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Abstract

Identification of peer effects is complicated by the fact that the individuals under
study may self-select their peers. Random assignment to peer groups has proven
useful to sidestep such a concern. In the absence of a formal randomization mechanism
it needs to be argued that assignment is ‘as good as’ random. This paper introduces
a simple yet powerful test to do so. We provide theoretical results for this test and
explain why it dominates existing alternatives. Asymptotic power calculations and an
analysis of the assignment mechanism of players to playing partners in tournaments of
the Professional Golfer’s Association is used to illustrate these claims. Our approach
can equally be used to test for the presence of peer effects. To illustrate this we test for
the presence of peer effects in the classroom using kindergarten data collected within
Project STAR. We find no evidence of peer effects once we control for classroom fixed
effects and a set of student characteristics.
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Introduction

A fundamental issue when trying to infer peer effects is the concern that the individuals

under study, at least partially, self-select their reference group. Exploiting the random

assignment of individuals to peer groups has proven to be a fruitful way forward. Sacerdote

(2001) and Zimmerman (2003) estimate peer effects in college achievement by making

use of the (conditional) random assignment of students to roommates. Katz, Kling and

Liebman (2001) and Duflo and Saez (2003) are other early examples that use such exogenous

variation in other settings.

In many studies on peer effects there is no formal randomization mechanism. In others

the randomization is done at a higher level than under the experiment ideal. Examples

of the former situation are in the work of Bandiera, Barankay and Rasul (2009) and Mas

and Moretti (2009), both of which concern workers being assigned to teams or shifts.

An example of the latter is Project STAR, where students appear to have been randomly

assigned only to classes of a certain size, not to classrooms themselves; see Sojourner (2013)

for a detailed discussion on this. In such settings more work is needed to convincingly argue

that the assignment of peers is ‘as good as random’.

Sacerdote (2001) pioneered a regression-based approach to test for random assignment.

Guryan, Kroft and Notowidigdo (2009) pointed out that this test favors alternatives where

there is negative assortative matching between peers, and suggested a modification.1 Their

proposal has been used frequently—Carrell, Fullerton and West (2009), Sojourner (2013),

and Lu and Anderson (2015) are examples—but it has not been subject to theoretical

investigation. The limited simulation evidence available suggests that it is size correct

but has low power (Stevenson, 2015). Thus, the test would have difficulty in detecting

1The intuition given in Guryan, Kroft and Notowidigdo (2009) and repeated elsewhere in the literature

(Caeyers and Fafchamps, 2020) is that individuals cannot be their own peers. While this argument explains

why the test favors negative alternatives it does not explain the cause of the size distortion. In fact, minor

modifications to the proof of (1.1) below show that size distortion would also be present when individuals

can be their own peers. Furthermore, in such a case the test will tend to favor alternatives where assortative

matching is positive. In all cases, the cause of the (asymptotic) size distortion is the presence of fixed effects.
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violations of the null of random assignment.

In this paper we propose an alternative adjustment to the test of Sacerdote (2001), and

study its properties under the null and under various local alternatives. The approach is

based on a bias calculation and is straightforward to implement (a Stata implementation is

also available). It allows both peer groups and urns from which peers are drawn to be of the

same or of different sizes, accommodates designs in which peer groups need not be mutually

exclusive, and is robust to heteroskedasticity of arbitrary form. Because assignment is

usually random only conditional on allocation to urns, our test, like Sacerdote’s (2001),

controls for fixed effects at the urn level. A straightforward modification to the test that

allows to control for additional covariates is also presented.

The derivations underlying our test also allow to establish formal results for the test

of Guryan, Kroft and Notowidigdo (2009). First, we confirm that the test is indeed size

correct. Moreover, their proposal corresponds to an alternative way of performing the bias

correction that is inherent in our procedure, when either an urn-level homoskedasticity

assumption is satisfied or peer groups are mutually exclusive. This alternative approach is

only implementable when there is variation in urn size, however. Second, we provide an

asymptotic representation that helps to explain the low power that has been observed for

the test of Guryan, Kroft and Notowidigdo (2009). We illustrate the power loss through

theoretical power calculations and show that the test can have trivial power against a wide

range of alternatives. In all cases considered our test is uniformly more powerful than

theirs, and considerably so.

The test developed here can equally be applied to test for the presence of peer effects

in the linear-in-means model without modification. This is a useful observation because

the test does not require the usual conditions for identification in such settings under the

alternative. Furthermore, identification is much easier to establish once such effects can be

ruled out.

We present two empirical applications of our test that illustrate its usefulness. The

first is a re-analysis of the data on professional golf tournaments of Guryan, Kroft and

Notowidigdo (2009). Here, players that enter a tournament are randomly assigned to
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playing partners, conditional on belonging to the same player category. Like theirs, our

test supports that this is indeed the case. However, unconditional on player categories,

player assignment is non-random. While our test convincingly detects this violation, the

test of Guryan, Kroft and Notowidigdo (2009) continues to strongly support the null of

random assignment. This type-II error is a direct consequence of the test having low power.

To illustrate an alternative use of our test, our second empirical illustration tests for the

presence of peer effects in student performance. We use the data on SAT mathematics scores

of kindergarten students in 317 Tennessee classrooms collected within Project STAR. The

data from Project STAR have been analysed extensively for a variety of purposes. Graham

(2008) and Rose (2017) use the same data as do we to estimate models of peer effects.

While identification can be achieved through information contained in second moments of

test scores there is a concern that in the Project STAR data it is weak (see Rose 2017,

p. S55 for a discussion). Our approach is different. Rather than fitting an unrestricted

model we test for the presence of peer effects directly. If such effects can be ruled out,

the problem of identification simplifies considerably. In our data, there is evidence of such

effects conditional only on classroom fixed effects. However, once we additionally control

for a set of characteristics this significance vanishes. Hence, we do not find evidence of

spillover effects here.

The paper is organized as follows. Section 1 sets up the problem, derives our test

statistic, and presents its statistical properties. Section 2 connects to the alternative tests

proposed elsewhere and, notably, provides a theoretical comparison to the proposal of

Guryan, Kroft and Notowidigdo (2009). Section 3 contains two extensions. First, to allow

for arbitrary heteroskedasticity; these calculations also verify that our original test is fully

robust to heteroskedasticity when peer groups are mutually exclusive. Second, It also

shows how to modify the approach to accommodate additional control variables. Section 4

presents our two empirical illustrations. A short conclusion end the paper. All proofs are

collected in the Appendix.
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1 Testing random assignment

Consider a setting where we observe stratified data on r independent urns containing,

respectively, n1, . . . nr individuals. Within each urn individuals are assigned to peer groups.

The assignment of peers in urn g is recorded in the ng × ng matrix

(Ag)i,j :=

 1 if i and j are peers

0 if they are not
;

as individuals cannot be their own peer matrixAg has only zeros on its main diagonal.2 The

number of peers of individual i is mg(i) :=
∑ng

j=1(Ag)i,j. We assume that each individual

has at least one peer but do not otherwise restrict peer groups; they may be of different

sizes and are allowed to overlap. The goal is to test whether individuals are randomly

assigned to their respective peer groups.

Let xg,i be an observable characteristic of individual i in urn g. Sacerdote (2001) noted

that, under random assignment, xg,i will be uncorrelated with xg,j for all j ∈ [i], where

[i] := {j : (Ag)i,j = 1} is the set of i’s peers. Letting x̄g,[i] := mg(i)
−1∑ng

j=1(Ag)i,j xg,j, the

average value of the characteristic among i’s peers, he then proceeded by testing whether

the slope coefficient in a within-group regression of xg,i on x̄g,[i] is statistically different

from zero. The within-group estimator controls for fixed effects at the urn level. This is

important as, even if assignment is randomized within urns, individuals might be assigned

to an urn based on other attributes. In the data of Sacerdote (2001), for example, students

are randomly assigned to rooms conditionally on gender and their answers to a set of survey

questions. If peer assignment within urns is presumed to only be random conditional on a

set of additional covariates wg,i, say, they can equally be controlled for by including them

as additional regressors.

2Everything to follow can be modified to deal with situations where the adjacency matrices A1, . . . ,Ar

are asymmetric (as in directed networks), have non-binary entries (covering weighted networks), and have

a non-zero main diagonal (allowing individuals to be their own peer). To maintain focus we do not pursue

the most general case here.
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1.1 Bias calculation

As observed by Guryan, Kroft and Notowidigdo (2009), the test just described will typically

not be size correct. To see the problem, and a path forward, we start by a bias calculation.

For now we ignore any additional covariates wg,i and thus consider a fixed-effect regression

of xg,i on x̄g,[i]. The within-group estimator, ρ̂, is defined as the solution to the normal

equation
r∑

g=1

ng∑
i=1

x̄g,[i]
(
x̃g,i − ρ̂ x̄g,[i]

)
= 0,

where x̃g,i and ˜̄xg,[i] are deviations of, respectively, xg,i and x̄g,[i], from their within-urn

mean. A calculation given in the Appendix shows that the normal equation is biased.

Moreover,

E0

(
r∑

g=1

ng∑
i=1

x̄g,[i] x̃g,i

)
= −

r∑
g=1

σ2
g , (1.1)

where the subscript on the expectations operator indicates that the expectation is taken

under the null of random assignment, and we have assumed that E0(x̃2
g,i) =: σ2

g does not

vary across individuals. This urn-level homoskedasticity assumption can be dispensed with

and we do so below. Furthermore, it will turn out that, when peer groups are mutually

exclusive, the test derived under this homoskedasticity assumption is, in fact, robust to

heteroskedasticity.

Equation (1.1) implies that the within-group estimator is inconsistent under asymptotics

where the number of urns grows large but their size is held fixed. In the Appendix we show

that (under the null)

plimr→∞ ρ̂ = −
limr→∞

1
r

∑r
g=1 σ

2
g

limr→∞
1
r

∑r
g=1 σ

2
g E0

(∑ng
i=1

1
mg(i)

− 1
ng

∑ng
i=1

∑ng
j=1

mg(i∩ j)
mg(i)mg(j)

) , (1.2)

where mg(i ∩ j) :=
∑ng

k=1(Ag)i,k (Ag)k,j is the number of peers that individuals i and j

have in common. The probability limit is always negative. All else equal its magnitude is

decreasing in urn sizes and increasing in the degree of overlap between peer groups. When

peer groups do not overlap it is also increasing in the size of the peer groups. Furthermore,
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in the special case where all urns are of size n and are partitioned into peer groups of a

common size m,

plimr→∞ ρ̂ = − m

n− 1
,

which no longer depends on the urn variances. This expression co-incides with the one

reported in Proposition 1 of Caeyers and Fafchamps (2020).

The implication of the inconsistency is that the regression-based test will be biased

toward negative alternatives and that its size will tend to one as the number of urns grows

large.

