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Abstract

Dominant intermediaries are a defining feature of the modern economy. This paper

studies the mechanisms that give rise to trading networks with a dominant intermedi-

ary.

Trades between actors require a direct link or a path that involves intermediaries.

Links are costly. Efficiency therefore pushes towards connected networks with few

links: this set includes the hub-spoke network, the cycle network and their variants.

The hub-spoke network exhibits extreme inequality, while the cycle network yields

equal payoffs for all traders.

We conduct a large scale experiment on link formation among traders; the game

takes place in continuous time and allows for asynchronous choices. The main find-

ing is that the pricing protocol – the rule dividing the surplus between traders and

intermediaries – determines which of these two networks arises.
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1 Introduction

Intermediaries are a prominent feature of the modern economy: they are a defining feature

of banking, retail, and information services. At a high level, an intermediary may be seen

as facilitating valuable exchanges between economic actors. So intermediaries may be seen

as lowering costs of exchange or reducing frictions inherent in an economic transaction.

The intermediation role has a reinforcing aspect: the more actors use an intermediary, the

more attractive it becomes for other actors to use. This economic pressure gives rise to

highly visible globally dominant intermediaries, who acquire great market power and earn

enormous revenues. The goal of the present paper is to better understand the mechanisms

underlying the emergence of such dominant intermediaries.

Networks represent a natural way to reason about the process of intermediation. Trades

between two actors can be realized if they have a direct link or if they are indirectly linked

through a chain of intermediaries.1 The key point to bear in mind is that these links

are costly to maintain. For concreteness, consider a network with n actors in which all

pairs are linked (the complete network). In this setting, every bilateral exchange involves

direct trading: there is no intermediation. However, there are n(n− 1)/2 links formed. By

contrast, consider the hub-spoke network: in this setting all the exchanges involving pairs

of spokes – i.e., (n− 1)(n− 2)/2 pairs – entail intermediation (and possibly large rents for

the hub). This is accompanied by a large saving in costs of links, as the hub-spoke network

contains only n−1 links.2 More generally, a network may be sparse and connected without

concentration of intermediation power. An instance of such a network is a cycle containing

all actors: in this setting, there are only n links and as everyone is symmetrically located,

every actor will earn an equal payoff. So the cycle reconciles efficiency and equity. The goal

of the paper is to examine circumstances that give rise to hub-spoke networks as against

sparse networks with one or more cycles.

The paper considers a network formation model taken from Goyal and Vega-Redondo

[2007]: individuals choose to form links with each other and then use the network con-

structed to engage in exchange. If an actor maintains links with many others, she incurs

large linking costs but she will be able to appropriate a fair share of the surplus generated

by the exchanges. If on the other hand she maintains few links then her linking costs will be

1The links may embody trust relations, reflect communication channels, or simply reflect physical in-
frastructure (such as train, road or shipping services).

2This is the minimum number of links needed to connect n actors.
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modest, but she will either not undertake many exchanges (as she has no path connecting

her to several traders) or she will conduct her exchange with the help of intermediaries.

Over and above this, this environment gives rise to an intermediation incentive: an actor

may wish to strategically form links with others with a view to extracting rents by acting as

an intermediary for trades between other actors. Goyal and Vega-Redondo [2007] propose

that surplus generated by exchange between two traders is split equally between these two

traders and the set of ‘critical traders’: a trader A is critical for traders B and C in a

network if she lies on all paths between the pair. With this allocation rule, they show that

a wide range of networks can be strategically stable: this includes the hub-spoke network

and the cycle network. The complete network is never stable with this allocation rule.

One feature of this surplus allocation rule is that trade can take place along arbitrarily

long paths even when shorter paths are available, and that too without any costs. However,

if costs are similar, it is easy to see that a small friction arising out of distance would make

a large difference in the flow of trade. Following Kleinberg et al. [2008] and Galeotti and

Goyal [2014] consider an alternative allocation rule where surplus of a bilateral exchange is

distributed equally between the two traders and the intermediaries that lie on the shortest

paths between them. This gives rise to intermediation rents in proportion to the between-

ness centrality of traders. With this allocation rule, a wide range of networks – such as

the hub-spoke network and the complete network – are stable. The cycle, however, is not

stable. These observation set the stage for an experimental investigation of intermediation

and network formation.

In a real world setting, groups are often very large and individuals choose linking

at different points in time. The individual decision problem is complicated because the

attractiveness of links depends on the overall structure of links. As group size grows, these

informational requirements become more demanding. So it is quite unclear if subjects will

follow the predictions of a static model. The work of Friedman and Aprea [2012], and Choi

et al. [2019], suggests that continuous time experiments offer subjects more opportunities

for choice and for learning and that they may offer better prospects for convergence to

equilibrium than discrete time experiments. Our paper builds on this insight.

A large-scale continuous-time experiment on network formation generates a great deal of

information that is in principle relevant for decision making. To help subjects navigate this

environment, we develop a new experimental platform. This platform includes a network

visualization tool that uses the Barnes-Hut approximation algorithm (Barnes and Hut

[1986]). This algorithm allocates nodes and edges in a two-dimensional space to improve
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visual clarity of network presentation. This tool for network visualization is integrated

with the interactive tool of dynamic choices. This feature allows individuals to form and

remove links and change effort levels instantly. The integration enables us to update rapidly

evolving networks in real time on the computer screen.

The paper considers a design with three alternative allocation rules for intermediation

rents; the two rules discussed above and an additional rule that is close to the betweenness

centrality allocation rule but imposes the restriction of trade taking place within a cer-

tain distance. Different allocation rules generate different incentives for individual linking

activities and result in different predictions on pairwise stable networks. However, the

multiplicity of pairwise stable networks makes it difficult to predict the role of allocation

rules in the emergence of networks. We use the experiment as a complement to the theory

to predict empirically salient outcomes. There are four distinct groups of 50 subjects, each

of whom play 6 rounds. In each round, the linking game is played over 6 minutes. The

experiment involves groups of 50 subjects in a controlled laboratory environment.

Figures 1a presents snap shot of the network that emerges under criticality. The network

is sparse and trades take place along long cycles. The network is connected and sparse:

subjects realize almost 90% of all possible surplus. And there exist a few critical nodes with

limited power: the payoffs are very equal. In contrast, Figure 1b reveals a very different

network that emerges under betweenness allocation rule. We observe a network that closely

approximates a hub-spoke structure. The network is sparse and connected: consequently

it attains high efficiency. However, the ‘hub’ earns more than 12 times the median payoff.

The analysis of the data reveals that these patterns are robust across the rounds and the

groups.

Our experiment shows that differences in the allocation rules give rise to very different

networks: linking is quite dispersed under criticality, whereas network centralization is

prominent in the other two treatments. As a result, trades take place in longer distance

in the criticality treatment. There emerges a main broker in the betweenness treatments

who involves in trading for many pairs of traders.

The emergence of different networks has large implications in inequality. Payoffs are

equally distributed among subjects in the criticality treatment but are highly unequal in the

other two treatments. The individual earning the highest payoff in these treatment turns

out to be the main broker in the network who earn a huge amount of intermediation rents.

Therefore, the main source of payoff inequality is the unequal distribution of brokerage

rents among individuals.
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(a) Criticality pricing (b) Betweenness pricing

Figure 1: Network Outcomes (at minute 6)

In order to examine the forces of driving the emergence of different networks across the

allocation rules, we look into subjects’ myopic incentives that show changes of payoffs from

creating or deleting a link from a given network. Under the criticality-based allocation

rule, once the network is connected, individuals can benefit by adding new links whenever

they have less than 2 links, and by deleting links whenever they have more than 2 links.

In other words, they are incentivized to maintain only 2 links, necessary to create cycles

and avoid paying rents to intermediaries. They also have no incentive to directly connect

with a critical intermediary.

On the other hand, under the betweenness-based allocation rules, subjects’ incentives

are more subtle. We find that subjects initially form many links as a means to maximize

their access to trades (by reducing path lengths with other nodes). Once the network is

connected however, they have a strong incentive to form a link with the subject extracting

the highest brokerage rent while deleting any links with others. In the meantime, the main

broker has an incentive to form new links with others. This allows for the emergence of a

hub-spoke structure.

