yTsub and yCsub respectively, such that yTsub > yCsub implies that

subjects are more biased towards the “high” distribution in the treatment condition

than in the control condition. We have the following hypotheses:

Hypothesis 3W. Suppose the numbers seen by the subjects in phase 2 are in aggre-

gate belief-challenging, i.e., (p1− 0.5)(yobj − 1) < 0. The subjective odds ratio of the

subject in the treatment condition is weakly more biased towards his prior belief than

that of his matched subject in the control condition, i.e., (p1 − 0.5)(yTsub − yCsub) ≥ 0.

Hypothesis 4W. Suppose the numbers seen by the subjects in phase 2 are in aggre-

gate belief-confirming, i.e., (p1 − 0.5)(yobj − 1) > 0. The subjective odds ratio of the

subject in the treatment condition is weakly more biased towards his prior belief than

that of his matched subject in the control condition, i.e., (p1 − 0.5)(yTsub − yCsub) ≥ 0.

The strong form of the hypotheses 3W and 4W are as follows:

Hypothesis 3S. Suppose the numbers seen by the subjects in phase 2 are in aggre-

gate belief-challenging, i.e., (p1− 0.5)(yobj − 1) < 0. The subjective odds ratio of the

subject in the treatment condition is strictly more biased towards his prior belief

than that of his matched subject in the control condition, i.e., (p1−0.5)(yTsub−yCsub) >
0.
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Hypothesis 4S. Suppose the numbers seen by the subjects in phase 2 are in aggre-

gate belief-confirming, i.e., (p1 − 0.5)(yobj − 1) > 0. The subjective odds ratio of the

subject in the treatment condition is strictly more biased towards his prior belief

than that of his matched subject in the control condition, i.e., (p1−0.5)(yTsub−yCsub) >
0.

Similar to the analysis on switching mistakes, we expect both hypotheses 3W

and 4W to hold and at least one of the two strong hypotheses 3S and 4S to hold.

For the analysis, we assume a multiplicative relationship between ysub and yobj such

that their logarithmic forms follow an additive relationship10. Put differently, we

estimate the treatment effect on ysub
yobj)

. Note that with a multiplicative instead of an

additive model that would otherwise estimate the treatment effect on ysub− yobj, we

can interpret the multiplicative constant as an attention weight on the objective odds

ratio (See Jehiel and Steiner (2018) for the theory). Moreover, the estimated ysub is

always larger than 0.

Our notation is the same as in the analysis for switching behavior: i denotes the

observation and m(i) denotes the pair that observation i belongs to. yi,sub and yi,obj

denote the subjective and objective odds ratio of observation i respectively. Again,

we include pairwise fixed effects αm(i) and cluster standard errors on subject-level.

We estimate the following regression for all observations.

log(yi,sub)− log(yi,obj) = β0 + β1Ti + αm(i) + εi. (10)

Thus, the treatment effect β1 is interpreted as follows: as the regression is run

in logarithmic form, the subject’s subjective odds ratio in the treatment condition

is exp(β1) times that of his matched subject in the control condition, i.e., yTsub =

exp(β1) × yCsub. When β1 > 0, we have exp(β1) > 1 which means the treatment

subject’s subjective odds ratio is larger than that of the his matched control subject,

and the treatment subject is biased towards the “high” distribution. In other words,

(p1 − 0.5)(yTsub − yCsub) ≥ 0 if and only if β1(p1 − 0.5) ≥ 0, and the testing of the

hypotheses collapses to a testing of the sign of β1.

5 Results

5.1 Preliminaries

Before we present the main results for our two indicators of confirmation bias, we first

analyze the relationship between elicited belief and Bayesian belief. While it is not

the main focus of this paper, the results in this subsection give us a rough idea of how

“Bayesian” subjects behave. More importantly, we can ascertain whether subjects

10ysub = λyobj implies that log(yi,sub) = log λ+ log(yi,obj).
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Figure 7: Distribution of the absolute difference between elicited and Bayesian belief.

understand the experiment well and whether our belief-elicitation mechanism works

well in eliciting “normal” behavior of belief-updating.

Figure 7a shows the histograms of the absolute difference between elicited and

Bayesian belief (the updating mistakes) after phase 1 in the treatment and control

conditions, while figure 7b shows the corresponding histograms for beliefs after phase

2. The two graphs show that most of the mistakes (40%− 60%) are less than 10%.

Moreover, the frequencies of the mistakes decrease with the magnitude. For example,

for belief formation in phase 1 in both treatment and control condition, almost 60%

of the elicited beliefs are within 10% difference of the Bayesian beliefs, while only

around 10% of the mistakes are as big as 20%.

