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Abstract. This paper characterizes the optimal control of a recurrent in-
fectious disease through the use of treatment and preventive non-pharmaceutical
interventions such as social distancing and curfews. We find that under centralized
decision making, treatment induces positive destabilizing feedback effects, while
prevention induces negative stabilizing feedback effects. While optimal treatment
pushes prevalence towards the extremes, optimal prevention pushes it towards in-
terior solutions. As a result, the dynamic system may admit multiple steady states
and the optimal policy may be history dependent. We find that steady state preva-
lence levels in decentralized equilibrium must be equal to or higher than the socially
optimal levels. The differences between the equilibrium outcome and the social op-
timum derive from the existence of a pure externality effect and a separate smallness
effect due to individuals being small. Last, we derive two separate corrective sub-
sidy schemes that decentralize the socially optimal outcome, namely subsidies to
prevention and treatment and a tax on the infected.
JEL Classification: C73, H2, I18.
Keywords: Economic epidemiology, treatment, prevention, optimal and equilib-
rium policy mix, hysteresis, non-convex systems.

1. Introduction
Infectious diseases are a leading cause of morbidity and mortality in both developing and
developed countries and impose a major strain on public budgets and health infrastruc-
tures, as evidenced by the ongoing COVID-19 pandemic.1 In parallel with rapid advances
in the biomedical field, there is an ongoing effort to improve disease control through a
better use of existing techniques and resources.
A recurrent issue in the debate on infectious diseases is the relative importance of pre-

vention and treatment (Russell, 1986, Krauthammer, 2009, Kremer and Snyder, 2013).
Although they are distinct forms of intervention, targeting different individuals, preven-
tion and treatment cannot be evaluated in isolation since their effects interact. Prevention
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reduces the rate at which individuals become infected, thereby reducing the future need
for treatment. In contrast, treatment reduces the proportion of the population who are
infected, thereby reducing the risk of infection and the future need for protection. An
optimal policy will typically combine both forms of intervention in proportions that vary
through time. Thus, rather than asking whether prevention or treatment is best for man-
aging infectious diseases, the aim should be to determine the appropriate combination of
these two interventions at any given time. This is in keeping with the approach advocated
by Rose (1985, 1992), one of the central thinkers in the field of public health.
To take full account of the interactions between prevention and treatment, requires

a unified intertemporal model. To this end, we study a simple susceptible-infected-
susceptible (SIS) model, in which individuals are either infected or susceptible. No-one is
immune. Examples of diseases that have been modeled within the SIS framework, and for
which there is both prevention and treatment available, include gonorrhea (Hethcote and
Yorke, 1984), malaria (Anderson et al. 2012) and syphilis (Cannefax, 1965).2 We assume
that new infections can be avoided through costly prevention such as social distancing
or curfews and that individuals can be cured through costly treatment.3 Norovirus is
another example of a disease from which there is no immunity, but no antivirals are yet
available for this virus. Although the COVID-19 disease is not yet fully understood, in-
dividuals who recover from it seem to have at least some temporary immunity, although
there have been reported cases of reinfection.4

Our analysis is conducted in three steps. First, we analyze centralized decision making,
in which a benevolent social planner implements the command optimum. We derive
the optimal policy, steady states and transition paths. Next, we analyze uncontrolled
decentralized decision making, i.e. the market solution that obtains when forward-looking
individuals behave non-cooperatively without any inducements from the planner. We
pay special attention to the differences between the resulting equilibrium outcomes and
those preferred by the social planner. Last, we analyze controlled decentralized decision
making, i.e. the equilibrium solution that obtains when the social planner offers taxes
and/or subsidies with a view to aligning public and private incentives.5

A major advantage of considering treatment and prevention within a unified frame-
work, is that it helps organize and clarify results that are known from single-instrument
models. Thus we can both analyze the interaction of multiple policies and obtain existing
models as special cases. This makes it easier to trace different effects to specific policy
instruments. Despite superficial similarities, prevention and treatment turn out to be
profoundly different in their effects and desirability at different levels of disease preva-
lence (i.e. the fraction of the population that is infected). For example, the marginal
benefit of treatment is a decreasing function of disease prevalence. The more prevalent
a disease is, the greater is the risk of re-infection following cure, and hence the lower the
benefit from treatment. In contrast, the marginal benefit of prevention is an increasing

2According to Cannefax (1965), ‘the cycle of cure, re-infection, cure, re-infection etc. occurs so
frequently in given individuals that the term “ping-pong”syphilis [...] was coined to describe this frequent
clinical observation.’

3We focus on temporary measures that must be sustained through time in order to remain effective.
In particular, we exclude vaccinations which confer prolonged (or permanent) immunity.

4https://www.nytimes.com/2020/02/29/health/coronavirus-reinfection.html.
5We use the terms controlled and uncontrolled settings in the sense of Arrow and Kurz (1969). This

should not be confused with the use of control variables in solving optimal control problems.
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function of disease prevalence. The more prevalent a disease is, the greater is the risk
of infection and the greater is the benefit from protection. In the terminology of Brock
and Starrett (2003), with treatment there is a destabilizing positive feedback effect while
with prevention, there is a stabilizing negative feedback effect. This is one of the central
findings of our analysis and drives a number of other interesting results. For example, the
positive destabilizing effect of treatment generates multiple potential steady states, while
the negative stabilizing effect of prevention implies that it is suboptimal to eradicate the
disease through prevention.
In general, for extreme levels of disease prevalence, treatment and prevention will

tend to be strong substitutes and used in very asymmetric proportions, whereas for
intermediate prevalence levels they are weaker substitutes, such that it may be optimal
to use them in conjunction. Along optimal paths, treatment and prevention are always
at their maximum or minimum possible levels, whereas this is not true once a steady
state is reached.
Next, we find that under uncontrolled, decentralized decision making, disease preva-

lence may be socially suboptimal. This will occur when the central planner chooses a
higher level of protection than individuals would choose if left to their own devices. While
steady state treatment levels under centralized and decentralized decision making may
coincide, the corresponding steady state prevention levels only coincide when they are
optimally equal to zero. Whenever prevention is actively used in steady state, its level un-
der decentralization is suboptimally low, thereby distorting disease prevalence upwards.
On the transition paths, centralized and decentralized treatment and prevention levels
may coincide, even if they do not coincide once steady state is reached.
In comparing the uncontrolled equilibrium outcomes with those under social planning,

we show that the differences in valuations between the planner and the individuals can be
usefully decomposed into a conventional external effect and a smallness effect. The former
effect derives from the fact that individuals take no account of the harm their actions
impose on others, while the latter derives from the fact that numerically insignificant
individuals take aggregate disease prevalence as given, while the planner can directly
control it.
Last, we consider the equilibrium outcomes under controlled decentralized decision

making. We derive two different incentive schemes that decentralize the command opti-
mum. In one scheme, the planner offers individuals (state dependent) subsidies to pre-
vention and treatment. When faced with these subsidies, the equilibrium outcome under
decentralized decision making exactly mimics that chosen by the social planner under
centralized decision making. In the other scheme, the planner imposes a tax on infected
individuals (or equivalently, gives a bonus to healthy individuals). This scheme also de-
centralizes the first-best solution. We also offer some discussion of the possibly perverse
effects of non-optimal corrective measures such as simple fixed subsidies to prevention
and treatment and the potential for simplified optimal incentive schemes.

1.1. Related Literatures. The literature on economic epidemiology is varied and
growing. There are several good surveys, such as Philipson (2000), Gersovitz and Hammer
(2003) and Klein et al. (2007). Of direct relevance to the present work is research that
deals with prevention and treatment, separately or in conjunction.
The earliest contributions, by Sanders (1971), Sethi (1974) and Sethi and Staats

(1978), consider treatment in different versions of the SIS model from a planner’s per-
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spective. Goldman and Lightwood (1995) consider treatment in the SIS model under
learning, while Goldman and Lightwood (2002) also study treatment in the controlled
SIS model, but considers different cost structures than the earlier literature. Goldman
and Lightwood’s (2002) analysis focuses mainly on necessary conditions for optimal-
ity and provide an informal analysis using phase diagrams. Both Sanders (1971) and
Sethi (1974) assume that individual treatment cost is a sharply decreasing function of
prevalence, whereas Goldman and Lightwood (2002) consider linear or increasing costs.
Non-linear cost structures are most appropriate when considering the running of a health
authority (i.e. the problem of a social planner) rather than to analyze the incentives
of individuals. Rowthorn (2006) and Anderson et al. (2012) extend the analysis of the
controlled SIS model to settings with budget and wealth constraints, respectively, but do
so only under treatment. The analysis of Rowthorn (2006) disregards the possibility of
Skiba points (i.e. of path dependence and steady state multiplicity), while Anderson et
al. (2012) impose assumptions that rule out the positive feedback effects of treatment.
Toxvaerd (2009) considers decentralization to strategic decision makers and the possibil-
ity of multiple equilibria (rather than merely multiple steady states), while Toxvaerd and
Rowthorn (2020) consider the optimal and equilibrium use of vaccination and treatment
when recovery confers immunity to further infection and thus herd immunity may arise.

The literature on prevention is more varied than that on treatment. Sethi (1978)
considers quarantines, while Geoffard and Philipson (1996) and Aadland et al. (2010)
consider non-vaccine prevention in the SI and SIS models respectively. Reluga (2009) an-
alyzes prevention by strategic individuals in linked subpopulations, while Reluga (2010)
considers prevention through social distancing. Toxvaerd (2019) analyzes continual pre-
vention in the SIS model and decentralization of optimal policy to strategic decision mak-
ers. Fenichel (2013) and Toxvaerd (2020) consider social distancing during epidemics.
There are also important literatures on vaccination and on abstinence, exemplified by
Brito et al. (1991) and Kremer (1996), respectively. The issues dealt with in those pa-
pers are somewhat orthogonal to the present work and are reviewed in more detail in
Toxvaerd (2019). Greenwood et al. (2019) consider a search-theoretic matching model
of the SI variety and analyze the incentives to form long and short term partnerships.
The approach taken in the present paper differs from others such as Kremer (1996) and
Greenwood et al. (2019) in a different respect, namely in that the matching itself is
not the object of analysis per se. Instead, we consider prevention that can endogenously
determine the extent to which interactions are conducive to disease incidence. In the
alternative approach, policies themselves change the matching pattern. The detailed
relationship between the two approaches is explored in detail in Toxvaerd (2019).

There are a few papers that explicitly consider multiple instruments. Most related to
our work is that of Gersovitz and Hammer (2004) who, like us, consider prevention and
treatment in an SIS framework. In contrast to us, they bypass the issue of multiplicity
by assuming that there is a unique steady state. Furthermore, they assume that the
steady state is interior in both control variables. As we will show, these assumption
have radical consequences for both the analysis and the conclusions derived from it. We
emphasize the importance of their assumptions of uniqueness and interiority because in
their model, multiplicity of potential steady states may be present in general. So although
their work is similar to ours in spirit, it differs greatly in direction and results and not
simply in terms of assumptions on primitives. In fact, the main findings of our analysis is
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in some sense assumed away in theirs. Goenka et al. (2014) also consider an SIS setting
with protection and treatment, but rather than control these separately, they are both
assumed to be functions of a single common control variable (namely health expenditure).
In contrast, we can trace the separate effects of controlling each instrument separately
and to determine how to optimally combine these two distinct measures. There are two
additional differences. First, they consider the effects of disease on the economy through
the labour market, while the disease burden in our setting is measured as the direct
disutility of the disease. While their analysis is central to understanding the effects on
the labour market, ours is better suited to distinguish the pure interplay between disease
propagation and treatment and prevention decisions. Last, their setting relies heavily on
differentiability and therefore the techniques they use are not applicable to conduct our
analysis.
In a short note, Zaman et al. (2007) consider vaccination and treatment in an SIR

setting and simulate optimal paths. A similar exercise is done in Almeder et al. (2007)
for an HIV type disease. Goyal and Vigier (2015) consider a static two stage model with
vaccination and abstinence. Dodd et al. (2010) consider multiple concurrent interventions
and discuss when there are likely to be synergies between these in the sense that raising the
level of one instrument increases the benefit to increasing the level of other instruments.
Blayneh et al. (2009) consider multiple interventions in a setting with a vector-borne
disease, as do Agusto et al. (2012). Feichtinger (1984) and Behrens et al. (2000) analyze
models that are structurally similar to ours, but which deal with non-disease applications.
Apart from Gersovitz and Hammer (2004), these papers are similar to ours only in spirit
and their analyses are not directly comparable to the one we carry out. Our work is
also related to the empirical work by Cohen et al. (2011), who consider the (possibly
perverse) effects of subsidies to malaria treatment and diagnostic tests. We will discuss
this contribution further in the context of the implementation of socially optimal outcomes
through different incentive schemes.
Last, our paper contributes to an important literature on equilibrium multiplicity and

history dependence in systems with non-convexities (in both economics and ecology) as
surveyed in Dasgupta and Mäler (2003), Brock and Starrett (2003), Wagener (2003),
Mäler et al. (2003), Deissenberg et al. (2004) and Horan et al. (2011).
The remainder of the paper is structured as follows. In Section 2, we outline the

classical susceptible-infected-susceptible model. In Section 3, we introduce the economic
version of the model and partially characterize the optimal policies. In Section 4, we
characterize the steady states of the system and the optimal paths formally. In Section 5,
we describe the equilibria and dynamics of the model and interpret the central features
driving the results. In Section 6, we analyze the equilibria under decentralized decision
making and compare these to the command optimum. In Section 7, we offer the effect
decomposition result and show how to decentralize the command optimum via taxes and
subsidies. Section 8 concludes. Most proofs are found in appendices and the Supplemen-
tary Material on different aspects of the planner’s solution is available from the authors
upon request.

2. The Classical SIS Model

We start by expounding the classical epidemiological version of the susceptible-infected-
susceptible model in some detail. This will not only aid in understanding the economic



6

model that follows, but also highlight the contrast in predictions based on the separate
modeling approaches.
The classical SIS model is simple to describe.6 Time is continuous and runs indefi-

nitely. A population P =[0, 1] consists of a continuum of infinitely lived individuals who
can at each instant t ≥ 0 each be in one of two states, namely susceptible or infected.
The set of infected individuals is denoted by I(t) and has measure I(t), while the set of
susceptible individuals is denoted by S(t) and has measure S(t). Because the population
size is normalized to unity, these measures can be interpreted as fractions. Henceforth,
I(t) will be referred to as disease prevalence.
At each instant, the population mixes homogeneously. This corresponds to pair-

wise random matching where each individual has an equal chance of meeting any other
individual, irrespective of the health status of the two matched individuals. Whereas a
match between two infected individuals or two susceptible individuals does not create any
new infection, a match between an infected and a susceptible individual may. The rate
at which infection is transmitted in such a match is denoted by β > 0. This parameter
captures the infectivity of the disease. Coupled with the assumption of homogeneous
mixing, this means that the rate at which susceptible individuals become infected is
given by the simple expression βI(t)S(t). Thus the rate of new infection, or disease
incidence, is proportional to disease prevalence.7 Note that while disease incidence is a
flow, disease prevalence is a stock.
Finally, infected individuals recover spontaneously at rate γ ≥ 0. This means that

the aggregate rate at which infected individuals become susceptible is given by γI(t).
The dynamics of the model are described by the following system of differential equa-

tions:

Ṡ(t) = I(t) [γ − βS(t)] (1)

İ(t) = I(t) [βS(t)− γ] (2)

I(t) = 1− S(t), I(0) = I0 (3)

This system reduces to the following simple logistic growth equation:

İ(t) = I(t) [β(1− I(t))− γ] , I(0) = I0 (4)

The steady states of this system are Î = 0 and Î = (β − γ)/β. For β > γ, the stable
steady state is such that the disease is endemic while for β < γ, the relevant and stable
steady state is such that the disease is eradicated. In other words, if the rate at which
individuals become infected surpasses the rate at which they recover, then some positive
fraction of the population will always be infected. If recovery is not possible, the entire
population ends up being infected. On the other hand, if individuals recover at a higher
rate than the rate at which they become infected, then the disease eventually dies out.
Last, note that disease prevalence in the endemic steady state is increasing in infectivity

6See Anderson and May (1991), Daley and Gani (2001) or Keeling and Rohani (2008) for good
introductions and applications.

7The term βI(t)S(t) should be thought of as the rate at which susceptible individuals have contact
with other individuals, multiplied by the probability of the contact being with an infectious individual,
multiplied by the probability that the infection is transmitted in such a contact. See e.g. Keeling and
Rohani (2008) for a detailed derivation.
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and decreasing in the rate of recovery.
At the aggregate level, there is no uncertainty and thus the probability that a ran-

domly chosen individual is infected must coincide with the fraction of infected individuals.
From the perspective of an infected individual, the transition to susceptibility is governed
by a Poisson process with rate γ, which is memoryless. Similarly, for a fixed level of ag-
gregate infection I(t), the transition to infectivity for a susceptible individual is governed
by a Poisson process with rate βI(t). Thus transition probabilities are memoryless, a fact
that greatly simplifies the analysis that follows.
For simplicity, we will assume throughout that both the incubation period and the

latency period have zero length. Furthermore, there is no uncertainty about individuals’
health status. This means that individuals in each category, i.e. infected and susceptible,
can be perfectly identified and thus targeted for treatment and prevention respectively.

3. The Economic Model and Optimal Policies
In the classical version of the model, there is no behavior or decision making and thus
the model is lacking as a vehicle for analyzing human populations. To study an economic
version of the model, assume that each individual earns flow payoffs that depend on the
state of their health. For simplicity, assume that an individual earns flow payoffωS while
susceptible and ωI < ωS while infected. Let ω ≡ ωS − ωI > 0 be the health premium.
The future is discounted at rate ρ > 0. The basic epidemiological parameters β > 0
(infectiousness) and γ > 0 (background rate of spontaneous recovery) are retained from
the classical model.
The two policy instruments at the decision maker’s disposal are prevention (such as

social distancing or curfews) and treatment. These instruments influence the flows from
S(t) to I(t) and from I(t) to S(t) respectively. Specifically, a planner can set some
level of prevention π(t) ∈ [0, 1] at time t ≥ 0, which translates into effective disease
incidence (1− π(t))βI(t)S(t). The factor (1− π(t)) can be thought of as the proportion
of susceptible individuals who are exposed at time t ≥ 0. Turning to treatment, the
planner can set the level of treatment τ(t) ∈ [0, 1] at time t ≥ 0, which translates to an
effective recovery rate (τ(t)α+ γ). Here, α > 0 is the effi ciency of treatment in inducing
recovery. Last, the marginal costs of protection and treatment (i.e. per individual per
instant) are cP ≥ 0 and cT ≥ 0 respectively. We should emphasize at this point that
although we assume that the planner has fixed marginal costs of prevention and treatment,
we do so deliberately and for a very specific reason. We do not think that fixed marginal
costs are descriptive of the operation of an entire health sector, but the main purpose
of analyzing the planner’s problem is to characterize the social ineffi ciencies (if any) of
decentralized decision making. For the individual, it is entirely appropriate to assume
that the marginal costs are constant in the aggregate number of people who protect and
treat themselves (as opposed to constant in own choice, which we discuss elsewhere). For
this reason, we must endow the planner with constant marginal cost, for otherwise the
planner’s solution could not serve as a benchmark against which we compare outcomes
under decentralized decision making. In short, since we want to compare outcomes under
centralized and decentralized decision making, the planner and the individuals must both
have constant marginal costs.
As will become clear in what follows, one drawback of assuming linearity of costs is

that we cannot rely on standard mathematical techniques to carry out our analysis. In
contrast, the benefits are plenty. First, the assumption is descriptively appropriate for
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discrete decisions over which individuals employ mixed strategies. Second, as we argue in
detail later, the central results that we identify, namely the destabilizing positive feedback
effect of treatment and the stabilizing negative feedback effect of prevention, is robust to
extensions to increasing convex costs. Third, linearity allows us to characterize, in closed
form, both the large number of potential steady states and the equilibrium paths towards
these.
We now consider the optimal control of the SIS system from the perspective of a

benevolent social planner. The planner’s objective is assumed to be a straightforward
sum of the individuals’ infinite horizon, discounted expected utilities.8 The planner’s
problem is therefore to solve the following program:

max
τ(t),π(t)∈[0,1]

∫ ∞
0

e−ρt [I(t) (ωI − cT τ(t)) + (1− I(t))(ωS − cPπ(t))] dt (5)

s.t. İ(t) = (1− π(t))βI(t)(1− I(t))− (γ + ατ(t)) I(t), I(0) = I0 (6)

where π(t), τ(t) are piecewise continuous.
The optimal value function for this program is denoted by V (I0), where dependence

on the parameters has been suppressed for ease of notation. It can be shown that this
problem admits an optimal solution under mild conditions. A proof is available in the
supplementary appendix. Note that the problem to be solved is autonomous, i.e. time
enters in the integrand only through the discount term e−ρt. This has the important
implication that I(t) is monotonic along an optimum path.
Throughout this paper, we will maintain the following:

Assumption (i) ω − cP > 0 and (ii) β − γ − α > 0.

The inequality (i) implies that a susceptible individual would always choose full pro-
tection, if the only alternative was to become instantly and permanently infected. The
inequality (ii) implies that a policy without prevention, but with maximal treatment, can-
not eradicate infection even asymptotically.9 These are required to make the tradeoffs in
the model interesting.
The current-value Hamiltonian for this problem is given by

HC ≡ −ωI(t)− cPπ(t)(1− I(t))− cT τ(t)I(t)

+λ(t) [(1− π(t))βI(t)(1− I(t))− (γ + ατ(t)) I(t)] (7)

8In particular, this means that individuals and the planner face the same costs, per capita flow utilities
and rates of time preference. This ensures that any differences between optimal policies and equilibrium
behavior, stem exclusively from decentralization and uninternalized external effects.