1.2 A corrected test

The bias calculated in (1.1) is surprisingly simple and suggests a natural adjustment to

the test statistic of Sacerdote (2001). Observe that an unbiased estimator of σ2
g (under the

null) is

1

ng − 1

ng∑
i=1

xg,i x̃g,i.

Therefore, the re-centered covariance

qHO
r :=

r∑
g=1

ng∑
i=1

x̄g,[i] x̃g,i +
r∑

g=1

1

ng − 1

ng∑
i=1

xg,i x̃g,i =
r∑

g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

)
will be exactly unbiased under random assignment. An estimator of the standard deviation

of qHO
r is a conventional standard error that clusters observations at the urn level. It equals

sHO
r :=

√√√√ r∑
g=1

(
ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

))2

.

Hence, an adjusted test statistic is tHO
r := qHO

r /sHO
r . Note that the entire construction

of this statistic is based on calculations under the null. As such it is in the spirit of a

Lagrange-multiplier test.3

3Note that tHO
r can equally be viewed as a convential t-statistic—obtained through a bias-corrected

within-group regression—that uses a standard error that is constructed under the null.
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Theorem 1 states the asymptotic behavior of the statistic tHO
r under the null and under

alternatives where E(sHO
r ) = br for a sequence of constants br = O(r). Illustrations of

Pitman drifts of this type are given below.

Theorem 1. Let P(ng > 2) = 1. If maxg,i E(x8
g,i) = O(1) and maxg,i(E(x2

g,i))
−1 = O(1),

then

tHO
r −

br
sHO
r

d→ N(0, 1),

as r →∞.

It is easy to verify that urns of size two would not contribute to the test statistic and so can

be dropped. Hence the need for the first condition in the theorem. The second condition

contains standard moment requirements.

An implication of the theorem is that, for any α ∈ (0, 1),

lim
r→∞

P0

(
tHO
r > z1−α

)
= α,

where zα is the α-quantile of the standard-normal distribution. One-sided and two-sided

tests then follow in the usual manner. The theorem also implies that the test is consistent

against any alternative for which br does not vanish faster than
√
r. We turn to such

deviations next.

The bias adjustment in qHO
r is smaller for urns of larger size. This may suggest that

in settings where peers are drawn from large urns, ignoring the bias issue in the test of

Sacerdote (2001) is inconsequential (Guryan, Kroft and Notowidigdo, 2009). Such reasoning

ignores the fact that the standard deviation of qHO
r , too, is decreasing in urn sizes. The

conclusion, in line with results in the panel data literature (e.g., Hahn and Kuersteiner

2002), is that the bias will only be ignorable for testing purposes when the size of the urns

is substantially larger than the number of urns. We note, though, that in such a case the

usual cluster-robust variance estimator should not be used. Alternative variance estimators

are provided in Stock and Watson (2008).
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1.3 Power calculations

We consider three types of local alternatives, where xg,i is correlated across peers. In the

terminology of Manski (1993) these are (i) endogenous effects, (ii) contextual effects, and

(iii) correlated effects. We begin by providing a closed-form expression four the variance of

qHO
r under the null. We then calculate br under the alternatives (i)–(iii). Taken together,

these results then yield the non-centrality parameter in the limit distribution of tHO
r . This

is then used to assess power.

Throughout this subsection we focus attention on settings where peer groups do not

overlap, which makes the final expressions more easily interpretable. We also enforce that

E0(x4
g,i) = 3σ4

g , which yields a slightly shorter variance formula but is in no way essential

to our findings. The underlying derivations in the Appendix do not make use of these

restrictions.

Variance expression. Under these conditions the variance of rHO
r under the null is equal

to

vHO
r := E0(qHO

r qHO
r ) = 2

r∑
g=1

σ4
g E0

(
ng∑
i=1

1

mg(i)
− ng
ng − 1

)
. (1.3)

We observe that vHO
r is increasing in the size of the urns and decreasing in the size of the

peer groups.

Endogenous effects. In our first set of alternatives correlation among peers arises

through

xg,i = ρ x̄g,[i] + εg,i, εg,i ∼ independent (αg, σ
2
g),

where −1 < ρ < 1 and the εg,i are independent of the matrix Ag. A drifting sequence of

this model towards the null is obtained by setting ρ = %/
√
r for fixed values of %. Such

local alternatives imply that

br = 2
%√
r

r∑
g=1

σ2
g E

(
ng∑
i=1

1

mg(i)
− ng
ng − 1

)
. (1.4)
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Note that this term depends on the design in the same way as does vHO
r and so the same

comparative statistics apply. Taken together, by an application of Theorem 1, tHO
r will

converge in distribution to a normal random variable with mean µ := limr→∞ br/
√
vHO
r

and variance one. The larger µ (in magnitude) the smaller the probability of a type-II

error. The non-centrality parameter µ is even simpler when errors are homoskedastic and

the adjacency matrices A1, . . . ,Ar are drawn from a common distribution as, in that case,

µ = %

√√√√2E

(
ng∑
i=1

1

mg(i)
− ng
ng − 1

)
,

showing that power is monotone increasing in the (expected) size of the urns and decreasing

in the size of the peer groups. When variances are urn specific the expression for µ is to

be multiplied by

lim
r→∞

1√
r

∑r
g=1 σ

2
g√∑r

g=1 σ
4
g

≤ 1,

where the bound follows from the Cauchy-Schwarz inequality. Hence, urn-specific variances

are always power reducing. Nonetheless, note that µ > 0, and so our test will detect

endogenous-effect violations with probability approaching one for all possible configurations

of urn sizes and peer groups.

Contextual effects. In our second class of alternatives correlation in peer characteristics

comes from (latent) exogenous effects. Moreover,

xg,i = εg,i +
θ

mg(i)

ng∑
j=1

(Ag)i,j εg,j, εg,i ∼ independent (αg, σ
2
g)

where θ is a finite constant and, again, the εg,i are independent of the matrix Ag. For

drifting sequences of the form θ = ϑ/
√
r,

br = 2
ϑ√
r

r∑
g=1

σ2
g E

(
ng∑
i=1

1

mg(i)
− ng
ng − 1

)
, (1.5)

which is the identical to the bias under an endogenous-effect alternative where % = ϑ.

Consequently, endogenous and exogenous effects are locally asymptotically equivalent. This
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finding is not surprising in light of the similar results on autoregressive and moving-average

alternatives in classical testing problems in the time series literature (see, for example,

Godfrey 1981).

Correlated effects. In our third class of alternatives peers are subject to a common

additive shock drawn from a distribution with variance σ2
η, independent of everything else.

Thus (conditional on an urn fixed effect) the variance of xg,i is equal to σ2
η + σ2

g while the

covariance between characteristics of peers is σ2
η. In this case, the relevant drifting sequence

has σ2
η = ς2/

√
r and we find that the bias in qHO

r equals

br =
ς2

√
r

r∑
g=1

E

(
(ng − 1)− 1

ng

ng∑
i=1

mg(i)

ng − 1

)
. (1.6)

Because
∑ng

i=1mg(i) ≤ ng(ng − 1), with equality if and only if all individuals in urn g are

each others peers we again have that br > 0 and so our test will be consistent against all

correlated-effect alternatives. When σ2
g = σ2 and the matrices A1, . . . ,Ar are drawn from

a common distribution, the non-centrality parameter in the limit distribution of our test

statistic is

µ =
ς2

σ2

E
(

(ng − 1)− 1
ng

∑ng
i=1

mg(i)

ng−1

)
√

2E
(∑ng

i=1
1

mg(i)
− ng

ng−1

) .

Power is again increasing in n1, . . . , nr. The impact of the size of the peers groups on power

is less clear cut, however. On the one hand, larger peer groups reduce the variance and

increase µ. On the other hand, they also reduce the bias in qHO
r , resulting in a loss of power.

2 Connections to the literature

When there is variation in urn size Guryan, Kroft and Notowidigdo (2009) proposed to

augment the within-group regression of Sacerdote (2001) by including the leave-one-out

average

1

ng − 1

∑
j 6=i

xg,j =
ng

ng − 1

(
1

ng

ng∑
j=1

xg,j −
xg,i
ng

)
=

ng
ng − 1

(
xg −

xg,i
ng

)
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as an additional regressor. The within-group transformation sweeps out all terms that do

not vary within urns, and so the approach is equivalent to a within-group regression of xg,i

on x̄g,[i] and xg,i/(ng − 1). This highlights why variation in urn size is required. When

ng does not vary across urns this regression will yield a perfect fit that satisfies the null

whether or not peer assignment is random. Guryan, Kroft and Notowidigdo (2009) offer

an intuition of why their strategy yields size control and provide supporting simulations.

However, a theoretical analysis of the test is, to our knowledge, not available.

Calculations summarized in the Appendix reveal that the approach of Guryan, Kroft

and Notowidigdo (2009) tests whether

r∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

) (
1− δ

ng − 1

)
+ op(

√
r), (2.7)

is statistically different from zero. Here,

δ :=
limr→∞

1
r

∑r
g=1 σ

2
g

limr→∞
1
r

∑r
g=1 σ

2
g E0

(
1

ng−1

) ,
is the probability limit of the slope coefficient of a within-group regression of xg,i on

xg,i/(ng − 1), under the null. The summand in the leading term in (2.7) is equal to the

summand in qHO
r , up to a scale factor that varies at the urn level. This factor is bounded

and so, by virtue of Theorem 1, we conclude that the test will indeed exhibit correct size

in large samples.

The limited simulation evidence available suggests that the test of Guryan, Kroft and

Notowidigdo (2009) may suffer from low power; see Stevenson (2015) and also the extended

version of her analysis in the Appendix. Because the approach requires variation in urn

sizes one may expect the test to be particularly underpowered when such variation is limited

(Stevenson 2015, Caeyers and Fafchamps 2020). While this is true, low power can also arise

from a different source. Equation (2.7) is again useful here. Consider a design where urns

are of size n̄1 with probability (1− pn) and of size n̄2 with probability pn, where n̄1 < n̄2.

Then the non-centrality parameter of the test statistic can be shown to equal

µ∗ :=
√
pn(1− pn)

b(n̄2)− b(n̄1)√
v(n̄1) pn + v(n̄2) (1− pn)

, (2.8)
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where b(n) and v2(n) are the bias and variance of
∑ng

i=1 x̃g,i (x̄g,[i] +xg,i/(ng−1)) conditional

on ng = n. This equation confirms that µ∗ → 0 as pn(1−pn)→ 0 and formalizes the notion

that the test will tend to have low power when variation in urn sizes is small. The formula

also shows that the test will have trivial asymptotic power when b(n̄1)− b(n̄2) = 0, i.e., in

designs where the bias contributions coming from the different urn sizes cancel each other

out.

We confirm these findings in Figures 1 and 2 for designs where each of 25 urns contains

six individuals with probability pn and four individuals with probability 1 − pn. Within

earns of size four, each individual is assigned one peer at random while in the larger urn

peer groups are of size three with probability pm and of size two with probability 1 − pm.