On the other hand, by comparing the difference between elicited belief and

Bayesian belief in the treatment condition after Phase 1 to the ones after phase

2 (and control condition after Phase 1 and Phase 2 respectively), we can see that

the mistakes in belief formation in phase 2 are in general bigger than the mistakes in

phase 1 because of the stronger information overload, i.e., there are more numbers

to be processed in the same period of time. For similar reasons, when looking at

figure 7b, the mistakes in the belief formation in phase 2 in the treatment condition

are in general bigger than in the control condition, i.e., in the control condition, the

share of small mistakes is higher than in the treatment condition, while the share of

big mistakes is smaller.

Lastly, as we can see in figure 7a, being in the treatment or control condition has

no effect on the mistakes made in phase 1, as there are no differences in the settings

in phase 1. This is also confirmed by the second and the third column of table 3,

which shows that there is no treatment effect on the relationship between elicited

and Bayesian belief in phase 1 and thus, no inherent difference between treatment

and control condition.

Figures 8a and 8b show the scatter plots and simple regression lines of elicited

beliefs against Bayesian beliefs, after phase 1 and phase 2 respectively. From both
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(1) (2) (3)
elicited belief elicited belief abs. distance elicited
after phase 1 after phase 1 and bayesian belief

after phase 1
Bayesian Belief after phase 1 0.752∗∗∗ 0.752∗∗∗

(0.016) (0.016)

Treatment -0.00241 0.00153
(0.006) (0.004)

Constant 0.152∗∗∗ 0.153∗∗∗ 0.109∗∗∗

(0.009) (0.009) (0.003)
R-squared 0.701 0.701 0.0000546
Observations 2241 2241 2856
Subjects 235 235 260

Clustered standard errors on subject-level in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Analysis of the (absence) of treatment effects after Phase 1, OLS.

figures, we can see that there is a significant and positive correlation between elicited

and Bayesian belief, which means that subjects understand the essence of the in-

formation structure, i.e., higher numbers serve as stronger evidence that the “high”

distribution was chosen in the respective round. On the other hand, the slope of

the regression line is smaller than 1. Taken together, both findings suggest that on

average, subjects believe more in the “high” (“low”) distribution when they receive

higher (lower) numbers, but they tend to under-react to signals compared to the

Bayesian benchmark. This result coheres with the findings presented in Eil and Rao

(2011) and Liang (2019).

5.2 Switching Behavior

In this subsection, we analyze the switching behavior of the subjects. Table 4 shows

the proportion of observations in which the subject has made a switching mistake,

in treatment and control condition. Note that in the table, we include only complete

pairs, i.e., where both subjects in the pair have an first elicited belief equals to 0.5;

furthermore, we only include pairs which have the same Bayesian switching choice

(e.g., both of them guess “high” after phase 1 and should switch to “low” after phase

2). In total, there are 701 complete pairs with the same Bayesian switching choice.

The first column of the table shows the case where the subjects should switch

if they were Bayesian but they ended up not switching. We see that around 36.8%

of subjects in the treatment condition did not switch even if they should, while

only 27.6% of subjects made such a mistake in the control condition11. On the

other hand, the second column shows the case where the subjects should not switch

11The numbers are 38.1% v.s. 32.6% if we also include incomplete pairs.

21



0
.2

.4
.6

.8
1

E
lic

it
e
d
 B

e
lie

f 
a
ft
e
r 

P
h
a
s
e
 1

0 .2 .4 .6 .8 1
Bayesian Belief after phase 1

(a) Beliefs after Phase 1.

0
.2

.4
.6

.8
1

E
lic

it
e
d
 B

e
lie

f 
a
ft
e
r 

P
h
a
s
e
 2

0 .2 .4 .6 .8 1
Bayesian Belief after phase 2

(b) Beliefs after Phase 2.

Figure 8: Scatter plot and regression line with Bayesian belief on x-axis and Elicited
belief on y-axis.

Should switch
but DID NOT

Should NOT switch
but did

Treatment
56/152
≈ 36.8%

30/549
≈ 5.5%

Control
42/152
≈ 27.6%

32/549
≈ 5.8%

Table 4: Proportion of observations in which subjects have made a switching mis-
take. Only complete pairs with the same Bayesian switching choice are included.
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but ended up switching. In the treatment condition, subjects are (marginally) less

likely to switch when they should not than in the control condition12. However, the

difference is much smaller compared to the first column, i.e., the difference is 0.4%

in the case where the subjects should not switch, while it is 9.2% in the case where

the subjects should switch. In both cases, subjects are less likely to switch when

exposed to a stronger information overload.