9To interpret the former assumption, suppose that there is no spontaneous recovery or treatment
(α = γ = 0) and that unprotected individuals are immediately infected (β → ∞). This is a worst
case scenario that makes prevention as useful an instrument as possible. In this setting, the effective
choice is between perpetual protection at per instant cost cP or perpetual infection at per instant cost
ω. Assumption (i) ensures that under this scenario, prevention will be socially useful. To interpret the
latter assumption, suppose that there is no prevention but full treatment. If (i) is violated, prevention is
never used in steady state. Assumption (ii) then simply means that the rate of infection is higher than
the effective rate of recovery. If (ii) is violated, then full treatment will eradicate the disease.
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where λ(t) is the current-value costate variable (or shadow price).10 The above Hamil-
tonian is linear in both control variables, which has important implications for the char-
acterization of optimal policies.
For the solution to be optimal, λ(t) must satisfy the following differential equation:

λ̇(t) = λ(t) [ρ+ γ + ατ(t) + (1− π(t))β(2I(t)− 1)] + [ω + τ(t)cT − π(t)cP ] (8)

Moreover, the instruments (τ(t), π(t)) must maximize the current-value Hamiltonian (7).
This yields the following Hamiltonian conditions for optimality:

τ(t) = 0 if αλ(t) > −cT (9)

τ(t) ∈ [0, 1] if αλ(t) = −cT (10)

τ(t) = 1 if αλ(t) < −cT (11)

and

π(t) = 0 if βλ(t)I(t) > −cP (12)

π(t) ∈ [0, 1] if βλ(t)I(t) = −cP (13)

π(t) = 1 if βλ(t)I(t) < −cP (14)

An additional necessary condition for optimality in this setting is that11

limt→∞e
−ρtHC(t) = 0 (15)

The above Hamiltonian conditions imply that if the marginal benefit of increasing an
instrument (i.e. treatment or prevention) exceeds the marginal cost of doing so, then it
is optimal to increase the level of the instrument. Similarly, if the marginal cost exceeds
the marginal benefit, then it is optimal to decrease the level of the instrument. To
see this, recall that λ(t) < 0 is the (negative) social utility associated with a marginal
increase in disease prevalence. With this in mind, it is straightforward to interpret the
optimal policies in terms of the marginal costs and benefits of intervention. In the case
of treatment, the marginal benefit of intervention is given by −αλ(t), which follows from
the fact that α is the rate at which increased treatment induces recovery (i.e. it is the
effi ciency of treatment) and each recovery benefits society at level −λ(t). In the case of
preventive effort, the marginal benefit of intervention is given by −βI(t)λ(t). This follows
since βI(t) is the rate at which unprotected susceptible individuals become infected and
each infected individual costs society λ(t).
Before continuing with the detailed analysis, a few comments on our modeling choices

are in order. First, in virtually all existing models of treatment, e.g. Sanders (1971),
Sethi (1974), Goldman and Lightwood (1996, 2002), Rowthorn (2006), Anderson et al.
(2012) and Agusto et al. (2012), therapy is either modeled as a discrete (i.e. zero-one)
choice, or as a continuous choice with constant returns to scale. If one allows for random-

10Note that a term ωS has been dropped from the current-value Hamiltonian because its presence does
not affect the optimal solution.
11H(t) ≡ e−ρtHC(t) is the conventional discounted Hamiltonian. It is shown in Michel (1982) that a

necessary condition for optimality is that limt→∞H(t) = 0.
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ization, these modeling choices are of course equivalent. More to the point, the discrete
nature of treatment (or the equivalent alternative assumptions) are descriptively accurate
representations of how infectious diseases are treated in practice. As pointed out by McK-
innon and Davis (2004), both so-called ‘time-dependent’and ‘concentration-dependent’
treatments mandate that suffi ciently high concentrations of the medicine in the blood is
reached and sustained for a minimum period of time. But this does not mean that the
treatment is scalable in practice. If the dose is below the prescribed target, then the
infection will not be effectively eliminated and resistance may be induced. Similarly, if
the dose is above the target, it can create adverse effects like abdominal pain, diarrhea
and organ failure, without increasing the speed or probability of recovery.12 In terms of
modeling of treatment, the exceptions are Gersovitz and Hammer (2004) and Gersovitz
(2010), who assume that treatment is continuous but subject to decreasing returns to
scale. These assumptions mean that their treatment variable cannot be interpreted as a
randomization over discrete choices and must be interpreted literally. As noted above,
such an assumption seems to be problematic on a purely descriptive level, but as will be-
come clear in what follows, will also have important consequences for the characterization
of optimal policy.
Second, we assume that treatment remains equally effi cient throughout. This assump-

tion sidesteps the interesting possibility of buildup of antimicrobial resistance. While an
interesting topic, resistance is not the focus of this paper.13

Last, we have for simplicity assumed that prevention is perfect in the sense that with
full prevention, the infection probability is exactly zero. Our main results carry over
to a setting with imperfect protection, but the analysis is considerably less transparent.
Some preliminary analysis of the model with imperfect prevention is available in the
Supplementary Material accompanying the main paper.

4. Optimal Paths and Steady States
We now proceed with a detailed formal analysis of the optimal paths and the steady states
of the system, through a number of propositions. In the next section, we will offer a more
informal discussion of these results. The dynamic system defined by equations (6) and (8)
is in a steady state when all variables are constant, i.e. when I(t) = Î , λ(t) = λ̂, τ(t) = τ̂
and π(t) = π̂. A steady state is said to be feasible if it also satisfies the Hamiltonian
conditions (9) to (15) and Î ∈ [0, 1].

Proposition 1. Any optimal path converges to a feasible steady state in which Î > 0
and π̂ < 1. This implies that eradication is never optimal, even asymptotically.

Proof: See Appendix B for the proof that under our parameter assumptions, eradication
is never optimal. The proof follows from the observation that any path that leads towards
eradication does not satisfy the transversality condition (15) �
The intuition for this result is that when prevention is kept at a level that forces

the disease towards eradication, the marginal value of prevention becomes negligible and
prevention is no longer cost effective. Since the problem is autonomous and there is only

12In addition, the World Health Organization (2004) recommends that sexually transmitted diseases
be treated with single-dose-therapy as this greatly increases adherence.
13Interesting papers on the effects of antimicrobial resistance include Laxminarayan and Brown (2001),

Wilen and Msangi (2003), Mechoulan (2007) and Herrmann and Gaudet (2009).
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one state variable I(t), this variable is monotonic along an optimal path. Such a path
must therefore converge to some Î > 0. At this point it must be the case that π̂ < 1.

Proposition 2. The dynamic system defined by equations (6) and (8) has six potentially
feasible steady states with π̂ < 1. These are characterized as follows: Solution A : τ̂ = 0
and π̂ ∈ (0, 1). Solution B: τ̂ = 1 and π̂ ∈ (0, 1). Solution C: τ̂ ∈ (0, 1) and π̂ ∈ (0, 1).
Solution A0: τ̂ = 0 and π̂ = 0. Solution B0: τ̂ = 1 and π̂ = 0. Solution C0: τ̂ ∈ (0, 1)
and π̂ = 0. For any given set of parameter values, it is not possible for both A and A0 or
for both B and B0 or for both C and C0 to be simultaneously feasible.

The six potentially feasible steady state values are listed in Appendix A. The final part
of this proposition is established by comparing the parameter restrictions under which
these various steady states satisfy the Hamiltonian conditions (9) to (15) and Î ∈ [0, 1].

Proposition 3. There is no optimal path that terminates at either C or C0. Depending
on the parameter values, at least one and at most two of the steady states A,A0, B,B0
is the end point of an optimal path.

Proof: The proof that there is no optimal path that terminates at either C or C0 is
outlined in the Supplementary Material, available from the authors upon request. When
feasible, each of these points is a spiral source in (I, λ) space. The remainder of the
proposition follows directly from Propositions 1 and 2 �
When multiple feasible steady states coexist, we can talk of a high prevalence steady

state and a low prevalence steady state. In the former steady state, no-one receives
treatment, while in the latter steady state, all infected individuals receive treatment.
Whereas a feasible steady state may involve keeping prevention at an interior level, the
approach to such a steady state always involves maximal or minimal levels of the two
policy instruments, as the following result shows:

Proposition 4. The optimal policy is always of the bang-bang-singular variety. Along
the approach path to a steady state, both τ(t), π(t) ∈ {0, 1} for all t ≥ 0, except at a
finite number of points where there is an instantaneous switch from one control regime
to another.

Proof: This follows directly from the Hamiltonian conditions �
This result has the implication that from any initial condition, the transition to the

steady state is of finite duration.
In the fully interior, but suboptimal steady state C, it follows from the Hamiltonian

conditions (each holding with equality) that the marginal cost of prevention relative to
that of treatment equals the marginal benefit of prevention, again relative to that of
treatment. This kind of equation is the central characterization of optimality in the work
of Gersovitz and Hammer (2004), and follows from their twin assumptions that their
steady state is unique and that it is fully interior. In contrast, in our setup, we make no
such assumptions and find that it is generically true that

αλ(t)

βI(t)λ(t)
6= cT
cP

(16)
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This result holds everywhere on the transition path, except perhaps at a finite number of
switching points, and always holds at the endpoint of an optimal path. In other words,
we have proved in our setting that along any optimal path, it is generically true that the
relative marginal benefits of the two interventions and their relative marginal costs differ.
Before describing the dynamics further, we should emphasize that the bang-bang-

singular nature of the optimal policy is not a core result but follows quite naturally from
the linearity of the current-value Hamiltonian. The important result is the monotonicity
of the optimal policy in the state variable. As shown by Goldman and Lightwood (2002),
monotonicity in this type of model is preserved with convex marginal costs (under which
the optimal policy is not of the bang-bang variety). The value of linearity to our analysis
is that it brings out the underlying mechanics very clearly and in addition, allows us to
solve for a large number of steady states and their associated transition paths in closed
form, something that would be very diffi cult to obtain otherwise.

5. Description of the Dynamics
The key to understanding the dynamics of the model, is to appreciate the differences
between treatment and prevention. In turn, these differences stem from the ways in
which the marginal benefits of each instrument depend on disease prevalence. In the
case of prevention, the marginal benefits are increasing in prevalence: other things equal,
higher disease prevalence increases the risk of infection for susceptible individuals and
hence increases the return from prevention. Since the value of prevention is increasing in
prevalence, a higher level of prevention (which suppresses incidence) reduces the value of
additional prevention. Similarly, reducing prevention increases incidence, thereby making
prevention more valuable at the margin. The effect of this is that prevention, seen in
isolation, tends to force the system towards a unique and interior steady state. That is,
prevention creates a negative stabilizing feedback effect.
Turning to treatment, the time profile of the benefits is more complex than that for

prevention in that the benefits accrue in the future. Treatment increases the proportion
of time that a typical individual will spend in the susceptible state. For a given sus-
ceptible individual, the probability of infection (or reinfection) is proportional to disease
prevalence. The value of treating an individual in the present is therefore a decreasing
function of future prevalence. As current treatment is increased, future prevalence de-
creases, making current and future treatment even more attractive. This virtuous circle
(which is formally a complementarity property of the planner’s problem) means that with
treatment, the marginal benefits are decreasing in prevalence.14 Thus treatment creates
a positive destabilizing feedback effect, which is exactly what creates the scope for multi-
ple extremal steady states. In the low infection steady state, the marginal benefits from
treatment are high and treatment is thus exerted at the highest possible level, thereby
maintaining low infection. In the high infection steady state, the marginal benefits of
treatment are low and therefore there is no treatment at all. This keeps the infection at
a high level.
Once both instruments are available, the forces described above are essentially super-

imposed. The presence of treatment creates the potential for multiple steady states, even
in the presence of prevention (although the levels are altered accordingly). In the full

14For a concrete and documented syphilis-related example of current decisions influencing the proba-
bility of future reinfection, see Stewart et al. (1951).
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treatment steady state, disease prevalence is relatively modest. But this means that the
marginal benefit of prevention is relatively low, resulting in a low steady state level of
prevention. In contrast, in the no treatment steady state, disease prevalence is relatively
high, leading to high marginal benefits of prevention. As a consequence, in this steady
state the prevention level is relatively high.

5.1. Informal Bifurcation Analysis. Given the complexity of the model, it may be
tempting to proceed with the analysis by comparing the welfare levels associated with the
many different steady states and then simply steer the system towards the steady state
with the highest level of welfare. It turns out that this approach is entirely inappropriate,
since the planner is seeking to maximize aggregate discounted welfare rather than steady
state welfare. The right way forward is, for a given initial condition, to compare the
discounted aggregate welfare along all feasible paths. The superior path then dictates the
optimal policy. In this and the following subsection, we outline a systematic approach
to such an analysis and give a specific numerical example of how a narrow focus on
steady state welfare levels can lead to the wrong policy conclusions. The reason that we
emphasize this point is that in large parts of the existing literature on infection control,
the focus is on steady states rather than equilibrium paths. This focus is unwarranted
and may be misleading.
Following Wagener (2003), we can usefully divide the parameter space into three

different regimes as follows. In Regime I, there is a unique optimal steady state (i.e.
a unique end point of an optimal path) from the set {A,B,A0, B0}. Which of these
is feasible depends on the particular parameter constellation in question. In Regime II,
there are four potential pairs of saddle-points, namely {(A,B), (A0, B0), (A,B0), (A0, B)},
each possibly with an accompanying unstable steady state from the set {C,C0}. From
each such pair of saddle-points, one or the other equilibrium is always optimal, i.e. is
the end point of an optimal path for all initial conditions (i.e. the steady state is globally
optimal). In Regime III, there are again four possible pairs of saddle-points (possibly with
corresponding unstable steady states) like in Regime II, but different initial conditions
render different equilibria optimal. In this scenario, there is an indifference (or Skiba)
point IS ∈ (0, 1) such that for prevalence levels above this threshold, the high infection
steady state is the end point of the optimal path, while for prevalence levels below it, the
low infection steady state is the end point of the optimal path. Regime II can be seen
as a special case of Regime III, in which the Skiba threshold is outside the unit interval.
The three possible regimes can be summarized as follows:

Regime I: Unique eq. point from {A,B,A0, B0}, path indep.
Regime II: Pair of eq. points from {(A,B), (A0, B0), (A,B0), (A0, B)}, path indep.
Regime III: Pair of eq. points from {(A,B), (A0, B0), (A,B0), (A0, B)}, path depend.

Even though the interior solutions cannot be end points of optimal paths, it is tempt-
ing to think that they demarcate intervals of the state variable from which it is optimal
to go to one steady state or the other. For example, it might seem natural that for
prevalence levels I(t) < IC , the optimal policy is to go to the low infection steady state
IB, while for prevalence levels I(t) > IC the optimal policy is to go to the high infection
steady state IA. In fact, this turns out to be wrong. While the optimal policy may indeed
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have the threshold character just described, the critical prevalence level IS is generically
different from the interior steady state.15

For a given set of parameters, it is a routine matter to check the feasibility conditions
and determine whether Regime I obtains or not. In order to determine whether the
system is in Regime II or III, there is no option but to compute values along all (typically
two) paths satisfying the necessary Hamiltonian conditions for optimality. This is because
the existence of the indifference point that distinguishes Regimes II and III cannot be
formally characterized by a local condition in the same way that local extrema can (see
Deisssenberg et al. 2004). This is so since the indifference point is obtained as the point
of intersection of two functions for which there are no closed form solutions, namely the
value functions evaluated along the different candidate paths.

A full bifurcation analysis is an interesting and worthwhile project that we leave for
future work. We do this for two reasons. First, a full bifurcation analysis is highly
technical in nature and is better suited for a more technical and focused companion
paper. Second, our main aim in this paper is to identify the main differences between
prevention and treatment, how they interact across the stages of the epidemic and how
each creates external effects under decentralized decision making. For this purpose, we
find that the informal bifurcation analysis we offer serves the purpose of indicating the
main features without unnecessarily lengthening the exposition.

5.2. Simulated Paths and Steady States. To better illustrate the main features
of the analysis in the preceding sections, we now consider some sample simulations of
optimal paths and steady states. The simulations were done using a fourth-order Runge-
Kutta procedure with the following parameter values:

Parameters α β γ ω ρ cP cT
Values {0.2, 0.4, 0.5} 3 0.1 1 0.11 0.5 10

With this choice of the parameters (β, γ, ω, ρ, cP , cT ), the feasible steady states are
(A,B,C) and the system is either in Regime II or III, depending on the magnitude of the
effi ciency of treatment α. This means that both the low and the high infection steady
states exist. The following table shows the ranges for α where each regime obtains:

Interval α ∈ [0, 0.3] α ∈ [0.3, 0.41] α ∈ [0.41, 1]
Opt. steady state Point A (Reg. II) Point A or B (Reg. III) Point B (Reg. II)

We will consider three specific examples as follows. In Example 1, α = 0.2 , in Example
2, α = 0.5 and in Example 3, α = 0.4. The optimal policies corresponding to the paths
in the three examples are summarized in the following table:

15This property does hold when the Hamiltonian is concave, as described in Deissenberg et al. (2004).
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Example 1 (α = 0.2) Example 2 (α = 0.5)
Optimal path goes to A τ(t) π(t) Optimal path goes to B τ(t) π(t)
I ∈ [0, 0.0031] 1 0 I ∈ [0, 0.0018] 1 0
I ∈ [0.0031, 0.0370] 0 0 I = 0.0018(= IB) 1 0.7996
I = 0.0370(= IA) 0 0.9654 I ∈ [0.0018, 0.0176] 1 1
I ∈ [0.0370, 1] 0 1 I ∈ [0.0176, 1] 0 1

Example 3 (α = 0.4) Example 3 (α = 0.4)
Optimal path goes to B τ(t) π(t) Optimal path goes to A τ(t) π(t)
I ∈ [0, 0.0018] 1 0 I ∈ [0.0163, 0.0370] 0 0
I = 0.0018(= IB) 1 0.7996 I = 0.0370(= IA) 0 0.9654
I ∈ [0.0018, 0.0115] 1 1 I ∈ [0.0370, 1] 0 1
I ∈ [0.0115, 0.0163] 0 1

In Figure 1, we show the simulated candidate paths and associated value functions
for the three examples. For completeness, note that the kinks in the optimal paths in the
three graphs correspond to switches in the control regimes. In Example 1, it is optimal
to pursue the path to steady state A for any initial level of disease prevalence (this case
is in Regime II). The paths to the two steady states A and B are illustrated in the first
panel of Figure 1. In the second panel, we show the total discounted value of following
the paths to steady states A and B respectively, for different initial prevalence levels. It
is clear from this figure that the value of going to (and staying at) point A is everywhere
higher than the value of going to (and staying at) point B.
In Example 2, it is optimal to follow the path to steady state B for any initial preva-

lence level (this case is also in Regime II). The paths to A and B are shown in the third
panel of Figure 1, which also shows the corresponding values of following the different
paths in the fourth panel. It is clear from the figure that going to (and staying at) point
B always dominates going to (and staying at) point A.
In Example 3, the system is in Regime III, in which the optimal steady state depends

on the initial level of infection. This case is also illustrated in Figure 1, in the fifth and
sixth panels. For prevalence levels below IS = 0.0163, the optimal path leads to the
low infection steady state B, while for prevalence levels above IS = 0.0163, the optimal
path leads to the high infection steady state A. Thus for this parameter constellation,
the optimal path is history dependent in the sense that the initial conditions matter for
where it is optimal for the system to settle. Note that in the relevant panel of Figure 1,
IS = 0.0163 is the prevalence level at which the value functions for the paths to A and
B intersect.
To fully appreciate the pitfalls of focusing on steady state welfare levels, consider the

following experiment, based on the parameters of Example 1. We know that in this case,
it is always optimal to steer the system to steady state A. Let us compare the discounted
steady state welfare levels. Starting at steady state B and staying there in perpetuity
yields discounted welfare of VB = −4.217, whereas starting at steady state A and staying
there in perpetuity yields VA = −4.517. In other words, it is clearly better to be at B
and stay there than it is to be at A and stay there. A simple-minded focus on steady
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Figure 1: Candidate paths and value functions.
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state welfare levels would thus prescribe leaving steady state A and go instead to steady
state B, thereby yielding higher welfare in the long run. In fact, this prescription is
wrong, because it fails to account for the net loss incurred in the transition from A to B.
Indeed, in this example, it is optimal to leave steady state B and going instead to steady
state A. This path would yield discounted aggregate welfare equal to −4.023, which is
superior to staying at steady state B. In short, properly accounting for welfare along
optimal paths may yield the exact opposite policy prescription than pure steady state
comparisons would suggest.

6. Equilibria under Decentralized Decision Making

In conducting our analysis so far, we have taken the perspective of a benevolent social
planner who can dictate policies and does not have to consider the incentives of the
individuals in the population. This raises the important question of the possible decen-
tralization of optimal policy. While the solution to the social planner’s problem yields
important new insights and is an important benchmark, it is also useful to understand
the equilibrium outcomes under decentralized decision making.

In particular, we wish to understand (i) how individual decision makers’choices and
aggregate disease dynamics interact, (ii) the extent to which the equilibrium outcomes
under decentralized decision making coincide with the solution under centralized decision
making, and (iii) how to align private and public incentives through policy intervention.
To make progress in answering these three questions, we next analyze the problem faced
by an individual i ∈ P who is too small to influence aggregate infection dynamics. Such
an individual will maximize discounted expected utility, taking the future trajectory of
aggregate disease prevalence as given.

We will analyze two settings, one with uncontrolled decentralized decision making and
one with controlled decentralized decision making. In the former case, individuals make
decisions without any intervention on the planner’s part. In the latter case, the plan-
ner will seek to modify individuals’equilibrium behavior through two separate incentive
schemes, namely prevention and treatment subsidies and an infection tax/health subsidy.

The individual’s problem can be written in the following form (see Appendix C for
details), which is amenable to standard optimal control techniques:

max
τ i(t),πi(t)∈[0,1]

∫ ∞
0

e−ρt [−qi(t) [ω + τ i(t)cT ]− (1− qi(t))πi(t)cP ] dt (17)

s.t. q̇i(t) = (1− πi(t))βI(t)(1− qi(t))− (γ + ατ i(t))qi(t), qi(0) ∈ {0, 1} (18)

The interpretation of the law of motion (18) is as follows. The first term on the right-
hand side is the probability of infection (per unit of time) for a susceptible individual
with protection intensity πi(t). The variable πi(t) may be interpreted as the individual’s
social distancing effort. The second term is the probability of recovery (per unit of time),
for an infected individual with treatment intensity τ i(t). The instruments τ i(t) and πi(t)
can be interpreted as randomization probabilities across the extreme values 0 and 1. Note
that for the individual, the entire path of the aggregate variable I(t) is taken as given.

To derive the optimal policy for individual i ∈ P at time t ≥ 0, we proceed as follows.
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The individual’s current-value Hamiltonian is given by

HD
i ≡ −qi(t) [ω + τ i(t)cT ]− (1− qi(t))πi(t)cP (19)

+µi(t) [(1− qi(t))(1− πi(t))βI(t)− qi(t)(γ + τ i(t)α)]

where µi(t) is the costate variable in the individual’s optimization problem. Note that
there is an important difference between the planner’s problem and that solved by the
individual. The planner’s Hamiltonian HC given in (7) is quadratic in the relevant state
variable (I), whereas the Hamiltonian HD

i is linear in the relevant state variable (qi).
The evolution of the individual’s costate variable is given by the differential equation

µ̇i(t) = µi(t) [ρ+ γ + ατ i(t) + (1− πi(t))βI(t)] + [ω + τ i(t)cT − πi(t)cP ] (20)

For the optimal path, the policy instruments (τ i(t), πi(t)) must maximize the above
current-value Hamiltonian.
For an infected individual, the optimum level of treatment must satisfy the following

inequalities:

τ i(t) = 0 if αµi(t) > −cT (21)

τ i(t) ∈ [0, 1] if αµi(t) = −cT (22)

τ i(t) = 1 if αµi(t) < −cT (23)

For a susceptible individual, the optimum level of protection must satisfy the following
inequalities:

πi(t) = 0 if βµi(t)I(t) > −cP (24)

πi(t) ∈ [0, 1] if βµi(t)I(t) = −cP (25)

πi(t) = 1 if βµi(t)I(t) < −cP (26)

In addition, it must also be the case that

lim
t→∞

e−ρtHD
i (t) = 0 (27)

This transversality condition is always satisfied if µi(t) approaches a finite limit.
For any continuous trajectory of aggregate infection I(t), if the equations and condi-

tions (18) to (27) are satisfied, the resulting path satisfies the Arrow conditions for an
optimum. This is shown in Appendix F. This is true also in the controlled decentralized
setting to be analyzed below.
By symmetry, all individuals who are infected at a given point in time t ≥ 0, will

choose the same level of treatment. Likewise, all individuals who are susceptible at a
point in time t ≥ 0, will choose the same level of prevention. Thus, τ i(t) = τ(t) for
all i ∈ I(t) and πi(t) = π(t) for all i ∈ S(t). Both of these variables may be interior,
indicating a mixed strategy. The shadow price of infection (i.e. the costate variable) will
also be the same for all individuals and hence µi(t) = µ(t) for all i ∈ P. We can therefore
omit the subscripts on the costate and control variables when considering the aggregate
levels of the instruments in what follows.
Consistency requires that the average infection probability equals aggregate disease
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prevalence I(t). Hence, averaging equation (18) across all individuals yields

İ(t) = (1− π(t))βI(t)(1− I(t))− (γ + ατ(t)) I(t) (28)

The above equation is the same as equation (6) in the centralized setting, but with
aggregate treatment and protection replaced by the average individual choices.
As in the planner’s problem, various parameter restrictions must be satisfied for any

particular type of steady state to be feasible. In general, these feasibility restrictions
differ between centralized and decentralized decision making. As a consequence, when
parameters are altered, there can be both quantitative and qualitative differences between
the centralized and decentralized settings. A particular type of steady state that is feasible
under the former setting may not be feasible under the latter. This was also pointed out
by Goldman and Lightwood (2002).
In Appendix D, we list the steady state values for points A∗, B∗, A∗0, B

∗
0 , C

∗
0 and

compare these to the corresponding values from the solution to the planner’s problem. A
steady state of the form C is never feasible in the decentralized problem.
Before detailing the features of the decentralized equilibria, we formally state the

following existence result:

Theorem 5. Under decentralized decision making, an equilibrium path (I∗(t), τ ∗i (t), π
∗
i (t))

exists if at least one of the fixed points A∗, B∗, A∗0, B
∗
0 is feasible.