Our paper is a contribution to the study of intermediation. One strand of the existing

work examines pricing by intermediaries, their ability to reduce frictions, and thereby

extract surpluses. For an early model, see [Rubinstein and Wolinsky, 1987]; for more

recent work see [Condorelli et al., 2016],Choi, Galeotti, and Goyal [2017], and Manea
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[2018]. Condorelli and Galeotti [2016] provide a survey of this work.3 Another strand of

work examines how market power emerges through the deliberate creation of links in a

network formation setting: in addition to Goyal and Vega-Redondo [2007], Kleinberg et al.

[2008] and Buskens and Van de Rijt [2008], recent contributions include Farboodi [2014]

and Kotowski and Leister [2018]. Dominant intermediaries are a defining feature of the

modern economy. The present paper presents robust experimental evidence for the rise of

such dominant players and the very large inequality they generate. The strikingly different

outcomes under criticality and betweenness based pricing draw attention to the role of

economic incentives in explaining how such dominance comes about.

These findings on inequality are intimately related to major themes in the behavioral

and experimental economics literature. A prominent strand of work argues for the role

of inequality aversion in shaping human behavior in economic interaction. Prominent

contributions include [Fehr and Schmidt, 1999, Bolton and Ockenfels, 2000] and [Kosfeld

et al., 2009]. In the context of networks, Falk and Kosfeld [2012] and Goeree et al. [2009]

argue that inequality aversion explains why experimental subjects do not create the hub-

spoke predicted by the theory. In our setting, networks with dominant hubs arise and

there is great inequality. How can we reconcile our findings with these earlier findings?

We show that, somewhat surprisingly, the large inequality in our experiment is consistent

with inequity aversion [Fehr and Schmidt, 1999, Bolton and Ockenfels, 2000]. Indeed,

models based on average payoff differences are tolerant to large inequalities between a few

wealthy individuals and others in a large population.4 For example, take a population of n

individuals where everyone earns x except for one person earning 10x. While an inequality

averse individual may strongly disapprove of the large disadvantageous payoff difference

between themselves and the wealthiest person (10x−x is large), the same individual would

be more tolerant of the average inequality in the context of the entire group (10x−xn−1 is small

for some large n). In other words, the aversion to isolated inequalities is diluted in large

groups and therefore has limited effects on individual incentives.

Furthermore, we note that behavior observed in our experiment is also consistent with

3For experiments on trading in networks and on intermediation, see Gale and Kariv [2009], Kariv et al.
[2018], Charness et al. [2007] and Choi, Galeotti, and Goyal [2017]. For a survey of experiments on networks,
see Choi, Gallo, and Kariv [2016].

4According to Fehr and Schmidt [1999], given a group of n individuals and a vector of (monetary)
earnings π = (π1, . . . , πn), the utility of person i is determined by: ui(π) = πi − αi

n−1

∑
j max(0, πj − πi)−

βi
n−1

∑
j max(0, πi−πj) where α defines i’s distaste for disadvantageous inequality, and β defines i’s distaste

for advantageous inequality such that 0 ≤ β < 1 and βi < αi.
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the theory of fairness relying on efficiency seeking from Charness and Rabin [2002]. Ac-

cording to this model, individuals weight how much they care about pursing the social

welfare by maximizing the aggregate payoffs, versus their own self-interest.5 In the above

example, an individual with such fairness concerns would compare their own payoff x with

the aggregate payoff (n−1)x+10x. Consequently, by making the aggregate welfare salient

to the individuals, a large group size n can encourage efficiency seeking behavior. In our

experiment, this type of incentives can promote the emergence of hub spoke structures.

Our paper contributes to the experimental literature on continuous time games. Exist-

ing studies are built on a development of an experimental software, called ConG (Pettit,

Friedman, Kephart, and Oprea [2014]) and have focused on small group interactions (see

e.g., Friedman and Aprea [2012]; Calford and Oprea [2017]). The novelty of our experimen-

tal software is that it enables us to study large group interactions. In order to overcome

information overload of evolving networks and relax subjects’ cognitive bounds in informa-

tion processing, our software integrates the network visualization tool with the interactive

tool of asynchronous choices in real time. This is achieved by adopting an enhanced com-

munication protocol between the server and subjects’ computers. It allows us to run both

network visualization and asynchronous dynamic choices in real time without communi-

cation congestion and lagged responses, even when participants are interacting remotely

from different physical locations.6

The rest of the paper is organized as follows. In Section 2, we describe the three

payoff models and discuss their properties in terms of stability, efficiency and inequality.

Section 3 presents details about the large scale network formation experiment used to study

the problem of intermediation, after discussing the various challenges associated with it.

Section 4 presents the main experimental findings together with their explanations. All

proofs and supplementary materials (including experimental instructions) are presented in

the Appendix.

5According to Charness and Rabin [2002], given a group of n individuals and a vector of (monetary)
earnings π = (π1, . . . , πn), the utility of person i is determined by: ui(π) = (1−λi)πi+λi[δi min(π1, . . . , πn)+
(1−δi)

∑
j πj ] where λi ∈ [0, 1] defines how much i cares about pursuing the social welfare versus his own self-

interest, and δi ∈ (0, 1) measures the degree of concern for helping the worst-off person versus maximizing
the total social surplus. Efficiency seeking therefore assumes δi = 0.

6Also see our companion paper Choi, Goyal, and Moisan [2019], that uses the same platform to conduct
a large scale experiment on the ‘law of the few’ model of Galeotti and Goyal [2010].
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2 Theory

We consider a game with N = {1, 2, ..., n} individuals, where n ≥ 3. Relationships between

nodes are conceptualized in terms of binary variables, so that a relationship either exists

or does not exist. Denote by gij ∈ {0, 1} a relationship between two nodes i and j. The

variable gij takes on a value of 1 if there exists a link between i and j and 0, otherwise.

Links are undirected, i.e., gij = gji. The set of nodes taken along with the links between

them defines the network; this network is denoted by g and the collection of all possible

networks on n nodes is denoted by G. Given a network g, in case gij = 0, g + gij adds

the link gij = 1, while if gij = 1 in g, then g + gij = g. Similarly, if gij = 1 in g, g − gij
deletes the link gij . Let Ni(g) = {j|gij = 1} denote the nodes with whom node i has

a link; this set will be referred to as the neighbors of i. Let ηi(g) = |Ni(g)| denote the

number of connections/neighbors of node i in network g. Furthermore, let d(i, j; g) denote

the geodesic distance between players i and j in network g.

Individuals propose links with others. The strategy of a player i is a vector of link

proposals si = [sij ]j∈N\{i}, with sij ∈ {0, 1} for any j ∈ N\{i}. The strategy set of player

i is denoted by Si. A link between agents i and j is formed if both propose a link to each

other, i.e., gij = sijsji. A strategy profile s = (s1, s2, . . . , sn) induces an undirected network

g(s).7 The network g(s) = {gij}i,j∈N is a formal description of the pairwise links that exist

between the players. There exists a path between i and j in a network g if either gij = 1, or

if there is a distinct set of players i1, . . . , in such that gii1 = gi1i2 = gi2i3 = . . . = ginj = 1.

All players with whom i has a path defines the component of i in g, which is denoted by

Ci(g).

Suppose that players are traders who can exchange goods and that this exchange creates

a surplus of V . This exchange can be carried out only if these traders have a link or if

there is a path between them. There is a fixed (marginal) cost c per individual for every

link that is established. On the other hand, any proposal that is not reciprocated carries

no cost.

The central issue here is how are potential surpluses allocated between the different

parties to the trade. In the case where two traders have a link, it is natural that they split

the surplus equally, each earning V
2 . If they are linked indirectly, then the allocation of

the surplus depends on the nature of competition between the intermediary agents. One

simple idea is to view these paths as being perfect substitutes. Another possibility is that

7With a slight abuse of notation, for simplicity, we will write g instead of g(s).
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the paths offer differentiated trading mechanisms. We will develop models of intermediation

that build on these ideas.

2.1 Models

We start with the notion of paths between traders being perfect substitutes. All traders

set prices simultaneously. Trade occurs along the cheapest path (or at a path picked at

random in case there are multiple cheapest paths). A trader is said to be critical for a pair

of traders A and B if she lies on all paths between these traders. Trade between A and

B occurs if there is a path on which the sum of prices set by the intermediaries is smaller

than or equal to V . Using a combination of theory and experiments, Choi, Galeotti, and

Goyal [2017] show that, for any network, this pricing game generates a sharp prediction:

the surplus is divided more or less equally between the origin and destination traders and

the critical traders, while the non-critical traders earn close to zero. We build on this result

to develop a payoff function in the network formation game with intermediation.