To explore further, we run an OLS regression with pairwise fixed effects, using

clustered standard errors at the subject level. As shown in the first column of table 5,

the treatment effect is positive and highly significant (p < 0.01) in the scenario where

the subject should switch but did not, which confirms hypothesis 1S. When there

is strong enough belief-challenging information so that the subjects should switch,

subjects in the treatment condition are 9.21% less likely to do so than subjects in

the control condition.

(1) (2)
should switch

but didn’t
shouldn’t switch

but did
Treatment 0.0921∗∗∗ -0.00364

(0.033) (0.008)

Constant 0.305∗∗∗ 0.0612∗∗∗

(0.019) (0.005)
R-squared 0.0280 0.0002
Observations 592 1649
Subjects 207 233

Clustered standard errors on subject-level in parentheses

Pairwise fixed effects
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: OLS of Switching Decisions after Phase 2.

On the other hand, in the scenario where the subject should not switch but

ended up switching, the treatment effect is not significant, which confirms hypothe-

sis 2W, but not hypothesis 2S. In the case where there are no strong enough belief-

challenging information such that subjects should stick to their prior belief, the

magnitude of information overload has no effect on switching behavior.

Combining the two findings, we can see that information overload has an asym-

metric effect on individuals’ switching decision when they receive different types of

information. More specifically, the effect is significant only when the subjects receive

strong belief-challenging information. Subjects react less to belief-challenging infor-

mation when they are exposed to stronger information overload, while their reaction

to belief-confirming information is unaffected by information overload. This finding

12If we include the incomplete pairs, the numbers are 5.6% in the treatment and 6.5% in the
control.
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suggests that a stronger information overload inhibits switching through individuals’

under-reaction to strong belief-challenging information.

The asymmetric effect also speaks against another possible hypothesis that sub-

jects switch less under stronger information overload only because they under-react

to every signal they receive instead of being more biased. First note that the sce-

narios where they should not switch is predominately composed of cases where they

receive belief-confirming information. Suppose in contrast the subjects under-react

more to both belief-confirming and belief-challenging information in the treatment

condition, they will be more reluctant to update their beliefs towards the extreme

when they receive belief-confirming information. It implies that there should be a

higher probability of switching in the treatment condition, and this is clearly re-

jected by the second column of table 5. The results above are also consistent with

the analysis of quantifying bias as will be shown in the following subsection.

5.3 Quantifying Bias

To further illustrate the asymmetric effect of information overload on belief updat-

ing, we now present the regression analysis of the quantified bias. The quantified

bias is represented by log(yi,sub) − log(yi,obj) as shown in equation (10). It mea-

sures the direction and magnitude of the discrepancy between the subjective belief

updating of the subjects and the Bayesian benchmark.

We first look into the scenario where the numbers seen in phase 2 are in aggregate

belief-challenging, i.e., (p1− 0.5)(ysub− 1) < 0. The results are presented in table 6.

The first and second column shows the case where subjects guessed “high” and

“low” after phase 1 respectively. In the third column, we pool the two cases by

taking advantage of the symmetry of the information structure13, and this allows us

to increase statistical power.

We observe that the treatment effects are significant in all three cases when

subjects receive in aggregate belief-challenging information in phase 2. For example

in the first column, we see that β1 = 0.17 > 0 (p < 0.05) such that the subjective

odds ratio is exp(0.17) = 1.19 times higher in the treatment condition than in the

control condition. This implies that a subject with a “high” prior under-reacts

more to belief-challenging information when facing a stronger information overload.

Similar conclusions can be drawn from the second and third column. For subjects

with “low” priors, we find β1 = −0.155 which is also significant (p < 0.05), such

that the subjective odds ratio is exp(−0.155) = 0.856 times lower in the treatment

condition than in the control condition. For the pooled sample, we find β1 = 0.164

(p < 0.01) such that the subjective odds ratio is exp(0.164) = 1.178 times higher

13We pool the two cases as follows: in the case where subject guessed “low” after phase 1, we
normalize the belief as the probability that the “low” distribution is drawn. Odds ratios are also
normalized accordingly. Thus a larger belief implies that the subject is more confident about his
guess, while a larger odds ratio implies that the signals are “more” belief-confirming.
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(1) (2) (3)
high prior,

should update downwards
low prior,

should update upwards
pooled,

challenging info
Treatment 0.170∗∗ -0.155∗∗ 0.164∗∗∗

(0.068) (0.073) (0.050)

Constant 0.378∗∗∗ -0.211∗∗∗ 0.305∗∗∗

(0.041) (0.045) (0.032)
R-squared 0.0174 0.0161 0.0169
Observations 516 398 914
Subjects 205 188 225

Clustered standard errors on subject-level in parentheses

Pairwise fixed effects
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 6: OLS on quantified bias when numbers seen in phase 2 are in aggregate
belief-challenging.