Figure 1 plots (theoretical) power against endogenous (or, equivalently, contextual) effect

alternatives, with ρ (or, equivalently, θ) on the horizontal axis. Figure 2 displays power

against correlated-effect alternatives, with σ2
η/σ

2 on the horizontal axis. The plots in each

figure are arranged so that pn increases when going down rows and pm increases when

moving through columns. Dashed curves refer to our test. Dashed-dotted curves represent

the test of Guryan, Kroft and Notowidigdo (2009). Both tests are two-sided at the 5%

level; a dashed horizontal line marks the size.

Figure 1 shows high power for our test across all designs. The test of Guryan, Kroft and

Notowidigdo (2009) is uniformly less powerful, and substantially so. There is a reduction

in its power when pn moves away from .50 (i.e., across rows). For the values considered

here, this effect is small relative to the impact of changing pm, with power initially going

down considerably when pm moves from .25 to .50, and afterwards essentially flattening

out completely when pm = .75. This is a reflection of the numerator in µ∗ getting close

to zero; the bias in urns of size four cancels out with the bias in urns of size six. As µ∗ is

multiplicative in ρ these changes are uniform on (−1, 1).

Figure 2 shows our test also has high power against correlated-effect alternatives. The

power gain in the test of Guryan, Kroft and Notowidigdo (2009) as σ2
η/σ

2 moves further

away from zero (the null) trails behind considerably. However, in contrast to the pattern

in Figure 1, we do not observe trivial power in any of the configurations. The reason for
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Figure 1: Power analysis for endogenous- and exogenous-effect alternatives
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Power against endogenous/exogenous effect alternatives for our test (dashed line) and for the test of Guryan,

Kroft and Notowidigdo (2009) (dashed-dotted line) in a design with two possible urns sizes (4 and 6) and

two possible peer-group sizes (2 and 3). pn := P(ng = 6) and pm := P(mg(i) = 2|ng = 6). A horizontal

dashed-dotted line indicates the size of the test. Plots are based on theoretical calculations and are for 25

urns.

this is that, here, for none of the combinations of pn and pm the numerator of µ∗ is close to

zero. A close look will allow to verify that, here, power increases with pm. This is in line

with our formulas.

Guryan, Kroft and Notowidigdo (2009) also describe an alternative permutation test

(see, e.g., Lehmann and Romano 2006, Chapter 15, for a general treatment of such tests)
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Figure 2: Power analysis for correlated-effect alternatives
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Power against correlated-effect alternatives for our test (dashed line) and for the test of Guryan, Kroft and

Notowidigdo (2009) (dashed-dotted line) in a design with two possible urns sizes (4 and 6) and two possible

peer-group sizes (2 and 3). pn := P(ng = 6) and pm := P(mg(i) = 2|ng = 6). A horizontal dashed-dotted

line indicates the size of the test. Plots are based on theoretical calculations and are for 25 urns.

that is based on the sampling distribution of the within-group estimator obtained from

randomly re-assigning individuals to peer groups within each urn. Randomization tests

have many attractive properties but require that individuals are exchangeable under the

null to be size correct. This is a substantial strenghtening of the requirements underlying

Theorem 1. A relevant data feature that would violate exchangeability is when xg,i is

heteroskedastic (in i), for example.
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Stevenson (2015) suggested an alternative approach based on data splitting. Although

its theoretical properties have not been established, the subsampling scheme proposed

circumvents bias under the null, at least when peer groups are mutually exclusive, and

so should lead to size correct inference in this case (under regularity conditions). Like

the permutation test, the scheme is also computationally much more demanding than our

bias-adjustment proposal.

3 Extensions

3.1 Heteroskedasticity

So far we have worked under an assumption of urn-level homoskedasticity. We now drop

this restriction and allow that σ2
g,i := E0(x2

g,i) varies both between and within urns in an

arbitrary way.

First, calculations analogous to those that gave rise to (1.1) show that, now

E0

(
r∑

g=1

ng∑
i=1

x̄g,[i] x̃g,i

)
= −

r∑
g=1

E0

(
1

ng

ng∑
i=1

1

mg(i)

ng∑
j=1

(Ag)i,j σ
2
g,j

)
. (3.9)

Hence, the contribution of each urn to the bias equals (minus) the expected within-urn

mean of peer-group averaged variances.

Appealing to a result of Hartley, Rao and Kiefer (1969), we show in the Appendix that

an unbiased estimator of the bias in (3.9) is

−
r∑

g=1

ng∑
i=1

ωg,i xg,i x̃g,i, ωg,i :=
1

ng − 2

∑
i′∈[i]

1

mg(i′)
− 1

ng − 1

 ,

which is again well-defined for all urns of size ng > 2. Hence, a modification of qHO
r that is

robust to heteroskedasticity of arbitrary form is given by

qHC
r :=

r∑
g=1

ng∑
i=1

x̃g,i
(
x̄g,[i] + ωg,i xg,i

)
, (3.10)
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which satisfies E0(qHC
r ) = 0. It differs from qHO

r only in that the weight (ng−1)−1 is replaced

by ωg,i, which varies at the individual level. Construction of ωg,i is nonetheless immediate

from Ag.

Observe that, in the important special case where peer groups do not overlap we have

mg(i
′) = mg(i) for all i′ ∈ [i], and so

ωg,i =
1

ng − 1
.

This is the weight we used to construct our test statistic in the homoskedastic case. It thus

follows that tHO
r is robust to heteroskedasticity in this case.

The standard deviation of qHC
r can be estimated by

sHC
r :=

√√√√ r∑
g=1

(
ng∑
i=1

x̃g,i
(
x̄g,[i] + ωg,i xg,i

))2

.

A modified version of our test statistic that remains size correct under heteroskedasticity

of arbitrary form also when peer groups overlap is tHC
r := qHC

r /sHC
r . This statistic is

asymptotically normal under the same conditions as before. In the following theorem,

br := E(qHC
r ) = O(r).

Theorem 2. Let P(ng > 2) = 1. If maxg,i E(x8
g,i) = O(1) and maxg,i(E(x2

g,i))
−1 = O(1),

then

tHC
r −

br
sHC
r

d→ N(0, 1),

as r →∞.

3.2 Controlling for covariates

There may be situations where, in addition to urn fixed effects, it is desirable to control

for other variables that vary at the individual level, wg,i. This would be needed when

randomization is assumed to take place within urns only conditional on these variables.

A intuitive regression-based solution would be to first partial-out wg,i from xg,i and then

proceed in constructing our test statistic as before. We next show that, under regularity

conditions, this approach is justified.
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Let ẋg,i denote the residual from an ordinary least-squares regression of xg,i on urn

dummies and the vector of covariates wg,i. Then the modified test statistic takes the form

t̂HO
r :=

q̂HO
r

ŝHO
r

for

q̂HO
r :=

r∑
g=1

ng∑
i=1

ẋg,i

(
x̄g,[i] +

xg,i
ng − 1

)
, ŝHO

r :=

√√√√ r∑
g=1

(
ng∑
i=1

ẋg,i

(
x̄g,[i] +

xg,i
ng − 1

))2

.

The statistic tHC
r can be modified in the same way.

To state conditions under which Theorem 1 generalizes to partialling-out covariates we

need

x̌g,i := xg,i −w′g,i

(
r∑

g=1

ng∑
i′=1

E(wg,i′w
′
g,i′)

)−1( r∑
g=1

ng∑
i′=1

E(wg,i′xg,i′)

)
.

This is the deviation of xg,i from its population linear projection on wg,i (and no fixed

effects).

The following theorem provides the result. Here, ‖·‖ refers to the Euclidean norm and

br is once more suitably re-defined to be the bias in q̂HO
r under Pitman drifts towards the

null hypothesis.

Theorem 3. Let P(ng > 2) = 1. If maxg,i E(x̌8
g,i) = O(1) and maxg,i(E(x̌2

g,i))
−1 = O(1),

then

t̂HO
r −

br
ŝHO
r

d→ N(0, 1),

as r →∞, provided that E(x̌g,i|wg,1, . . . ,wg,ng) = αg for urn-specific constants α1, . . . , αr,

that maxg,i E(‖wg,i‖4) = O(1) and that the matrix limr→ r
−1
∑r

g=1 E(w̃g,i w̃
′
g,i) has maximal

rank.

The conditions in this result are intuitive. First, the moment conditions on xg,i in Theorem 1

are replaced by corresponding conditions on x̌g,i. Next, the mean-independence assumption

is a requirement of strict exogeneity on wg,i. Finally, the conditions on the covariates are

needed to ensure that the residuals from the auxiliary least-squares regression converge to

their population counterparts.
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4 Illustrations

4.1 Randomization in professional golf tournaments

Guryan, Kroft and Notowidigdo (2009) used the random assignment of golf players to

playing partners in professional golf tournaments to estimate peer effects. Their data

span the 2002, 2005, and 2006 seasons of the Professional Golfer’s Association (PGA)

and cover 81 tournaments. We refer to Guryan, Kroft and Notowidigdo (2009) for a

detailed description of the data. Here we only note the facts that are of direct relevance

to our analysis. Players in the PGA are, at any point in time, assigned to one of four

categories (cat 1, cat 1a, cat 2, and cat 3). At the start of each tournament, within these

four categories, playing partners are assigned to groups of three golfers. These (mutually

exclusive) peer groups play together for the first two rounds of the tournament. The analysis

is limited to the first round. Conditional on the set of players who enter a tournament,

the assignment is random within categories. Unconditional on this fully interacted set of

fixed effects, assignment to groups is not random (Guryan, Kroft and Notowidigdo, 2009,

p. 40). Random assignment is tested by looking at the (corrected) within-group correlation

between a measure of a golfer’s ability and the average ability of his peers in the reference

group.