Formally, a trader i is said to be critical for trader j and k if i lies on every path between

j and k in the network. Denote by T (j, k; g) the set of players who are critical for j and

k in network g and let t(j, k; g) = |T (j, k; g)|. Following Goyal and Vega-Redondo [2007],

we may write the payoffs as follows. For every strategy profile s = (s1, s2, . . . , sn) the net

payoffs to player i are given by:

Πcrit
i (s) =

∑
j∈Ci(g)

V

e(i, j; g) + 2
+

∑
j,k∈N\{i}

V
Ii∈T (j,k;g)

t(j, k; g) + 2
− ηi(g)c (1)

where Ii∈T (j,k) ∈ {0, 1} stands for the indicator function specifying whether i is critical

for j and k. This payoff offers a very simple rule for the allocation of trading surpluses.

We shall refer to it as the model of criticality based payoffs.

One feature of this payoff model is slightly implausible: trade can take place along

arbitrarily long paths even when shorter paths are available, and that too without any

costs. However, if costs are similar, it is easy to see that a small friction arising out

of distance would make a large difference in the flow of trade. To take this factor into

account, we consider a simple alternative model of intermediation that emphasizes the role

of shortest paths between traders.

Formally, let njk = d(j, k; g)−1 denote the number of intermediaries on a shortest path

between j and k in network g. Trade between j and k is equally distributed among the
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source and destination j and k, and among the intermediaries on the shortest path. In the

case of multiple shortest paths, one of them is randomly chosen. Therefore, the (ex-ante)

expected return for any trader i is in proportion to the shortest paths between j and k

that i lies on. Formally, we write bijk(g) ∈ [0, 1] to denote betweenness of player i between

j and k. For every strategy profile s = (s1, s2, . . . , sn) and the resulting network g(s), the

net payoffs to player i are given by:

Πbtwn
i (s) =

∑
j∈Ci(g)

V

d(i, j; g) + 2
+

∑
j,k∈N\{i}

V
bijk

d(j, k; g) + 2
− ηi(g)c (2)

We shall refer to this formulation as the model with betweenness based payoffs. Be-

tweenness based payoffs have been proposed as a model for the allocation of surplus in a

network by Kleinberg et al. [2008] and Galeotti and Goyal [2014].

The betweenness based pricing system allows for trade on shortest paths of arbitrary

length. Kleinberg et al. [2008] also impose the restriction trade only takes if traders are

within distance 2. Buskens and Van de Rijt [2008], Burger and Buskens [2009] propose

similar restrictions on the distance between traders. This motivates a third model, in which

every intermediary on a selected shortest path earns a fixed rent 0 < p ≤ V . Since a trade

between j and k generates a finite surplus of V , trade only takes place if the number of

intermediaries on a shortest path njk ≤ 10
p . Traders j and k equally share the remaining

part of the surplus, i.e., V − njkp ≥ 0. This sets a natural bound to the limits of trade.

For every strategy profile s = (s1, s2, . . . , sn) and the resulting network g(s), we define the

net payoffs to player i by:

Πdist
i (s) =

∑
j∈Ci(g)

max(0, V − pnij)
2

+ p
∑
j,k∈N

Injk≤Vp
bijk(g)− ηi(g)c (3)

where Injk≤Vp
∈ {0, 1} stands for the indicator function specifying whether the trade

between j and k is realized in network g. We shall refer to this formulation as distance

based payoffs.

2.2 Stability and Welfare

We will study pairwise stable networks. Following Jackson and Wolinsky [1996], a network

is pairwise stable if no one can benefit by removing any existing link, and no pair can

mutually benefit by adding a non existing link with each other.
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Definition 1. A strategy profile s∗ leads to a pairwise stable network g(s∗) if the following

conditions hold:

• For any i ∈ N and any si ∈ Si, Πi(s
∗) ≥ Πi(si, s

∗
−i);

• For any i, j ∈ N and any s ∈ S such that gij(s
∗) = 0 and g(s) = g(s∗) + gij, if

Πi(s) > Πi(s
∗), then Πj(s) < Πj(s

∗).

We now turn to the welfare aspects of networks. The efficiency of an outcome is

measured as the ratio between the sum of individual payoffs and the maximum sum of

individual payoffs that can be achieved:

E(s) =

∑
i Πi(s)

maxs′
∑

i Πi(s′)
(4)

It follows that E(s) ≤ 1. A network is said to be socially efficient if it maximizes social

welfare, i.e., E(s) = 1.

Observe that in our setting, the intermediation payoffs cancel out. So surplus arises out

of trades realized less the costs of forming links. There is therefore no benefit in having a

cycle in a network, as that merely adds to the costs, without any gain in additional trades

being realized. So, every component in an efficient network must be minimally connected

or a singleton. From Goyal and Vega-Redondo [2007] it follows that an efficient network

is either the empty network or the minimally connected network. The total payoffs in

the latter case are V n(n−1)
2 − 2(n − 1)c and they are equal to 0 in the case of an empty

network. So it follows that an efficient network is minimally connected if c < V n
4 , and empty

otherwise. A prominent example of minimally connected network is the star network (see

Figure 2b).

We turn next to inequality: for a survey of inequality measures, see Dasgupta et al.

[1973]. As hub-spoke networks arise naturally in our context, we would like to have a

measure that captures extremely large payoffs appropriately. We define inequality as the

ratio of the largest payoff to the median payoff.

I(s) =
maxi(Πi(s))

medi(Πi(s))
(5)

It follows that I(s) ≥ 1. An outcome is said to be equal if I(s) = 1. In the appendix,

for completeness, we also present other measures of inequality such as the Gini coefficient.
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(a) Cycle (b) Star

Figure 2: Cycle and Star networks

Observe that the outcome is equal in the empty network and in a cycle network (see

Figure 2a). By contrast, in the star network, under the criticality and betwenness models

above, the hub and spoke earn, respectively

V (n− 1)

[
1

2
+
n− 2

6

]
− (n− 1)c V

[
1

2
+
n− 2

3

]
− c (6)

The ratio of the hub payoff versus the spoke payoff is clearly growing and unbounded

in n. More specifically, the ratio of hub payoffs to the median payoff too is unbounded (the

median payoff corresponds to the spoke’s payoff).

More generally, observe that in all three models, efficiency dictates that a non-empty

network must be minimal. In a minimal network, some nodes will necessarily be leaves and

will earn zero intermediation rents, while other nodes will be critical and will earn positive

intermediation rents. So there is a tension between efficiency and equality. While this is

true in general, it is also worth noting that in the criticality and betweenness models, the

cycle network is almost perfectly efficient, as it contains only 1 redundant link. With this in

mind we now draw attention to a class of networks that combine elements of cycles and/or

stars. In particular, networks with multiple local stars are as efficient as the star network,

as they similarly are minimally connected (see Figure 3a). However, the inequality they

generate can differ and vary with the size of the network and the number of links formed by

the main hub. Indeed, in specific settings, the earnings of the main hub can be larger that

those of the hub in the star network of the same size. Other networks involving multiple

cycles combined with a star, as shown in Figure 3b, offer different interesting features. The

multiplicity of cycles has direct consequences on decreasing efficiency as they each add one

extra link without generating extra benefits (in the context of criticality and betweenness
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(a) Local stars (b) Cycle-star

Figure 3: Hybrid networks

based models). Furthermore, the presence of a star connecting cycles can generate large

inequality, which can surpass that of the star network. This is because extra links decrease

payoffs earned by non-hub players on cycles, whereas the hub earns large benefits without

forming too many links (at least in the criticality based model).

2.3 Analysis

This section examines the incentives for linking in the three models, through a study of

pair-wise stable networks. We have been unable to develop a complete characterization of

pairwise stable networks. To focus attention on the key dimensions of efficiency and equity,

we will pay special attention to the cycle and star networks.

We begin with a result on criticality based payoffs.