(1) (2) (3)
high prior,

should update upwards
low prior,

should update downwards
pooled,

confirming info
Treatment -0.0278 0.0552 -0.0411

(0.057) (0.052) (0.037)

Constant -0.774∗∗∗ 0.863∗∗∗ -0.816∗∗∗

(0.035) (0.032) (0.024)
R-squared 0.0005 0.0025 0.0012
Observations 703 624 1327
Subjects 214 211 230

Clustered standard errors on subject-level in parentheses

Pairwise fixed effects
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: OLS on quantified bias when numbers seen in phase 2 are in aggregate
belief-confirming.

in the treatment condition than in the control condition. These results all shows

that subjects react less to belief-challenging information when they are imposed

with stronger information overload. Thus, we conclude that the results confirm

hypothesis 3S.

The results for the second scenario, where numbers seen in phase 2 are in aggre-

gate belief-confirming, are shown in table 7. In contrast with the results for belief-

challenging information, we can see that the treatment effects are not significant in

all three cases, even when we pool the subjects with “high” and “low” priors and

take advantage of the larger sample size. Thus, the results confirm hypothesis 4W,

but not hypothesis 4S.

Combining the results in both tables, we conclude that stronger information
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overload in the treatment condition induces a stronger confirmation bias which is

similar to the analysis of switching behavior: subjects under-react more to belief-

challenging information in the treatment condition than in the control condition,

while the updating behavior with belief-confirming information is not affected by the

magnitude of information overload. The stronger confirmation bias is driven via the

under-reaction to belief-challenging information, but not via the updating behavior

with belief-confirming information. Similar to the analysis of switching behavior,

this asymmetry is in contrast with the hypothesis that stronger information overload

would induce more under-reaction to both belief-confirming and belief-challenging

information.

6 Conclusion

In this study, we investigate the role of information overload in giving rise to con-

firmation bias. We show that when subjects are exposed to stronger information

overload, their belief updating behavior exhibits a stronger confirmation bias, hold-

ing constant the signals they receive. The effect is driven by the increased under-

reaction to belief-challenging information while the updating behavior concerning

belief-confirming information is unaffected. In addition to the popular view that

confirmation bias is driven by intrinsic preferences for belief-confirming information,

our findings demonstrate that the bias also strongly depends on the informational

environment. This lends credence to the growing theoretical literature which details

that limited attention and ability could explain a number of behavioral anomalies.

This additional channel of confirmation bias has important implications. First,

it sheds light on the debate of whether the Internet strengthens biased behavior and

promotes ideological polarization. Our results suggest that information overload, as

driven by the Internet, could pose substantial problems by driving individuals to

ignore belief-challenging information. Thus the Internet could promote polarization

even though it provides more and on average, better information to the public. Sim-

ply providing more information might not be a good way to mitigate confirmation

bias and the extent of polarization. In particular, this paper suggests that a better

solution could be to make it less cognitively demanding to process information.

On the other hand, the results imply that research and policy evaluations have

to take into account that confirmation bias or more generally, how information pro-

cessing behavior interacts with the informational environment. This effect is absent

if one assumes that confirmation bias is solely driven by intrinsic preferences. For

example, a mandate for firms to provide more information to consumers may seem

welfare-improving. However, such a policy intervention could lead to information

overload and exacerbates confirmation bias, which in turn reduces market competi-

tion. Ignoring this indirect effect might yield dramatically different results.
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A.1 The distribution in the Guessing Task

We present the reasoning behind the parameters of the distribution. In particular,

they are chosen to satisfy the following criteria:

1. The logarithmic odds ratios are monotonic and approximately linear, as shown

in figure A1. That is, higher numbers are stronger evidence that the “high”

distribution is true and the differences in the strengths of adjacent signals are

approximately constant;

2. After seeing the first sequence of numbers, there are enough subjects with con-

fident belief, i.e., they believe that the state is high (low) with probability 75%

or above. Table A.2 shows that more than 40% of the subjects are “confident”

after seeing 5 signals. This is to ensure that there exists a significant amount

of confident individuals such that confirmation bias could take effect;