Proof: Given that aggregate behavior takes the system to a steady state, Arrow’s suffi -
ciency theorem establishes that it is individually optimal for any individual to also go to
the steady state and to stay there �
In comparing the possible outcomes under centralized and decentralized decision mak-

ing, we first note that the set of possible steady states do not coincide. In particular, the
equivalent of solution C in the planner’s problem, in which τ(t) ∈ (0, 1) and π(t) ∈ (0, 1),
does not exist under decentralized decision making. While there are values τ i(t) ∈ (0, 1)
and πi(t) ∈ (0, 1) for which the individual’s problem is at a rest point, i.e. where q̇i(t) = 0,
this point does not correspond to a fixed point of the aggregate system, i.e. where İ(t) = 0.
Next, we compare the level of disease prevalence in various steady states. Direct

inspection confirms that steady state prevalence levels in the decentralized case are at
least as high as the corresponding levels under centralized decision making. In fact, we
have that

IA < IA∗ , IB < IB∗ , IA0 = IA∗0 , IB0 = IB∗0 (29)

An important consequence of decentralized decision making is that, due to the avail-
ability of treatment, the path actually chosen in equilibrium may be indeterminate and
depend on expectations about future decisions. Specifically, the present model allows
for the possibility that there is a range of initial conditions for which there are multiple
perfect foresight equilibrium paths. Along each of these, each individual maximizes dis-
counted expected utility given the behavior of others. Furthermore, these paths may go
to qualitatively distinct steady states. This phenomenon is treated in detail in Toxvaerd
(2009) in the context of a treatment-only model.
Although it is convenient to classify the steady states in terms of high and low in-

fection steady states under centralized versus decentralized decision making, it may also
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be somewhat misleading when comparing what can happen under the two different sce-
narios. For example, it may be tempting to focus, say, on comparing the high infection
steady that the planner chooses to the high infection steady state that can materialize
in equilibrium. But this masks the fact that for a given choice of model parameters, one
type of steady state under decentralized decision making may be simultaneously feasible
with another type of steady state under decentralized decision making. For example, a
no-treatment centralized steady state could coexist with a full-treatment decentralized
steady state. A complete analysis would therefore compare all feasible steady states
across the two scenarios.
We have only taken a few steps in this interesting direction. It is straightforward to

show that if the high infection steady state A is feasible, then the low infection steady
state B∗ is not. But the same is not true for steady state pairs (A,B∗0), (A0, B

∗
0) or

(A0, B
∗). Thus in principle, it could be the case that under decentralized decision making,

the system gets stuck in a low infection steady state while the planner would prefer a
path that ends in a steady state with a higher level of infection. While this would be a
singularly interesting and significant finding, we have carried out extensive simulations
of the model and have not been able to identify parameter constellations under which
this result is true.16 In every instance, the socially optimal path terminates at a level of
infection which is less than or equal to the minimum steady state infection level achievable
under decentralized decision making.
We will now explain what leads to the differences between the outcomes under cen-

tralized decision making and the equilibria under decentralized decision making. Under
decentralized decision making, the incentives of the individual are different from those of
the central planner. As a result, they assign different shadow prices to infection. On an
optimum path, the planner’s shadow price is state dependent and is equal to λ(I). At
the same level of aggregate infection, the individual’s shadow price for its own infection
is equal to µ(I). The gap between these shadow prices is z(I) ≡ λ(I) − µ(I) ≤ 0. To
elucidate the nature of this gap, we will decompose z(I) as follows. First, there is a pure
externality effect x(I). This effect stems from the fact that in deciding what levels of
treatment or protection to choose, each individual ignores the impact of its actions on
the well-being of other individuals. Second, there is a smallness effect y(I). Starting from
any given level of aggregate infection I, the future time profile of I is different under
centralized and decentralized decision making. As a result, the individual faces a dif-
ferent future time profile of infection risk under the two scenarios. The smallness effect
encapsulates the influence of this difference on the individual’s shadow price.
To quantify these two effects, we will introduce a so-called “maverick”individual. Sup-

pose that under central direction, all individuals, except for one numerically insignificant
maverick, behave in the socially optimal fashion. This ensures that aggregate infection

16In these simulations, we have sought to test whether a feasible steady state B∗0 has a lower prevalence
level than would be eventually achieved along the socially optimal path. We assumed that β > γ + α
(to ensure that treatment alone does not eliminate the disease) and normalized by assuming that β =
ω = 1. We looked at approximately 2.9 million parameter combinations. There were some thousands of
combinations for which B∗0 and some high prevalence steady state (either A or A0) coexisted. However,
in none of these cases was it optimal to go to A or A0. In these cases the optimal path always takes the
system to either B or B0, where the prevalence level is lower than or equal to the prevalence level at
steady state B∗0 . We repeated this exercise for B

∗. The simulations indicate that it is never optimal to
go from B∗ to A0, but optimal to go instead to B, at which prevalence is lower than at B∗.
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I(t) will follow the socially optimal path. The maverick, in contrast, behaves in a purely
selfish fashion and maximizes its own personal discounted expected utility while facing
the socially optimal time profile of future infection risk. The privately optimal solution
for the maverick will then satisfy the system of equations and conditions (18) to (27) that
characterize decentralized dynamics, on the assumption that aggregate infection I(t) fol-
lows the socially optimal trajectory. Let η(t) denote the shadow price of infection for the
maverick. This can be written in the state dependent form η(I).
Consider the difference between the optimization problem of the maverick and that of

the central planner. By construction, both the planner and the maverick face the same
path of aggregate infection (namely the socially optimal one) and hence any differences
in valuation stem from the fact that the maverick ignores the impact of its actions on
the well-being of others. Thus the difference is a pure externality effect. The maverick
disregards the externality effect and as such, experiences a lower return on investment
from prevention and treatment than does the planner. For this reason, the maverick
invests less in these measures, even though it faces the same aggregate path of infection
as the planner does. Next, consider the difference between the optimization problem of
the maverick and that of an individual on the decentralized equilibrium path of aggregate
infection. Both individuals face the same costs of prevention and treatment and both are
indifferent to the harm their actions may impose on others, but they face different paths
of future aggregate infection, namely the socially optimal one versus the decentralized
equilibrium path. This difference in valuation captures the added risk that comes about
because the individuals concerned face different future paths of aggregate infection.
More formally, compare the following three paths, expressing the costate variables as

functions of the current aggregate infection rate I: (i) the decentralized equilibrium path
facing an individual when no subsidies are offered (the shadow price of an individual is
then equal to µ(I)); (ii) the centralized optimal path (along which the shadow price is
equal to λ(I)); (iii) the centralized optimal path facing the maverick (along which the
shadow price is equal to by η(I)). We then have the following important result:

Theorem 6. The shadow price gap z(I) can be decomposed into an externality effect
and a smallness effect, such that

λ(I)− µ(I)︸ ︷︷ ︸
z(t)

= [λ(I)− η(I)]︸ ︷︷ ︸
x(t)

+ [η(I)− µ(I)]︸ ︷︷ ︸
y(t)

(30)

where

λ̇(t) = λ(t) [ρ+ γ + ατ(t) + (1− π(t))β(2I(t)− 1)] + [ω + τ(t)cT − π(t)cP ] (31)

µ̇(t) = µ(t) [ρ+ γ + ατ(t) + (1− π(t))βI(t)] + [ω + τ(t)cT − π(t)cP ] (32)

η̇(t) = η(t) [ρ+ γ + ατ(t) + (1− π(t))βI(t)] + [ω + τ(t)cT − π(t)cP ] (33)

Note that in the equations for λ(t) and µ(t), aggregate infection I(t) follows the
socially optimal path. In the equation for η(t), aggregate infection follows a decentralized
equilibrium trajectory. The values of the instruments π(t) and τ(t) differ across equations.
Proof: See Appendix E �
It is worth noting that η(1) = λ(1), i.e. the shadow values coincide when the entire

population is infected. This follows from the straightforward observation that there are
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Figure 2: Decomposition of effects

no possible externalities when the entire population is already infected.17 In Figure 2, we
plot the two effects x(I) and y(I) for Example 3. As expected, both the pure externality
effect and the smallness effect are decreasing in absolute value as prevalence increases,
tending to zero as the entire population becomes infected.
The decomposition of effects is interesting in its own right, but will also become

important when designing optimal corrective interventions, a task we turn to next.

7. Aligning Public and Private Incentives
In this section, we will consider two distinct ways in which the planner can induce the
individuals to make socially optimal choices. The first policy intervention relies on a dy-
namic, state dependent corrective subsidy scheme, in which the planner offers subsidies
to treatment and prevention. The second policy intervention relies on dynamic, state
dependent corrective subsidies to healthy individuals (or equivalently, taxes on infected
individuals). The former policy influences the flow between health states because pre-
vention and treatment decisions influence the rates of transition between health states.
The latter policy relies on taxes on the stock of health. While both schemes induce indi-
viduals to make the socially optimal choices, they differ in important ways. Furthermore,
there are practical reasons why a planner may wish to use one type of subsidy scheme
rather than the other. We will discuss these issues in more detail, once we have formally
characterized the two schemes.
In seeking to align public and private incentives, it is natural to resort to Pigouvian-

style schemes that rely on the magnitude of non-internalized external effects. There is
a large literature in environmental economics that makes use of such state dependent
incentive schemes (see e.g. Tahvonen and Kuuluvainen, 1993, Farzin, 1996, Aronsson et
al., 1998 and Rubio and Escriche, 2001). It turns out that deriving an optimal scheme in

17In a similar fashion, note that for the special case γ = τ(t) = 0 and I(t) = 1, the individuals and
the planner have the same shadow prices, i.e. µ(t) = λ(t). This case is relevant when prevention is too
costly to be used in steady state and when spontaneous recovery is not possible (i.e. only treatment will
induce recovery). In this case, one feasible steady state involves no treatment at all, which leads to the
entire population being infected. In this steady state, the planner and the individuals face the same path
of infection and since there are no susceptibles on which an infected individual can have external effects,
there are no externalities. Therefore, the individuals and the planner value infection equally much.
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our setting is a more subtle endeavour. This is because the incentive scheme needs to be
designed to simultaneously correct for both the pure externality effect and the smallness
effect. As we will see, this means that the optimal corrective incentive schemes are not
straightforward Pigouvian taxes.

7.1. Subsidies to Prevention and Treatment. Suppose that subsidies are given to
prevention and treatment at rates sP (t) and sT (t), respectively. The following proposition
specifies how these subsidies should be chosen to induce socially optimal behavior.

Proposition 7. The following subsidy schedules implement the first-best policy via de-
centralized decision making:

sP (t) ≡ βI(t)[φ(t)− λ(t)] ≥ 0 (34)

sT (t) ≡ α[φ(t)− λ(t)] ≥ 0 (35)

where

φ̇(t) = φ(t) [ρ+ γ + βI(t)] + ω + τ(t) [cT + αλ(t)]− π(t) [cP + βI(t)λ(t)] (36)

Note that φ(t) is evaluated along the socially optimal path for τ(t), π(t), λ(t) and I(t).

Proof: See Appendix E �
The functional form of the two subsidies have a very nice interpretation, namely that

the subsidy rates equal the rates at which prevention and treatment abate the social
damage from infection. The preceding results have a surprisingly simple corollary, which
we state next:

Corollary 8. The optimal subsidy ratio sP (t)/sT (t) is directly proportional to disease
prevalence, i.e.

sP (t)

sT (t)
=

(
β

α

)
I(t)

This corollary implies that in a high-infection steady state, protection is subsidized
at a higher relative rate than in a low-infection steady state. This result should be seen
in the context of the analysis of Gersovitz and Hammer (2004), who arrive at a different
result, but under the twin assumption that there is a unique steady state and that it is
fully interior, features that generically do not hold in our setting. Gersovitz and Hammer
(2004) report that the subsidies should be at equal rates, irrespective of prevalence. They
state their results in terms of ad valorem taxes, while we state ours in terms of excise
taxes (i.e. as per unit taxes). It is straightforward to verify that in our setting, the
optimal ad valorem tax rates for prevention and treatment are given by

vP ≡ −sP (t)

cP
(37)

vT ≡ −sT (t)

cT
(38)

Upon substitution of the optimal subsidies, it follows immediately that vP > vT if I(t) <
IC and vP < vT if I(t) > IC . In fact, they coincide only in the unstable and suboptimal
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Figure 3: Subsidies to treatment and prevention.
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steady state C. In contrast, Gersovitz and Hammer (2004) report that the optimal ad
valorem taxes are equal at all times.
In Figure 3, we display the optimal subsidies to prevention and treatment using the

parameter values of Example 3. We start by considering the subsidies to treatment,
displayed in the first panel. Other than at the Skiba point IS, the scheme sT (t) is a
continuous function of disease prevalence throughout. Furthermore, it has a kink at the
point where optimal treatment switches between zero and one. Note that the schedule
is continuous at both steady states. In accordance with the observation that treatment
becomes less effective as prevalence increases, the optimal subsidy to treatment decreases
as I increases.
Turning to the subsidy for protection, which is displayed in the second panel, the

scheme sP (t) is also continuous throughout, other than at the Skiba point IS. In par-
ticular, it is continuous at the steady states IA and IB, even though optimal prevention
is discontinuous at these points. However, this subsidy is not monotone in prevalence
over its entire domain. We distinguish two cases, depending on whether or not there is
treatment on the relevant segment of the optimal path. To the right of the kink in the
graphs of sP (t) and sT (t) there is no treatment, and in this case, the subsidy to prevention
is a decreasing function of disease prevalence. The reason is simply that as prevalence
increases, the private incentive to prevent infection increases suffi ciently rapidly to in-
duce optimal behavior by individuals, despite the decreasing subsidy. To the left of the
kink, full treatment is optimal and induced through a very high subsidy to treatment.
In this region, treatment and prevention are substitutes and prevention becomes less and
less useful as a tool for suppressing infection. For that reason, as prevalence decreases,
the subsidies to prevention also decrease, tending to zero as the disease approaches the
eradication point.
Last, for suffi ciently low levels of aggregate infection, the subsidy to treatment is

significantly higher than the cost of treatment cT . In fact, with the present parameteriza-
tion, this is true for any I(t) < IS. As a consequence, if the planner wants to induce the
individuals to reach the low infection steady state IB from above, the required subsidy is
so high that the individual shadow price of infection φ(t) > 0. This is a notable finding,
because it means that with optimally chosen subsidies, individuals will privately value
becoming infected! This is in contrast to the uncontrolled decentralized equilibrium, in
which it is always the case that individuals dislike becoming infected, as µ(t) ≤ 0.
At first blush, this might suggest that in the presence of optimal subsidies, individuals

might decide not to protect themselves when susceptible. Yet, optimal subsidies ensure
that individuals behave in a socially optimal fashion and choose full protection between
the Skiba point IS and the steady state IB. This may seem strange, since it implies
that the planner offers subsidies to treatment that are so high that individuals want to
become infected and at the same time offers subsidies in order for the individuals to
protect themselves. To make sense of this, it must be kept in mind that if the taxation
required to finance the subsidies is non-distortionary, then social welfare is not adversely
affected by the fact that subsidies are high. All that matters is that the combined effect
of the subsidy schemes sP (t) and sT (t) is to ensure that individuals make socially optimal
decisions. And the proposed subsidies achieve this.
As this subsidy scheme is not revenue neutral, it must be funded by non-distortionary

lump-sum transfers from the general population.
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7.2. Taxes and Subsidies on the Individual’s Health Status. As an alternative
to interventions linked directly to behavior, such as subsidies for prevention and treat-
ment, the social planner could instead seek to influence behavior indirectly by altering the
costs and benefits associated with any particular health status. For example, the planner
could impose a uniform infection tax on all infected individuals or else give a uniform
health bonus to all uninfected individuals. These two interventions are equivalent if they
are offset by a revenue neutral, non-distortionary change in general taxation. We will
therefore concentrate on the case of a uniform tax on the infected population.

Theorem 9. The following infection tax schedule implements the first-best policy via
decentralized decision making:

T (t) ≡ −λ(t)(1− π(t))β(1− I(t)) ≥ 0 (39)

Note that λ(t), τ(t), π(t) and I(t) are evaluated along the socially optimal path.
Proof: See Appendix E �
This result has an intuitive interpretation. The quantity (1− π(t))β(1− I(t)) is the

probability that an infected individual will pass on its infection to someone else and
−λ(t) is the resulting social damage. Thus, −λ(t)(1 − π(t))β(1 − I(t)) is the expected
damage per unit of time that an infected person will cause by infecting other members of
society. This is the total effect that is internalized by imposing the tax T (t) on infected
individuals.
As noted earlier, when I(t) = 1, there are no externalities and thus the optimal tax

T (t) = 0. More interestingly, the optimal infection tax is positive only when it is optimal
to induce less than full prevention (i.e. when π(t) < 1). In practice, this is the case
whenever prevalence is above the steady state that the planner is aiming for. Thus, while
approaching the desired steady state from above, no tax is levied on infection. However,
once the steady state is reached, a positive tax on infection is imposed. The upshot of
this is that the promise of future taxes (at the appropriate level) is suffi cient to induce
socially optimal behavior on the part of the individuals.
Formally, we have that the optimal tax on infection, as a function of disease prevalence,

has the property that

T (t) = 0 if I(t) ∈ [IB, IS] ∪ [IA, 1] (40)

T (t) > 0 if I(t) /∈ [IB, IS] ∪ [IA, 1] (41)

In contrast to the case of subsidies for treatment and prevention, intervention through
an infection tax (or a health subsidy) perfectly equalizes the individuals’and the planner’s
shadow price of infection. Given the same shadow price, and facing the same costs,
the individuals and the planner will therefore choose the same levels of prevention and
treatment.
In Figure 4, we display the optimal tax for the parameterization of Example 3.18

First, note that the optimal tax is continuous for all but three points, namely the steady
states IA and IB and the Skiba point IS. The discontinuity at the Skiba point stems
from the fact that this level of disease prevalence determines the optimality of reaching

18Note that since the aggregate dynamics are deterministic, one can write the tax as depending either
on time t or on the state I(t).
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Figure 4: Tax on health status

for steady state IA versus IB. Second, along an optimal path, the tax on infection is
(weakly) decreasing in disease prevalence. To see this, recall that for I0 > IS, the optimal
path ends at steady state IA while for I0 < IS, the optimal path ends at steady state IB.
This feature stems from the fact that the total effects decrease with disease prevalence
and thus the optimal tax on infection accordingly decreases.

7.3. Choosing Between Policies. We have shown that the planner can effectively
shape individual behavior by appropriately chosen taxes or subsidies. Having said that,
the context may dictate that one scheme be chosen rather than the other. For example,
subsidies to prevention and treatment may be diffi cult to implement in some contexts.
While it is straightforward to make condoms freely available (an implicit subsidy), it
is not obvious how one would go about subsidizing their actual use (rather than their
acquisition). Treatment seems easier to subsidize in practice (as it can be administered
through the health practitioner that supplies the medicine), but optimal behavior cannot
be induced through treatment subsidies alone. On the other hand, imposing taxes on
infected individuals or awarding a health bonus to uninfected individuals may be diffi cult
to implement for political reasons, as they may be seen as unduly harsh treatment of the
already vulnerable.
We should emphasize again that the schemes we have proposed are not Pigouvian in

the usual sense. Traditionally, Pigouvian taxes are set in order to correct for the fact
that individuals do not care about the damage they may cause others. As we have shown
above, such external effects are only partly responsible for the fact that individuals make
socially undesirable decisions. The fact that individuals are negligible relative to the
size of the whole population, gives rise to the additional smallness effect. Our proposed
incentive schemes are designed to correct for both these effects.19

Last, we note that the decomposition results and the method for designing corrective

19The result that a strictly Pigouvian tax does not implement the first best, is similar in nature to
that found by Rubio and Escriche (2001). They find that the optimal Pigouvian tax (in a production
setting with market power) is neutral in the sense that it only corrects for external effects and not for
other ineffi ciencies in the economy. In this sense, our subsidy scheme takes into account the neutrality
of a purely Pigouvian tax by also incentivizing the individuals to correct for the additional risk effect, as
explained by our decomposition result.
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schemes apply to a wider range of models and not just to the SIS setting considered in
this paper.

An important issue when considering the practical implementation of policies, is the
complexity of the incentive schemes offered to individuals. The corrective incentive sched-
ules we have derived are complicated objects, because the subsidies on offer at any given
point in time are relatively complicated functions of aggregate disease prevalence I(t).
Furthermore, in the case of subsidies to prevention and treatment, these must be deter-
mined jointly (i.e. one cannot simply hold one subsidy constant and then compensate by
setting the other subsidy optimally).

In light of the complicated nature of the socially optimal incentive schemes considered
here, it may be desirable to look for simplified optimal schemes, i.e. incentive schemes
that induce the socially optimal behavior but which are simpler than the ones derived
above. For example, the fact that the scheme that we have derived offers positive subsi-
dies to prevention when the planner wants to induce zero prevention, may suggest that a
simplified scheme exists in which these subsidies are set to zero. But one must carefully
determine the effects of such an alternative scheme, as it may have unintended conse-
quences. To see this, consider the case in which the unsubsidized individual chooses
π∗(t) = 0. Suppose that with subsidy sP (t), the individual chooses the socially opti-
mal prevention level π(t) = 1. Suppose also that βφ(t)I(t) < −(cP − sP (t)). Then for
suffi ciently small function δ(t) > 0 and with the same value of φ(t), it is also the case
that βφ(t)I(t) < −(cP − s̃P (t)) where s̃P (t) ≡ sP (t)− δ(t). This would suggest that we
can replace sP (t) by s̃P (t) without affecting the decision of the individual. However, this
argument ignores the fact that by changing the function sP (t) over a finite interval of
time, we alter the trajectory of φ(t) via the state equation (which includes sP (t) > 0 over
this interval of time). In turn, this will alter the trajectories of the switching equations
and hence the trajectories of the control variables for the individual. Conversely, sup-
pose that π∗(t) = 0 and π(t) = 0. Then any subsidy s̃P (t) which satisfies the inequality
βφ(t)I(t) > −(cP − s̃P (t)) with our value of φ(t), will cause the individual to choose zero
protection. Moreover, the trajectory of φ(t) and all the other variables will be unaffected,
since the subsidy will not actually be paid. The preceding arguments suggest that our
proposed subsidy for protection is not unique over its entire range. But importantly,
they also show that the simplified scheme must be designed very carefully indeed, lest
one unintentionally induce socially suboptimal behavior.