The chief measure of ability used to do this is an estimate of the number of strokes more

than 72 (i.e., above par) that a golfer typically takes in a round, on an average course, that

is used for PGA tournaments. The more negative this number the better the player. Table

1 contains descriptive statistics for this variable, stratified by the four player categories. It

shows that, broadly, average ability is higher in lower numbered categories, and that there

remains substantial variation in this measure even conditional on category. To get a sense

of urn sizes in these data the table also provides descriptive statistics of the number of

players by tournament (tourn) and by tournament-by-category. The latter are based on

a total of 8,791 observations in stead of the total of 8,801 observations as 10 observations

concern urns of a size less than three; recall that such urns do not contain any information

for our purposes. We also included the same descriptive statistics for the weights (ng−1)−1.
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Table 1: The PGA data

n obs mean std min max

ability (xg,i)

cat 1 3,205 -3.138 0.769 -5.159 1.440

cat 1a 3,436 -2.808 0.740 -4.326 6.732

cat 2 1,503 -2.857 0.894 -4.776 3.275

cat 3 657 -1.662 1.470 -4.776 6.315

peer ability (x̄g,[i])

cat 1 3,205 -3.132 0.599 -5.081 0.672

cat 1a 3,436 -2.811 0.591 -4.530 3.275

cat 2 1,503 -2.850 0.744 -4.776 3.275

cat 3 657 -1.690 1.270 -4.776 6.315

urn size (ng)

tourn 8,801 111.942 18.414 62 144

tourn by cat 8,791 39.292 16.869 3 83

weight ((ng − 1)−1)

tourn 8,801 0.009 0.002 0.007 0.016

tourn by cat 8,791 0.037 0.040 0.012 0.500
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The test statistics for the default (i.e., uncorrected) regression-based test, our corrected

version, and the test where leave-me-out urn means are controlled for are collected in Table

2. The numbers in square brackets below are corresponding (two-sided) p-values. When

fully stratifying the data by tournament and category we observe that the default test

rejects the null of random assignment and would suggest there to be negative assortative

matching between players. The other two tests have large p-values, finding little evidence

to contradict the null. Recall that the assignment of players to groups is not random when

not controlling for categories. We would hope that both tests capture this violation from

the null. Our corrected test does this; its p-value drops from .394 to .000. The test of

Guryan, Kroft and Notowidigdo (2009) on the other hand continues to suggest that golfers

are randomly assigned; its p-value actually increases from .227 to .329. This type-II error

is in line with our theoretical results on this test.

Table 2: Results for the PGA data

stratification default corrected control

tourn 7.524 4.288 -0.976

[0.000] [0.000] [0.329]

tourn by cat -3.957 -0.852 -1.209

[0.000] [0.394] [0.227]

We conclude this illustration by highlighting a caveat to the analysis of these data.

Most, if not all, professional golf players participate to multiple tournaments per year and

are also active for multiple years. Consequently, many players will appear in multiple urns,

albeit with a different value for their ability measure, as this is updated over time. This, of

course, induces dependence across urns which is in violation with our working assumption

that urns are independent.

4.2 Peer effects in the classroom

We use data collected as part of Project STAR to test for the presence of peer effects

among kindergarten students. These data are well known and have been used extensively.
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The data set we is borrowed from Graham (2008). It covers 317 kindergarten classrooms

in the state of Tennessee. A summary of the data is given in Table 3. We have SAT

scores for mathematics taken at the end of the year (math), and dummies for gender

(girl), ethnicity (black), and eligibility for free school meals (lunch). The SAT scores are

standardized to have mean zero and unit variance. On entering kindergarten students

were randomly assigned to one of three class types. There has been debate on whether

students were also randomly assigned to classes; see Graham (2008), Chetty et al. (2011),

and Sojourner (2013). The concensus seems to be that violations appear small, especially

at the kindergarten level.

Table 3: The Project STAR data

n obs mean std min max

math score 5,724 0.000 1.000 -4.129 2.943

peer math 5,724 0.000 0.581 -1.616 2.123

girl 5,724 0.486 0.500 0 1

black 5,724 0.327 0.469 0 1

lunch 5,724 0.480 0.500 0 1

class size 317 18.057 3.965 9 27

If we let xg,i be the SAT score of student i in classroom g and collect her observed

characteristics in the vector wg,i a linear-in-means model with a classroom fixed effect αg

takes the form

xg,i = ρ x̄g,[i] +w′g,iβ + w̄′g,[i]γ + αg + εg,i,

where εg,i captures remaining unobserved factors and w̄g,[i] is the average of wg,j for j ∈ [i].

Here, endogenous peer effects correspond to ρ 6= 0, contextual peer effects correspond to

γ = 0, and correlated effects (in addition to those not captured by the αg) correspond to

the latent εg,i being correlated within classrooms.

Table 4 provides the value of our test statistic for the null of no peer effects for three

different specifications. For completeness it also contains its uncorrected counterpart. The

baseline specification controls only for classroom fixed effects. Here, the null is strongly
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rejected. The second specification additionally controls for the observed characteristics of

the students. In this case, we no longer find evidence of peer effects. The same is true if we

augment the control variables by the average characteristics of the peers. Thus, we do not

find evidence of any type of spillover effects once background characteristics are controlled

for.

Table 4: Results for the Project STAR data

default corrected default corrected default corrected

test statistic -56.710 4.215 -55.710 -1.295 -56.085 1.211

p-value (two sided) 0.000 0.000 0.000 0.195 0.000 0.226

class fixed effects Yes Yes Yes Yes Yes Yes

controls No No Yes Yes Yes Yes

controls of peers No No No No Yes Yes

An alternative to our direct test would be to estimate the linear-in-means model and

explicitely test for the presence of endogenous and exogenous effects. Because classrooms

do not overlap this cannot be done through the popular instrumental-variable approach

of Bramoullé, Djebbari and Fortin (2009) and De Giorgi, Pellizzari and Redaelli (2010)

that hinges on partial overlap between peer groups. Exploiting the variation in class size,

Rose (2017) (extending the work of Graham 2008) used the identifying power in second

moments of test scores to back out estimates of endogenous and exogenous effects in our

data. Both point estimates (in his Specification 3 in Table 2) came out as insignificant at

all conventional significance levels. This result is in line with the conclusion obtained here.

It is noted in Rose (2017, p. S55) that identification of the full model in the Project STAR

setting may be weak. This aids in rationalizing the large standard errors he obtains. It

also highlights the usefulness of a test for the presence of peer effects that circumvents the

need for a consistent estimator of the unrestricted model.
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Conclusion

Random assignment of individuals to peer groups has proven to be a powerful tool for

credible identification of spillover effects. In non-experimental designs it needs to be argued

that assignment is ‘as good as’ random. This paper has presented a simple test to do so.

Its properties were derived and a comparison to alternative test available the literature has

been made.

Peer groups may be of different sizes and need not be mutually exclusive. Variation in

the size of the urns from which peers are drawn is allowed but is not necessary. Individuals

within urns are not assumed to be exchangeable under the null. Theoretical analysis verifies

that the test is consistent against endogenous effects, contextual effects, and correlated

effects. We also provide theoretical results that illustrate substantial power improvements

over the test of Guryan, Kroft and Notowidigdo (2009). These calculations also clarify why

this test will often have low power.

In a first empirical illustration we verify random assignment in the professional golfer

data of Guryan, Kroft and Notowidigdo (2009). Within tournaments, participating players

are randomly assigned to playing partners from the same category. Like theirs, our test

confirms this. Assignment is not random when not controlling for categories. While our

test successfully detects this violation, theirs does not.

In a second empirical example we use our approach to test for the presence of peer

effects in educational achievement. Using data on SAT scores in kindergarten collected as

part of Project STAR we do not find evidence of peer effects once student characteristics

and classroom fixed effects are accounted for.

Appendix

Normalization. Our procedures accommodate fixed effects at the urn level. Moreover, all

sample statistics involved are functions of observations from which the within-urn mean has been

subtracted and are, thus, invariant to the fixed effects. Therefore, it is without loss of generality
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to set all fixed effects equal to zero. This implies that

E0(xg,i xg,j) =

 σ2
g if i = j

0 if i 6= j
. (A.1)

This normalization simplifies the derivations below and is maintained throughout the Appendix.

Proof of Equation (1.1). Under the null of random assignment the bias in the normal

equation is

E0

 r∑
g=1

ng∑
i=1

x̄g,[i] x̃g,i

 =
r∑

g=1

E0

( ng∑
i=1

x̄g,[i] xg,i

)
−

r∑
g=1

E0

( ng∑
i=1

x̄g,[i] xg

)
.

We first calculate each of the expectations on the right-hand side and then collect results to arrive

at (1.1).

For the first term on the right-hand side, observe that

E0

( ng∑
i=1

x̄g,[i] xg,i

)
= E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j xg,j xg,i
mg(i)


= E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j E0(xg,j xg,i|Ag)

mg(i)


= 0,

where the first equality uses the definition of x̄g,[i], the second equality iterates expectations, and

the final equality follows from the fact that E0(xg,i xg,j |Ag) = E0(xg,i xg,j) = 0 for all i 6= j and

the accounting identity
∑ng

j=1(Ag)i,j = mg(i).

For the second term on the right-hand side, we have

E0

( ng∑
i=1

x̄g,[i] xg

)
= E0

 1

ng

ng∑
i=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j xg,j xg,j′

mg(i)


= E0

 1

ng

ng∑
i=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j E0(xg,j xg,j′)

mg(i)


= E0

 1

ng

ng∑
i=1

ng∑
j=1

(Ag)i,j E0(x2
g,j)

mg(i)


= σ2

g ,
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using the same arguments as for the first term.

Taking differences of the expectations just calculated and summing over the r urns now shows

that

E0

 r∑
g=1

ng∑
i=1

x̄g,[i] x̃g,i

 = −
r∑

g=1

σ2
g ,

which is Equation (1.1).

Proof of Equation (1.2). The within-group estimator is

ρ̂ :=

∑r
g=1

∑ng
i=1 x̄g,[i] x̃g,i∑r

g=1

∑ng
i=1 x̄g,[i] ˜̄xg,[i]

.

The expectation (under the null) of the numerator has already been calculated in (1.1) so it

remains only to calculate the expectation of the denominator, E0(
∑r

g=1

∑ng
i=1 x̄g,[i] ˜̄xg,[i]). Using

the definition of x̄g,[i], it can be written as

r∑
g=1

E0

 ng∑
i=1

 ng∑
j=1

(Ag)i,j xg,j
mg(i)

2− r∑
g=1

E0

 1

ng

 ng∑
i=1

ng∑
j=1

(Ag)i,j xg,j
mg(i)

2 .

As in the proof of (1.1) we again start by calculating each of the expectations involved and then

collect results.

To calculate the expectation in the first term we expand the square and iterate expectations to

write

E0

 ng∑
i=1

 ng∑
j=1

(Ag)i,j xg,j
mg(i)

2 = E0

 ng∑
i=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j (Ag)i,j′ E0(xg,j xg,j′)

mg(i)2


= E0

 ng∑
i=1

ng∑
j=1

(Ag)
2
i,j E0(x2

g,j)

mg(i)2


= E0

( ng∑
i=1

1

mg(i)

)
σ2
g ,

where we have first exploited (A.1) and then used
∑ng

j=1(Ag)i,j = mg(i) together with the fact

that (Ag)
2
i,j = (Ag)i,j .
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To calculate the expectation in the second term, we proceed in the same way. Doing so reveals

that

E0

 1

ng

 ng∑
i=1

ng∑
j=1

(Ag)i,j xg,j
mg(i)

2 = E0

 ng∑
i=1

ng∑
j=1

ng∑
i′=1

ng∑
j′=1

(Ag)i,j (Ag)i′,j′ E0(xg,j xg,j′)

ngmg(i)mg(i′)


= E0

(
1

ng

ng∑
i=1

ng∑
i′=1

∑ng
j=1(Ag)i,j (Ag)i′,j E0(x2

g,j)

mg(i)mg(i′)

)

= E0

(
1

ng

ng∑
i=1

ng∑
i′=1

mg(i ∩ i′)
mg(i)mg(i′)

)
σ2
g ,

where we recall that
∑ng

j=1(Ag)i,j (Ag)i′,j = mg(i ∩ i′).