3. After seeing the first sequence of numbers, there should not be many subjects

with too confident belief, e.g., believe that the state is high(low) with prob-

ability 95% or above. Table A.3 shows that less than 2% of the subjects are

extremely confident after seeing 5 signals. This is because the belief elicitation

is restricted to increments of 5%. When a subject believes that the state is

high with 95% certainty, even if he receives several “number 8”s, the change

in his belief is bounded by +5% and is not measurable. Moreover, it ensures

that there are sufficient number of observations where a switching occurs, as

shown in table A.1.
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ln(Odds ratio)

0 1 2 3 4 5 6 7 8

Figure A1: Logarithmic Odds ratios of the numbers 1-8

min mean max

18.5% 24.2% 29.5%

Table A.1: Simulated proportion of observations where subjects should switch from
believing “High” after phase 1 to believing “Low” after phase 2, or from believing
“Low” to believing “High”, with 10000 simulations of 2000 observations
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Belief

= 0.5 > 0.6 or < 0.4 > 0.65 or < 0.35 > 0.7 or < 0.3 > 0.75 or < 0.25

5 draws Average proportion of subjects 0 76.1% 64.7% 52.5% 41.7%

12 draws Average proportion of subjects 0% 94.4% 88.8% 76.0% 68.9%

Table A.2: Distribution of Bayesian beliefs given 5 and 12 draws, with 10000 simulations of 2000 observations.

Belief

> 0.8 or < 0.2 > 0.85 or < 0.15 > 0.9 or < 0.1 > 0.95 or < 0.05

5 draws Average proportion of subjects 32.2% 19.2% 10.1% 1.65%

12 draws Average proportion of subjects 60.9% 51.35% 40.05% 24.35%

Table A.3: Distribution of Bayesian beliefs given 5 and 12 draws, with 10000 simulations of 2000 observations.
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Instructions for the first part of the experiment1

In this part of the experiment you will go through 12 rounds of a task which will be
explained to you in the following. Each round will take about 2 - 3 minutes. In this
part of the experiment you can win up to 24 e.

1 What is the experiment about?

This part of the experiment consists of 12 rounds of a task which will be described
in the following. There are two computers, a ”high” computer and a ”low” com-
puter: One of these computers, the ”high” computer, generates high numbers more
frequently, while the ”low” computer generates low numbers more frequently. At
the beginning of each round, one of the two computers (high or low) is randomly
selected, but you do not know which one. The probability for each computer is
equal, i.e. 50% for each computer. In each round, you will see numbers which have
been generated by the selected computer. We will ask you to indicate your guess
which one of the two computers has been selected in this round using the numbers
you have seen as indicators for the selected computer.
As you can see in figure 5, we will ask you three times per round to indicate your
guess.

� The first time, we will ask you at the beginning of a round, before you have
seen any numbers, without any additional information.

� The second time, after you have seen 5 numbers in phase 1, which have been
generated by the selected computer of this round.

� The third time, after you have seen additional numbers in phase 2, which have
been generated by the selected computer of this round.

Computer

is randomly

selected

High

Low
Guess at the

beginning

Phase 1:

5 numbers

Guess after

phase 1

Phase 2:

more numbers

Guess after

phase 2

Guess in the

beginning

Phase 1:

5 numbers

Guess after

phase 1

Phase 2:

more numbers

Guess after

Phase 2

Computer

is randomly

selected

50%

50%

Next round

50%

50%

Figure 1: Sequence of a round

1These instructens were originally in German and have been translated to English. The original
German version is available o request.
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2 How to make a guess?

In the following, we explain how you can use numbers as indicators for the computer
which has been selected at the beginning of a round and how we will retrieve your
guess on the monitor.

2.1 The high and the low Computer

Both computer can only generate numbers between 1 and 8. Table 1 shows the
probabilities with which the computers produce the numbers 1 to 8. For example, the
probability that the “high” computer generates the number 8 is 18%, this means that
it happens in 18 out of 100 cases on average. The “high” computer generates smaller
numbers less likely. For example, the probability that the computer generates the
number 1 is only 8%, in other words, in 8 out of 100 cases.
The “low” computer generates numbers with the probabilities shown in table 2 and
can be seen as a mirror image of the “high” computer. For example, the probability
with which the “low” computer generates the number 8 is only 8%, on other words,
in 8 out of 100 cases. A number 1 is generated by the “low” computer with a
probability of 18%, in other words, in 18 out of 100 cases.

generated number 1 2 3 4 5 6 7 8

probability of the number 8% 9% 10% 12% 13% 14% 16% 18%

Table 1: The “High” Computer

generated number 1 2 3 4 5 6 7 8

probability of the number 18% 16% 14% 13% 12% 10% 9% 8%

Table 2: The “Low” Computer

As described in the beginning, it is your task to guess whether the “high” or the
“low” computer is generating the numbers of the current round.
At the beginning of each round, one of the two computers is selected with equal
probability. Each one of the computers has the probability 50%. The computers
are selected independently over the rounds, this means that the probability that the
“high” or the “low” computer is selected in a round, is always 50%. The selection of
the computers is independent from which computer has been selected in the previous
round.