Short of schemes that induce socially optimal behavior, it is of considerable practi-
cal interest to determine second-best corrective policies. In the terminology of Arrow
and Kurz (1969), the optimal policy may not be controllable with simple schemes, i.e.
the planner may be unable to decentralize the optimal policy via schemes that are not
complicated functions of the state variable. Having said that, it quickly becomes clear
that it is not a simple matter to characterize the second-best subsidy scheme either. A
major obstacle is the presence of multiple feasible steady states and the possibility that
ill-chosen subsidies may tip the scales in the wrong direction. To see this, consider a fixed
(non-state dependent) subsidy that reduces the individual’s costs of prevention and/or
treatment. As our analysis has made clear, it not always socially optimal to have pre-
vention and/or treatment, and thus the subsidies may lead individuals to over or under
demand prevention and/or treatment, depending on the aggregate level of disease preva-
lence. This is particularly relevant in Regime III, i.e. the case with a Skiba point in
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which small changes to initial conditions can change the end point of an optimal path. In
this case, a carelessly chosen subsidy scheme can conceivably propel the system towards
the wrong type of steady state (i.e. a low versus a high infection steady state). This pos-
sibility echoes the findings of Cohen et al. (2011), who suggest that subsidies to malaria
treatment in Kenya may have lead to significant amounts of over-treatment. This type
of finding is significant, because it is generally the case that subsidies are offered in order
to correct for a perceived under demand of treatment, and the subsidy therefore replaces
one distortion with another without necessarily offsetting it. Farzin (1996), Tahvonen
and Kuuluvainen (1993), Aronsson et al. (1998) and Rubio and Escriche (2001) consider
the welfare effects of non-optimal incentive schemes in different contexts. While the par-
ticular application naturally determines the nature of the welfare loss due to non-optimal
schemes, such schemes typically modify both transition dynamics and the resulting steady
state levels of the state variables, but do so quantitatively. In our setting, the effects can
be somewhat more dramatic, as the scheme may drive the system towards the wrong kind
of steady state and thus have qualitative effects.

8. Conclusion
In this paper, we have analyzed the economic control of an SIS type infectious disease via
behavior-based contract-reducing prevention and pharmaceutical treatment. We have
conducted our analysis under three different scenarios. First, we analyzed centralized
decision making and found that while prevention and treatment can both bring down
infection, they work in fundamentally different ways. Prevention is shown to have sta-
bilizing negative feedback effects and treatment is shown to have destabilizing positive
feedback effects. These create the potential for multiple steady states and history depen-
dence. Second, we analyzed uncontrolled decentralized decision making and found that
equilibrium outcomes generally differ from socially optimal ones. We showed that the dis-
crepancies are due to two different effects: (i) an externality effect arising from the fact
that individuals are indifferent to the well-being of others, and (ii) a smallness effect aris-
ing from the fact the individual faces a higher risk of future infection in the decentralized
environment than in the centralized environment, and hence a different expected payoff
from current decisions. Finally, we analyzed controlled decentralized decision making and
suggested two incentive schemes that decentralize the command optimum. In particular,
we derived a scheme that subsidizes prevention and treatment and a scheme that taxes
the infected (or offers a bonus to the healthy). We showed that these schemes are not
simple Pigouvian schedules, but complicated state dependent schemes that correct for
both the externality effect and the smallness effect, reflecting at each point how these
effects vary across the stages of the epidemic.
Our analysis is not simply an abstract exercise, but one that has concrete, practical

relevance to the formulation of policy. A case in point is the 2009 outbreak of swine
flu. While not an SIS type disease, the thinking at the time suggested that there was
a “treatment phase”and a “prevention phase”and that the timing of these were func-
tions of disease prevalence.20 Similarly, in dealing with the COVID-19 epidemic, the U.K.
government signalled that there were different phases in the response, such as a “contain-
ment phase”and a “mitigation phase”.21 Our analysis would suggest that such a rigid

20See Swine Flu: From Containment to Treatment, UK Department of Health (2009).
21https://www.bbc.co.uk/news/uk-51796072.
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separation is suboptimal.
We would like to mention one omission from the analysis and one avenue for further

research. Although policy formulation has taken a prominent role in our analysis, there
are some issues that we have omitted due to space considerations. These are policies that
work by changing the basic parameters of the model, such as the infectiousness of the
disease or the effectiveness of treatment in inducing recovery. We have made some initial
analysis along these lines, which is available in the Supplementary Material. The issues
involved are non-trivial and at times counter-intuitive, as can be seen in Toxvaerd (2019)
in a prevention-only model.
Another issue is the extension of our analysis to the broader class known as susceptible-

infected-recovered-susceptible (or SIRS) infections. In this class, recovered individuals
become immune to further infection for some period of time before becoming susceptible
again. It is clear that when natural immunity is lost at a suffi ciently high rate, the
SIRS model shares qualitative features with the SIS model and so many if not most of
our conclusions remain valid. But when immunity is lost only slowly, then the model is
closer to a susceptible-infected-removed model (or SIR). This model is diffi cult to analyze
formally as there are no closed form solutions even in the non-economic version. In such a
model, herd immunity is a possibility and so a planner might decide (depending on costs
and the biological parameters of the model) to forego any interventions to manage the
disease and simply let it run its course to eradication. Such an analysis will rely heavily
on simulations, but seems worthwhile.22

Next, we note that our analysis has been conducted in the context of a streamlined
model, in which other markets have been abstracted from. Elsewhere, disease dynamics
have been studied in the context of growth models, where infection influences the labor
market directly (see e.g. Goenka and Liu, 2012 and Goenka et al., 2014). While infection
and economic activity may indeed have interesting mutual effects, we have abstracted
from these and sought to focus on the direct effects that treatment and prevention have
on disease dynamics and private and social welfare and on how these instruments interact
across the stages of the epidemic.
Last, we should briefly emphasize the contrast to single instrument models. There

are several distinct benefits from studying prevention and treatment within a unified
framework. First, we can clearly identify how each instrument is useful at the different
stages of the epidemic and how the use of each instrument stabilizes or destabilizes the
system, as the case may be. Second, we can show that the two instruments are in fact
imperfect substitutes and that the degree of substitutability is itself a function of the
stage of the epidemic. This issue is masked in existing treatments, which would seem
to suggest that prevention and treatment are in fact complements. Third, our analysis
shows that when only one or other instrument is used, equilibrium paths are always of the
most rapid approach variety. This makes for particularly simple policy prescriptions. In
contrast, when both prevention and treatment are used in conjunction, optimal paths are
no longer necessarily of the most rapid approach variety, with optimal policy prescribing
only the fastest approach on end segments of optimal paths. Without the benefit of formal
analysis, these complexities would have been overlooked. These results are presented in
the Supplementary Material.

22Note that in the SIS framework, herd immunity cannot be achieved, because individuals themselves
cannot become immune to infection.
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A. Steady State Values for Centralized Setting
In this appendix, we list the different steady state values. It should be noted that for
some fractions, both the numerator and the denominator is negative under the maintained
assumptions on parameters.
The different steady states are given as follows:

Solution A: This case corresponds to τ(t) = 0 and π(t) ∈ (0, 1). The steady state
solution is then

IA ≡ ρcP
β(ω − cP )

(42)

λA ≡ cP − ω
ρ

(43)

πA ≡ cP (β − γ + ρ) + ω(γ − β)

cP (β + ρ)− βω (44)

τA ≡ 0 (45)

Solution B: This case corresponds to τ(t) = 1 and π(t) ∈ (0, 1). The steady state
solution is then

IB ≡ ρcP
β(cT + ω − cP )

(46)

λB ≡ cP − ω − cT
ρ

(47)

πB ≡ cP (β − γ + ρ− α) + (ω + cT )(α + γ − β)

cP (β + ρ)− β(ω + cT )
(48)

τB ≡ 1 (49)

Solution C: This case corresponds to τ(t) ∈ (0, 1) and π(t) ∈ (0, 1). The steady state
solution is then

IC ≡ αcP
βcT

(50)

λC ≡ −cT
α

(51)

πC ≡ 2αcP − αω + cT (γ + ρ− β)

αcP − βcT
(52)

τC ≡ αcP − αω + ρcT
αcT

(53)

Solution A0: This case corresponds to τ(t) = 0 and π(t) = 0. The steady state solution
is then

IA0 ≡
β − γ
β

(54)

λA0 ≡
−ω

β − γ + ρ
(55)

πA0 ≡ 0 (56)

τA0 ≡ 0 (57)
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Solution B0: This case corresponds to τ(t) = 1 and π(t) = 0. The steady state solution
is then

IB0 ≡
β − γ − α

β
(58)

λB0 ≡
ω + cT

α− β + γ − ρ (59)

πB0 ≡ 0 (60)

τB0 ≡ 1 (61)

Solution C0: This case corresponds to τ(t) ∈ (0, 1) and π(t) = 0. The steady state
solution is then

IC0 ≡
αω + cT (β − γ − ρ)

2βcT
(62)

λC0 ≡
−cT
α

(63)

πC0 ≡ 0 (64)

τC0 ≡
−αω + cT (β − γ + ρ)

2αcT
(65)

Based on these values, some important observations follow:

Proposition 10. (i) Steady states with positive treatment have lower disease prevalence
than steady states with no treatment, i.e. IA > IB and IA0 > IB0 . (ii) Steady states with
positive prevention have lower disease prevalence than steady states with no prevention,
i.e. IA < IA0 and IB < IB0 .

Proof: Part (i) follows from direct inspection. Part (ii) follows from the fact that the
conditions that ensure that the no prevention steady state prevalence levels are higher
than the positive prevention steady state prevalence levels, are exactly the opposite of
the conditions that must hold for prevention to be zero in the no-prevention steady states
�
These results are not trivial, since prevention and treatment both work to reduce

infection. It is therefore conceivable that the lack of one instrument is compensated for
by an increase in the other instrument to the extent that prevalence ends up at a lower
level than it otherwise would have been.
The next result follows from direct inspection of the relevant steady state prevention

levels:

Proposition 11. In the steady states with positive prevention, the no treatment steady
state involves more prevention than the full treatment steady state, i.e. πA > πB.

We can summarize the ranking of the steady state prevalence levels as follows:

IB ≤ min {IA, IB0} ≤ max {IA, IB0} ≤ IA0
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The prevalence levels IA and IB0 are not unambiguously ranked.
23 But the Hamiltonian

conditions for point B0 ensure that IA ≥ IB0 .

B. Non-Optimality of Maximal Prevention
In this appendix, we prove that an optimal path cannot involve eradication. The necessary
conditions for an optimum are given by the Hamiltonian conditions, the laws of motion
for the state and costate variables and the transversality condition

lim
t→∞

[
e−ρtHC(t)

]
= 0 (66)

The final condition comes from Michel (1983). Assume that β > γ + α and suppose
that an optimal path exists for which limt→∞ I(t) = 0. Such a path must satisfy the
above conditions. An optimal path is monotone and thus cannot bend back on itself in
(I, λ)-space, it can intersect the curve βλ(t)I(t) + cP = 0 at most a finite number of
times.24 Note that an optimal path may not intersect this curve at all. There are three
possibilities to consider:
(1) The path terminates at time t0 at a fixed point (Î , λ̂) on the curve βλ(t)I(t)+cP =

0. In this case, I(t) = Î > 0 for t ≥ t0. Thus, limt→∞ I(t) 6= 0.
(2) The final segment of the path lies above the curve βλ(t)I(t) + cP = 0. Hence, on

the final segment of the path π(t) = 0 and

İ(t) = [β(1− I(t))− γ − ατ(t)] I(t) ≥ [β(1− I(t))− γ − α] I(t) (67)

Since β > γ+α, the right-hand side is strictly positive for I(t) < β−γ−α
β

. Thus, it cannot
be the case that limt→∞ I(t) = 0.
(3) The final segment of the path lies below the curve βλ(t)I(t) + cP = 0. Since

βλ(t)I(t) < −cP < 0 and limt→∞ I(t) = 0, it must be the case that limt→∞ λ(t) = −∞.
Thus, on the final segment of the path, there must exist t1 such that αλ(t) < −cT for all
t ≥ t1. This implies that τ(t) = 1 for t ≥ t1. Since βλ(t)I(t) < −cP on the final segment,
it must also be the case that π(t) = 1 for t ≥ t1. Hence over this range we have that

İ(t) = −I(t) [γ + α] (68)

λ̇(t) = λ(t) [ρ+ γ + α] + [ω + cT − cP ] (69)

HC(t) = − [ω + cT ] I(t)− cP [1− I(t)] + λ(t)İ(t) (70)

Solving, yields

I(t) = e−(γ+α)(t−t1)I(t1) (71)

İ(t) = − [γ + α] e−(γ+α)(t−t1)I(t1) (72)

λ(t) = − [ω + cT − cP ]

[ρ+ γ + α]
+ e(ρ+γ+α)(t−t1)

(
λ(t1) +

[ω + cT − cP ]

[ρ+ γ + α]

)
(73)

23It is easy to check that IA ≥ IB0
if and only if cP ≥ ω

(
β−γ−α
β−γ−α+ρ

)
.

24Chattering is said to occur when the path oscillates forever. In a model with one state variable,
this can only occur if the path ends on either (i) a limit cycle or (ii) a convergent spiral which takes
forever to reach its sink point. In our model, there are no Hamiltonian paths which satisfy either of these
conditions and hence chattering cannot be optimal.
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Since limt→∞ λ(t) = −∞, it must be the case that

λ(t1) +
[ω + cT − cP ]

[ρ+ γ + α]
< 0 (74)

Therefore, noting that I(t) ∈ [0, 1], it follows that

lim
t→∞

[
e−ρtHC(t)

]
= lim

t→∞

[
e−ρt

(
− [ω + cT ] I(t) + cP [1− I(t)] + λ(t)İ(t)

)]
= lim

t→∞

[
e−ρtλ(t)İ(t)

]
= − lim

t→∞

[
e−ρte(ρ+γ+α)(t−t1)

(
λ(t1) +

[ω + cT − cP ]

[ρ+ γ + α]

)
(γ + α) e−(γ+α)(t−t1)I(t1)

]
= −e−ρt1

(
λ(t1) +

[ω + cT − cP ]

[ρ+ γ + α]

)
(γ + α) I(t1) > 0 (75)

This contradicts the requirement that limt→∞
[
e−ρtHC(t)

]
= 0. In conclusion, if

β > γ + α there is no optimal path for which limt→∞ I(t) = 0. This concludes the proof
�

C. The Individual’s Maximization Problem
In this appendix, we set up the individual’s optimization problem in more detail. This
problem is most naturally written as

max
τ i(t),πi(t)∈[0,1]

∫ ∞
0

e−ρtvi(t)
Tpi(t)dt (76)

s.t. ṗi(t) = Qi(t)pi(t) (77)

where
vi(t) = [ωI − τ i(t)cT , ωS − πi(t)cP ]T (78)

is the vector of state dependent utilities, pi(t) is a probability measure on the set of states
and Qi(t) is the transition rate (or intensity) matrix, given by

Qi(t) =

(
−(1− πi(t))βI(t) γ + τ i(t)α
(1− πi(t))βI(t) −γ − τ i(t)α

)
(79)

Note that the individual’s transition rate matrix Qi(t) is a function of the strategies
adopted by the individual and the population as a whole. This formulation of the indi-
vidual’s problem is analogous to that in Reluga (2009). To further analyze the individual’s
problem, it is useful to rewrite the problem as a standard optimal control problem with
a single state variable.25 First, note that at time t ≥ 0, the individual’s health status is
given by the indicator function

hi(t) =

{
1 if i ∈ I(t)
0 if i ∈ S(t)

(80)

25This can be done because there are only two health states and the state probabilities must sum to
one at all times.
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The probability that the individual is infected at instant t ≥ 0 is given by

qi(t) = E[hi(t)] (81)

Thus one may write the vector of state probabilities simply as

pi(t) = [qi(t), 1− qi(t)]T (82)

The probability qi(t), which we will take as the state variable in the individual’s control
problem, evolves according to a non-homogeneous continuous-time Markov process26

q̇i(t) = (1− qi(t))(1− πi(t))βI(t)− (γ + τ i(t)α)qi(t) (83)

The individual’s problem can then be rewritten as the following standard optimal
control problem:

max
τ i(t),πi(t)∈[0,1]

∫ ∞
0

e−ρt [qi(t) [ωI − τ i(t)cT ] + (1− qi(t)) [ωS − πi(t)cP ]] dt (84)

s.t. q̇i(t) = (1− qi(t))(1− πi(t))βI(t)− (γ + τ i(t)α)qi(t), qi(0) ∈ {0, 1} (85)

Simplifying this problem further, we obtain the following formulation in the main text.
Note that because each individual is negligible and there is no aggregate uncertainty,

each individual’s best response can be reduced to a function of time alone. This means
that the best responses of the individuals are necessarily of the open-loop variety in the
sense that each individual commits to an entire path of the personal choice variables πi(t)
and τ i(t). Note that we do not restrict the individuals to choose open-loop strategies, but
because any unilateral deviation by any player has no effect on the aggregate evolution
of disease prevalence, the optimal closed-loop (or feedback) strategy happens to be of
the open-loop variety (see Fudenberg and Tirole, 1991, chapter 4 for further discussion
of this point).

D. Steady State Values in Decentralized Setting
The different steady states are given as follows:

Solution A∗: This case corresponds to τ i(t) = 0 and πi(t) ∈ (0, 1). The steady state
solution is then

IA∗ ≡
(γ + ρ)cP
β(ω − cP )

>
ρcP

β(ω − cP )
= IA (86)

µA∗ ≡
−(ω − cP )

γ + ρ
>
−(ω − cP )

ρ
= λA (87)

πA∗ ≡
(β + ρ)cP − (β − γ)ω

cP (β + γ + ρ)− βω <
(β − γ + ρ)cP − (β − γ)ω

(β + ρ)cP − βω
= πA (88)

τA∗ ≡ 0 = τA (89)

Note that −µA∗IA∗ = −IAλA = cP
β
. Thus, if IA∗ > IA then −µA∗ < −λA. Hence

µA∗ > λA. Note that (1− πA∗)β(1− IA∗)− γ = 0 and (1− πA)β(1− IA)− γ = 0. Since

26It is non-homogeneous because infection prevalence I(t) changes over time.
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IA∗ > IA, it follows that πA∗ < πA.

Solution B∗: This case corresponds to τ i(t) = 1 and πi(t) ∈ (0, 1). The steady state
solution is then

IB∗ ≡
(α + γ + ρ)cP
β(ω + cT − cP )

>
ρcP

β(ω + cT − cP )
= IB (90)

µB∗ ≡
−(ω + cT − cP )

α + γ + ρ
>
−(ω + cT − cP )

ρ
= λB (91)

πB∗ ≡
(β + ρ) cP − (β − γ − α) (ω + cT )

(β + γ + α + ρ)cP − β(ω + cT )
(92)

<
cP (β − γ + ρ− α) + (ω + cT )(α + γ − β)

cP (β + ρ)− β(ω + cT )
= πB (93)

τB∗ ≡ 1 = τB (94)

Note that −µB∗IB∗ = −IBλB = cP
β
. Thus, if IB∗ > IB then −µB∗ < −λB. Hence

µB∗ > λB. Note that (1 − πB∗)β(1 − IB∗) − γ − α = 0 and (1 − πB)β(1 − IB) − γ = 0.
Since IB∗ > IB, it follows that πB∗ < πB.

Solution A∗0: This case corresponds to τ i(t) = 0 and πi(t) = 0. The steady state solution
is then

IA∗0 ≡
β − γ
β

= IA0 (95)

µA∗0 ≡
−ω
β + ρ

>
−ω

β − γ + ρ
= λA0 (96)

πA∗0 ≡ 0 = πA0 (97)

τA∗0 ≡ 0 = τA0 (98)

Solution B∗0 : This case corresponds to τ i(t) = 1 and πi(t) = 0. The steady state solution

is then

IB∗0 ≡
β − γ − α

β
= IB0 (99)

µB∗0 ≡
−(ω + cT )

β + ρ
>
−(ω + cT )

β − γ − α + ρ
= λB0 (100)

πB∗0 ≡ 1 = πB0 (101)

τB∗0 ≡ 0 = τB0 (102)

Solution C∗0 : This case corresponds to τ i(t) ∈ (0, 1) and πi(t) = 0. The steady state
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solution is then

IC∗0 ≡
αω − (γ + ρ)cT

βcT
>
αω + (β − γ − ρ)cT

2βcT
= IC0

27 (103)

µC∗0 ≡
−cT
α

= λC0 (104)

πC∗0 ≡ 0 = πC0 (105)

τC∗0 ≡
(β + ρ)cT − αω

αcT
<
cT (β − γ + ρ)− αω

2αcT
= τC0

28 (106)

Note that β(1 − IC∗0 ) − γ − ατC∗0 = β(1 − IC0) − γ − ατC0 = 0. Hence, if IC∗0 > IC0then
τC∗0 < τC0 .