Proposition 1. Suppose payoffs are given by (1). There always exists a pairwise stable

network. Pairwise stable networks include the empty network if c > V
2 , the star network if

V
6 < c < V n

3 −
V
6 , and the cycle network if c <

∑n−2
i=1

V i
2(2+i) . The complete network is not

stable for n ≥ 4.

Proofs of all results in this section are presented in the Appendix A.

A general observation is that pairwise stable networks cover a wide range of structures

including the star and the cycle. So incentives in this model sustain networks with very

small diameter as well as very large diameter. This also means that stability is not in-

compatible with efficiency or equality. However, the stability of star and cycle does focus

attention on the issue of equality.

We turn next to betweenness based payoffs.
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Proposition 2. Suppose payoffs are given by (2). There always exists a pairwise stable

network. Pairwise stable networks include the empty network if c > V
2 , the complete

network if c < V
6 , and the star network if V

6 < c < V n
3 −

V
6 . Given values for c and V , the

cycle is not pairwise stable for large n.

This result yields one important insight: betweenness based pricing rules out the cycle

network. For large n, a cycle network creates incentives for traders to create bridges that

reduce the shortest path length. This bridge cuts down intermediation payment for traders

who create the link and also enhances their intermediation rents as they now sit on shortest

paths for many other traders.

Finally, we turn to stable networks when pricing is based on distance based payoffs.

Proposition 3. Suppose payoffs are given by (3). There always exists a pairwise stable

network. Pairwise stable networks include the empty network if c > V
2 , the complete

network if c < p
2 , and the star network if p

2 < c < V
2 + (n − 2) min(p, V−p2 ). The cycle is

not pairwise stable for large n when c < 5V 2

2p − 4V + 2p.

This result on pairwise stability is similar to the finding for the betweenness based

payoffs model. The main difference between those models relates to efficiency: unlike in

the previous models, connectivity of a network does not guarantee realization of all trades

in the distance based payoffs model. As a result, networks with a large diameter are not

efficient.

To summarize, the empty network and star network are pairwise stable in all three

models. However, in the criticality model, a cycle network (and hybrid cycle-star networks)

are also stable, while they are not stable in the betweenness and distance based payoff

models. By contrast, in the latter two models, a complete network is stable, and this is

never the case in the criticality based payoffs model. The star is efficient under a wide

range of circumstances, but it leads to extreme inequality. By contrast, the cycle (and

related networks) are close to being efficient and attain equality. These observations set

the stage for our experiments.

2.4 Experimental Setting

We now present details of the theoretical analyses in the context of our experiment with

concrete parameter settings. Focusing on a fixed group size n = 50, we choose a value

V = 10 for the surplus generated by a trade, and a cost of linking c = 40. In the particular
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case of the distance based model described by (3), we set the fixed brokerage rent to p = 3,

which restricts trades to be realized only within a distance 4 (at most 3 intermediaries).

In this context, theoretical results in terms of pairwise stability, efficiency, and inequality

for some concrete network structures are summarized in Table 1.

Network Payoffs
Pairwise Efficiency Inequality
stability E(s) I(s)

Star
(1) yes 1 17.6
(2) yes 1 17.6
(3) yes 1 13.6

Cycle
(1) yes 0.99 1
(2) no 0.99 1
(3) no < 0 1

Table 1: Features of non-empty networks according to experimental setting

3 Experiment

3.1 Challenges and methodology

The goal of this paper is to understand the role of pricing mechanisms in shaping trade

and intermediation through network formation in large groups. Experiments in this setting

pose at least several challenges to human subjects because of (i) the large decision space,

(ii) the complexity of payoff functions, and (iii) the observability of link proposals and

network structure. We discuss these challenges and explain how our experimental software

and design address each of them. Some of the discussion is taken from our companion

paper, Choi, Goyal, and Moisan [2019].

Learning and dynamics. We wish to allow subjects ample opportunities to learn about

the environment of decision making, other subjects’ behaviors, and how to respond opti-

mally to them. Because of the complexity of payoff functions and decision making, the issue

of learning and behavioral convergence is particularly important. To address these issues,

we run the experiment in continuous time with near real time updating on the evolution

of network structure and link proposals made by and to the subject.8 Continuous time

8More precisely, the network depicted on any subject’s screen is updated every 2 seconds or whenever
the subject makes a new decision.
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experiments can also offer better prospects for convergence than discrete time experiments

(see e.g., Friedman and Aprea [2012]).

In our experiment, the game is played in continuous time for 6 minutes during which

every subject was free to asynchronously adjust their link proposals. Because subjects

face a complex problem of decision making and need some time to figure out the game and

coordinate their actions, a trial time of one minute is provided (during which subjects start

choosing their actions with no monetary consequence). After the trial period is over, the

subsequent 5 minutes are payoff relevant and one second is randomly chosen to determine

subjects’ earnings in the game. This information is publicly known to subjects (see detailed

instructions in the appendix).

Two-sided linking protocol. The intermediation models we consider use the two-sided

linking protocol with which a link between two individuals is formed if and only if both

individuals consent to form it. This protocol distinguishes between link proposals (i.e.,

choices made by subjects) and realized links (i.e., link proposals that are reciprocated).

Compared to the one-sided linking protocol, the two-sided linking protocol introduces an

extra layer of the relationship between any two individuals: the pair is linked, or unlinked

with none of them making a link proposal, or unlinked with only one of them making a

link proposal to the other. Keeping track of such information in large groups can be a

challenge for human subjects.

In order to make it easy for the decision maker to grasp the relation with any individual,

we use the visual representation on the status of the linking relationship between the

decision maker, denoted by Me, and an individual as shown in Table 2: An individual who

neither made a proposal to nor received a proposal from the decision maker is represented

with a circle shape; If an individual sent a link proposal to the decision maker who did not

reciprocate it, that individual is depicted with a square shape; If an individual receives a link

proposal from the decision maker but did not reciprocate it, the individual is represented

with a triangle shape; If both an individual and the decision maker make link proposals

to each other, the link between them is visualized with the individual being shaped with a

circle.

On the other hand, from the decision maker’s perspective, information about the rela-

tion between any other two individuals is provided in the binary form: the corresponding

pair is shown to be either linked or not linked. Therefore, no information about the detail

of unlinked individuals is provided to the decision maker.
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No link / no proposal ⇒

Sent proposal ⇒

Received proposal ⇒

Realized link ⇒

Table 2: Visualization of proposals and link

Figure 4 illustrates our method of distinguishing these different cases. In the initial

network depicted on the left side of Figure 4, the decision maker who is represented with a

yellow node identified as “me” does not make any link proposal, but receives link proposals

from players P2, P3, and P4; these individuals are triangle shaped. From the network on

the left, if the decision maker makes link proposals to P2, P3, P4, and P6, the network

changes to the right side of Figure 4. The decision maker then have three realized links with

P2, P3, and P4, and one pending link proposal to P6. On the other hand, the decision

maker can only see the realized links between any other players (e.g., between P1 and

P5); no information is provided about unlinked pairs (e.g., the pair of P5 and P7 may be

unlinked because either P5, P7, or both P5 and P7 do not make a link proposal).

Network visualization. Existing studies of network formation in economics have con-

sidered small group sizes such as 4 or 8 people in a group and visualized evolving networks

with fixed positions of nodes (e.g., Goyal et al. [2017]; van Leeuwen et al. [2018]). When

the group size increases, such a representation of networks with fixed positions of nodes

makes it very difficult for subjects to perceive network features adequately. For example,

consider a group of 20 people with fixed positions of nodes in a circle as depicted in Figure

5a. While the exact nature of the network is hardly perceptible by observing Figure 5a,

the same network structure can be represented in a transparent manner in Figure 5b.

For subjects to learn what to do, they must have a good idea of the evolving networks.

An appropriate tool for visualizing networks is thus critical in running large-scale exper-

iments in continuous time. This leads us to develop an experimental software including
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Figure 4: Example of network updates after new choices

(a) Fixed visualization (b) Adaptive visualization

Figure 5: Examples of network visualization
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an interactive network visualization tool that allows the network to automatically reshape

itself based on its evolving structure. We use the Barnes-Hut approximation algorithm

[Barnes and Hut, 1986] for grouping nodes in a network that are sufficiently nearby and

adjust their relative positions on the subject’s computer screen. It enables us to apply

repulsion forces between nodes so that they are sufficiently separated from one another,

attractive forces to nodes that are directly linked with each other, and gravity to all the

nodes with respect to a central origin on the screen such that nodes not linked with each

other remain within reasonable distance from each other.