2.2 Shown numbers as indicators of the computer

You can use the shown numbers as indicator of which computer has been selected
in the respective round. For example, the number 1 is an indicator that the “low‘”
computer has been selected in this round and is generating the numbers - however,
this is not certain. As shown in table 1 and table 2, the probability that the “low”
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Prob’

1 2 3 4 5 6 7 8

(a) The “High” Computer

Prob’

1 2 3 4 5 6 7 8

(b) The “Low” Computer

Figure 2: Graphical illustration of the probabilities with which the “high” and the
“low” computer generate the numbers 1 to 8.

computer generates a number 1 is 18%, while the probability that the “high” com-
puter generates a number 1 is only 8%.
On the contrary, when you see a number 8, it is an indicator that the “high” com-
puter has been selected in this round and is generating the numbers. The probability
that the “high” computer generates a number 8 is 18%, while the probability that
the “low” computer generates a number 8 is only 8%.

In general, high numbers are an indicator that the “high” computer has been
selected while low numbers are an indicator of the “low” computer having been
selected. For example, the number 5 is an indicator that the “high” computer has
been selected. Higher numbers, for example 6 or 7, are a stronger indicator that the
“high” computer has been selected. Likewise, a number 4 is an indicator that the
“low” computer has been selected, but a less strong indicator than a lower number
as for example a 3 or a 2.

2.3 How we measure your guess

We will ask you for your guess which computer is generating all the numbers you
see in a round. To make your guess as specific as possible, you should consider all
numbers you see in a round; those of the first phase and those of the second phase.

Each of your guesses will have the form below:

1. Which computer is more likely?

In the first step you will be asked, which computer is generating the numbers in
the current round in your opinion. This is shown in figures 3a and 3b. To answer
this first question, you can click on one of the two pictured buttons and state,
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which computer has been selected with a higher probability in your opinion in the
respective round.

2. Your exact assessment:

In the second step, we want to know your precise assessment, i.e. how certain you
feel about your guess in the first step. The tables shown in figures 3a and 3b provide
some assistance. In each row you can decide between two options:

� Win 8 e if you have guessed the right computer

� Win 8 e with some probability which starts at 50% in the first row and
increases by 5% per row.

One of the rows will be randomly selected for your payment. However, your choice
in a row CANNOT influence, which one of the rows will be selected. Therefore,
think about your choice between option 1 and option 2 very carefully in each row
since every row could be selected for your payment.

An example
Assume you make the following assessment: You believe that the high computer has
been selected and is generating the numbers in the respective round with a proba-
bility of 66%.
So, in the first step, for the question ”Which of the two computers is more likely?”
you click on the button “high”.
Now, in the second step, for the question ”Please specify your exact assessment”,
you have two options to choose from to specify your assessment:

� In the first row, you have the options “Win 8 e if “high” is right” and “Win 8 e
with probability 50%”. Since you believe that “high” is right with probability
66%, you should choose option 1 since this way, you win 8 e with probability
66% (instead of 50% as it would be the case with option 2).

� In the second row you have the options “Win 8 e if “high” is right” and
“Win 8 e with probability 55%”. Since you believe that “high” is right with
probability 66%, you should choose option 1, since this way, you win 8 e with
probability 66% (instead of 55% as it would be the case with option 2).

� Accordingly, you should choose option 2 in the rows where the probability of
winning 8 e is 70% or higher, it is, equal or higher to the probability with
which you believe that the computer you think has been choosen is right.
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(a) The monitor after you clicked “High” (b) The monitor after you clicked “Low”

Figure 3: The assessment monitor of the first guess in the beginning of a round, after you have clicked “high” or “low”
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Figure 4: The guessing screen from the example with a guessed probability of 66%
for the “high” computer. The button for “High” and the button of option 2 with
winning probability 70% has been clicked.

So, as soon as the probability of winning in option 2 is higher than your certainty
of your guess (whether the high/low computer has been selected), you should choose
option 2. This is illustrated in figure 4.

Please notice the fill-in assistance: The fill-in assistance will automatically choose
option 2 in all the following choices under option 2 with a higher winning probability
than the one you have choosen (it is, all the rows under the row where you have
choosen option 2 for the first time), since the winning probabilites are increasing by
5% per row.