E. Decomposition and Derivation of Incentive Schemes

We start by considering the problem faced by the maverick:
Proof: To formally derive the shadow price of the maverick, consider a situation in which,
under central direction, all individuals except for the maverick behave in the socially
optimal fashion. Denote the aggregate level of infection on the resulting optimal path
by I(t). The maverick individual evades instructions and chooses his or her own levels of
treatment τ i(t) and protection πi(t). As before, this individual takes the trajectory of
aggregate infection I(t) as given. This maverick’s objective is to solve

max
τ i(t),πi(t)∈[0,1]

∫ ∞
0

e−ρt [−qi(t) [ω + τ i(t)cT ]− (1− qi(t))πi(t)cP ] dt (107)

subject to the state equation (18). But note that in this problem, we control for optimal
aggregate infection, i.e. the path of infection is not allowed to follow its decentralized
equilibrium path.
The current-value Hamiltonian for the maverick’s problem is given by

HD
m ≡ −qi(t) (ω + τ i(t)cT )− (1− qi(t))πi(t)cP (108)

+ηi(t) [(1− qi(t))(1− πi(t))βI(t)− qi(t) (γ + τ i(t)α)] (109)

Note that in this equation, the path I(t) is the socially optimal one and thus HD
m

differs fromHD
i only because they are evaluated along different paths for aggregate disease

prevalence. Next, the costate variable for the maverick’s problem evolves according to
the differential equation

η̇i(t) = ηi(t) [ρ+ γ + ατ i(t) + (1− πi(t))βI(t)] + ω + τ i(t)cT − πi(t)cP (110)

As in the treatment of the decentralized equilibrium, symmetry allows us to drop the
subscript i on the costate and control variables. For completeness, the transversality con-
dition limt→∞ e

−ρtηi(t) = 0 holds, and the Arrow suffi ciency conditions for an individual
optimum are also satisfied �
Finally, we derive the optimal prevention and treatment subsidies:

Proof: Suppose that subsidies sP (t) and sT (t) are given for engaging in prevention and
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treatment, respectively. The individual’s objective is then to solve

max
τ i(t),πi(t)∈[0,1]

∫ ∞
0

e−ρt [−qi(t) [ω + τ i(t) [cT − sT (t)]]− (1− qi(t))πi(t) [cP − sP (t)]] dt

(111)
subject to the state equation (18). The current-value Hamiltonian now takes the form

ĤD
i ≡ −qi(t) (ω + τ i(t) [cT − sT (t)])− (1− qi(t))πi(t) [cP − sP (t)]

+φi(t) [(1− qi(t))(1− πi(t))βI(t)− qi(t) (γ + τ i(t)α)] (112)

The associated costate variable evolves according to the differential equation

φ̇i(t) = φi(t) [ρ+ γ + ατ i(t) + (1− πi(t))βI(t)]

+ω + τ i(t)(cT − sT (t))− πi(t)(cP − sP (t)) (113)

Is is straightforward to see that the Hamiltonian conditions for the planner and for the
individual coincide if

βφi(t)I(t) + (cP − sP (t)) = βλ(t)I(t) + cP (114)

and
αφi(t) + (cT − sT (t)) = αλ(t) + cT (115)

If equations (114) and (115) are satisfied, the individual and the planner will choose the
same socially optimal levels of protection and treatment.By symmetry we can drop the
subscript i, in which case these equations can be written as follows,

βφ(t)I(t) + (cP − sP (t)) = βλ(t)I(t) + cP (116)

αφ(t) + (cT − sT (t)) = αλ(t) + cT (117)

and equation (118) can be written

φ̇(t) = φ(t) [ρ+ γ + ατ(t) + (1− π(t))βI(t)]

+ω + τ(t)(cT − sT (t))− π(t)(cP − sP (t)) (118)

where π(t) and τ(t) are socially optimal. Rearranging (116) and (117) yields

sP (t) = βI(t) [φ(t)− λ(t)] (119)

sT (t) = α [φ(t)− λ(t)] (120)

Substituting in (118) yields

φ̇(t) = φ(t) [ρ+ γ + ατ(t) + (1− π(t))βI(t)]

+ω + τ(t)(cT − α [φ(t)− λ(t)])− π(t)(cP − βI(t) [φ(t)− λ(t)]) (121)

= φ(t) [ρ+ γ + βI(t)] + ω + τ(t) [cT + αλ(t)]− π(t) [cP + βI(t)λ(t)] (122)
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�
Next, we derive the optimal infection tax (or health subsidy):

Proof: Suppose a lump-sum stock tax T (t) is levied on infected individuals. An indi-
vidual’s problem is then given by

max
τ i(t),πi(t)∈[0,1]

∫ ∞
0

e−ρt [−qi(t) [ω + τ i(t)cT + T (t)]− (1− qi(t))πi(t)cP ] dt (123)

where the maximization is subject to the state equation (18). Note that this problem has
the same solution (up to a constant) as a problem with a modified objective function,
in which the tax T (t) on infected individuals is replaced by a subsidy of T (t) given to
susceptible individuals. The modified problem is given by

max
τ i(t),πi(t)∈[0,1]

∫ ∞
0

e−ρt [−qi(t) [ω + τ i(t)cT ]− (1− qi(t))πi(t)cP + (1− qi(t))T (t)] dt (124)

The current-value Hamiltonian for the former problem is given by

H̄D
i ≡ −qi(t) [ω + τ i(t)cT + T (t)]− (1− qi(t))πi(t)cP (125)

+ψi(t) [(1− qi(t))(1− πi(t))βI(t)− (γ + τ i(t)α)qi(t)] (126)

We will now investigate the conditions under which the solution to this problem and
the corresponding costate variable coincide with the optimal centralized solution.
The costate equation for the decentralized problem with a stock tax is given by

ψ̇i(t) = ψi(t) [ρ+ γ + τ i(t)α + (1− πi(t))βI(t)]

+ [ω + τ i(t)cT + T (t)− πi(t)cP ] (127)

Recall for reference that the costate equation for the centralized problem is given by

λ̇(t) = λ(t) [ρ+ γ + ατ(t) + (1− π(t))β(2I(t)− 1)]

+ [ω + τ(t)cT − π(t)cP ] (128)

Suppose that ψi(t) = λ(t) for all t and i ∈ P . The Hamiltonian conditions will then
be identical and thus we can assume that τ i(t) = τ(t) and πi(t) = π(t) for all t ≥ 0 and
i ∈ P . Therefore I(t) is the same in each equation. The decentralized equation (127) can
therefore be written as follows

λ̇(t) = λ(t) [ρ+ γ + τ(t)α + (1− π(t))βI(t)]

+ [ω + τ(t)cT + T (t)− π(t)cP ] (129)

Subtracting (128) from (129) and solving for the tax T (t) yields

T (t) = −λ(t)(1− π(t))β(1− I(t)) > 0 (130)

With this tax on the infected, there is a decentralized equilibrium path which results
in socially optimal individual decisions. Again, symmetry has allowed us to drop the
subscript i on the costate and control variables. For completeness, the transversality con-
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dition limt→∞ e
−ρtψi(t) = 0 holds, and the Arrow suffi ciency conditions for an individual

optimum are also satisfied �

F. Sufficiency of Hamiltonian Conditions in Decentralized Setting

As noted in the main text, the analysis of the centralized problem is complicated by the
fact that the Hamiltonian necessary conditions for optimality of paths are not suffi cient
conditions. In particular, neither Mangasarian’s nor Arrow’s suffi ciency conditions hold.
This stems from the convexity of the planner’s current-value Hamiltonian in the state
variable. In the decentralized setting, each individual’s current-value Hamiltonian is
linear in the state variable, which raises the hope that in this setting, the Hamiltonian
conditions are both necessary and suffi cient for optimality of paths. In this appendix, we
show that while the Mangasarian suffi ciency condition does not hold for the individual’s
problem, the condition by Arrow does. This implies that any path that satisfies the
Hamiltonian conditions is a perfect foresight equilibrium path.
In general, the current-value HamiltonianHD

i is not a jointly concave function of qi(t),
τ i(t) and πi(t). Recall that

HD
i ≡ −qi(t) [ω + τ i(t)cT ]− (1− qi(t))πi(t)cP (131)

+µi(t) [(1− qi(t))(1− πi(t))βI(t)− qi(t)(γ + τ i(t)α)] (132)

In simplified notation, we write

HD
i = −q [ω + τcT ]− (1− q)πcP (133)

+µ [(1− q)(1− π)βI(t)− q(γ + τα)] (134)

The Hessian for this function is given by

Hessian =


∂2HD

i

∂2q

∂2HD
i

∂q∂τ

∂2HD
i

∂q∂π
∂2HD

i

∂q∂τ

∂2HD
i

∂2τ

∂2HD
i

∂τ∂π
∂2HD

i

∂q∂π

∂2HD
i

∂τ∂π

∂2HD
i

∂2π

 (135)

=

 0 −(cT + αµ) cP + βI(t)µ
−(cT + αµ) 0 0
cP + βI(t)µ 0 0

 (136)

The second-order principal minors are 0, − (cP + βI(t)µ)2 and −(cT + αµ)2 respec-
tively. The conditions forHD

i to be jointly concave in q, τ and π are for the first-order and
third-order principal minors of the Hessian to be non-positive and for the second-order
principal minor to be non-negative for all combinations of q ∈ (0, 1] and τ , π ∈ [0, 1]. In
general, however, the last condition is not satisfied and thus Mangasarian’s suffi ciency
condition is not satisfied. Next, we consider Arrow’s suffi ciency condition.

F.1. Arrow’s Suffi ciency Theorem. Suppose that τ̂ and π̂ maximize the current-
value Hamiltonian HD

i (q, τ , π, µ, t). Define the maximized current-value Hamiltonian:

ĤD
i (q, µ, t) ≡ HD

i (q, τ̂ , π̂, µ, t)
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The necessary conditions for an optimal path are suffi cient if ĤD
i (q, µ, t) is a concave

function of q taking µ and t as constant. The Hamiltonian conditions for τ̂ and π̂ are as
follows:

τ̂ = 0 if αµ > −cT (137)

τ̂ ∈ [0, 1] if αµ = −cT (138)

τ̂ = 1 if αµ < −cT (139)

π̂ = 0 if βµI(t) > −cP (140)

π̂ ∈ [0, 1] if βµI(t) = −cP (141)

π̂ = 1 if βµI(t) < −cP (142)

The maximized current-value Hamiltonian is given by

ĤD
i = −q [ω + τ̂ cT ]− (1− q)π̂cP + µ [(1− q)(1− π̂)βI(t)− q(γ + τ̂α)] (143)

There are nine possible cases, depending on the values of µ and t (via its influence on
I(t)):
Case 1: αµ > −cT , βµI(t) > −cP . In this case, τ̂ = 0, π̂ = 0 and

ĤD
i (q, µ, t) = −qω + µ [(1− q)βI(t)− qγ]

Case 2: αµ > −cT , βµI(t) = −cP . In this case, τ̂ = 0, π̂ ∈ [0, 1]. The coeffi cient of
π̂ is zero and hence

ĤD
i (q, µ, t) = −qω + µ [(1− q)βI(t)− qγ]

Case 3: αµ > −cT , βµI(t) < −cP . In this case, τ̂ = 0, π̂ = 1 and

ĤD
i (q, µ, t) = −qω − (1− q)cP − µqγ (144)

Case 4: αµ = −cT , βµI(t) > −cP . In this case, τ̂ ∈ [0, 1] and π̂ = 0. The coeffi cient
of τ̂ is zero and hence

ĤD
i (q, µ, t) = −qω + µ [(1− q)βI(t)− qγ] (145)

Case 5: αµ = −cT , βµI(t) = −cP . In this case, τ̂ , π̂ ∈ [0, 1]. The coeffi cients of τ̂
and π̂ are both zero and hence

ĤD
i (q, µ, t) = −qω + µ [(1− q)βI(t)− qγ] (146)

Case 6: αµ = −cT , βµI(t) < −cP . In this case, τ̂ ∈ [0, 1] and π̂ = 1. The coeffi cient
of τ̂ is zero and hence

ĤD
i (q, µ, t) = −qω − (1− q)cP − µqγ (147)
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Case 7: αµ < −cT , βµI(t) > −cP . In this case, τ̂ = 1, π̂ = 0 and

ĤD
i (q, µ, t) = −q [ω + cT ] + µ [(1− q)βI(t)− q(γ + α)] (148)

Case 8: αµ < −cT , βµI(t) = −cP . In this case, τ̂ = 1, π̂ ∈ [0, 1]. The coeffi cient of
π̂ is zero and hence

ĤD
i (q, µ, t) = −q [ω + cT ] + µ [(1− q)βI(t)− q(γ + α)] (149)

Case 9: αµ < −cT , βµI(t) < −cP . In this case, τ̂ = 1, π̂ = 1 and

ĤD
i (q, µ, t) = −q [ω + cT ]− (1− q)cP − µq(γ + α) (150)

In every case, ĤD
i (q, µ, t) is linear in the state q and hence concave in q (holding µ

and t constant). Thus Arrow’s suffi ciency condition is satisfied.
For completeness, it would be noted that analogous arguments hold also for the con-

trolled decentralized setting (i.e. with either subsidies or taxes) and thus the paths
described there also constitute decentralized equilibria.
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Abstract. In Section 1, we present the parameter restrictions for the
different steady states to be feasible. In Section 2, we prove the existence of an
optimal solution. In Section 3, we analyze the dynamics around the fully interior
steady states, characterize spiral sources and prove that spiraling is non-optimal. In
Section 4 we outline the model with imperfect protection. In Section 5, we discuss
the issues of substitutes and complements, most rapid approach paths and speeds of
convergence. In Section 6, we present results on comparative dynamics and welfare.
In Section 7, we analyze the local stability of equilibrium steady states. In Section
8, we offer additional characterization of the maverick’s problem. In Section 9, we
verify the non-suffi ciency of the Hamiltonian conditions for the planner’s problem.
In Section 10, we set out a model of optimal quarantines.

1. Parameter Restrictions for Steady States in Centralized Setting
Throughout this paper, we have maintained the assumption that ω− cP > 0 and β− γ−
α > 0. In this appendix, we list additional assumptions that ensure that the different
fixed points are feasible.

1.1. Fixed Point A. For this steady state to be feasible, we need the following ad-
ditional restrictions:

• For I(t) ∈ (0, 1) need cP <
βω
ρ+β
.

• For λ(t) < 0 need cP < ω.

• For π(t) ∈ (0, 1) need cP < ω.

• For τ(t) = 0 need cP > ω − cT
(
ρ
α

)
.

1.2. Fixed Point B. For this steady state to be feasible, we need the following
additional restrictions:

• For I(t) ∈ (0, 1) need cP <
β(ω+cT )
ρ+β

.

• For λ(t) < 0 need cP < ω + cT .

• For π(t) ∈ (0, 1) need cP <
(

β−α−γ
β−α−γ+ρ

)
(ω + cT ).

• For τ(t) = 1 need cP < ω + cT
(
α−ρ
α

)
.
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1.3. Fixed Point C. For this steady state to be feasible, we need the following
additional restrictions:

• For I(t) ∈ (0, 1) need cP <
βcT
α
.

• For λ(t) < 0, no extra restriction.

• For π(t) ∈ (0, 1) need cP < min
{
ω
2

+ cT
(
β−γ−ρ
2α

)
, βcT
α

}
.

• For τ(t) ∈ (0, 1) need cP ∈ (ω − cT
(
ρ
α

)
, ω + cT

(
α−ρ
α

)
).

1.4. Fixed Point A0. For this steady state to be feasible, we need the following
additional restrictions:

• For I(t) ∈ (0, 1) need β > γ.

• For λ(t) < 0 need β > γ − ρ.

• For π(t) = 0 need cP >
ω(β−γ)
β−γ+ρ .

• For τ(t) = 0 need cT > αω
β−γ+ρ .

1.5. Fixed Point B0. For this steady state to be feasible, we need the following
additional restrictions:

• For I(t) ∈ (0, 1), no extra restriction.

• For λ(t) < 0, no extra restriction.

• For π(t) = 0 need cP >
(ω+cT )(β−γ−α)

β−γ+ρ−α .

• For τ(t) = 1 need cT < αω
β−γ+ρ−2α .

1.6. Fixed Point C0. For this steady state to be feasible, we need the following
additional restrictions:

• For I(t) ∈ (0, 1), need cT ∈ ( αω
β+γ+ρ

, αω
γ+ρ−β ).

• For λ(t) < 0, no extra restriction.

• For π(t) = 0 need cP >
αω+cT (β−γ−ρ)

2α
.

• For τ(t) ∈ (0, 1) need cT ∈ ( αω
β−γ+ρ ,

αω
β−γ+ρ−2α).
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2. Existence of an Optimal Solution
In this appendix, we prove that the planner’s problem admits an optimal solution. The
formal result is as follows:

Theorem 1. An optimal solution (I∗(t), τ ∗(t), π∗(t)) exists if at least one of the fixed
points A,B,A0, B0 (to be specified below) is feasible.

Proof: The existence proof proceeds in two steps. In Step 1, we consider finite horizon
versions of the model and show that in these, an optimal solution exists. In Step 2, we
show by contradiction that because optimal solutions exists for all finite horizons, an
optimal solution must also exist for the infinite horizon version.
Step 1: Consider a finite horizon version of the model in which t ∈ [0, T ], with T <∞.
Define the set

N(I, U, t) ≡
{
e−ρt (−ωI − cP (1− I)π − cT Iτ) + ξ, I (β(1− I)(1− π)− γ − ατ) : (τ , π) ∈ U

}
(1)

where ξ ≤ 0 is some constant and U = [0, 1]× [0, 1] is the space of feasible control pairs.
Consider two points y1, y2 ∈ N(I, U, t) given by

y1 ≡
{
e−ρt (−ωI − cP (1− I)π1 − cT Iτ 1) + ξ1, I (β(1− I)(1− π1)− γ − ατ 1)

}
(2)

y2 ≡
{
e−ρt (−ωI − cP (1− I)π2 − cT Iτ 2) + ξ2, I (β(1− I)(1− π2)− γ − ατ 2)

}
(3)

Let ϕ ∈ [0, 1] and let y3 ≡ ϕy1 + (1− ϕ)y2. We will prove that y3 ∈ N(I, U, t) and thus
that the set N(I, U, t) is convex. Let ϕy1 + (1−ϕ)y2 = (z1, z2). Taking the first element,
we have that

z1 = ϕ
[
e−ρt (−ωI − cP (1− I)π1 − cT Iτ 1) + ξ1

]
+(1− ϕ)

[
e−ρt (−ωI − cP (1− I)π2 − cT Iτ 2) + ξ2

]
(4)

= e−ρt (−ωI − cP (1− I)π3 − cT Iτ 3) + ξ3 (5)

where τ 3 ≡ ϕτ 1 + (1− ϕ)τ 2, π3 ≡ ϕπτ 1 + (1− ϕ)π2 and ξ3 ≡ ϕξ1 + (1− ϕ)ξ2 ≤ 0.
Similarly, taking the second element we have that

z2 = ϕ [I (β(1− I)(1− π1)− γ − ατ 1)]
+(1− ϕ) [I (β(1− I)(1− π2)− γ − ατ 2)] (6)

= I [β(1− I)(1− π3)− γ − ατ 3] (7)

We can now conclude that: (i) there exist an admissible triple (I(t), τ(t), π(t)); (ii)
the set N(I, U, t) is convex for each (I(t), t); (iii) the set U is closed and bounded; (iv)
there exists a bound b = 1 such that ‖I(t)‖ < b for all t ≥ 0 and admissible triples
(I(t), τ(t), π(t)). By the Filippov-Cesari Theorem, we can then conclude that an optimal
solution (I∗(t), τ ∗(t), π∗(t)) exists and the optimal policy (τ ∗(t), π∗(t)) is measurable. See
Seierstad and Sydsaeter (1987) for details.
Step 2: We will consider the case in which the relevant steady states are (A,B). The
case (A0, B0) follows similar steps. In the finite horizon version of our problem, we impose
no condition on the terminal value I(T ). This implies that the relevant transversality
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Figure 1: Paths in finite horizon model around point A.

condition is λ(T ) = 0. As we have shown, this problem has an optimal solution. More-
over, if T is large enough, there are at at most two candidates for an optimum. Each path
satisfies the necessary conditions for optimality, including the aforementioned transver-
sality condition. Of these two candidate optimal paths, one goes to solution A as in the
infinite horizon case but then at time t = T − TA , peels off along the unstable branch to
increase monotonically, reaching λ(t) = 0 at time t = T . The other path goes to solution
B as in the infinite horizon case, but then at time t = T −TB, peels off along the unstable
branch to increase monotonically, reaching λ(t) = 0 at time t = T . Note that the times
TA and TB are fixed.

In Figure 1, we illustrate the idea by plotting optimal paths around the point A. The
parameters are the same as those in Example 1. The optimal paths from initial condition
I0 = 0.5 and different horizons T are represented by dashed curves. Note that the light
paths reach the λ(T ) = 0 line faster than the heavy dashed path that goes through point
A, since the latter stays at point A until time t = T − TA regardless of how long it took
that path to reach point A. In contrast, the light dashed paths do not rest at any point
until they reach their destination. For all horizons T ≥ 46.3, the optimal path reaches
point A before making the transition to the λ(T ) = 0 line, while for horizons T < 46.3,
the point A is not reached along an optimal path. While we have shown only a case
where I0 > IA, similar analysis applies for the case I0 < IA. Similar analysis also applies
for optimal finite horizon paths in the vicinity of the other steady states.

From the point A, there is a unique path satisfying the Hamiltonian conditions and
starting from (I(0), λ(0)) = (IA, λA) and is such that λ(TA) = 0 for some TA > 0. The
time TA is unique. Denote the value of the integral along this path as follows:

WA ≡
∫ TA

0

e−ρt [I(t) [ωI − cT τ(t)] + (1− I(t)) [ωS − cPπ(t)]] dt (8)
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From the point B, there is similarly a unique path satisfying the Hamiltonian conditions
and starting from (I(0), λ(0)) = (IB, λB) and is such that λ(TB) = 0 for some TB > 0.
The time TB is unique. Denote the value of the integral along this path as follows:

WB ≡
∫ TB

0

e−ρt [I(t) [ωI − cT τ(t)] + (1− I(t)) [ωS − cPπ(t)]] dt (9)

From now on, we shall consider only paths that begin at I(0) = I0. Let

V T
A ≡

∫ T

0

e−ρt [I(t) [ωI − cT τ(t)] + (1− I(t)) [ωS − cPπ(t)]] dt (10)

where the integral is evaluated along the Hamiltonian path and terminates at point A at
time T . Also, let

V T
B ≡

∫ T

0

e−ρt [I(t) [ωI − cT τ(t)] + (1− I(t)) [ωS − cPπ(t)]] dt (11)

where the integral is evaluated along the Hamiltonian path and terminates at point B at
time T .
Finally, let

XT
A ≡

∫ T

0

e−ρt [I(t) [ωI − cT τ(t)] + (1− I(t)) [ωS − cPπ(t)]] dt (12)

where the integral is evaluated along the Hamiltonian path that goes to point A and sits

there until time t = T − TA and then peels off to reach λ(t) = 0 at time t = T . Also, let

XT
B ≡

∫ T

0

e−ρt [I(t) [ωI − cT τ(t)] + (1− I(t)) [ωS − cPπ(t)]] dt (13)

where the integral is evaluated along the Hamiltonian path that goes to point B and sits

there until time t = T − TB and then peels off to reach λ(t) = 0 at time t = T .
It is clear that

XT
A = V T−TA

A + e−ρ(T−TA)WA (14)

XT
B = V T−TB

B + e−ρ(T−TB)WB (15)

Suppose without loss of generality that in the infinite horizon case, it is better to go
to point B and stay there than to go to point A and stay there. Then

lim
T→∞

V T−TB
B = V ∞B > V ∞A = lim

T→∞
V T−TA
A (16)

From the above equations, it then follows that

lim
T→∞

XT
B > lim

T→∞
XT
A (17)
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Thus, in the finite horizon case, it is optimal for large T to go to point B and then peel
off at time t = T − TB.
Suppose there is no optimal path in the infinite horizon case. Then there is some path

starting from I(0) = I0 for which the value of the integral is greater than V ∞B . Let

ZT ≡
∫ T

0

e−ρt [I(t) [ωI − cT τ(t)] + (1− I(t)) [ωS − cPπ(t)]] dt (18)

where the integral is evaluated along this alternative path.
By assumption,

lim
T→∞

ZT = Z∞ > V ∞B = lim
T→∞

V T
B (19)

This implies that there exist T
∗
, T ∗, ε > 0 such that for all T > T

∗
and T > T ∗, the

inequality ZT > V T
B + ε holds. Hence, for T > max

{
T
∗

+ TB, T
∗
}
, it follows that

ZT > V T−TB
B + ε (20)

Now, for suffi ciently large T , ε > e−ρ(T−TB)WB and hence

ZT > V T−TB
B + e−ρ(T−TB)WB = XT

B (21)

But this is not possible, since XT
B is optimal. This contradiction establishes that there

must be an optimal solution to the infinite horizon problem. This concludes the proof �

3. Analysis of Interior Solutions
In this appendix, we formally analyze the optimality properties and dynamic behavior
around interior steady states. We do so through a sequence of different results.