The network visualization in Figure 5b was made using this algorithm. In our large-

scale experiment, this visualization tool improves graphical clarity of evolving networks

and helps subjects distinguish between those who hold an important brokerage position

and those who do not (e.g., P4 is the key intermediary in Figure 5b and extract the largest

brokerage rents). It is important to emphasize that this tool allows interaction between

the subject and the network: while the nodes are subject to the above attraction and

repulsion forces, they can also be freely manipulated by the participant through the usual

drag-select functionality. The creation and removal of links is also interactive through

double-clicking on corresponding nodes. A further detail regarding the specifics of the

network visualization tool can be referred to Choi, Goyal, and Moisan [2019].

3.2 Treatments and design details

The experiment varies the pricing mechanism used to determine the cost of intermediation

for each realized trade according to the three models described above: Treatment Criti-

cality is based on (1), Treatment Betweenness is based on (2), and Treatment Distance

is based on (3). The cost of linking, set to c = 40, is paid only when a link is realized, i.e.,

when both players make a proposal to each other.

At any instant in the 6 minutes game, every subject can make or remove a proposal

to another subject by simply double-clicking on the corresponding node in the computer

screen. Any reciprocated proposal leads to the formation of a link. Any non reciprocated

proposal sent is characterized by the targeted node’s shape being a square. Finally, any non

reciprocated proposal received is characterized by the source node’s shape being a triangle.

The default node shape for nodes involving no link or proposal is the circle. Every subject

can see every node on the screen, regardless of their position in the network. Some zoom

in/out options are also made available for the subject to personalize their visualization of
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the network.

At any moment of the experiment, each subject is provided with detailed information

about their own net payoff resulting from the currently depicted network structure. More

precisely, subjects explicitly see the amount of access benefits, brokerage rents, overall cost

of linking, and net payoffs. Finally, the subjects are also provided with information about

the net payoffs of every other player, which are described in each corresponding node of

the network. Further information on the screen is provided in Online Appendix D.

3.3 Experimental procedures

The experiment was conducted in the Laboratory for Research in Experimental and Behav-

ioral Economics (LINEEX) at the University of Valencia. Subjects in the experiment were

recruited from online recruitment systems of the laboratory. Each subject participated in

only one of the experimental sessions. After subjects read the instructions, the instructions

were read aloud by an experimenter to guarantee that they all received the same infor-

mation. While reading the instructions, the subjects were provided with a step by step

interactive tutorial which allowed them to get familiarized with the experimental software

and the game. Subjects interacted through computer terminals and the experimental soft-

ware was programmed using HTML, PHP, Javascript, and SQL. Sample instructions and

interactive tutorials are available in Online Appendix C.

There were in total 12 sessions: 4 sessions of 50 subjects for each of the Criticality,

Betweenness, and Distance treatments. In each experimental session, 50 subjects were

matched to form a group and interacted with the same subjects throughout the experiment.

Therefore, there are 4 independent groups for each treatment. A total of 600 subjects

participated in the experiment.

The experiment consists of 6 rounds of the continuous-time game, each of which lasted

for 6 minutes with the first minute as a trial period and the subsequent 5 minutes as the

game with payment consequence. At the end of each round, every subject was informed,

using the same computer screen, of a time moment randomly chosen for payment, detailed

information on subjects’ behavior at the chosen moment including a network structure

and all subjects’ earnings. While each group of people was fixed in a session, subjects’

identification numbers were randomly reassigned at the beginning of every round in order

to reduce potential repeated game effects. The first round was a trial round with no payoff

relevance and the subsequent 5 rounds were effective for subjects’ earnings. In analyzing
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the data, we will focus on subjects’ behavior and group outcomes from the last 5 rounds.

At the beginning of the experiment, each subject was endowed with an initial balance of

400 points and added positive earnings to or subtracted negative earnings from that initial

balance. Subjects’ total earnings in the experiment amounted to the sum of earnings

across the last 5 rounds and the initial endowment. Earnings were calculated in terms of

experimental points and then exchanged into euros at the rate of 110 points being equal to

1 euro. Each session lasted on average 90 minutes, and subjects earned on average about

16.4 euros, including a 5 euros show-up fee.

At the end of the experiment, subjects took incentivized tasks to elicit social preferences

and risk preferences. They are a modified version of Andreoni and Miller [2002] and Holt

and Laury [2002], respectively. In addition, subjects answered a brief version of the Big Five

personality inventory test adapted from Rammstedt and John [2007], a comprehension test

related to the experimental game, and a debriefing questionnaire including demographic

information. More details about them can be found in Online Appendix E.

4 Experimental Results

This section presents our experimental findings on the impact of pricing rules on efficiency,

inequality, and network structure. It also discusses how the large effects we observe can be

understood in terms of myopic best response by individuals to incentives for link formation,

across the different pricing rules.

For simplicity, in all the empirical analyses, the data is organized on a second to second

basis. So, every round yields us 360 observations – snapshots of every subject’s choices in

the group. Although some information about choice dynamics between two time intervals

may be lost, we believe that the second by second record is adequate for our purposes.

Moreover, unless otherwise stated, all analyses are focused on data from the last 5 payoff

relevant minutes of each round of the game. Using this data set, we run linear regressions

for treatment effects with standard errors clustered at the group level and report regression

results in Appendix B.

4.1 Efficiency

We begin with the analysis of the treatment effects on efficiency. Figure 6 shows the

dynamics of efficiency attained. The efficiency measure is relative to the first best network.
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Figure 6: Dynamics of efficiency

The vertical dotted line represents the 60th second from the beginning of the game, after

which the play of the game is payoff relevant.

There are substantial differences across treatments: under criticality pricing, subjects

attain (an almost constant) 80% efficiency. On the other hand, efficiency in the other two

treatments is initially very low — around 28% and 16%, respectively, under betweenness

and distance pricing. Efficiency steadily increases over time, eventually reaching 70%

and 61%, respectively. The level of efficiency under betweenness and distance pricing is

significantly lower than that under criticality pricing, controlling for the time trends. For

details on the regression estimates refer to Table 4 in Appendix B.

The effects of pricing rule on efficiency are large. What are the sources for this great

difference? There are potentially two reasons for loss in efficiency: breakdown of trade

due to missing connections and an excessive number of links. Figure 7 presents data on

fraction of realized trades and on the total number of links.

Figure 7a shows that (roughly) 99% of all trades are realized under all pricing rules.

Hence, there is little loss of efficiency due to breakdown of trade. Figure 7b shows that the

number of links under criticality pricing is (around) 70 and is stable over the last 5 payoff

relevant minutes. On the other hand, the number of links is 121 and 133, respectively, at

the start and decline to 79 and 88, respectively under betweenness and distance pricing.

Controlling for time trends, we observe that the average number of links under criticality
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(a) Fraction of realized trades (b) Total number of links

Figure 7: Sources of inefficiency

pricing is significantly lower than under the other two pricing rules. The regression results

are presented in Table 5 in Appendix B. Note that the number of links in an efficient

network is 49. We are led to the conclusion that over-linking is the principal source of

inefficiency in the experiment. Our analysis of efficiency is summarized as follows.

Result 1 (Efficiency) (i)The level of efficiency is consistently high under criticality pric-

ing. (ii) Under betweenness and distance pricing, efficiency is initially very low; the

main source of inefficiency is over-linking. The number of links decline over time

and this leads to rising efficiency.

4.2 Inequality

We measure inequality as the ratio of the maximum payoff to the median payoff (as defined

in equation 5).9 Figure 8 presents the dynamics of the (average) ratio of the maximum

payoff to the median payoff. We observe large and significant differences across pricing

rules: the average of the ratio is 2 under criticality pricing, 15 under betweenness pricing

and 19 under distance pricing. These differences are stable across time. We run a linear

regression with time trends: the inequality measure under criticality pricing is significantly

lower than that under the other two pricing rules. These regression results are presented in

Table 6 in the Appendix B. It is worth noting that the inequality observed under criticality

9An alternative measure based on the Gini coefficient is also provided in the Appendix.
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Figure 8: Dynamics of inequality

pricing is closer to the cycle network (I(s) = 1), while the inequality observed under the

other two pricing rules is closer to the hub-spoke network (I(s) ≈ 14 and I(s) ≈ 18 under

betweenness and distance pricing respectively).