After you have chosen option 2 with a winning probability of 70%, all following
rows with a higher probability than 70% in option 2 will be automatically chosen
for you.

On the other hand, when you think that it is more likely that the numbers in the re-
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spective round are generated by the “low” computer, you click on the button “low”
in the first step. For the second step, you proceed as described above and compare
for each row, whether you prefer option 1 or option 2. You can indicate your exact
assessment as described above. The only difference lies in option 1, as illustrated in
figure 3b: You win 8 e if the “low” computer has been selected.

Reminder:

� In the first step you indicate which computer you think is more likely

� In the second step, you make a more exact assessment:

– Therefore, you should read the table row by row and compare option 1 to
option 2 in each row to decide which option you prefer in the respective
row.

– This is very important, since every one of your decisions is relevant for
your payment and determines, how much you will earn in this experiment.
Therefore, please think about your choices very carefully.

� As soon as the winning probability in the second step under option 2 is higher
then your certainty of your guess (whether the high or low computer has been
selected), you should choose option 2

� The fill-in assistance will automatically choose option 2 for you in all the
following choices with a higher winning probability in option 2 then the one
where you have chosen option 2 for the first time.

3 The sequence of each round

In the following we explain the procedure of the experiment to you by guiding you
through the sequence of a round. In this part of the experiments, 12 rounds will
be played. Each round consists of a number of guesses and phases. In the phases
of a round, you see numbers which you can use as indication for which computer
has been selected in the respective round. The sequence of a round is illustrated in
figure 5.

3.1 A computer is randomly selected

At the beginning of each round, one of the two computers (it is, the “high” or the
“low” computer) is randomly selected. Each of the computers (high or low) has the
same chance to be selected. Thus, the probability for the “high” or the “low” com-
puter is 50% in each case at the beginning of a round. You will see a screen which
points out that a new round has started and once again one of the two computers
(“high” or “low”) has been randomly selected.
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New computer

is randomly

selected

High

Low
Guess in the

beginning

Phase 1:

5 numbers

Guess after

phase 1

Phase 2*:

more numbers

Guess after

phase 2

Guess in the

beginning

Phase 1:

5 numbers

guess after

phase 1

Phase 2*:

more numbers

guess after

phase 2

Next round

50%

50%

Next round

50%

50%

Figure 5: Sequence of a round
(* Phase 2 can occur in 2 versions)

3.2 Guess at the beginning of a round

In each round, at the beginning of the round, the “high” or the “low” computer will
be randomly selected with a probability of 50% each. This happens randomly at
the beginning or each round.
At the beginning of a round, before you see any numbers, we will ask you for your
guess which computer has been randomly selected. We do this to make sure that
you know you are at the beginning of a round. You have 30 seconds to make your
guess.

Reminder: If you do not feel confident how to fill out the assessment screen or do
not know when to choose option 1 or option 2 in a row, please read section 2.3 “How
we measure your guess” again.

3.3 Phase 1

In phase 1 you will see 5 numbers, as illustrated in figure 6. Those numbers are
generated by the computer which has been randomly selected at the beginning of
the current round; for example “5 7 3 2 2” or “7 7 6 4 2”. You have 30 seconds time
to look at the numbers and to form your assessment. After 30 seconds, the numbers
will disappear and you will be directed to the next screen. On the next screen, you
will be asked to indicate your guess as described above.

Figure 6: Screenshot of Phase 1
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3.4 Guess after phase 1

After phase 1, we will ask you again to make a guess which computer has been
selected at the beginning of the round and is now generating the numbers. You
can use the numbers from phase 1 as indication of the randomly selected computer.
Again, you will indicate your guess in the table from figures 3a and 3b, at this, you
will see your assessment from the first guess as default setting. However, you can
change this assessment as you like. You have 30 seconds time to make indicate your
guess and to make it more precise.

Reminder: If you do not feel confident how to fill out the assessment screen or do
not know when to choose option 1 or option 2 in a row, please read section 2.3 “How
we measure your guess” again.

3.5 Phase 2

In phase 2, you will see up to 7 additional numbers. These numbers are generated
by the computer which has been randomly selected at the beginning of the current
round. There are two versions of phase 2 which can switch randomly from round to
round.

Phase 2, Version 1

In version 1 of phase 2, you can reveal up to 7 additional numbers. Again, those
numbers are generated by the computer which has been randomly selected at the
beginning of the current round and has already generated the 5 numbers from phase 1
of the current round. You can only see one number at a time: When you uncover the
next number, the number shown until then will disappear. You have no possibility
to go back to this number.
The first number appears as soon as phase 2 starts. When you want to see the next
number in this version of phase, you can click “Next”. You will be redirected to a
screen as in figure 7.