3.1. Non-Optimality of Points C and C0. Next, we will show the following result:

Proposition 2. No optimal path converges to either C or C0.

To formally establish the non-optimality of the interior points C and C0, we first
prove a useful relationship between the value function and the Hamiltonian. This part
of the proof is related to a result by Mäler et al. (2003), but theirs applies only to fully
interior controls and we must therefore make suitable changes and exploit that controls
are constant almost everywhere along optimal paths.1

Lemma 3. ρV (I0) = HC(I0, τ(0), π(0), λ(0)).

Proof: Consider a path which starts from the point I(0) = I0, for which the control vari-
ables τ(t) and π(t) are piecewise continuous and which satisfies the first order Hamiltonian
conditions. For any path that satisfies these conditions together with the transversality
condition and the laws of motion for state and costate variables, the following are true:
(1) Suppose that

− [cT + αλ(t)] I(t) < 0 (22)

1We have an alternative proof of the non-optimality of the interior points, but the present derivation
is more elegant.
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Then τ(t) = 0 is optimal. Since λ(t) and I(t) are continuous along the path in question,
it follows that

− [cT + αλ(t+ ε)] I(t+ ε) < 0 (23)

for suffi ciently small ε > 0 and hence τ(t+ε) = 0. Thus, dτ(t)/dt = 0 at time t. Likewise,
dτ(t)/dt = 0 if

− [cT + αλ(t)] I(t) > 0 (24)

which makes τ(t) = 1 optimal. Finally, if

[cT + αλ(t)] I(t) = 0 (25)

then the Hamiltonian is independent of the treatment rate and therefore ∂HC/∂τ(t) = 0.
Thus, it is always the case that

∂HC

∂τ(t)

dτ(t)

dt
= 0 (26)

(2) Suppose
− [cP + βλ(t)I(t)] (1− I(t)) < 0 (27)

Then π(t) = 0 is optimal. Since λ(t) and I(t) are continuous along the path in question,
it follows that

− [cP + βλ(t+ ε)I(t+ ε)] (1− I(t+ ε)) < 0 (28)

for suffi ciently small ε and hence π(t + ε) = 0. Thus, dτ(t)/dt = 0 at time t. Likewise,
dτ(t)/dt = 0 if

− [cP + βλ(t+ ε)I(t+ ε)] (1− I(t+ ε)) > 0 (29)

which makes π(t) = 1 optimal. Finally, if

[cP + βλ(t)I(t)] (1− I(t)) = 0 (30)

then the Hamiltonian is independent of the prevention rate and therefore ∂HC/∂π(t) = 0.
Thus, it is always the case that

∂HC

∂π(t)

dπ(t)

dt
= 0 (31)

The current-value Hamiltonian HC is a function of I(t), λ(t), τ(t) and π(t). Hence totally
differentiating the current-value Hamiltonian yields

dHC

dt
=

∂HC

∂I(t)

dI(t)

dt
+
∂HC

∂λ(t)

dλ(t)

dt
+
∂HC

∂τ(t)

dτ(t)

dt
+
∂HC

∂π(t)

dπ(t)

dt
(32)

=
∂HC

∂I(t)

dI(t)

dt
+
dI(t)

dt

(
ρλ(t)− ∂HC

∂I(t)

)
+
∂HC

∂τ(t)

dτ(t)

dt
+
∂HC

∂π(t)

dπ(t)

dt
(33)

= ρλ(t)
dI(t)

dt
(34)
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where we have used that

İ(t) =
∂HC

∂λ(t)
(35)

λ̇(t) = ρλ(t)− ∂HC

∂I(t)
(36)

Next, we have that

d(e−ρtHC)

dt
= ρe−ρt

[
−HC + λ(t)

dI(t)

dt

]
(37)

= ρe−ρt [ωI(t) + cPπ(t)(1− I(t)) + cT τ(t)I(t)] (38)

Since the transversality condition limt→∞ e
−ρtHC(t) = 0 must hold, it follows that∫ ∞

0

[
d(e−ρtHC)

dt

]
dt = lim

t→∞
e−ρtHC(t)−HC(0) = −HC(0) (39)

Thus

HC(x0, u(0), λ(0)) = −
∫ ∞
0

[
d(e−ρtHC)

dt

]
dt (40)

= −ρ
∫ ∞
0

e−ρt (ωI(t) + cPπ(t)(1− I(t)) + cT τ(t)I(t)) dt (41)

= ρV (I0) (42)

Hence
ρV (I0) = HC(I0, τ(0), π(0), λ(0)) (43)

This completes the proof �

We now turn to the proof of the non-optimality of the interior solutions. Suppose
there is a path that starts at I(0) = IC and has

λ(0) = λ∗C > λC =
−cT
α

(44)

and hence βλ∗CIC > βλCIC = −cP . The first inequality implies that τ(t) = 0 is optimal
and the second implies that π(t) = 0 is optimal. Equation (43) implies that value of the
integral for the stationary path that remains at IC is given by

ρVC = −ω − cPπC(1− IC)− cT τCIC + λCIC [(1− πC)β(1− IC)− γ − ατC ] (45)

= −ω + λCIC [β(1− IC)− γ] (46)

The value of the integral along the alternative path is found by setting I(0) = IC , λ(0) =
λ∗C , τ(0) = 0 and π(0) = 0. Using (43), this yields the following expression for the integral
along this path:

ρV ∗ = −ω + λ∗CIC [β(1− IC)− γ] (47)
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By subtraction,
ρ(V ∗ − VC) = (λ∗C − λC)IC [β(1− IC)− γ] (48)

Note that İ(t) = 0 if I(t) = IC , τ(t) = τC , π(t) = πC . Hence

İ(t) = IC [(1− πC)β(1− IC)− γ − τCα] = 0 (49)

Since IC , τC , πC > 0, if follows that

IC [β(1− IC)− γ] > IC [(1− πC)β(1− IC)− γ − τCα] = 0 (50)

Since λ∗C > λC , it follows that V ∗ > VC . Thus it is better to choose the alternative path
than to remain at C. These arguments also apply to the point C0. This concludes the
proof �

3.2. Optimal Paths, Spiral Sources and Limit Cycles. Although the interior
points C and C0 cannot be end points of optimal paths, it is necessary to consider the
behavior of paths starting at these points. Our simulations show that such paths may be
spirals, but formally showing that this is the case is complicated by the fact that standard
results for the local behavior around such points do not apply to our problem. This is
due to the discontinuities in the optimal policies in steady state. In characterizing the
candidate solutions for optimal paths, there is a further potential complication, namely
the possibility that the paths close to the interior steady states constitute limit cycles
(i.e. closed orbits around the interior point). We will now show two results. First, we
show that the interior solutions are indeed spiral sources, i.e. exploding spirals. We prove
this result by appealing to a theorem due to Wagener (2003), which excludes limit cycles.
We then extend his reasoning to exclude that the interior points are spiral sinks. By
implication, the points must be spiral sources. Second, having established the spiraling
nature of paths originating at the interior solutions, we characterize the candidate optimal
paths.

Proposition 4. The points C and C0 are clock-wise spiral sources.

Proof: The proof is in two parts. First, we prove that the movement around the interior
solutions is characterized by clock-wise rotation. Second, we show that the movement is
necessarily an exploding spiral.

Rotation Around Interior Solutions. We now prove that the movement around
the interior points is a clock-wise rotation. Suppose that the interior stationary solution
is C. The diagram in Figure 2 shows a linearized segment of a path in the vicinity of C
and the angles θi, i = 1, ..., 5. We shall now show that

900 > θ1, θ3, θ4, θ5 > 0 (51)

1800 > θ2 > 0 (52)

900 > θ1 − θ5, θ5 − θ3, θ4 − θ5 > 0 (53)

1800 > θ2 − θ5 > 0 (54)
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Figure 2: Rotation around interior solution C with linearized system.
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Let ti = tan θi. Then it follows that

ti =
λ̇(t)

İ(t)
(55)

For i = 1, ..., 4, the rates of change İ(t) and λ̇(t) are calculated by choosing the appropriate
values of τ(t) and π(t) and inserting the equilibrium values IC and λC into the laws of
motion for the state and costate variables, i.e.

İ(t) = I(t) [(1− π(t))β(1− I(t))− γ − ατ(t)] (56)

λ̇(t) = λ(t) [ρ+ γ + ατ(t) + (1− π(t))β(2I(t)− 1)] + [ω − π(t)cP + τ(t)cT ] (57)

We now proceed to consider each angle in turn:

Angle θ1: τ(t) = 1, π(t) = 1. This yields the laws of motions

İ(t) = IC [−γ − α] (58)

= −αcP
βcT

(γ + α) < 0 (59)

λ̇(t) = λC [ρ+ γ + α] + [ω − cP + cT ] (60)

= −cT
α

(ρ+ γ) + (ω − cP ) < 0 if C is allowable (61)

and hence

t1 =
λ̇(t)

İ(t)
(62)

=
cT
α

(ρ+ γ)− (ω − cP )
αcP
βcT

(γ + α)
> 0 (63)

Thus, 900 > θ1 > 0.

Angle θ2: τ(t) = 1, π(t) = 0. This yields the laws of motion

İ(t) = IC [β(1− IC)− γ − α] (64)

=
αcP
βcT

[
β

(
1− αcP

βcT

)
− γ − α

]
(65)

λ̇(t) = λC [ρ+ γ + α + β(2IC − 1)] + [ω + cT ] (66)

= −cT
α

[ρ+ γ − β] + [ω − 2cP ] > 0 if C is allowable (67)

and hence
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t2 =
λ̇(t)

İ(t)
(68)

=
− cT

α
[ρ+ γ − β] + [ω − 2cP ]

αcP
βcT

[
β
(

1− αcP
βcT

)
− γ − α

] (69)

Since λ̇(t) > 0, it follows that 1800 > θ2 > 0.
Angle θ3: τ(t) = 0, π(t) = 0. This yields the law of motion for prevalence as

İ(t) = IC [β(1− IC)− γ] (70)

=
αcP
βcT

[
β

(
1− αcP

βcT

)
− γ
]
> 0 since IC < IA0 =

β − γ
β

(71)

Note that I(t) converges to β−γ
β
if there is no treatment or protection. Since there is

some treatment and some protection at C, it must be the case that IC <
β−γ
β
. The law

of motion for the multiplier is given by

λ̇(t) = −cT
α

[ρ+ γ − β] + [ω − 2cP ] > 0 if C is allowable (72)

and thus it follows that

t3 =
λ̇(t)

İ(t)
(73)

=
− cT

α
[ρ+ γ − β] + [ω − 2cP ]

αcP
βcT

[
β
(

1− αcP
βcT

)
− γ
] > 0 (74)

Thus, 900 > θ3 > 0.
Angle θ4: τ(t) = 0, π(t) = 1. This yields the laws of motion

İ(t) = −γIC (75)

= −γαcP
βcT

< 0 (76)

λ̇(t) = λC [ρ+ γ] + [ω − cP ] (77)

= −cT
α

[ρ+ γ] + [ω − cP ] < 0 if C is allowable (78)

t4 =
λ̇(t)

İ(t)
(79)

=
cT
α

[ρ+ γ]− [ω − cP ]

γ αcP
βcT

> 0 (80)
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Thus, 900 > θ4 > 0.

To find t5, note that the curve with this slope satisfies the equation βλ(t)I(t) = −cP and
hence at C,

t5 =
dλ(t)

dI(t)
(81)

=
cP

β (IC)2
(82)

=
cP

β
(
αcP
βcT

)2 (83)

=
β

cP

(cT
α

)2
> 0 (84)

Thus, 900 > θ5 > 0.

Angle θ1 − θ5:

J (t1 − t5) =
cT
α

(ρ+ γ)− (ω − cP )− β

cP

(cT
α

)2 cPα
βcT

(γ + α) (85)

=
cT
α

(ρ+ γ)− (ω − cP )− cT
α

(γ + α) (86)

=
cT
α
ρ− (ω + cT − cP ) < 0 if C exists (87)

where
J ≡ αcP

βcT
(γ + α) > 0 (88)

Thus 900 > θ5 − θ1 > 0.

Angle θ2 − θ5:

K(t2 − t5) = −cT
α

[ρ+ γ − β] + [ω − 2cP ]− cT
α

[
β

(
1− cPα

βcT

)
− γ − α

]
(89)

= −cT
α

[ρ− α] + [ω − cP ] > −cT
α

[ρ− α] + ρ
cT
α
− cT = 0 if C exists(90)

where

K ≡ αcP
βcT

[
β

(
1− αcP

βcT

)
− γ − α

]
(91)

Thus, 1800 > θ2 − θ5 > 0.

Angle θ3 − θ5:

L(t3 − t5) = −cT
α

[ρ+ γ − β] + [ω − 2cP ]− cT
α

[
β

(
1− cPα

βcT

)
− γ
]

(92)

= −cT
α
ρ+ [ω − cP ] < 0 if C exists (93)
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where

L ≡ αcP
βcT

[
β

(
1− αcP

βcT

)
− γ
]
> 0 (94)

Thus, 900 > θ5 − θ3 > 0.

Angle θ4 − θ5:
t4 − t5 =

cT
α

[ρ+ γ]− [ω − cP ]

γ αcP
βcT

− β

cP

(cT
α

)2
(95)

M(t4 − t5) =
cT
α

[ρ+ γ]− [ω − cP ]− cT
α
γ (96)

=
cT
α
ρ− [ω − cP ] > 0 if C exists (97)

where
M ≡ γ

αcP
βcT

> 0 (98)

Thus, 900 > θ4 − θ5 > 0.

This establishes the inequalities we wished to show. There is therefore a clockwise rotation
around C. The diagram refers to the case in which 900 > θ2. The diagram is slightly
different if 1800 > θ2 > 0, but there is still a clockwise rotation around C.

Next, suppose the interior stationary solution is C0. Then in the region of this point,
there is no prevention and the local dynamics are the same as in the treatment-only model
examined by Rowthorn (2006), who showed that there is a clockwise rotation around the
interior stationary solution. This concludes the first part of the proof �

Points C and C0 are Spiral Sources. We now prove that the rotations around
the interior points C and C0 are necessarily exploding spirals. First, consider paths
(τ(t), π(t)) that maximize the planner’s problem. Then the resulting system

İ(t) = I(t) [(1− π(t))β(1− I(t))− γ − τ(t)α] (99)

λ̇(t) = λ(t) [ρ+ γ + ατ(t) + β(2I(t)(1− π(t)) + π(t)− 1)]

+ [ω + τ(t)cT − π(t)cP ] (100)

evaluated along these paths, cannot display limit cycles. This was shown by Wagener
(2003) and his argument is as follows. In (I(t), λ(t))-space, consider the vector field

F ≡
(
∂HC

∂λ(t)
, ρλ(t)− ∂HC

∂I(t)

)
(101)

Let Φt denote the flow mapping of the system (99)-(100). Then for some initial conditions
(I(0), λ(0)), we have Φt(I(0), λ(0)) = (I(t), λ(t)), where (I(t), λ(t)) is a solution to the
system for the given initial conditions. Next, consider a set of initial conditions Λ(0).
Then Φt maps this set into a new set Λ(t) as follows:

Λ(t) = {(I(t), λ(t)) : (I(t), λ(t)) = Φt(I(0), λ(0)) for some (I(0), λ(0)) ∈ Λ(0)} (102)
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Figure 3: Rotation around point C when it is a spiral sink.
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Figure 4: Rotation around point C when it is a spiral source.
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The last step is to note2 that

dAreaΛ(t)

dt
|t=0 = ρAreaΛ(0) > 0 (103)

In other words, if we start by considering a set of initial conditions Λ(0) with strictly pos-
itive area, then the invariant region delineated by the system must be strictly increasing
over time. But this rules out limit cycles, as they would imply the existence of a bounded
invariant region.
Next, we consider the possibility that the interior points are sinks. Figure 3 illustrates

a segment of the trajectory around C when the point is a spiral sink. Let Λ(0) be the
closed set enclosed by the line M0M1M2M3M4 together with the line segment M4M0. As
can be seen from the figure, the initial direction of movement of every point in the set
Λ(0) is into this set, either along the boundary or into the interior. Thus

dAreaΛ(t)

dt
|t=0 ≤ 0 (104)

However, we have already seen that

dAreaΛ(t)

dt
|t=0 = ρAreaΛ(0) > 0 (105)

This contradiction establishes that the point C cannot be a spiral sink. Thus, the
point C must be a spiral source (with clock-wise rotation), as illustrated in Figure 4. A
similar argument holds for point C0. This concludes the second part of the proof �

3.3. Non-Optimality of Spiraling. Next, we turn to the optimal paths starting at
interior points. As discussed earlier and emphasized by the fact that the interior points
are spiral sources, the Hamiltonian conditions do not pin down candidate optimal paths
uniquely. It turns out that there is a simple way to determine these from a given spiraling
path, as the next result shows:

Proposition 5. A candidate optimal path starting at the prevalence levels associated
with points C or C0 is the highest or lowest monotone segment of the spiral.

Proof: Suppose that the interior fixed point C is feasible and consider two paths which
satisfy the Hamiltonian conditions and start directly above C at the points (IC , λ

∗
C) and

(IC , λ
∗∗
C ). Suppose λ∗∗C > λ∗C . Initially both paths satisfy the inequalities βλ(0)I(0) > −cP

and λ(0) > −cT/α, and thus in each case π(0) = τ(0) = 0. The integral along these paths
satisfy the following equations:

ρV ∗ = HC∗ = −ω + λ∗CIC [β(1− IC)− γ] (106)

ρV ∗∗ = HC∗ = −ω + λ∗∗C IC [β(1− IC)− γ] (107)

Thus,
ρ(V ∗∗ − V ∗) = (λ∗∗C − λ∗C)IC [β(1− IC)− γ] > 0 (108)

2See Wagener (2003) for details.
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Hence, the path with the higher initial value λ(t) is better. In the case of a spiral around
the point C in (I(t), λ(t))-space, this means that it is best to choose the outermost
path. This has been shown for paths that begin above the point C. A similar argument
applies to paths that start below C. The rule is always choose an outermost path. These
arguments also apply to the point C0 �

Since we know that optimal paths may form part of an explosive spiral, this result is
of direct practical importance.
In our simulations, we have identified the following interesting pattern. In Regime

II, where one steady state dominates the other steady state for all initial conditions, the
candidate optimal path to one steady state forms part of a spiral, whereas the candidate
optimal path to the other does not. In both scenarios, the non-spiraling path turns out
to be the optimal one. In Regime III, i.e. the case in which there is a Skiba point, paths
to both steady states form parts of nested spirals emanating from a common source.
Wagener (2003) and Mäler et al. (2003) show that if there are two nested spirals that
lead to distinct equilibrium points, then there exists a unique Skiba point, which is also
what we find in simulations. Of course, this does not a priori mean that if there is only one
spiraling path, then there is necessarily not a Skiba point. While we have not attempted
a formal analysis of these observations in our setting, these seem worthwhile pursuing in
future work.3

To conclude, we have found that the fixed points (A,B,A0, B0) are saddle points (if
feasible), while the fixed points (C,C0) are spiral sources.

4. Imperfect Prevention

In this appendix, we consider the effects of imperfect prevention on the steady states and
dynamics of the system. Assume that for some δ ∈ [0, 1], the infection rate is given by

I(t)(1− (1− δ)π(t))β (109)

In this formulation, given the infection level I(t), preventive effort π(t) is subject to a
failure rate δ. The infection rate can be brought down no further than to the level I(t)δβ.
The Hamiltonian conditions for treatment are unchanged and thus given by

τ(t) = 0 if αλ(t) > −cT (110)

τ(t) ∈ [0, 1] if αλ(t) = −cT (111)

τ(t) = 1 if αλ(t) < −cT (112)

In turn, optimal prevention is given by the modified bang-bang solution

π(t) = 0 if (1− δ)βλ(t)I(t) > −cP (113)

π(t) ∈ [0, 1] if (1− δ)βλ(t)I(t) = −cP (114)

π(t) = 1 if (1− δ)βλ(t)I(t) < −cP (115)

3Note however that when there are two spiraling paths to the high and low infection steady states
respectively, then the results of Wagener (2003) and Mäler et al. (2003) apply and there exists a unique
Skiba point. This observation formally confirms a similar point made by Goldman and Lightwood (2002).
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The dynamics change to

İ(t) = I(t) [(1− (1− δ)π(t)β(1− I(t))− γ − τ(t)α] (116)

λ̇(t) = λ(t) [ρ+ γ + ατ(t) + β(2I(t)− 1)(1− (1− δ)π(t))]

+ [ω + τ(t)cT − π(t)cP ] (117)

The steady state prevalence values for points Aδ, Bδ, Cδ, Aδ0, B
δ
0, C

δ
0 , A

δ
1, B

δ
1, C

δ
1 are

as follows:

IAδ ≡
ρcP

β((1− δ)ω − cP )
> IA (118)

IBδ ≡
ρcP

β((1− δ)(cT + ω)− cP )
> IB (119)

ICδ ≡
αcP

βcT (1− δ) > IC (120)

IAδ0 ≡
β − γ
β

= IA0 (121)

IBδ0 ≡
β − γ − α

β
= IB0 (122)

ICδ0 ≡
αω + cT (β − γ − ρ)

2βcT
= IC0 (123)

IAδ1 ≡
βδ − γ
βδ

< IAδ0 = IA0 (124)

IBδ1 ≡
βδ − γ − α

βδ
< IBδ0 = IB0 (125)

ICδ1 ≡
αω − αcP + cT (βδ − γ − ρ)

2βδcT
> ICδ0 = IC0 (126)

A subscript 1 denotes that prevention is set at its maximal possible level. Note that com-
pared to the levels under perfect prevention, all the relevant steady state prevalence levels
are unchanged when no prevention is used, higher when an interior level of prevention is
used and lower when full prevention is used.4

For the purpose of the non-eradication result, there are two sub-cases of particular
interest. First, consider a solution with π(t) = 1 and τ(t) = 1. A relevant steady state
with these policies is feasible provided the following conditions are satisfied:

δβ − γ − α > 0 (127)

ω + cT − cP > 0 (128)

α (ω + cT − cP ) > (δβ + ρ− γ − α) cT (129)

(1− δ) (ω + cT − cP ) (δβ − γ − α) > δ (δβ + ρ− γ − α) cP (130)

The first two conditions ensure that prevalence is interior and that the multiplier is
negative. The last two conditions follow from the Hamiltonian conditions. It follows
immediately from (127) that for δ < δ ≡ γ/β, a policy with full prevention and full
treatment will eradicate the disease asymptotically.