Taking differences of the two expectations just calculated and summing over the r urns yields

E0

 r∑
g=1

ng∑
i=1

x̄g,[i] ˜̄xg,[i]

 =
r∑

g=1

E0

 ng∑
i=1

1

mg(i)
− 1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

σ2
g .

Combined with (1.1) this yields (1.2) on letting r →∞.

The comparative statics in ng and mg(i ∩ j) are immediate. When peer groups do not overlap,

1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

=
1

ng

ng∑
i=1

mg(i ∩ i) +
∑

j 6=img(i ∩ j)
mg(i)2

=
1

ng

ng∑
i=1

(
1

mg(i)
+

∑
j 6=i(Ag)i,j (mg(i)− 1)

mg(i)2

)

=
1

ng

ng∑
i=1

(
1

mg(i)
+
mg(i)− 1

mg(i)

)
= 1,

(A.2)

implying that, in this case the expectation of the denominator simplifies to

r∑
g=1

E0

( ng∑
i=1

1

mg(i)
− 1

)
σ2
g ,

which is indeed decreasing in the mg(i).
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Proof of Theorem 1. By independence of the urns the variance of qHO
r is

vHO
r :=

r∑
g=1

E0

( ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

))2
 .

We need to prove that

(i)
qHO
r − br√
vHO
r

d→ N(0, 1), and (ii)

(
sHO
r −

√
vHO
r

)
p→ 0

We handle each of these in turn. As subtracting br amounts to a mere recentering of qHO
r to make

it zero mean it suffices to set br = 0.

To show (i) we verify that the conditions of Lyapunov’s central limit theorem are met. Here,

Lyapunov’s condition is

lim
r→∞

∑r
g=1 E

(∣∣∣∑ng
i=1 x̃g,i

(
x̄g,[i] +

xg,i
ng−1

)∣∣∣2+δ
)

(∑r
g=1 E

((∑ng
i=1 x̃g,i

(
x̄g,[i] +

xg,i
ng−1

))2
)) 2+δ

2

= 0,

for some δ > 0. To do so it is useful to introduce

λgi,j :=

 1/(ng − 1) if i = j

(Ag)i,j/mg(i) if i 6= j

Then we can write

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

)
=

ng∑
i=1

ng∑
j=1

λi,j x̃g,i xg,j =

ng∑
i=1

ng∑
j=1

(
λgi,j −

ng
ng − 1

)
xg,i xg,j ,

where we use that n−1
g

∑ng
j=1 λi,j = ng/(ng − 1). Let δ > 0 be fixed. Then, by an application of

Hölder’s inequality,

E


∣∣∣∣∣∣
ng∑
i=1

ng∑
j=1

(
λgi,j −

ng
ng − 1

)
xg,i xg,j

∣∣∣∣∣∣
2+δ
 ≤

E

max
i,j

∣∣∣∣λgi,j − ng
ng − 1

∣∣∣∣
(2+δ)(1+θ)

θ

 θ
1+θ

×

E


 ng∑
i=1

ng∑
j=1

|xg,i xg,j |

(2+δ)(1+θ)



1
1+θ

,
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for some θ > 0. The first right-hand side term is finite for any choice of θ because the (re-centered)

weights λgi,j−ng/(ng−1) are bounded. For second right-hand side term, letting ε := 2θ+δ+δθ > 0,

E

 ng∑
i=1

ng∑
j=1

|xg,i xg,j |

2+ε ≤ E

( ng∑
i=1

|xg,i|

)4+2ε
 ≤ E

(( ng∑
i=1

|xg,i|4+2ε

)
ng

)
= O(1)

because maxg maxi E(|xg,i|4+δ) <∞ by assumption. Consequently,

r∑
g=1

E

∣∣∣∣∣
ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

)∣∣∣∣∣
2+δ
 = O(r),

and Lyapunov’s condition will follow if we can show that vHO
r grows at the rate r. We may again

write

E

( ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

))2
 = E

 ng∑
i=1

ng∑
j=1

(
λgi,j −

ng
ng − 1

)
xg,i xg,j

2 .

Expanding the square inside the expectation, iteration expectations, and recalling that we have

normalized the data to have mean zero yields

E

 ng∑
i=1

ng∑
j=1

(
λgi,j −

ng
ng − 1

)
xg,i xg,j

2 = E

( ng∑
i=1

(
λgi,i −

ng
ng − 1

)2

E(x4
g,i)

)

+ E

( ng∑
i=1

(
λgi,j −

ng
ng − 1

)2

σ4
g

)

+ E

 ng∑
i=1

ng∑
j=1

(
λgi,i −

ng
ng − 1

)(
λgj,j −

ng
ng − 1

)
σ4
g


+ E

 ng∑
i=1

ng∑
j=1

(
λgi,j −

ng
ng − 1

)(
λgj,i −

ng
ng − 1

)
σ4
g

 .

Each of these terms is non-zero and bounded. Hence, vHO
r , which is the sum of all these terms

over the r urns, grows at the rate r and Lyapunov’s condition holds.

To show (ii) it suffices to confirm that

E

 ng∑
i=1

ng∑
j=1

(
λgi,j −

ng
ng − 1

)
xg,i xg,j

4
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is bounded by a constant independent of g. Expanding the square and iterating expectations

shows that this is indeed the case, as the urn sizes are fixed, the weights are uniformly bounded,

and E(x8
g,i) <∞. The consistency result is then a consequence of Kolmogorov’s strong law. This

completed the proof.

Proof of Equation (1.3). We need to compute the variance of

qHO
r =

r∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

)
under the null of random assignment. The calculations here allow for overlap between peer groups

and allow for E0(x4
g,i) =: γ4

g to depend on g (but not on i). Recall that qHO
r has mean zero (under

the null) by construction. By independence of the urns its variance is

vHO
r :=

r∑
g=1

E0

( ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

))2
 ,

which on expanding the sum is equal to

r∑
g=1

E0

( ng∑
i=1

ng∑
i′=1

(
x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

))(
x̃g,i′

(
x̄g,[i′] +

xg,i′

ng − 1

)))
. (A.3)

We first calculate the expectation of each of the cross-terms in this last expression and then

combine the results.

The first term that needs to be calculated is

E0

( ng∑
i=1

ng∑
i′=1

x̃g,i x̃g,i′ x̄g,[i] x̄g,[i′]

)
= E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] (xg,i − xg) (xg,i′ − xg)

)
,

and expands as

E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] xg,i xg,i′

)
− 2E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] xg,i xg

)
+ E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] x
2
g

)
.

We now calculate each of the three expectations involved and collect results.
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The first expectation is

E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] xg,i xg,i′

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j (Ag)i′,j′ E0(xg,i xg,i′ xg,j xg,j′)

mg(i)mg(i′)


= E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j (Ag)i,j E0(x2
g,i x

2
g,j)

mg(i)mg(i)


+ E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j (Ag)j,i E0(x2
g,i x

2
g,j)

mg(i)mg(j)


= E0

( ng∑
i=1

1

mg(i)

)
σ4
g + E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

σ4
g ,

where we have used the definition of x̄g,[i] together with the observation that only summands for

which (i) i = i′ and j = j′ or (ii) i = j′ and j = i′ deliver a non-zero contribution. This follows

from the fact that the xg,i within each urn are independent under the null (conditional on their

common urn fixed effect).

The second expectation is

E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] xg,i xg

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
j′=1

ng∑
k=1

(Ag)i,j (Ag)i′,j′ E0(xg,i xg,j xg,j′ xg,k)

mg(i)mg(i′)ng


= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

(Ag)i,j (Ag)i′,j E0(x2
g,i x

2
g,j)

mg(i)mg(i′)ng


+ E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

(Ag)i,j (Ag)i′,i E0(x2
g,i x

2
g,j)

mg(i)mg(i′)ng


= E0

( ng∑
i=1

ng∑
i′=1

∑ng
j=1(Ag)i,j (Ag)i′,j

mg(i)mg(i′)ng

)
σ4
g + σ4

g

= E0

(
1

ng

ng∑
i=1

ng∑
i′=1

mg(i ∩ i′)
mg(i)mg(i′)

)
σ4
g + σ4

g ,

which follows by the same arguments, now only retaining summands for which (i) j′ = j and

k = i or (ii) j′ = i and k = j.
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The third expectation is

E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] x
2
g

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
j′=1

ng∑
k=1

ng∑
k′=1

(Ag)i,j (Ag)i′,j′ E0(xg,j xg,j′ xg,k xg,k′)

mg(i)mg(i′)n2
g


= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
k=1

(Ag)i,j (Ag)i′,j E0(x2
g,j x

2
g,k)

mg(i)mg(i′)n2
g


+ 2E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j (Ag)i′,j′ E0(x2
g,j x

2
g,j′)

mg(i)mg(i′)n2
g


= E0

(
1

ng

ng∑
i=1

ng∑
i′=1

∑ng
j=1(Ag)i,j (Ag)i′,j

mg(i)mg(i′)

)
σ4
g

+ 2E0

(
1

n2
g

ng∑
i=1

ng∑
i′=1

∑ng
j=1(Ag)i,j

∑ng
j′=1(Ag)i′,j′

mg(i)mg(i′)

)
σ4
g

= E0

(
1

ng

ng∑
i=1

ng∑
i′=1

mg(i ∩ i′)
mg(i)mg(i′)

)
σ4
g + 2σ4

g ,

where, now, three types of summands contribute; they are those for which (i) j′ = j and k′ = k

or (ii) k = j and k′ = j′ or (iii) k = j′ and k′ = j.

Putting everything together shows that E0

(∑ng
i=1

∑ng
i′=1 x̃g,i x̃g,i′ x̄g,[i] x̄g,[i′]

)
is equal to

E0

 ng∑
i=1

1

mg(i)
− 1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

+

ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

σ4
g , (A.4)

which deals with the first term in (A.3).

The second term that needs to be calculated is

E0

( ng∑
i=1

ng∑
i′=1

x̃g,i x̃g,i′ x̄g,[i] xg,i′

(ng − 1)

)
= E0

( ng∑
i=1

ng∑
i′=1

(xg,i − xg) (xg,i′ − xg) x̄g,[i] xg,i′
(ng − 1)

)

= E0

( ng∑
i=1

ng∑
i′=1

xg,i x̄g,[i] x
2
g,i′

(ng − 1)

)

− E0

( ng∑
i=1

ng∑
i′=1

xg,i xg x̄g,[i] xg,i′

(ng − 1)

)

− E0

( ng∑
i=1

ng∑
i′=1

xg x̄g,[i] x
2
g,i′

(ng − 1)

)

+ E0

( ng∑
i=1

ng∑
i′=1

x2
g x̄g,[i] xg,i′

(ng − 1)

)
.
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We evaluate each of these expectations in turn next.