What is the source of such a large inequality in earnings? To address this question,

we present the distribution of overall earnings and of brokerage rents. Specifically, we first

compute for each round the average payoffs earned by subjects and rank them from the

lowest to the highest. We then take, for each rank, an average of payoffs across rounds and

groups. Figure 9a presents the bar graphs of the resulting payoffs from the lowest (left)

to the highest (right). This reflects the rather large differences in inequality that we have

noted already. Figure 9b presents the corresponding bar graph of brokerage rents (using

the same ranking system as in Figure 9a).

This figure reveals that under criticality pricing, subjects earn very similar payoffs. In

contrast, under the other two pricing rules, there is a single individual who earns much

larger payoffs than anybody else. The highest earning individual under betweenness and

the distance pricing earns very large brokerage rents; the rest of the subjects earn negligible

brokerage rents. We conclude that the main source of earning inequality is the extremely

unequal distribution of brokerage rents. Our analysis of inequality is summarized as follows:

Result 2 (Inequality) (i) The level of inequality is substantially higher in the between-

ness and distance treatments than in the criticality treatment. (ii) The unequal dis-
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(a) Distribution of payoffs

(b) Distribution of brokerage rents

Figure 9: Sources of inequality
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tribution of brokerage rents is the main source of payoff inequality in the betweenness

and distance treatments.

4.3 Network Structure

The effects on inequality and efficiency ultimately arise out of different linking patterns.

We now turn to a study of network structure under the three pricing rules. Three network

measures are presented: diameter of the network (the shortest distance between the two

most distant subjects), the distribution of (geodesic) distances between subjects, and the

ratio of maximum to minimum number of links of an individual.

Figure 10a presents the dynamics of network diameter. We observe large and statisti-

cally significant difference in network diameter under criticality pricing on the one hand

and the diameter under the other two treatments: the average network diameter is 8.5

under criticality pricing, 4.6 under betweenness pricing and 4.1 under distance pricing.

The differences of network diameter persist over time and are statistically significant. For

details of the regression estimates, refer to Table 7 in Appendix B.

Figure 10b presents the distribution of (geodesic) distances between individual subjects.

Less than 10% of pairs are directly linked (i.e., geodesic distance of 1) in all pricing rules:

this provides strong evidence for sparseness of the emerging networks. However, 54% and

62% of all pairs of subjects under betweenness and distance pricing have distance 2; this

frequency is much lower under criticality pricing at 14%. This difference is reflected in

average path length: it is 3.8 under criticality pricing, 2.4 under betweenness pricing, and

2.2 under distance pricing.10

Next we examine the extent of network centralization across pricing rules: Table 3

reports the average degree distribution. The striking feature is the great centralization

under betweenness and distance pricing: about 2% of individuals – one subject out of 50

– have 25 or more links. However, almost no one has more than 10 links under criticality

pricing. Second, the fraction of subjects with only one link under betweenness and distance

pricing is more than 3 times higher than that under criticality pricing. On the other hand,

the frequency of subjects with two links is more than 2 times higher under criticality pricing

as compared to the other two pricing rules. These observations taken together suggest that

the concentration of linking to a hub is a prominent feature of networks under betweenness

10These findings suggest differences in closeness centrality across pricing regimes. More supporting evi-
dence on closeness is provided in the Appendix (see Figure 16b).
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(a) Network diameter

(b) Distribution of pairs across path lengths

Figure 10: Diameter and closeness
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Figure 11: Dynamics of the ratio of max degree to mean degree

and distance pricing while the patterns of linking under criticality pricing is very dispersed.

Table 3: Distribution of Degrees

Treatment
Degree Criticality Betweenness Distance

0 0.4% 0.3% 0.3%
1 8% 31% 28%
2 43% 19% 19%
3 24% 13% 13%

[4, 10) 23% 29% 30%
[10, 25) 0.7% 6% 7%
[25, 49] 0% 1.6% 1.8%

To further substantiate the different levels of centralization, we present the ratio of

maximum to average degree. Figure 11 presents this ratio. At the start, there is a moderate

difference in this ratio across pricing rules: it is around 6 under criticality pricing and 10

under betweenness and distance pricing. The ratio remains stable under criticality pricing

but rises steadily over time and reach around 25 in the other two pricing rules.

The final statistic we present pertains to the persistence of centrality: Figure 9 suggests
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Figure 12: Dynamic stability of the main broker status

that the highest earning subject under betweenness and distance pricing obtained the

largest brokerage rents. This subject is also the one who attracted the highest number of

links (as shown in Table 3). For every interval of 10 seconds, we define the main broker

as the subject who earns largest brokerage rents for the longest time within the interval.

We study the transition probability of such an individual keeping their status in the next

interval of 10 seconds. Figure 12 shows that there is little persistence of main broker under

criticality pricing: this trader maintains her status with probability (roughly) 30%. On

the other hand, under betweenness and distance pricing, the main broker persists with

probability close to 1. Our analysis of network structure is summarized as follows.

Result 3 (Network structure) (i) The network is dispersed under criticality pricing

while network centralization is strong and grows over time under betweenness and

distance pricing. (ii) The identity of the main broker is unstable under criticality

pricing but very stable under betweenness and distance pricing.
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4.4 Individual Incentives and Behavior

We have observed that pricing rules have large effects on the emerging network structure;

the difference is economically significant as efficiency and inequality varies greatly across

these networks. The large treatment effects arise due to different linking choices by in-

dividuals. In this section, we show that pricing rules give rise to different incentives for

forming and deleting links and this helps account for the large treatment effects.

On way to understand incentives is to ask, for any instant of time t, given an actual

network and the proposals available, what are the maximum and minimum payoff changes

that the individual could obtain by positively responding to a link proposal or by deleting

a link. Note that we do have data about what the individual actually does: so we can,

for the time t, observe the actual choice of subjects and compute from the impact on their

actual earnings.

Figure 13 represents the (average) payoff changes arising out of the actual choices by

individuals of adding a link (solid red line) and deleting a link (solid blue line) across

pricing rules. It also presents the (average) maximum and minimum payoff changes that

the individual could potentially obtain (dotted lines for corresponding colors). Due to

small sample problems, we pool samples and compute average payoff changes in intervals

of 5 consecutive degrees from degree 5.

We note that there is a stark difference in incentives across treatments. Under criticality

pricing, subjects face strong incentives for settling on two links. The figure reveals that

subjects can benefit by adding a link when their degree is either 0 or 1 but cannot benefit

by doing so when their degree is 2 or higher. On the other hand, the incentive for deleting

a link goes the other way: removal of a link is not profitable when their degree is either 1

or 2, and may be profitable when the degree is 3 or higher. Taking these points together,

we find that subjects with degree 2 cannot benefit by a single deviation of either adding

or deleting a link. This observation is consistent with the dispersed network whose degree

distribution has the mode at degree 2. In contrast, under betweenness and distance pricing,

subjects face very different structure of incentives: ‘locally’ it is unprofitable to form a link

beyond one link, and it is profitable to add links if they already attracted many links.

Is subject behavior consistent with these incentives? Figure 14 present the time series

of the proportions of subjects with one link and two links, respectively, across pricing rules.

In the line with the analysis of incentives, the proportion of subjects with degree 1 increases

over time under betweeness and distance pricing rules; it reaches around 50% by the end
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(a) Criticality based pricing

(b) Betweenness based pricing

(c) Distance based pricing

Figure 13: Payoff changes from single actions (add / delete a link)
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of the game. Under criticality pricing, this fraction is much lower, always below 10%.

Second, under criticality pricing subjects maintain two links increasingly more frequently

over time and the frequency of subjects with degree 2 is (roughly) 50% by the end of the

game. Under betweenness and distance pricing, the corresponding frequency is (roughly)

20% over time.

Finally, we examine choices of the individual with the highest degree. Figure 15 presents

the time series of the maximum degree over time across treatments. Under betweenness

and distance pricing, subjects with the highest degree steadily increase their degree, over

time. On the other hand, under criticality pricing, the maximum degree is always below

10.