4The last inequality holds for (1− δ) [αω − (γ + ρ)cT ] ≥ αcP .
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Second, consider a solution with π(t) = 1 and τ(t) = 0. The relevant feasibility
conditions are then

δβ − γ > 0 (131)

ω − cP > 0 (132)

α (ω − cP ) < (δβ + ρ− γ) cT (133)

(1− δ) (δβ − γ) (ω − cP ) > δ (δβ + ρ− γ) cP (134)

It follows immediately from (131) that for δ < δ ≡ (γ+α)/β, a policy with full prevention
but with no treatment will eradicate the disease asymptotically.

4.1. Non-Optimality of Eradication. We now confirm that under imperfect pre-
vention, it is not optimal to eradicate the disease. Assume that β > γ + α and consider
any path that satisfies the optimality conditions starting from I(0) > 0. Such a path can
intersect the curve (1 − δ)βλ(t)I(t) + cP = 0 at most a finite number of times and may
not intersect this curve at all. There are three possibilities to consider:
(1) The path terminates at time t0 at a fixed point (Î , λ̂) on the curve (1− δ)βλ(t)I(t) +

cP = 0. In this case, I(t) = Î > 0 for t ≥ t0. Thus, limt→∞ I(t) 6= 0.
(2) The final segment of the path lies above the curve βλ(t)I(t) + cP = 0. Hence, on this
segment of the path it must be that π(t) = 0 and so

İ(t) = [(1− δ)β(1− I(t))− γ − ατ(t)] I(t) ≥ [(1− δ)β(1− I(t))− γ − α] I(t) (135)

Since β > γ + α, the right hand side is strictly positive for I(t) < (1−δ)β−γ−α
(1−δ)β . Thus, it

cannot be the case that limt→∞ I(t) = 0.
(3) The final segment of the path lies below the curve (1− δ)βλ(t)I(t) + cP = 0. Suppose
that that limt→∞ I(t) = 0. Since (1 − δ)βλ(t)I(t) < −cP < 0, it must be the case that
limt→∞ λ(t) = −∞. Thus, on the final segment of the path there must exist t1 such that
αλ(t) < −cT for all t ≥ t1. This implies that τ(t) = 1 for t ≥ t1. Since βλ(t)I(t) < −cP
on the final segment, it must also be the case that π(t) = 1 for t ≥ t1. Hence over this
range, we have that

İ(t) = I(t) [βδ(1− I(t))− γ − α] (136)

λ̇(t) = λ(t) [ρ+ γ + α] + [ω + cT − cP ] (137)

HC(t) = − [ω + cT ] I(t)− cP [1− I(t)] + λ(t)İ(t) (138)

On the final segment of the path, the behavior of I(t) is determined by (136). This
equation will yield limt→∞ I(t) = 0 if and only if −βδ + γ + α > 0. Assume that this is
the case and define

b ≡ −βδ + γ + α > 0

c ≡ βδ ≥ 0

Then over the range we are concerned with we have that

İ(t) = −I(t) [b+ cI(t)]
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It can be shown that

I(t) =
b(

c+ b
I(t1)

)
eb(t−t1) − c

İ(t) =
−b2

[
c+ b

I(t1)

]
eb(t−t1)([

c+ b
I(t1)

]
eb(t−t1) − c

)2
=

−b2
[
c+ b

I(t1)

]
e−b(t−t1)([

c+ b
I(t1)

]
− ce−b(t−t1)

)2
Since b > 0, the right hand side explodes and thus the path for I(t) converges to zero.
However, as the following demonstration shows, it is not an optimal path. Solving equa-
tion (137) yields

λ(t) = − [ω + cT − cP ]

[ρ+ γ + α]
+ e(ρ+γ+α)(t−t1)

(
λ(t1) +

[ω + cT − cP ]

[ρ+ γ + α]

)
(139)

Since limt→∞ λ(t) = −∞ , it must be the case that

λ(t1) +
[ω + cT − cP ]

[ρ+ γ + α]
< 0 (140)

Thus, noting that I(t) ∈ [0, 1] and b > 0, we find that

lim
t→∞

[
e−ρtHC(t)

]
= lim

t→∞

[
e−ρt

(
− [ω + cT ] I(t) + cP [1− I(t)] + λ(t)İ(t)

)]
= lim

t→∞

[
e−ρtλ(t)İ(t)

]
= lim

t→∞

e−ρte(ρ+γ+α)(t−t1)(λ(t1) +
[ω + cT − cP ]

[ρ+ γ + α]

) −b2
[
c+ b

I(t1)

]
e−b(t−t1)([

c+ b
I(t1)

]
− ce−b(t−t1)

)2


= lim
t→∞

e−ρte(ρ+γ+α)(t−t1)(λ(t1) +
[ω + cT − cP ]

[ρ+ γ + α]

) −b2 [c+ b
I(t1)

]
e(δβ−γ−α)(t−t1)([

c+ b
I(t1)

]
− ce−b(t−t1)

)2


= lim
t→∞

[
−
(
λ(t1) +

[ω + cT − cP ]

[ρ+ γ + α]

)]
b2eδβ(t−t1)(
c+ b

I(t1)

) > 0 (141)

The contradicts the requirement that limt→∞
[
e−ρtHC(t)

]
= 0. Thus, there is no

optimal path for which limt→∞ I(t) = 0.

5. Substitutes, Complements and Speeds of Convergence

In a static model, a common definition of complementarities is that an increase in the
level of one instrument increases the marginal rate of return on the other instrument. An
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important question in the present context is whether prevention and treatment display a
similar property. For non-linear multiple-instrument optimal control problems, there are
instances in which one may cleanly characterize “synergies”between the control variables,
i.e. instances in which raising one control variable makes it more desirable to also raise
the other (see Feichtinger, 1984). In the present model, the desirability of increasing one
instrument depends on the level of the other instrument through its effects on disease
prevalence. In fact, changing the level of either instrument influences disease prevalence,
which in turn changes the desirability of further changing both instruments.
To see this, consider an increase in the level of prevention. Such an increase will

decrease disease prevalence, thereby increasing the marginal benefits of treatment, but
also decreasing the marginal benefit of prevention. Similarly, an increase in treatment
will cause a decrease in disease prevalence, thereby increasing the marginal benefits of
treatment, but decreasing the marginal benefits of prevention.
These interactions are simply a reflection of the insight that treatment induces a

positive feedback effect, whereas prevention induces a negative feedback effect.
Almost no existing work discusses the optimal phasing of prevention and treatment.

An exception is Gersovitz and Hammer (2004), who arrive at the conclusion that

“...[optimal] subsidization [to treatment and prevention] is at equal rates be-
cause it is equally beneficial in preventing further infection to get a person
out of the infected pool as to have prevented the person from getting into it
in the first place [...]”

This statement seems to suggest that treatment and prevention are perfect substitutes
in the steady state of the model that they consider. Somewhat confusingly, if the two in-
struments are optimally used at equal rates in steady state, this would appear to indicate
that they are in fact perfect complements rather than substitutes. Our analysis shows
that prevention and treatment are in fact imperfect substitutes. Having said that, there
are clearly instances in which the two instruments are used in conjunction. This stems
from the fact that at some levels of disease prevalence, the strength of substitutability is
low enough to render the use of both instruments optimal. This observation is intimately
connected to the property of optimal paths being of the most rapid approach variety
(MRAPs for short), to which we turn next.
When each policy is considered in isolation, optimal paths are known to be of this

type in the prevention model but not in the treatment model (see Toxvaerd 2009a, 2010).5

But in the present setting, this is not necessarily the case. The reason lies in the fact
that the marginal benefits of treatment are decreasing in prevalence whereas the marginal
benefits of prevention are increasing in prevalence. This feature of the planner’s problem
implies that when approaching a steady state from below and starting from very low
prevalence levels, the optimal policy may involve no prevention coupled with full treat-
ment of the (relatively few) infected individuals. As discussed earlier, this is because for
low prevalence levels, the probability of reinfection is relatively modest, making treatment
worthwhile, but prevention suboptimal. This implies that infection is not increasing as
fast as it could. Once prevalence has increased to a level that makes further treatment

5More precisely, paths are always MRAPs in a setting in which recovery can only happen via treat-
ment. If there is also spontaneous recovery, then the optimal path to the steady state from above involves
no treatment, which is not an MRAP.
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undesirable, the path does become a MRAP. Similarly, when approaching a steady state
from above, the optimal path may involve no treatment even though there is full preven-
tion. Again, this is because for very high prevalence levels, reinfection probabilities are so
high that treatment becomes suboptimal but the marginal benefits of prevention are high
enough to justify using this instrument to its fullest extent. But this means that disease
prevalence does not decrease as fast as possible towards its steady state level. When (and
if) prevalence has decreased to a level that makes treatment optimal, the remaining path
also becomes a MRAP. In Regime III, i.e. in the case where there is a Skiba point, there
is also an interior region in which optimal paths are not most rapid approach paths.
Formally, any path that spends time in areas in which (τ(t), π(t)) = (0, 1) or (τ(t), π(t)) =

(1, 0), are not of the most rapid approach type. The same is true for any decreasing path
in the area (τ(t), π(t)) = (1, 0). This implies the following observations:

Proposition 6. (i) The optimal path to point A from the right is not a MRAP, while the
optimal path from the left is potentially a MRAP. (ii) The optimal path to point B from
the left is not a MRAP, while the optimal path from the right is potentially a MRAP.
(iii) The optimal path to point A0 from the right is not a MRAP, while the optimal path
from the left is potentially a MRAP. (iv) Optimal paths to point B0 are not MRAPs from
either direction.

We can further state the following:

Proposition 7. For all paths that are potentially MRAPs, the closing segments of the
paths are MRAPs.

The previous two propositions deserve some further comments. As can be seen from
Figure 5, all paths described as “potential MRAPs”may involve initial segments in which
the system does not approach the steady state as fast as possible. It is in this sense that
they are potentially most rapid approach paths. Having said that, all these paths share
the feature that as the system moves close enough to the steady state, the paths enter
regions where they do approach the steady state as rapidly as possible. Thus, although
some paths are not MRAPs along their entire length, their closing segments have this
property.
We now turn to the behavior of the system close to the steady states. The speed of

convergence towards a steady state (I, τ , π) is found via the first-order Taylor approxi-
mation6 of the logistic growth equation around the steady state, i.e.

σ(I, τ , π) ≡ − [(1− π)β(1− 2I∗)− ατ − γ] (142)

Because the optimal amount of preventive effort may have a discontinuity at some steady
states, we need to distinguish speeds of convergence when approaching the steady state
from the left and from the right respectively. We will denote by σ−(I, τ , π) and σ+(I, τ , π)
the speeds when approaching from the left and right respectively, and σ(I, τ , π) when

6It is given by the equation

İ(t) ≈ I∗ [(1− π∗)β(1− I∗)− γ − ατ∗] + (I(t)− I∗) [(1− π∗)β(1− 2I∗)− ατ∗ − γ]
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Figure 5: Typology of steady states.

there is no need to distinguish the direction (because the two speeds coincide). With this
notation, the speeds are given as follows:

σ+(IA, 0, 1) = γ (143)

σ−(IA, 0, 0) = γ +
cP (β + 2ρ)− βω

ω − cP
(144)

σ+(IB, 1, 1) = α + γ (145)

σ−(IB, 1, 0) = α + γ +
cP (β + 2ρ)− β(ω + cT )

cT + ω − cP
(146)

σ(IA0 , 0, 0) = β − γ (147)

σ(IB0 , 1, 0) = β − γ − α (148)

It should be emphasized that these speeds of convergence are approximations that are
valid only close to the steady states in question. In particular, this means that the speed
of approach of paths that contain an initial non-MRAP segment may be overstated.

Second, it is interesting to note that there is no unambiguous ranking of the speeds
of convergence from the left and right to points A and B. In other words, it is not
generally true that descending to points A or B with the aid of full prevention is faster
than ascending to points A or B with no prevention. It depends on the cost of prevention
and the relevant conditions are not implied by any of the other constraints we have
maintained.7

7Specifically, we have that σ+(IA, 0, 1) > σ−(IA, 0, 0) if and only if cP < βω
β+2ρ . Also, σ+(IB , 1, 1) >

σ−(IB , 1, 0) if and only if cP <
β(ω+cT )
β+2ρ .
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6. Comparative Analysis and Welfare
The main focus of the present paper is the optimal control of infectious diseases through
prevention and treatment, taking the effi ciency of these interventions as given. In other
words, the parameters β, α and γ are not directly controlled. Some interventions, such as
the administration of antiretroviral drugs to non-infected individuals, can be interpreted
as a direct change in the infectiousness of the disease (see Toxvaerd, 2010 for a discus-
sion and a survey of that literature). It is thus also of interest to conduct comparative
statics analysis with respect to these parameters and to analyze their welfare and policy
implications. We shall do so in this section.
From the steady state levels listed above, the following results immediately follow:

Proposition 8. (i) In steady states with no prevention, steady state prevalence is in-
creasing in infectivity and decreasing in the rate of recovery. (ii) In steady states with
positive prevention, steady state prevalence is decreasing in infectivity and independent
of the rate of recovery.

While infectivity is always measured by β, the rate of recovery may be γ or (γ + α),
depending on steady state treatment intensity.
These results have important and surprising policy implications. They show that in

the absence of prevention, the steady state comparative statics of disease prevalence with
respect to infectiousness and the recovery rate, are qualitatively the same as those in
the classical model. But surprisingly, when the steady state involves positive preventive
effort, the comparative statics results are reversed. This is an important observation,
because the decrease in infectiousness and the improvement in therapeutic technologies
are an important vehicle through which medical scientists and epidemiologists seek to
control epidemics. What the present results show, is that changing the basic biological
parameters through direct intervention may have unexpected consequences.
To fully draw out the welfare and policy implications, we first derive two further

results. First, we consider the overall welfare effects of such parameter changes and then
consider the effects on steady state welfare. With these results in hand, we will be able
to give a sharp characterization of the welfare tradeoff involved in changing the biological
and medical parameters.
Consider the overall effects of parameter changes on discounted aggregate welfare.

These are captured by changes in the optimal value function V ∗(I0). We have the follow-
ing results:

Proposition 9. (i) An increase in infectiousness β decreases overall welfare. (ii) An
increase in the rate of recovery (γ + α) increases overall welfare.

Proof: From the dynamic envelope theorem, it follows that in some steady state (I, τ , π, λ),
the effect of a change in a parameter x is given by8

∂V (I0)

∂x
=

∫ ∞
0

∂HC(I, τ , π)

∂x
dt (149)

8In this result, the Hamiltonian is first differentiated with respect to the parameter and only then is
the resulting expression evaluated at the relevant steady state values. See Caputo (2005) for details.
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Therefore we have that

∂V (I0)

∂β
=

∫ ∞
0

λI(1− I)(1− π)dt < 0 (150)

∂V (I0)

∂α
= −

∫ ∞
0

λIτdt ≥ 0 (151)

∂V (I0)

∂γ
= −

∫ ∞
0

λIdt > 0 (152)

and the result follows �
It should be noted that the results with respect to α are strict only when the treatment

level is positive (and weak if the treatment level is zero).
The comparative dynamics results with respect to α , γ, β are hardly surprising. They

also follow from a simple revealed preferences argument, as noted in Toxvaerd (2010).
Consider a decrease in β or an increase in either α or γ. Ceteris paribus, infection is now
easier to control and the planner can always choose the same paths for disease prevalence
and the policy instruments as before the change in parameters. Thus overall welfare
cannot be lower after the decrease in infectiousness or the increase in the rate of recovery.
It turns out that the gains in overall welfare may have an unexpected source, de-

pending on the steady state in question. To see this, we first determine the effects of
parameter changes on steady state welfare. We find the following results:

Proposition 10. (i) In steady states with no prevention, steady state welfare is decreas-
ing in infectivity and increasing in the rate of recovery. (ii) In steady states with positive
prevention, steady state welfare is increasing in infectivity if ρ > γ + α and increasing in
the rate of recovery.9

Proof: The steady state levels of welfare associated with the non-interior steady states
are given as follows:

HC(IA, τA, πA, λA) =
−cP (β − γ + ρ)

β
(153)

HC(IB, τB, πB, λB) =
−cP (β − γ + ρ− α)

β
(154)

HC(IA0 , τA0 , πA0 , λA0) =
−γω
β

(155)

HC(IB0 , τB0 , πB0 , λB0) =
(α− β + γ)(cT + ω)

β
(156)

The results then follow from inspection �
Again, note that the results with respect to α are strict only when the treatment level

is positive (and weak if the treatment level is zero).

9This condition ensures the stated result (on the effects of changes in infectiousness) for steady state
B. The weaker condition ρ > γ ensures that the result holds for steady state A. We also note that the
conditions that ensure that steady state welfare in steady states A and B is increasing in infectivity β
are suffi cient conditions for the shadow values of infection being negative in steady states A0 and B0
respectively.
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Taken together, these above results have interesting implications. Start from a situa-
tion in which the system is in steady state and consider an decrease in infectiousness β.
Assume furthermore that this change does not cause a shift in regime, so that the set of
equilibria and their optimality remains unchanged.
In steady states without prevention, i.e. (A0, B0), a decrease in β causes both overall

welfare and steady state welfare to increase. On the other hand, the new steady state
level of disease prevalence is lower, so the planner may have to expend resources on
forcing down prevalence through additional treatment, until steady state is reached.10

Since overall welfare is higher, the extra costs borne during the transition are outweighed
by the increase in the resulting steady state welfare (both suitably discounted).
In steady states with positive prevention, i.e. (A,B), a decrease in β must also

increase overall welfare, as we have seen. But we also know that such a decrease in
infectiousness actually decreases steady state welfare. The upshot of this is that all
gains in overall welfare stem from the transition to the new steady state. Indeed, since
decreasing β increases steady state prevalence when prevention is positive, the planner
forces prevalence up by reducing the level of preventive effort. The cost savings associated
with not having any prevention during the transition to the new steady state are so large,
that they outweigh the losses in steady state welfare (both suitably discounted).
To sum up, decreasing infectiousness must always improve overall welfare. But in

order to reap the benefits of lower infectiousness, the planner must pay special attention to
the steady state the system is in. In some steady states, the optimal policy response is to
reduce prevalence through increased treatment, trading a short term increase in infection
control costs for a long term increase in steady state welfare. In other steady states,
the optimal policy response is conversely to increase prevalence through a reduction in
prevention, trading short term cost savings from reduced infection control for a long term
decrease in steady state welfare.
Turning to changes in the effi ciency of treatment α, some interesting patterns emerge.

While changing the infectiousness parameter β could have opposing effects on overall
welfare and steady state welfare, changes in α never move these two welfare measures
in opposite directions. In steady states (A,A0), there is no treatment and thus both
overall welfare and steady state welfare are in fact independent of α. There are therefore
no tradeoffs to consider. In steady states (B,B0), there is full treatment and therefore
overall welfare and steady state welfare are (increasing) functions of α. In this case, there
is no tradeoff between the short term costs and steady state welfare since the new steady
states (if different) are reached without any changes in the steady state levels of the policy
instruments.
To sum up, whether steady state prevalence changes as the effi ciency of treatment α is

varied, depends on whether there is any prevention in steady state. In contrast, whether
such a change in effi ciency has any impact on welfare (overall or in steady state), depends
on whether there is any treatment in steady state.
The results show that the key ingredient in creating rational disinhibition (as discussed

in Toxvaerd, 2010 and Gersovitz, 2010) is prevention rather than treatment, as it is the
former that gives rise to the non-classical comparative statics results.
For completeness, we would also like to comment on a seemingly counter intuitive

10This is the case if starting at point B0. If starting at point A0, the decrease will happen without
further costly infection control.
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feature of steady states with positive preventive effort. Whereas the steady state welfare
levels in points (A0, B0), in which there is no prevention, are functions of all the relevant
deep parameters, the corresponding values for points (A,B) are not. In particular, steady
state welfare in point A is independent of the health premium ω whereas in point B, it is
independent of both the health premium ω and the treatment cost cT .11 The reason for
this feature is that the optimal prevention level in these steady states are such that they
exactly counterweight these parameters. In other words, the parameters are present in the
optimal prevention levels, which in turn cancels out these parameters in the expressions
for steady state disease prevalence.

7. Local Stability of Equilibrium Steady States

In this appendix, we show that all the non-interior equilibrium steady states under decen-
tralized decision making are locally stable and that the unique fully interior equilibrium
steady state is locally unstable.
Solution A∗0:
We assume that IA∗0 > 0 and hence that β − γ > 0. In the region of A∗0, the control

variables are π(t) = 0 and τ(t) = 0. Hence the laws of motion are given by

İ(t) = I(t) [β(1− I(t))− γ] (157)

µ̇(t) = µ(t) [ρ+ γ + βI(t)] + ω (158)

Let I(t) = IA∗0 + x and µ(t) = µA∗0 + y. Substituting in the above equations yields

ẋ = (IA∗0 + x)
[
β(1− (IA∗0 + x))− γ

]
(159)

ẏ =
(
µA∗0 + y

) [
ρ+ γ + β(IA∗0 + x)

]
+ ω (160)

Linearizing these equations gives

ẋ = IA∗0
[
β(1− IA∗0)− γ

]
+
[
β(1− 2IA∗0)− γ

]
x (161)

ẏ = µA∗0

[
ρ+ γ + βIA∗0

]
+ ω + βµA∗0x+

[
ρ+ γ + βIA∗0

]
y (162)

Since point A∗0 is a steady state, IA∗0
[
β(1− IA∗0)− γ

]
= 0 and µA∗0

[
ρ+ γ + βIA∗0

]
+ω = 0.