The first expectation is

E0

( ng∑
i=1

ng∑
i′=1

xg,i x̄g,[i] x
2
g,i′

(ng − 1)

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

(Ag)i,j E0(xg,i x
2
g,i′ xg,j)

mg(i) (ng − 1)

 = 0,

which follows from the fact that (Ag)i,i = 0 so that no combination of indices gives raise to a

summand that has non-zero mean.

The second expectation is

E0

( ng∑
i=1

ng∑
i′=1

xg,i xg x̄g,[i] xg,i′

(ng − 1)

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
k=1

(Ag)i,j E0(xg,i xg,i′ xg,j xg,k)

mg(i)ng (ng − 1)


= 2E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j E0(x2
g,i x

2
g,j)

mg(i)ng (ng − 1)


= 2E0

(
1

(ng − 1)

)
σ4
g ,

where the summands that contribute are those for which (i) i′ = i and k = j or (ii) i′ = j and

k = i.

The third expectation is

E0

( ng∑
i=1

ng∑
i′=1

xg x̄g,[i] x
2
g,i′

(ng − 1)

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
k=1

(Ag)i,j E0(x2
g,i′ xg,j xg,k)

mg(i)ng (ng − 1)


= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

(Ag)i,j E0(x2
g,i′ x

2
g,j)

mg(i)ng (ng − 1)


= E0

( ng∑
i=1

ng∑
i′=1

(Ag)i,i′ E0(x4
g,i′) +

∑
j 6=i′(Ag)i,j E0(x2

g,i′ x
2
g,j)

mg(i)ng (ng − 1)

)

= E0

(
1

(ng − 1)

)
γ4
g + E0

(
1

ng(ng − 1)

ng∑
i=1

ng∑
i′=1

mg(i)− (Ag)i,i′

mg(i)

)
σ4
g

= E0

(
1

(ng − 1)

)
γ4
g + σ4

g ;

note that, here, only summands for which k = j contribute, but their contribution depends on

whether (i) i′ = j (which contributes a fourth-order moment) or whether (ii) i′ 6= j (which

contributes a squared second moment).
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The fourth expectation is

E0

( ng∑
i=1

ng∑
i′=1

x2
g x̄g,[i] xg,i′

(ng − 1)

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
k=1

ng∑
k′=1

(Ag)i,j E0(xg,i′ xg,j xg,k xg,k′)

mg(i)n2
g (ng − 1)


= E0

( ng∑
i=1

ng∑
i′=1

(Ag)i,i′ E0(x4
g,i′) + 3

∑
j 6=i′(Ag)i,j E0(x2

g,i′ x
2
g,j)

mg(i)n2
g (ng − 1)

)

= E0

(
1

ng(ng − 1)

)
γ4
g + 3E0

(
1

ng

)
σ4
g .

Here, again, a fourth-order term arises from the summands where i′ = j = k = k′ while three

different combinations of indices contribute terms involving σ4
g ; these are those where (i) i′ = j

and k = k′ (but not both) or (ii) i′ = k and k′ = j (but not both) or (iii) i′ = k′ and k = j (but

not both).

Combining results yields

E0

( ng∑
i=1

ng∑
i′=1

x̃g,i x̃g,i′ x̄g,[i] xg,i′

(ng − 1)

)
= E0

(
3

ng
− 2

(ng − 1)
− 1

)
σ4
g − E0

(
1

ng

)
γ4
g , (A.5)

and gives (up to the factor 2) and expression for the second term in (A.3).

The third term and final term that needs to be calculated is

E0

( ng∑
i=1

ng∑
i′=1

x̃g,i x̃g,i′ xg,i xg,i′

(ng − 1)2

)
= E0

( ng∑
i=1

ng∑
i′=1

(xg,i − xg) (xg,i′ − xg)xg,i xg,i′
(ng − 1)2

)

= E0

( ng∑
i=1

ng∑
i′=1

x2
g,i x

2
g,i′

(ng − 1)2

)

− 2E0

( ng∑
i=1

ng∑
i′=1

x2
g,i xg,i′ xg

(ng − 1)2

)

+ E0

( ng∑
i=1

ng∑
i′=1

xg,i xg,i′ x
2
g

(ng − 1)2

)
.

This again requires calculating three distinct expectations, and we will again take on each in turn.

The first expectation is

E0

( ng∑
i=1

ng∑
i′=1

x2
g,i x

2
g,i′

(ng − 1)2

)
= E0

( ng∑
i=1

E0(x4
g,i) +

∑
i′ 6=i E0(x2

g,i x
2
g,i′)

(ng − 1)2

)

= E0

(
ng

(ng − 1)2

)
γ4
g + E0

(
ng

(ng − 1)

)
σ4
g .
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The second expectation is

E0

( ng∑
i=1

ng∑
i′=1

x2
g,i xg,i′ xg

(ng − 1)2

)
= E0

( ng∑
i=1

ng∑
i′=1

ng∑
k=1

E0(x2
g,i xg,i′ xg,k)

ng (ng − 1)2

)

= E0

( ng∑
i=1

E0(x4
g,i) +

∑
i′ 6=i E0(x2

g,i x
2
g,i′)

ng (ng − 1)2

)

= E0

(
1

(ng − 1)2

)
γ4
g + E0

(
1

(ng − 1)

)
σ4
g .

The third expectation is

E0

( ng∑
i=1

ng∑
i′=1

xg,i xg,i′ x
2
g

(ng − 1)2

)
= E0

( ng∑
i=1

ng∑
i′=1

ng∑
k=1

ng∑
k′=1

E0(xg,i xg,i′ xg,k xg,k′)

n2
g(ng − 1)2

)

= E0

( ng∑
i=1

E0(x4
g,i) + 3

∑
i′ 6=i E0(x2

g,i x
2
g,i′)

n2
g(ng − 1)2

)

= E0

(
1

ng(ng − 1)2

)
γ4
g + 3E0

(
1

ng(ng − 1)

)
σ4
g .

This then yields

E0

( ng∑
i=1

ng∑
i′=1

x̃g,i x̃g,i′ xg,i xg,i′

(ng − 1)2

)
= E0

(
ng

(ng − 1)

(
1− 2

ng
+

3

n2
g

))
σ4
g

+ E0

(
ng

(ng − 1)2

(
1− 2

ng
+

1

n2
g

))
γ4
g

(A.6)

for the third and final term in (A.3).

Now, collecting results by combining (A.3) with (A.4)–(A.6) yields

vHO
r =

r∑
g=1

E0

 ng∑
i=1

1

mg(i)
− 1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

+

ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

− (ng − 1)2 + 2

ng(ng − 1)

σ4
g

−
r∑

g=1

E0

(
1

ng

)
γ4
g .

When γ4
g = 3σ4

g and peer groups do not overlap we obtain

vHO
r =

r∑
g=1

E0

(
2

ng∑
i=1

1

mg(i)
− 1− ng + 1

ng − 1

)
σ4
g

by (A.2). This is the variance formula stated in Equation (1.3) in the main text.
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Proof of Equation (1.4). Suppose that

xg,i = ρ x̄g,[i] + εg,i, εg,i ∼ independent (αg, σ
2
g),

for some |ρ| < 1. Maintaining our normalization, we set αg = 0 for all urns. Recall that, by

definition,

x̄g,[i] =
1

mg(i)

ng∑
j=1

(Ag)i,j xg,j .

Consequently, collecting variables for urn g in xg := (xg,1, . . . , xg,ng)
′ and εg := (εg,1, . . . , εg,ng)

′

and letting

Gg := D−1
g Ag, Dg := diag(mg(1), . . . ,mg(ng)),

we have the linear system

xg = ρGg xg + εg,

which has reduced form

xg = (Ing − ρGg)
−1 εg =

∞∑
o=0

(
ρoGo

g

)
εg.

Moreover,

xg,i = εg,i + ρ
1

mg(i)

ng∑
j=1

(Ag)i,j εg,j + ρ2 1

mg(i)

ng∑
j=1

ng∑
k=1

(Ag)i,j (Ag)j,k εg,k + · · · . (A.7)

We then obtain

E %√
r

(
xg,i xg,i′ |Ag

)
= E %√

r

(
εg,i εg,i′ |Ag

)
+ E %√

r

εg,i
 %√

r

1

mg(i′)

ng∑
j′=1

(Ag)i′,j′ εg,j′

∣∣∣∣∣∣Ag


+ E %√

r

εg,i′
 %√

r

1

mg(i)

ng∑
j=1

(Ag)i,j εg,j

∣∣∣∣∣∣Ag


+ o(r−1/2).

The expectations on the right-hand side can be worked out. First we have

E %√
r
(εg,i εg,i′)|Ag) =

 σ2
g if i = i′

0 if i 6= i′
,
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which mimics (A.1). Next we calculate

E %√
r

εg,i
 %√

r

1

mg(i′)

ng∑
j′=1

(Ag)i′,j′ εg,j′

∣∣∣∣∣∣Ag

 =
%√
r

ng∑
j′=1

(Ag)i′,j′ E %√
r
(εg,i εg,j′ |Ag)

mg(i′)

=
%√
r

(Ag)i′,i E %√
r
(ε2
g,i|Ag)

mg(i′)

=
%√
r

(Ag)i′,i
mg(i′)

σ2
g

and, finally,

E %√
r

εg,i′
 %√

r

1

mg(i)

ng∑
j=1

(Ag)i,j εg,j

∣∣∣∣∣∣Ag

 =
%√
r

(Ag)i,i′

mg(i)
σ2
g ,

follows in the same way. Putting everything together then reveals that, up to terms that are

o(r−1/2),

E %√
r

(
xg,i xg,i′ |Ag

)
=

 σ2
g if i = i′

%√
r

(
(Ag)i,i′
mg(i) +

(Ag)i′,i
mg(i′)

)
σ2
g if i 6= i′

. (A.8)

This expression is key in deriving the asymptotic bias, which we turn to next.

The bias is

E %√
r

 r∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

) =
r∑

g=1

E %√
r

( ng∑
i=1

x̃g,ix̄g,[i]

)
+

r∑
g=1

E %√
r

( ng∑
i=1

x̃g,i xg,i
ng − 1

)
.

We calculate each of the expectations in turn.