We summarize our analysis of incentives and individual behavior under pricing rules as

follows:

Result 4 (Incentives and behavior) (i) Under criticality pricing subjects have a (my-

opic) incentive to maintain two links and tend to do so with high frequency. (ii)

Under betweenness and distance pricing, subjects have a (myopic) incentive to either

form only one link or become highly connected. Subject behavior is in line with these

incentives: the proportion of subjects with degree 1 and the maximum degree both

increase over time.
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(a) Proportion of subjects with one link

(b) Proportion of subjects with two links

Figure 14: Time series of proportions of subjects with degree 1 and 2
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Figure 15: Time series of the maximum degree

5 Conclusion

Providing intermediation services can represent a highly profitable activity in the modern

economy. While it facilitates value exchange between users, the presence of dominant in-

termediaries also widens the wealth inequality gap in the population. Previous work on

the economic theory of networks provide some insights into the stability of such outcomes.

However, those models are limited in identifying the economic forces that drive the emer-

gence of such powerful intermediaries. This paper provides an experimental investigation

of this important question.

We conduct a laboratory experiment with groups of 50 subjects (with homogeneous

preferences) who play a link formation game in continuous time. We manipulate the type

of pricing rule that allocates the surplus from bilateral trades that are realized between

connected pairs of subjects in the network. Across three simple rules, the star network with

high efficiency and large inequality is stable. Moreover, the cycle network, which reconciles

efficiency and equality, is stable only under one specific pricing rule (criticality).

Our experiment provides clear evidence that different allocation rules have strong effects

on the macroscopic features of the network. Under the criticality rule, a network with

multiple cycles with long path lengths is observed, thereby generating high efficiency and

low payoff inequality. On the other hand, a hub-spoke network emerges under the other
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pricing rules, thereby increasing efficiency while creating extreme inequalities between the

unique intermediary - the hub - and other actors. This observation clearly contrasts with

previous experimental studies (generally involving small groups) suggesting that inequality

aversion is a powerful barrier to the emergence of extremely unequal outcomes in the lab.

We explain these important treatment effects through the different individual incentives

associated with different pricing rules. Under the criticality rule, subjects are incentivized

to form two links to prevent others from extracting intermediation rents. Under the other

pricing rules, we distinguish between two types of incentives conditional on the individual’s

degree: subjects with low connectivity benefit by forming a single link with the most

central individual; subjects with high connectivity benefit by forming more links to become

more dominant. The subjects’ effective reaction to those myopic incentives, despite the

significant complexity of the decision environment in which they navigate, provides further

support for the novel methods associated with our experimental platform to study large

scale economic phenomena.
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APPENDIX

A Proofs

A.1 Proof of Proposition 1

Pairwise stability of the Empty network is straightforward.

In the Star network, the hub does not benefit from removing a link if c < V n
3 −

V
6 .

Under the same condition, no spoke can benefit from removing a link. No pair of spokes

can benefit by adding a link with each other if c > V
6 . The Star network is therefore

pairwise stable if V
6 < c < V n

3 −
V
6 .

In the Cycle network, no pair of players can benefit by adding a link because c > 0 and

it cannot change the access benefit (= (n−1)V
2 ) or the intermediation rent (= 0). Given that

that the access benefit obtained by a player removing a link is
∑n−1

i=1
V
i+1 , such an action

is not profitable as long as c < V (n−1)
2 −

∑n−1
i=1

V
i+1 =

∑n−2
i=1

V i
2(2+i) . The Cycle network is

therefore pairwise stable if c <
∑n−2

i=1
V i

2(2+i) .

In the Complete network, if n = 3 and c < V
6 , no one can benefit by removing a link. If

n > 3 and c > 0, then any player can benefit by removing a link because it cannot reduce

either access benefit (= (n−1)V
2 ) or intermediation rent (= 0). Therefore. the Complete

network is not pairwise stable for a sufficiently large n.

Finally, it is easy to see that, for any values of c > 0 and n ≥ 3, there is at least one

pairwise stable network among the Empty, Star, and Cycle networks.

A.2 Proof of Proposition 2

Pairwise stability of the empty network is straightforward.

Pairwise stability of the Star network follows the same arguments as in the proof of

Proposition 1.

In the Complete network, no player can benefit by removing a link as long as c < V
6 .

In the Cycle network, it is easy to see that, the gain in benefits (access benefits and

brokerage rents) for adding a link between two players sitting at an extreme distance from

one another increases with n. As a result, if n is sufficiently large, then such a move becomes

profitable for both players. This argument naturally extends to any k-cycle-s-Star network

with fixed values of k and s, and a sufficiently large n.
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Finally, it directly follows that, for any values of c > 0 and n ≥ 3, there is at least one

pairwise stable network among the Empty, Star, and Complete networks.

A.3 Proof of Proposition 3

Pairwise stability of the Empty network is straightforward.

In the Star network, the hub does not benefit from removing a link if c < V
2 + p(n− 2).

Similarly, no spoke can benefit by removing a link as long as c < V
2 + (n−2)(V−p)

2 . No pair of

spokes can benefit by adding a link with each other if c > p
2 . The Star network is therefore

pairwise stable if p
2 < c < V

2 + (n− 2) min(p, V−p2 ).

In the Complete network, no player can benefit by removing a link as long as c < p
2 .

In the Cycle network, let x represent the maximum number of intermediaries for a

trade to be realized, i.e., x ≤ V
p . If the group size n is sufficiently large, then adding a link

between two players sitting at an extreme distance from one another leads to the following

gains in benefit earned by each. The gain in access benefit corresponds to V
2 +xV − xp(x+1)

2

whereas the gain in brokerage rents corresponds to 2px2. The total gain in benefits therefore

adds up to V
2 + xV + px

2 (3x− 1). Since adding a link costs c, such a move is profitable for

both players if V
2 + xV + px

2 (3x − 1) > c. Setting up a conservative value for x such that

x = V
p − 1, the latter condition becomes 5V 2

2p − 4V + 2p > c. Therefore, the cycle network

is not pairwise stable for a sufficiently large n as long as c < 5V 2

2p − 4V + 2p.

Finally, it is easy to see that, for any values of c > 0 and n ≥ 3, there is at least one

pairwise stable network among the Empty, Star, and Complete networks.

B Additional Tables and Figures

B.1 Network Centrality Measures

We consider two standard measures of network centrality: closeness and degree centrality.

Closeness centrality of a player i in a given network g captures how close i is from all

other players. Formally, it is calculated as Cc(i; g) =
∑

j 6=i
n−1
d(i,j;g) . Closeness centrality of a

network g with n players, as used in Figure 16a, corresponds to Cc(g) =
∑n
i=1[C

max
c (g)−Cc(i;g)]

(n−2)(n−1)/(2n−3)
where Cmaxc (g) = maxiCc(i; g). Average closeness centrality of networks realized across

different treatments in the experiment is depicted in Figure 16a.

Degree centrality of a player i in a given network g captures the fraction of links realized

by i. Formally, it corresponds to Cd(i; g) =
∑

j 6=i
ηi(g)
n−1 . Degree centrality of a network g
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with n players, as used in Figure 16b, corresponds to Cd(g) =
∑n
i=1[C

max
d (g)−Cd(i;g)]
n−2 where

Cmaxd (g) = maxiCd(i; g). Average closeness centrality of networks realized across different

treatments in the experiment is depicted in Figure 16b.

(a) Closeness centrality (b) Degree centrality

Figure 16: Network Centrality Measures in the Experiment

B.2 Alternative Inequality Measure

Figure 17 depicts an alternative to the inequality measure presented in the main text,

based on the well known Lorenz curve and Gini coefficient.

B.3 Explanations of Macroscopic Patterns

During the game, we compute the average payoff change for adding a link by considering

all individuals who gained a link by the means of their own single action or that of their

counterpart (or both) at any moment t, conditional on their degree at t-1. For each

observation, we further compute the minimum and maximum payoff change that could have

been obtained by considering all proposals at t-1, from the individual or the counterpart,

that could have turned into a link at t. Similarly, we compute the average payoff for deleting

a link by considering all individuals who lost a link by the means of their own action or

that of their counterpart at any moment t, conditional on their degree at t-1. For each

observation, we further compute the minimum and maximum payoff change that could

have been obtained by considering all links that could have been deleted by the individual
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Figure 17: Lorenz curve and Gini Coefficient

(a) Sum of individual benefits (b) Maximum individual benefits

Figure 18: Distribution of gross payoffs
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or the counterpart at t-1. Corresponding results across treatments are presented in Figure

19.