Thus,

ẋ =
[
β(1− 2IA∗0)− γ

]
x = −(β − γ)x (163)

ẏ = βµA∗0x+
[
ρ+ γ + βIA∗0

]
y = βµA∗0x+ (β + ρ)y (164)

and hence (
ẋ
ẏ

)
=

(
−(β − γ) 0
βµA∗0 (β + ρ)

)(
x
y

)
(165)

The eigen values are −(β − γ), which is negative since IA∗0 > 0. Also, β + ρ > 0. The
convergent path corresponding to −(β − γ) is

βµA∗0x+ (2β + γ + ρ)y = 0 (166)

11That point A is independent of cT is not surprising since this steady state involves no treatment.
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This has a positive slope since µA∗0 < 0. The divergent path corresponding to (β + ρ) is

x = 0 (167)

This is vertical.
Solution B∗0 :
We assume that IB∗0 > 0 and hence that β − γ − α > 0. The derivation in this case

can be obtained from the derivations for point A∗0 by replacing γ by (γ + α). This yields(
ẋ
ẏ

)
=

(
−(β − γ − α) 0

βµA∗0 (β + ρ)

)(
x
y

)
(168)

The eigen values are −(β− γ−α) which is negative, since IB∗ > 0. Also, β + ρ > 0. The
convergent path corresponding to −(β − γ − α) is

βµB∗0x+ (2β + γ + α + ρ)y = 0 (169)

This has a positive slope since µB∗0 < 0.
Solution C∗0 :
The laws of motion are

İ(t) = I(t) [(1− πi(t))β(1− I(t))− γ − τ i(t)α] (170)

µ̇(t) = µ(t) [ρ+ γ + (1− πi(t))βI(t) + τ i(t)α] + ω + τ i(t)cT − πi(t)cP (171)

Let I = IC∗0 + x and µ = µC∗0 + y. Since π = 0, the above equations can be written as
follows:

ẋ =
(
IC∗0 + x

)
[β(1− IC∗0 − x)− γ − τα] (172)

= IC∗0 [β(1− IC∗0 − x)− γ − τα] + x[β(1− IC∗0 − x)− γ − τα] (173)

= IC∗0 [β(1− IC∗0 )− γ − τC∗0α]− IC∗0 (τ − τC∗0 )α− βIC∗0x+ x[β(1− IC∗0 − x)− γ − τα](174)

= IC∗0
[
β(1− IC∗0 )− γ − τC∗0α

]
− (τ − τC∗0 )αIC∗0 + x

[
β(1− 2IC∗0 )− γ − τα

]
− βx2(175)

Since IC∗0
[
β(1− IC∗0 )− γ − τC∗0α

]
= 0, it follows that

ẋ = −(τ − τC∗0 )αIC∗0 +
[
β(1− 2IC∗0 )− γ − τα

]
x− βx2 (176)

Also,

ẏ =
(
µC∗0 + y

) [
ρ+ γ + β

(
IC∗0 + x

)
+ τα

]
+ ω + τcT (177)

= µC∗0

[
ρ+ γ + β

(
IC∗0 + x

)
+ τC∗0α

]
+ µC∗0 (τ − τC∗0 )α + ω + τcT + y

[
ρ+ γ + β

(
IC∗0 + x

)
+ τα

]
(178)

= µC∗0

[
ρ+ γ + βIC∗0 + τC∗0α

]
+ ω + τC∗0 cT + µC∗0βx+ µC∗0 (τ − τC∗0 )α + (τ − τC∗0 )cT (179)

+y
[
ρ+ γ + βIC∗0 + τα

]
+ βxy (180)

=
{
µC∗0

[
ρ+ γ + βIC∗0 + τC∗0α

]
+ ω + τC∗0 cT

}
+
{
µC∗0α + cT

}
(τ − τC∗0 )

+µC∗0βx+
[
ρ+ γ + βIC∗0 + τα

]
y + βxy (181)
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Since µC∗0
[
ρ+ γ + βIC∗0 + τC∗0α

]
+ ω + τC∗0 cT = 0 and µC∗0α + cT = 0, it follows that

ẏ = µC∗0βx+
[
ρ+ γ + βIC∗0 + τα

]
y + βxy (182)

Note that τ = 0 for y > 0 and τ = 1 for y < 0.

Let us consider a path that starts at time t = 0 at x = x0 < 0 and y = 0 and has
τ = 0. For such a path, the above equations can be written as

ẋ = a0 + b0x− βx2 (183)

ẏ = cx+ d0y + βxy (184)

where

a0 = τC∗0αIC∗0 > 0 (185)

b0 = β(1− 2IC∗0 )− γ (186)

c = µC∗0β < 0 (187)

d0 = ρ+ γ + βIC∗0 > 0 (188)

Consider an approximate solution of the form

x = x0 + e0t (189)

y = g0t+ h0t
2 (190)

As required, a solution of this type yields x(0) = x0 < 0 and y(0) = 0. Substituting in
(183) and (184) yields

ẋ = a0 + b0(x0 + e0t)− β (x0 + e0t)
2 (191)

ẏ = c(x0 + e0t) + d0
(
g0t+ h0t

2
)

+ β(x0 + e0t)
(
g0t+ h0t

2
)

(192)

Ignoring higher orders of x0 and t, the above equations can be written as follows:

ẋ = a0 + b0x0 (193)

ẏ = cx0 + (ce0 + d0g0) t (194)

Differentiating (189) and (190) yields

ẋ = e0 (195)

ẏ = g0 + 2h0t (196)
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Comparing (193) and (194) with (195) and (196), it follows that

e0 = a0 + b0x0 > 0 for suffi ciently small x0 (197)

g0 = cx0 > 0 (198)

h0 =
ce0 + d0g0

2
(199)

=
c (a0 + b0x0) + d0cx0

2
(200)

=
ca0 + c (b0 + d0)x0

2
< 0 for suffi ciently small x0 (201)

Equation (190) implies that the path will achieve the value y = 0 for a second time at
t = t1 = −g0/h0 > 0 for small x0. When this happens equation (190) implies that the
value of x is as follows:

x1 = x0 + e0t1 = x0 −
e0g0
h0

for suffi ciently small x0 (202)

Expanding and ignoring higher orders of x0, we get that

x1 ≈ x0 −
2 (a0 + b0x0) cx0
ca0 + c (b0 + d0)x0

(203)

= x0 −
2 (a0 + b0x0)x0
a0 + (b0 + d0)x0

(204)

= −x0
(
−a0 − (b0 + d0)x0 + 2 (a0 + b0x0)

a0 + (b0 + d0)x0

)
(205)

≈ −x0
(
a0 + (b0 − d0)x0
a0 + (b0 + d0)x0

)
(206)

≈ −x0

(
1 + b0−d0

a0
x0

1 + b0+d0
a0

x0

)
(207)

≈ −x0
(

1 +
b0 − d0
a0

x0

)(
1− b0 + d0

a0
x0

)
(208)

≈ −x0
(

1− 2d0
a0
x0

)
(209)

= −x0 +
2d0
a0
x20 (210)

Since a0 > 0 and d0 > 0 it follows that

x1 > −x0 > 0 (211)

which implies the following that we shall use later

−x1 < x0 < 0 (212)
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Let us consider the continuation of this path when τ = 1. At t = t1 it is the case that
x = x1 > 0 and y = 0. The laws of motion are of the form

ẋ = a1 + b1x− βx2 (213)

ẏ = cx+ d1y + βxy (214)

where

a1 = −(1− τC∗0 )αIC∗0 < 0 (215)

b1 = β(1− 2IC∗0 )− γ − α (216)

c = µC∗0β < 0 (217)

d1 = ρ+ γ + βIC∗0 + α > 0 (218)

Since x(t1) = x1 and y(t1) = 0, the above equations have an approximate solution of
the form

x = x1 + e1(t− t1) (219)

y = g1(t− t1) + h1(t− t1)2 (220)

Following the same procedure as in the previous case, it can be shown that

e1 = a1 + b1x1 − βx21 < 0 for suffi ciently small x1 (221)

g1 = cx1 > 0 (222)

h1 =
ce1 + d1g1 + βg1x1

2
< 0 for suffi ciently small x1 (223)

The path will achieve the value y = 0 for a second time when t = t2 where t2 − t1 =
−g1/h1 > 0 for small x1. The value of x will be as follows

x2 = x1 + e1(t2 − t1) = x1 −
e1g1
h1

(224)

Ignoring higher orders of x1 yields

x2 ≈ x1 −
2e1cx1

ce1 + d1cx1 + βcx21
(225)

≈ −x1
(
e1 − d1x1
e1 + d1x1

)
(226)

≈ −x1

(
1− d1

e1
x1

1 + d1
e1
x1

)
(227)

≈ −x1 +
2d1
a1
x21 (228)

Since a1 < 0 and d1 > 0, it follows that

x2 < −x1 (229)
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We have already shown that
−x1 < x0 < 0 (230)

Hence
x2 < −x1 < x0 < 0 (231)

Thus, a complete rotation around C∗0 starting at x0 < 0 ends up at x2 < 0, which is
further away from C∗0 than x0. Hence the curve is an outward clockwise spiral.

Solution A∗:

We assume that IA∗ > 0 and hence that ω − cP > 0. Note that τ = 0 for A∗.
Also π = 0 for βµI + cP > 0 and π = 1 for βµI + cP < 0. Writing I(t) = IA∗ + x
and µ(t) = µA∗ + y, it follows that π = 0 for β(µA∗ + y) (IA∗ + x) I + cP > 0. Since
βµA∗IA∗ + cP = 0, it follows for small x and y, that

π = 0 if µA∗x+ IA∗y > 0 (232)

Likewise,
π = 1 if µA∗x+ IA∗y < 0 (233)

The laws of motion are thus given by

İ(t) = I(t) [(1− π(t))β(1− I(t))− γ − τ(t)α] (234)

µ̇(t) = µ(t) [ρ+ γ + τ(t)α + (1− π(t))βI(t)]

+ [ω + τ(t)cT − π(t)cP ] (235)

which can be written as

ẋ = (IA∗ + x) [(1− π)β (IA∗ + x)− γ] (236)

ẏ = (µA∗ + y) [ρ+ γ + (1− π)β (IA∗ + x)] + [ω − cP ] (237)

Consider a small perturbation such that µA∗x+ IA∗y < 0. In this case π = 1 and

ẋ = −γIA∗ + o(x) < 0 (238)

Also,

ẏ = (µA∗ + y) [ρ+ γ] + [ω − cP ] (239)

= µA∗ [ρ+ γ] + [ω − cP ] + (ρ+ γ) y (240)

= µA∗ [ρ+ γ]− µA∗ [ρ+ γ] + (ρ+ γ) y (241)

= (ρ+ γ) y (242)

Conversely, if µA∗x+ IA∗y > 0 then π = 0 and

ẋ = (IA∗ + x) [β(1− (IA∗ + x))− γ] (243)

= IA∗ [β(1− IA∗)− γ] + o(x) (244)

=
IA∗

(ω − cP )
[(β − γ)ω − (β + ρ)cP ] + o(x) (245)
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The expression for πA∗ can be written as follows:

πA∗ = 1− γ(ω − cP )

βω − (β + ρ+ γ)cP
(246)

By assumption, ω − cP > 0. Hence, to ensure that πA∗ < 1 it must also be the case that
βω− (β + ρ+ γ)cP > 0. To ensure that πA∗ > 0 then requires that βω− (β + ρ+ γ)cP >
γ(ω− cP ) and hence (β − γ)ω− (β + ρ)cP > 0. The latter inequality ensures that ẋ > 0
for small x.

Also, we have that

ẏ = (µA∗ + y) [ρ+ γ + β (IA∗ + x)] + ω (247)

= µA∗ [ρ+ γ + βIA∗ ] + ω + βµA∗x+ (ρ+ γ + βIA∗) y + βxy (248)

= µA∗ [ρ+ γ] + ω − cP + βµA∗x+ (ρ+ γ + βIA∗) y + βxy (249)

= µA∗ [ρ+ γ]− µA∗ [ρ+ γ] + βµA∗x+ (ρ+ γ + βIA∗) y + βxy (250)

= βµA∗x+
ω (ρ+ γ)

ω − cP
y + βxy (251)

Next, consider the reverse direction path that starts at A∗ and has π = τ = 0. Using
(245) and (251), this can be approximated as follows:

ẋ = −a (252)

ẏ = bx− cy (253)

where

a =
IA∗

(ω − cP )
[(β − γ)ω − (β + ρ)cP ] > 0 (254)

b = −βµA∗x > 0 (255)

c =
ω (ρ+ γ)

ω − cP
> 0 (256)

The above equations have the approximate solution

x = −at (257)

y = −ab
2
t2 + o(t2) (258)

The path to A∗ travels along this solution in the reverse direction along the curve

y = − b

2a
x2 (259)

This is a rising curve that flattens out to the horizontal as it approaches A∗.

In conclusion, in the region for βµI + cP < 0 there is a unique path that converges
horizontally to A∗. Its local equation is y = 0. In the region for βµI + cP > 0, there is a
unique path that converges from below to A∗ becoming horizontal in the limit. Its local
equation is y = − b

2a
x2.
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Solution B∗: The derivations for point B∗ follow by replacing γ by (γ + α) in the
expressions for point A∗ �

8. Further Characterization of the Maverick’s Problem

Numerical example. Below, we shall prove analytically that the maverick will
never best respond by choosing interior values for prevention or treatment in steady state.
Momentarily taking this feature for granted, we consider the two cases where the optimal
path takes the system to points A and B, respectively. For these cases, we have calculated
the values of the program for an infected maverick and for a susceptible maverick at the
(socially optimal) aggregate equilibrium point. We have done this for each of the four
boundary value combinations (for the two control variables) and present the results in
the form of a two-person game with the column player as a susceptible maverick and the
row player as the same individual when infected. Time consistency of a best response
amounts to a Nash equilibrium strategy in this two-person game. An infected individual
makes its choice on the basis of a certain assumption about its future behavior when
susceptible. However, this later behavior must be optimal for the individual’s future self
when uninfected.
To confirm that this is indeed the case, first consider the parameter constellation in

the main body of the text, with α = 0.2. In this case, the optimal solution for the planner
yields a path that ends at the steady state I = IA. The values of the program for various
boundary combinations of τ and π are shown in the table below:

Susceptible
π = 0 π = 1

Infected τ = 0 −6.21,−3.10 −6.87,−4.50
τ = 1 −42.13,−21.06 −30.04, 4.50

As can be seen from the payoffs, this yields the time consistent equilibrium τ = 0 and
π = 0. Note that this is still a Nash equilibrium for each “player”even if interior values
of the control variables are allowed.
Next, consider the example but with α = 0.5. The optimal solution for the planner

now yields a path that ends at the steady state I = IB. The values of the program for
various boundary combinations of τ and π are shown in the table below:

Susceptible
π = 0 π = 1

Infected τ = 0 −4.84,−0.22 −6.87,−4.50
τ = 1 −16.09,−0.73 −19.27,−4.50

As can be seen from the payoffs, this yields the time consistent equilibrium τ = 0 and
π = 0. Note that this is still a Nash equilibrium for each “player”even if interior values
of the control variables are allowed.

8.1. Non-Optimality of Interior Solutions when Optimal Path Ends at I = IA.
Let us examine the interior solutions for τ and π on the assumption that the optimal
path ends at I = IA .
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The condition η(t)βIA + cP = 0. Suppose that η(t)βIA + cP = 0. Since λAβIA +
cP = 0, it follows that

η(t) = λA =
−(ω − cP )

ρ
(260)

At point A, it is the case that λA α + cT > 0. Hence

η(t)α + cT = λA α + cT > 0 (261)

and thus, τ = 0.
From above, it follows that

0 = η(t)(ρ+ γ + βIA) + ω + τ (η(t)α + cT )− π (η(t)βIA + cP ) (262)

= λA (ρ+ γ) + ω + λA βIA (263)

= λA (ρ+ γ) + ω − cP (264)

This implies that

λA = −ω − cP
ρ+ γ

(265)

This is generically different from the formula λA = −(ω − cP )/ρ.

The condition η(t)α + cT = 0. In this case

0 = η(t)(ρ+ γ + βIA) + ω + τ (η(t)α + cT )− π (η(t)βIA + cP ) (266)

= η(t)(ρ+ γ + βIA) + ω − π (η(t)βIA + cP ) (267)

Since η(t)βIA + cP cannot be zero, there are two possibilities, namely π = 0 or π = 1.
If π = 0, then

0 = cT (ρ+ γ + βIA) + αω (268)

= cT (ρ+ γ + βIA) + α(ω − cP ) (269)

and hence

IA =
cT (ρ+ γ) + α(ω − cP )

cTβ
(270)

This generically false, since IA = ρcP
β(ω−cP ) .

If π = 1 and η(t)α + cT = 0, then

0 = η(t)(ρ+ γ + βIA) + ω + τ (η(t)α + cT )− π (η(t)βIA + cP ) (271)

= η(t)(ρ+ γ + βIA) + ω − (η(t)βIA + cP ) (272)

= −cT
α

(ρ+ γ) + ω − cP (273)

This is generically false. In summary, the optimum solution for the maverick cannot
satisfy either of the conditions η(t)α + cT = 0 and η(t)βIA + cP = 0. Hence interior
solutions for τ or π cannot be optimal and the only remaining candidates for an optimum
are the boundary solutions τ = 0, 1 and π = 0, 1.
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8.2. Non-Optimality of Interior Solutions when Optimal Path Ends at I = IB.
Let us examine the interior solutions for τ and π on the assumption that the optimal
path ends at I = IB.

The condition η(t)βIB + cP = 0. Suppose that η(t)βIB + cP = 0. Since λBβIB +
cP = 0, it follows that

η(t) = λB =
−(ω + cT − cP )

ρ
(274)

At point B it is the case that λB α + cT < 0. Hence

η(t)α + cT = λB α + cT < 0 (275)

and thus, τ = 1.
From above, it follows that

0 = η(t)(ρ+ γ + βIB) + ω + τ (η(t)α + cT )− π (η(t)βIB + cP ) (276)

= λB (ρ+ γ + βIB) + ω + (λB α + cT ) (277)

= λB (ρ+ γ + α) + ω + λB βIB + cT (278)

= λB (ρ+ γ + α) + ω + cT − cP (279)

This implies that

λB = −ω + cT − cP
ρ+ γ + α

(280)

This is generically different from the formula λB = −(ω + cT − cP )/ρ.

The condition η(t)α + cT = 0. In this case

0 = η(t)(ρ+ γ + βIB) + ω + τ (η(t)α + cT )− π (η(t)βIB + cP ) (281)

= η(t)(ρ+ γ + βIB) + ω − π (η(t)βIB + cP ) (282)

Since η(t)βIB + cP cannot be zero, there are two possibilities, namely π = 0 or π = 1.
If π = 0 then

0 = cT (ρ+ γ + βIB) + αω (283)

= cT (ρ+ γ + βIB) + α(ω − cP ) (284)

and hence

IB =
cT (ρ+ γ) + α(ω − cP )

cTβ
(285)

This is generically false, since IB = ρcP
β(cT+ω−cP ) .

If π = 1 and η(t)α + cT = 0, then

0 = η(t)(ρ+ γ + βIB) + ω + τ (η(t)α + cT )− π (η(t)βIB + cP ) (286)

= η(t)(ρ+ γ + βIB) + ω − (η(t)βIB + cP ) (287)

= −cT
α

(ρ+ γ) + ω − cP (288)

This is generically false. In summary, the optimum solution for the maverick cannot
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satisfy either of the conditions η(t)α + cT = 0 and η(t)βIB + cP = 0. Hence interior
solutions for τ or π cannot be optimal and the only remaining candidates for an optimum
are the boundary solutions τ = 0, 1 and π = 0, 1.

9. Non-Sufficiency of Hamiltonian Conditions in Centralized Setting

As noted in the main text, the analysis of the centralized problem is complicated by the
fact that the Hamiltonian necessary conditions for optimality of paths are not suffi cient
conditions. In particular, neither Mangasarian’s nor Arrow’s suffi ciency conditions hold.
This stems from the convexity of the planner’s current-value Hamiltonian in the state
variable. To see this, recall that the planner’s current-value Hamiltonian is given by

HC = −I [ω + τcT ]− (1− I)πcP + λ [(1− I)(1− π)βI − I(γ + τα)] (289)

The Hessian is

Hessian =

 ∂2HC

∂2I
∂2HC

∂I∂τ
∂2HC

∂I∂π
∂2HC

∂I∂τ
∂2HC

∂2τ
∂2HC

∂τ∂π
∂2HC

∂I∂π
∂2HC

∂τ∂π
∂2HC

∂2π

 (290)

=

 −2πλβ −(cT + αλ) cp + λβ(2I − 1)
−(cT + αλ) 0 0

cp + λβ(2I − 1) 0 0

 (291)

The first order principle minors are −2πλβ, 0 and 0 respectively. The first order
principle minor −2πλβ is strictly greater than zero for λ < 0 and π > 0. The second
order principle minors are 0, −(cT + αλ)2and − [cp + λβ(2I − 1)]2 respectively. At least
one of these is normally strictly negative. Thus, there are combinations of (I, τ , π) which
satisfy the constraints of the problem and for which the Hessian is not negative definite
and hence for which HC is not concave in these variables.
Moreover, we cannot apply Arrow’s theorem in this case, since the maximized current-

value Hamiltonian ĤC(I, λ, t) is not a concave function of the state I (holding λ and t
constant).
The Hamiltonian conditions are given by

τ̂ = 0 if αλ > −cT (292)

τ̂ ∈ [0, 1] if αλ = −cT (293)

τ̂ = 1 if αλ < −cT (294)

π̂ = 0 if βλI > −cP (295)

π̂ ∈ [0, 1] if βλI = −cP (296)

π̂ = 1 if βλI < −cP (297)

The maximized current-value Hamiltonian is given by

ĤC = −I [ω + τ̂ cT ]− (1− I)π̂cP + λ [(1− I)(1− π̂)βI − I(γ + τ̂α)] (298)
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For the Arrow suffi ciency theorem to apply, the function ĤC(I, λ, t) must be concave in
I for all I ∈ [0, 1], taking λ and t as given. We shall now show that for suffi ciently small
values of I, the function ĤC(I, λ, t) is not concave in I. There are three types of case to
consider as follows:
Case 1. αλ < −cT and hence τ̂ = 1.
If I < −cP

βλ
, then π̂ = 0 and

ĤC(I, λ, t) = −I [ω + cT ] + λ [(1− I)βI − I(γ + α)] (299)

If I = −cP
βλ
, then the coeffi cient of π̂ is zero and

ĤC(I, λ, t) = −I [ω + cT ] + λ [(1− I)βI − I(γ + α)] (300)

Case 2. αλ = −cT and hence the coeffi cient of τ̂ is zero.
If I < −cP

βλ
, then π̂ = 0 and

ĤC(I, λ, t) = −Iω + λ [(1− I)βI − Iγ] (301)

If I = −cP
βλ
, then the coeffi cient of π̂ is zero and

ĤC(I, λ, t) = −Iω + λ [(1− I)βI − Iγ] (302)

Case 3. αλ > −cT and hence τ̂ = 0.
If I < −cP

βλ
, then π̂ = 0 and

ĤC(I, λ, t) = −Iω + λ [(1− I)βI − Iγ] (303)

If I = −cP
βλ
, then the coeffi cient of π̂ is zero and

ĤC(I, λ, t) = −Iω + λ [(1− I)βI − Iγ] (304)

Hence, whatever the given value of λ(< 0), if I ≤ −cP
βλ
then the Hamiltonian ĤC(I, λ, t)

is not concave in I. Thus, the conditions of the Arrow theorem are not satisfied.

10. Quarantine versus Prevention

Consider the setting in which the planner can choose the fraction q(t) ∈ [0, 1] of infected
individuals that are quarantined. Quarantine costs cQ ≥ 0 per instant per infected indi-
vidual. Quarantine reduces the contact rates between infected and susceptible individuals
and hence disease incidence becomes

(1− q(t))βI(t)(1− I(t)) (305)

This is virtually the same as under prevention as we have modeled it so far. The main
difference appears in the cost of the intervention, which depends on which class of indi-
viduals is being targeted.
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The planner’s problem is given by

max
τ(t),q(t)∈[0,1]

∫ ∞
0

e−ρt [I(t)(ωI − cT τ(t)) + (1− I(t))ωS − I(t)q(t)cQ] dt (306)

Disease prevalence evolves according to the differential equation

İ(t) = I(t) [(1− q(t))β(1− I(t))− γ − τ(t)α] (307)

The necessary conditions for optimality (for an interior level of prevalence) are then given
by

cT + λ(t)α = 0 (308)

cQ + βλ(t)(1− I(t)) = 0 (309)

Note that the optimality condition for treatment is unchanged, but that the condition
for optimal quarantine differs from that characterizing optimal prevention.
Last, the multiplier evolves according to the differential equation

λ̇(t) = λ(t) [ρ+ γ + τ(t)α− β(1− q(t))(1− 2I(t))] + [ω + q(t)cQ + τ(t)cT ] (310)

This version of our model is in fact a generalization of a model analyzed by Sethi
(1978). He characterizes the optimal quarantine policy in the SIS model, but without
treatment as a control instrument.
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