First, up to terms that are o(r−1/2),

E %√
r

( ng∑
i=1

x̃g,ix̄g,[i]

)
= E %√

r

( ng∑
i=1

xg,i x̄g,[i]

)
− E %√

r

( ng∑
i=1

xg x̄g,[i]

)

=

 ng∑
i=1

1

mg(i)
− 2

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

+

ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

σ2
g

%√
r
− σ2

g ,

because,

E %√
r

( ng∑
i=1

xg,i x̄g,[i]

)
= E %√

r

( ng∑
i=1

ng∑
i′=1

(Ag)i,i′ E %√
p
(xg,i xg,i′ |Ag)

mg(i)

)

= E %√
r

( ng∑
i=1

ng∑
i′=1

(Ag)i,i′

mg(i)2
+

ng∑
i=1

ng∑
i′=1

(Ag)i,i′

mg(i)mg(i′)

)
σ2
g

%√
r

+ o(r−1/2)

= E %√
r

( ng∑
i=1

1

mg(i)
+

ng∑
i=1

ng∑
i′=1

(Ag)i,i′

mg(i)mg(i′)

)
σ2
g

%√
r

+ o(r−1/2),
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and

E %√
r

( ng∑
i=1

xg x̄g,[i]

)
= E %√

r

 ng∑
i=1

ng∑
i′=1

(Ag)i,i′
∑ng

k=1 E %√
r
(xg,k xg,i′ |Ag)

mg(i)ng


= E %√

r

 ng∑
i=1

ng∑
i′=1

(Ag)i,i′
(
E %√

r
(x2
g,i′ |Ag) +

∑
k 6=i′ E %√

r
(xg,k xg,i′ |Ag)

)
mg(i)ng


= σ2

g + E %√
r

(
2

ng

ng∑
i=1

ng∑
i′=1

∑
k 6=i′(Ag)i,i′ (Ag)i′,k

mg(i)mg(i′)

)
σ2
g

%√
r

+ o(r−1/2)

= σ2
g + E %√

r

(
2

ng

ng∑
i=1

ng∑
i′=1

mg(i ∩ i′)
mg(i)mg(i′)

)
σ2
g

%√
r

+ o(r−1/2),

where we have made extensive use of (A.8).

Second, again up to terms that are o(r−1/2),

E %√
r

( ng∑
i=1

x̃g,i xg,i
ng − 1

)
= E %√

r

( ng∑
i=1

x2
g,i

ng − 1

)
− E %√

r

( ng∑
i=1

xg,i xg
ng − 1

)

= E %√
r

(
ng

ng − 1

)
σ2
g

− E %√
r

(
1

ng − 1

)
σ2
g

− E %√
r

 1

ng(ng − 1)

ng∑
i=1

∑
i′ 6=i

(
(Ag)i,i′

mg(i)
+

(Ag)i,i′

mg(i′)

) %√
r
σ2
g

= σ2
g − E %√

r

(
2

ng − 1

)
%√
r
σ2
g ,

again exploiting (A.8).

Hence, up to terms that are o(
√
r), the bias in the normal equation is

%√
r

p∑
g=1

E %√
r

 ng∑
i=1

1

mg(i)
− 2

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

+

ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

− 2

ng − 1

σ2
g .

When peer groups do not overlap we can exploit the fact that

1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

= 1,

ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

=

ng∑
i=1

1

mg(i)
,

to reduce the bias expression to

2
%√
r

p∑
g=1

E %√
r

( ng∑
i=1

1

mg(i)
− 1− 1

ng − 1

)
σ2
g + o(

√
r).
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Because the adjacency matrices do not vary with the alternative the subscript on the expectations

operator in this expression can be dropped. This delivers Equation (1.4).

Proof of Equation (1.5). To see that endogenous effects and contextual effects are locally

asymptotically equivalent note that the latter violation of the null is of the form

xg,i = εg,i +
θ

mg(i)

ng∑
j=1

(Ag)i,j εg,j , εg,i ∼ independent (αg, σ
2
g),

for drifting sequences θ = ϑ/
√
r. Our normalization again sets αg = 0 for all urns. Clearly,

on setting % = ϑ, this data generating process co-incides with the reduced form in (A.7), up to

first-order. Consequently, it is immediate that E ϑ√
r

(
xg,i xg,i′ |Ag

)
satisfies the expansions in (A.8).

This, then, implies that the asymptotic bias induced by contextual effects, too, is identical.

Proof of Equation (1.6). Consider non-overlapping peer groups. Peers are subject to a

common random effect drawn from a distribution with zero mean and variance σ2
η. Consequently,

E ς2√
r

(
xg,i xg,i′ |Ag

)
= E ς2√

r

(
xg,i xg,i′ |(Ag)i,i′

)
.

For drifting sequences of the form σ2
η = ς2/

√
r this implies that

E ς2√
r

(
xg,i xg,i′ |(Ag)i,i′ = 0

) ς2√
r

+ σ2
g if i = i′

0 if i 6= i′
, E ς2√

r

(
xg,i xg,i′ |(Ag)i,j = 1

)
=

ς2

√
r
,

where, recall, the urn fixed effects have been normalized to zero.

We are now ready to tackle the calculation of

E ς2√
r

 p∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

) .

We again proceed by first calculating all expectations involved separately and then combining all

results.

First, we have

E ς2√
r

( ng∑
i=1

x̃g,i x̄g,[i]

)
= E ς2√

r

( ng∑
i=1

xg,i x̄g,[i]

)
− E ς2√

r

( ng∑
i=1

xg x̄g,[i]

)
= E ς2√

r

(ng − 2)
ς2

√
r
− σ2.
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This follows from the observations that

E ς2√
r

( ng∑
i=1

xg,i x̄g,[i]

)
= E ς2√

r

 ng∑
i=1

∑
j 6=i

(Ag)i,j E ς2√
r

(xg,i xg,j |Ag)

mg(i)


= E ς2√

r

 ng∑
i=1

∑
j 6=i

(Ag)i,j E ς2√
r

(xg,i xg,j |(Ag)i,j = 1)

mg(i)


= E ς2√

r

 ng∑
i=1

∑
j 6=i

(Ag)i,j
mg(i)

 ς2

√
r

= E ς2√
r

(ng)
ς2

√
r
,

and that

E ς2√
r

( ng∑
i=1

xg x̄g,[i]

)
= E ς2√

r

 ng∑
i=1

ng∑
j=1

ng∑
k=1

(Ag)i,j E ς2√
r

(xg,j xg,k|Ag)

mg(i)ng


= E ς2√

r

 ng∑
i=1

ng∑
j=1

(Ag)i,j E ς2√
r

(
x2
g,j |(Ag)j,j = 0

)
mg(i)ng


+ E ς2√

r

 ng∑
i=1

ng∑
j=1

∑
k 6=j

(Ag)i,j (Ag)j,k E ς2√
r

(xg,j xg,k|(Ag)j,k = 1)

mg(i)ng


=

(
ς2

√
r

+ σ2
g

)
+ E ς2√

r

 1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)

 ς2

√
r

= 2
ς2

√
r

+ σ2
g ;

here, the last equality exploits the fact that peer groups do not overlap by appealing to (A.2).

40



Second, we have

E ς2√
r

( ng∑
i=1

x̃g,i xg,i
(ng − 1)

)
= E ς2√

r

( ng∑
i=1

x2
g,i

(ng − 1)

)
− E ς2√

r

( ng∑
i=1

ng∑
k=1

xg,k xg,i
ng (ng − 1)

)

=
ng

(ng − 1)

(
ς2

√
r

+ σ2

)
− 1

(ng − 1)

(
ς2

√
r

+ σ2

)

− E ς2√
r

 ng∑
i=1

∑
k 6=i

(Ag)i,k E ς2√
r

(xg,k xg,i|(Ag)i,k = 1)

ng (ng − 1)


=

(
ς2

√
r

+ σ2

)
− E ς2√

r

( ng∑
i=1

mg(i)

ng (ng − 1)

)
ς2

√
r
.

Combining results then shows that the bias equals

r∑
g=1

E ς2√
r

(
ng (ng − 1)2 −

∑ng
i=1mg(i)

ng (ng − 1)

)
ς2

√
r
,

as claimed.

Proof of Equation (2.7). By the Frisch-Waugh-Lovell theorem the estimated slope on x̄g,[i]

from a within-group regression of xg,i on x̄g,[i] and xg,i/(ng − 1) can be written as the ratio of the

sum
r∑

g=1

ng∑
i=1

x̄g,[i]

(
x̃g,i − δ̂1

x̃g,i
ng − 1

)
, δ̂1 :=

∑r
g=1

1
(ng−1)

∑ng
i=1 xg,i x̃g,i∑r

g=1
1

(ng−1)2
∑ng

i=1 xg,i x̃g,i
,

to
r∑

g=1

ng∑
i=1

x̄g,[i]

(
˜̄xg,[i] − δ̂2

x̃g,i
ng − 1

)
, δ̂2 :=

∑r
g=1

1
(ng−1)

∑ng
i=1 x̄g,[i] x̃g,i∑r

g=1
1

(ng−1)2
∑ng

i=1 xg,i x̃g,i
.

Although our main interest lies in the numerator, it is easily established that for the denominator

we have that, under the null,

plimr→∞

 r∑
g=1

ng∑
i=1

x̄g,[i]

(
˜̄xg,i − δ̂2

x̃g,i
ng − 1

)
is equal to

lim
r→∞

1

r

r∑
g=1

E0

 ng∑
i=1

1

mg(i)
− 1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

− 1

ng − 1

σ2
g .
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Here we have used that

plimp→∞ δ̂2 = −
limp→∞

1
p

∑p
g=1 E0

(
σ2
g

ng−1

)
limp→∞

1
p

∑p
g=1 E0

(
σ2
g

ng−1

) = −1,

under random assignment. Note that this probability limit is strictly smaller than its counterpart

in the denominator of (1.2).

We now turn to the behavior of the numerator under the null. It is easy to show that

r∑
g=1

ng∑
i=1

x̄g,[i]

(
x̃g,i − δ̂1

x̃g,i
ng − 1

)
=

r∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

) (
1− δ

ng − 1

)
+ op(

√
r),

where

δ := plimr→∞ δ̂1 =
limr→∞

1
r

∑r
g=1 σ

2
g

limr→∞
1
r

∑r
g=1 E0

(
σ2
g

ng−1

) .
This is Equation (2.7) in the main text. The leading term is equal to our re-centered normal

equation, up to the factor 1 − δ/(ng − 1) in the summand. This result shows that (in large

samples) the multiple-regression strategy of Guryan, Kroft and Notowidigdo (2009) implements

our bias correction to the (numerator of) the simple within-group estimator by leveraging on

variation in urn size.

Proof of (2.8). A short calculation shows that, in (2.7), the large-size urns get assigned the

weight

wn := 1− δ

n̄2 − 1
=

(n̄2 − n̄1) (1− pn)

(n̄1 − 1) + (n̄2 − n̄1) (1− pn)
∈ (0, 1)

while the small-size urns get assigned the weight

− pn
1− pn

ωn < 0.