”
Next“

Figure 7: Screen of phase 2, version 1

Please notice: As soon as you click “next”, the currently displayed number will
disappear. You have no possibility to go back to the previous screen to see this
number again.
After 30 seconds in phase 2 and no matter whether you have seen all 7 numbers, you
will be redirected to the screen for the guess after phase 2. You will have 30 seconds
in phase 2 in total and cannot proceed earlier. Thus, consider carefully how you
want to allocate your time between the 7 numbers that you can uncover in total.
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Phase 2, Version 2

In version 2 of phase 2 you will be shown up to 7 additional numbers. Again, those
numbers are generated by the computer which has been randomly selected at the
beginning of the current round and has already generated the 5 numbers from phase
1 of the current round.
The additional numbers appear one after another on your monitor. In this version of
phase 2, you cannot control the display of the next numbers. Instead, the numbers
will be shown automatically. Differently to version 1, the shown numbers will not
disappear again: The previous numbers will be still visible. An example is shown
in figure 8.

Figure 8: Screen of phase 2, version 2

After 30 seconds have passed, you will be redirected to the next screen to make
your guess after phase 2. Note that you have 30 seconds time but it can happen
that you see less than 7 numbers in these 30 seconds.

3.6 Guess after phase 2

After phase 2, we will ask you again to make a guess which computer has been
selected at the beginning of the round. You can use the numbers from phase 1 and
phase 2 as indication of the randomly selected computer. Again, you will indicate
your guess in the table from figures 3a and 3b, at this, you will see your assessment
from the first guess as default setting. However, you can change this assessment
as you like. You have 30 seconds time to indicate your guess and to make it more
precise.

Reminder: If you do not feel confident how to fill out the assessment screen or do
not know when to choose option 1 or option 2 in a row, please read section 2.3 “How
we measure your guess” again.

3.7 Next round

After your guess after phase 2, a new round will start and a new computer (the
“high” or the “low” one) will be randomly selected and will be generating the num-
bers in the new round.

4 How you will get paid

For this part of the experiment, you play 12 rounds with 3 guesses each per round.
From these guesses, we will randomly select 3 of your guesses:
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One guess at the beginning of a round, one guess after you have seen 5 numbers in
phase 1, and one guess at the end of a round after you have seen up to 7 numbers in
phase 2. Each of these randomly selected guesses will come from a different round.
Subsequently, from each of these guesses, a row will be randomly selected in the
corresponding decision table. Your choice in this row will determine your payment:

1. if you chose option 1, you will win 8 e if you guessed correctly whether it was
a “high” or “low” computer generating the numbers of the round;

2. if you chose option 2, you will win 8 e with the probability specified in the
row we randomly selected.
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5 Control Questions

1. In the first guess of a round (before you have seen the numbers of phase 1),
what is the probability that the “high” computer has been selected?

Answer: The probability is percent.

2. In the first guess of a round (before you have seen the numbers of phase 1),
what is the probability that the “low” computer has been selected?

Answer: The probability is percent.

3. Suppose that in the previous round, you have seen the numbers

1, 2, 2, 3, 3, 1, 4, 7.

Now, in the first guess of the next round (before you have seen the numbers
of phase 1), what is the probability that the “high” computer was selected for
this round? Why?

Answer: The probability is percent.

Please explain:
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4. What do you choose in the table when you believe that the “low” computer
is right with a probability of 72%? Please draw your choice in the table below.

13



5. Assume that you think at the beginning of a round, that the probability for
the “high” computer is 50%. Please draw in the table below, how the screen
should look like before you would click “next”.
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6. Take a look at the following example: After you have seen the numbers,
you belive that the “high” computer has been selected with a probability of
85%. What has not been filled in correctly in the following screen?

Answer:

15


	cwpe-cover2019
	information overload and confirmation bias
	Introduction
	Model and Intuition
	Experimental Design
	States and Information of The Guessing Task
	The procedure of the guessing task
	Procedural Details

	Analysis
	Data
	Observations
	Numbers of Signals Seen in Phase 2
	Randomization of High and Low States
	Treatment and Control Condition

	Variables of Interest
	Elicited Beliefs
	Bayesian Beliefs
	Treatment and control condition

	Empirical Strategy and Hypothesis
	Switching Behavior
	Quantifying Bias


	Results
	Preliminaries
	Switching Behavior
	Quantifying Bias

	Conclusion
	The distribution in the Guessing Task