Then

vHO
r = v(n̄1)

(
pn

1− pn
ωn

)2

(1− pn) + v(n̄2)ω2
n pn =

pn
1− pn

ω2
n (v(n̄1) pn + v(n̄2) (1− pn))

and, in the same way,

br = pn ωn (b(n̄2)− b(n̄1)).
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Hence, the non-centrality parameter in the limit distribution takes the form

µ∗ =
√
pn(1− pn)

b(s2)− b(s1)√
v(n̄1) pn + v(n̄2) (1− pn)

=
b(n̄2)− b(n̄1)√
v(n̄1)
1−pn + v(n̄2)

pn

,

as stated in the main text. Note that the denominator in the expression after the first equality is

not equal to the standard deviation sHO
r . Moreover, because pn ∈ (0, 1),

v(n̄2) pn < v(n̄2) <
v(n̄2)

pn
, v(n̄1) (1− pn) < v(n̄1) <

v(n̄1)

1− pn
,

so that

vHO
r = v(n̄1) (1− pn) + v(n̄2) pn <

v(n̄1)

1− pn
+
v(n̄2)

pn
,

implying that the denominator of µ∗ is always larger than the variance of qHO
r . The numerators

of µ and µ∗ cannot be ranked at this level of generality.

Proof of Equation (3.9). The proof mimics the proof of Equation (1.1). The only difference

arises in the second term where, now,

E0

( ng∑
i=1

x̄g,[i] xg

)
= E0

 1

ng

ng∑
i=1

ng∑
j=1

(Ag)i,j E0(x2
g,j)

mg(i)

 = E0

 1

ng

ng∑
i=1

1

mg(i)

ng∑
j=1

(Ag)i,j σ
2
g,j

 ,

from which the result follows.

Proof of Equation (3.10). For urn g write the ng × ng matrix that transforms observations

into deviations from the within-urn mean as

(M g)i,j :=

 1− 1
ng

if i = j

− 1
ng

if i 6= j
.

Then x̃g,i =
∑ng

j=1(M g)i,j xg,j and so

E0(xg,i x̃g,i) = E0(x̃2
g,i) = E0

 ng∑
j=1

ng∑
j′=1

(M g)i,j (M g)i,j′ E0(xg,j xg,j′)

 = E0

 ng∑
j=1

(M g)
2
i,j σ

2
g,j

 .

Let xg := (xg,1, . . . , xg,ng)
′, σ2

g := (σ2
g,1, . . . , σ

2
g,ng)

′, and let ∗ denote the elementwise product

between two matrices of conformable dimension. Then the above equation can be written in
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vector form as E0(xg ∗ x̃g) = E0((M g ∗M g) σ
2
g). Consequently, E0((M g ∗M g)

−1 (xg ∗ x̃g)) = σ2
g

and
ng∑
j=1

((M g ∗M g)
−1)i,j xg,j x̃g,j

is an unbiased estimator of σ2
g,i provided that the matrix (M g ∗M g) is invertible. A calculation

shows that the inverse is well-defined when ng > 2 and that

((M g ∗M g)
−1)i,j =: (Ig)i,j =


ng
ng−2

(
1− 1

ng(ng−1)

)
if i = j

− ng
ng−2

1
ng(ng−1) if i 6= j

.

An unbiased plug-in estimator of the bias in (3.9) thus is

−
r∑

g=1

1

ng

ng∑
i=1

1

mg(i)

ng∑
j=1

(Ag)i,j

ng∑
j′=1

(Ig)j,j′ xg,j′ x̃g,j′ = −
r∑

g=1

ng∑
i=1

ng∑
j′=1

ωg,j′ xg,j′ x̃g,j′ ,

on verifying that, indeed,

ωg,j′ =
1

ng

ng∑
i=1

∑ng
j=1(Ag)i,j (Ig)j,j′

mg(i)
.

This then immediately also implies the unbiasedness of qHC
r as defined in (3.10). The proof is

complete.

Proof of Theorem 2. The proof is the same as the proof of Theorem 1. It suffices to redefine

λgi,j :=

 ωg,i if i = j

(Ag)i,j/mg(i) if i 6= j
,

and note that these weights are again uniformly bounded.

Proof of Theorem 3. By the Frisch-Waugh-Lovell theorem the estimated slope on x̄g,[i] from

a within-group regression of xg,i on x̄g,[i] and covariate vector wg,i equals∑r
g=1

∑ng
i=1 x̄g,[i] ẋg,i∑r

g=1

∑ng
i=1 x̄g,[i] ˙̄xg,[i]

,

where ẋg,i = x̃g,i − w̃′g,iβ̂1, for

β̂1 :=

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃g,i xg,i

 ,
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and ˙̄xg,[i] = ˜̄xg,[i] − w̃′g,iβ̂2, with

β̂2 :=

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃g,i x̄g,[i]

 .

are residuals from auxiliary within-group regressions. We are again only concerned with the

numerator.

Let ẍg,i := x̃g,i − w̃′g,i β1 and ¨̄xg,[i] := ˜̄xg,[i] − w̃′g,i β2 be the deviations of x̃g,i and ˜̄xg,[i] from their

respective population linear projections on urn-specific intercepts and the covariate vector wg,i.

Then

β̂1 = β1 +

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃g,i ẍg,i

 ,

β̂2 = β2 +

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃g,i ¨̄xg,[i]

 ,

are the conventional sample-error representations that follow from re-arrangement. Hence, some
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elementary re-arrangement gives

r∑
g=1

ng∑
i=1

x̄g,[i] ẋg,i =
r∑

g=1

ng∑
i=1

x̄g,[i] (ẍg,i − w̃′g,i(β̂1 − β1))

=

 r∑
g=1

ng∑
i=1

x̄g,[i] ẍg,i


−

 r∑
g=1

ng∑
i=1

x̄g,[i] w̃
′
g,i

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃′g,i ẍg,i


=

r∑
g=1

ng∑
i=1

ẍg,i (˜̄xg,[i] − w̃′g,i β̂2)

=
r∑

g=1

ng∑
i=1

ẍg,i (¨̄xg,[i] − w̃′g,i (β̂2 − β2))

=

 r∑
g=1

ng∑
i=1

ẍg,i ¨̄xg,[i]


−

 r∑
g=1

ng∑
i=1

ẍg,i w̃
′
g,i

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃′g,i ¨̄xg,[i]


=

r∑
g=1

ng∑
i=1

ẍg,i ¨̄xg,[i] + op(
√
r).

Here, the last equality is a consequence of

1

r

r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

p→ lim
r→∞

1

r

r∑
g=1

E

( ng∑
i=1

w̃g,iw
′
g,i

)
,

where the probability limit is a well-defined and invertible matrix, together with the observation

that

1

r

r∑
g=1

ng∑
i=1

(w̃g,i ẍg,i) +Op(r
−1/2),

1

r

r∑
g=1

ng∑
i=1

(
w̃g,i ¨̄xg,[i]

)
+Op(r

−1/2),

where we have used E(w̃g,i ẍg,i) = 0 and E(w̃g,i ¨̄xg,[i]) = 0, which hold by basic properties of linear

projection.

With the representation

r∑
g=1

ng∑
i=1

x̄g,[i] ẋg,i =
r∑

g=1

ng∑
i=1

ẍg,i x̄g,[i] + op(
√
r) (A.9)

46



we turn to calculating the expectation of the sum on the right-hand side, under the null. It is

useful to observe that, in the presence of covariates, the null of (conditional) random assignment

implies that

x̌g,i|wg,1, . . .wg,ng ∼ independent (αg, σ
2
g), x̌g,i := xg,i −w′g,iβ.

Further, we remark that, under the null, the projection coefficient β̂1 is a consistent estimator of

β. Indeed, it has the interpretation of an estimator of β that enforces the null. We therefore have

ẍg,i = (xg,i − xg)− (wg,i −wg)
′β = (x̌g,i − x̌g).

We may now proceed essentially as in the proof of (1.1) to calculate the bias. We find, again

using our normalization that αg = 0, that

r∑
g=1

E0

( ng∑
i=1

x̄g,[i] ẍg,i

)
=

r∑
g=1

E0

( ng∑
i=1

x̄g,[i] (x̌g,i − x̌g)

)

=
r∑

g=1

E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j (x̌g,i − x̌g)xg,j
mg(i)


= −

r∑
g=1

E0

 1

ng

ng∑
i=1

ng∑
j=1

ng∑
k=1

(Ag)i,j xg,j x̌g,k
mg(i)


= −

r∑
g=1

E0

 1

ng

ng∑
i=1

ng∑
j=1

ng∑
k=1

(Ag)i,j x̌g,j x̌g,k
mg(i)


= −

r∑
g=1

σ2
g .

The transitions in this display have made use of

E0 (x̌g,i xg,j) = E0 (x̌g,i x̌g,j) + E0

(
x̌g,i w̃

′
g,j

)
β,

where

E0 (x̌g,i x̌g,j)

 σ2
g if i = j

0 if i 6= j
,

and E0

(
x̌g,i w̃

′
g,j

)
= E0

(
E0

(
x̌g,i|wg,1, . . .wg,ng

)
w̃′g,j

)
= 0.
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The urn-specific variances are estimated by

1

ng − 1

ng∑
i=1

ẋg,i xg,i,

and so the corrected covariance estimator is

r∑
g=1

( ng∑
i=1

x̄g,[i] ẋg,i +
1

ng − 1

ng∑
i=1

ẋg,i xg,i

)
=

r∑
g=1

ng∑
i=1

ẋg,i

(
x̄g,[i] +

xg,i
ng − 1

)
,

which is q̂HO
r .

From the argument above,

q̂HO
r =

r∑
g=1

ng∑
i=1

ẍg,i

(
x̄g,[i] +

xg,i
ng − 1

)
+ op(

√
r).

The remained of the proof then parallels the proof of Theorem 1.

Figure 3: Power in the design of Stevenson (2015)
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Power against endogenous/exogenous effects (left plot) and correlated effects (right plot) in the design of

Guryan, Kroft and Notowidigdo (2009) for our test (dashed line) and for the test of Guryan, Kroft and

Notowidigdo (2009) (dashed-dotted line). A horizontal dashed-dotted line indicates the size of the test.

Plots are based on theoretical calculations and are for 100 urns.

Additional asymptotic-power comparisons. Stevenson (2015) simulated power against

the fixed correlated-effect alternative of σ2
η/σ

2 = .03 in a Monte Carlo setup similar to the one
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used by Guryan, Kroft and Notowidigdo (2009). First 100 urns are randomly allocated a size

ng ∈ {39, 42, 45, 48, 51} and then individuals are randomly allocated to a peer group of size three.

Here we extend this exercise to all alternatives of the form σ2
η/σ

2 > 0 and also provide power

against endogenous/exogenous-effect alternatives. Figure 3 contains power curves for our test

(dashed line) and the test of Guryan, Kroft and Notowidigdo (2009) (dashed-dotted line) based

on our power calculations in the main text. Both tests are two-sided and are performed at the

5% significance level. The results confirm and generalize the low-power findings observed by

Stevenson (2015). In addition, she also reported simulated power for the permutation test and

for her split-sample test to be .502 and .455 when the alternative is σ2
η/σ

2 = .03. In this case, the

theoretical power of our test is .521.
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