Furthermore, Figure 20 replicates the analysis depicted in Figure 13, across different

periods during the game. We see that the corresponding patterns are consistent with the

results from Figure 13, indicating that the incentives do not significantly vary over time.

B.4 Regression tables

Table 4: Treatment effects on efficiency

Efficiency

Betwenness -0.532***
(0.022)

Distance -0.641***
(0.053)

Critical × time 0.000***
(0.000)

Betweenness × time 0.001***
(0.000)

Distance × time 0.002***
(0.000)

Constant 0.716***
(0.005)

Number of
observations 18,000
R-squared 0.681

Notes: Robust standard errors, clustered by group, are reported in parenthesis. *, **, and *** represent
significance at the 10%, 5%, and 1% levels, respectively.
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(a) Criticality based pricing

(b) Betweenness based pricing

(c) Distance based pricing

Figure 19: Payoff changes from actions (add / delete a link)
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(a) Criticality based pricing

(b) Betweenness based pricing

(c) Distance based pricing

Figure 20: Payoff changes from actions (add / delete a link) across different periods during
the game ([61,125], [126,210],[211,285].[286,360])
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Table 5: Treatment effects on the number of links

Nb of links

Betwenness 55.838***
(2.339)

Distance 66.476***
(5.446)

Criticality × time -0.018***
(0.001)

Betweenness × time -0.147***
(0.011)

Distance × time -0.160***
(0.018)

Constant 76.791***
(0.469)

Number of
observations 18,000
R-squared 0.683

Notes: Robust standard errors, clustered by group, are reported in parenthesis. *, **, and *** represent
significance at the 10%, 5%, and 1% levels, respectively.

Inequality

Betweenness 9.625***
(0.874)

Distance 23.062***
(2.171)

Criticality × time 0.000
(0.000)

Betweenness × time 0.014***
(0.002)

Distance × time -0.028**
(0.007)

Constant 2.747***
(0.080)

Number of
observations 17,977
R-squared 0.310

Notes: Robust standard errors, clustered by group, are reported in parenthesis. *, **, and *** represent
significance at the 10%, 5%, and 1% levels, respectively.

Table 6: Treatment effects on inequality
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Network Diameter

Betweenness -2.948***
(0.127)

Distance -3.271***
(0.145)

Criticality × time 0.003***
(0.000)

Betweenness × time -0.002***
(0.000)

Distance × time -0.003***
(0.000)

Constant 7.946***
(0.125)

Number of
observations 18,000
R-squared 0.805

Notes: Robust standard errors, clustered by group, are reported in parenthesis. *, **, and *** represent
significance at the 10%, 5%, and 1% levels, respectively.

Table 7: Treatment effects on network diameter

C Experimental instructions

[All treatments]

Please read the following instructions carefully. These instructions are the same for

all the participants. The instructions state everything you need to know in order to

participate in the experiment. If you have any questions, please raise your hand. One of

the experimenters will answer your question.

In addition to the 5 euro show up fee that you are guaranteed to receive, you can earn

money by scoring points during the experiment. The number of points depends on your

own choices and the choices of other participants. At the end of the experiment, the total

number of points that you have earned will be exchanged at the following exchange rate:

110 points = 1 Euro

The money you earn will be paid out in cash at the end of the experiment. The other

participants will not see how much you earned.

In this experiment, you will participate in 6 independent rounds of the same form. The

first round is for practice and does not count for your payment. The next 5 rounds will be
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counted for your payment. At the beginning of the first round, you will be grouped with

49 other participants; so there are 50 participants in all in your group. This group will

remain fixed throughout the six rounds.

A round

We now describe in detail the process that will be repeated in each of the six rounds.

At the beginning of a round, you in your computer screen will be identified as the circle

of ‘Me’ and the other participants will be randomly assigned an identification number of

the form “Px” where x is a number between 1 and 49, and identified as the circle of “Px”.

The ID assignment of the other participants will remain unchanged within the round and

will be randomly made again at the beginning of the next round (e.g., node P4 does not

refer to the same participant across different rounds).

Each round will last 6 (six) minutes. At the very beginning of the round, participants

will start with an empty network where no link among them is formed. All participants

will then be asked to propose any number of links to any of the other participants to whom

they wish to link by double-clicking on their corresponding nodes. Anyone who makes

a link proposal to you (while you do not make a link proposal with them) will become

triangle-shaped. For example, players P2, P3, and P4 make link proposals to you in the

left part of Figure 1 (while you do not make any link proposal). Similarly, any link proposal

that you make to player who does not make one with you will become square-shaped.

A link between two participants will be formed only if both of the partici-

pants proposed a link with each other. Anyone who is linked with you, called your

neighbour, will become circle-shaped.

For example, from the left part of Figure 1, suppose that you make link proposals to

each of P2, P3, P4 and P6. Because you also received link proposals from P2, P3, and

P4, each of them is now linked to you and becomes circle-shaped. This is shown in the

right part of Figure 1. On the other hand, P6 did not make a link proposal to you, and

as a result, P6 will become square-shaped on your screen. Those who neither proposed a

link to you nor received a link proposal from you will remain circle-shaped (for example,

P1, P5, and P7, in the right part of Figure 1). Note that the network depicted in Figure

1 is also shown on your screen as a tutorial for you to test the experimental interface by
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creating and/or removing link proposals with other (virtual) players.

Figure 1

Every participant will be allowed to add/delete link proposals with other partic-

ipants at any moment during the six minutes of the round. If you delete a link proposal to

a participant who was linked to you (someone shown circle-shaped in the screen), then that

participant will no longer be linked to you and will revert to being triangle-shaped. If you

delete a link proposal to a participant who received a link proposal from you but did not

propose a link to you (who was shown square-shaped in the screen), that participant will

become circle-shaped. For example, starting from the network in the left part of Figure 2,

deleting the link proposals to P3 and P6 will result in the network shown on the right part

of Figure 2. In these ways, the computer screen will update the network every 2 seconds

or whenever you revise your linking decision.
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Figure 2

In summary, the shape of each participant on the computer screen indicates your rela-

tionship with them.

• Circle: they are linked with you or unlinked (no proposal from them or from you)

• Square: you propose a link, but they do not reciprocate.

• Triangle: they propose a link to you, but you do not reciprocate.

The first minute of each round will be a trial period and only the last 5

minutes will be relevant for your earnings in that round. Your earnings in the

round will be based on everyones choice at a randomly selected moment in the last 5

minutes of the round. In other words, any decision made before or after that randomly

chosen moment will not be used to determine your points. This precise moment will be

announced to everyone only at the end of the round, along with the corresponding behavior

and earnings.

In order to help you keep track of potential earnings which you and the other partici-

pants make during the round, your earnings at each moment will be presented at the top

part of the computer screen. In addition, the payoff of each participant from the network

is presented inside their corresponding node (rounded to the closest integer, below their
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identification number).

After participants are informed of their earnings at a randomly chosen moment, the

next round will start with the computer randomly assigning IDs of the other participants

in your group. This group is the same as in the previous round. However, IDs of other

players are likely to be different across different rounds.

Earnings

At the beginning of the experiment, you are given an initial balance of 400 points.

The first round will be used to familiarize yourself with the experiment and will have no

influence on your earnings. Your final earnings at the end of the experiment will consist of

the sum of points you earn across the last 5 rounds, plus this initial balance. Note that if

your final earnings go below 0, they will be treated as 0.

Your earnings in each round depend on benefits you get from your own connection to

the other participants and whether you are critical for the connection between two other

participants (brokerage rent), and the cost of linking you pay.

In a network, two participants are said to be connected when there exists a path

linking them. For example, in the right part of Figure 1, you are connected with the five

participants of P1, P2, P3, P4, and P5.

[Treatment Criticality only]

A participant is said to be critical for the connection between two other participants if

they are connected and the participant lies on ALL paths between them. In the pair be-

tween you and P5, P1 is critical because P1 lies on each of the two paths between you and

P5.

Every connected pair of two participants creates a value of 10 points. The pair creat-

ing the value of 10 points shares this value equally among themselves and all the critical

participants between them.

Your total benefits consist of
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(1) The benefits you earn from your own connection to other participants,

(2) The brokerage rents you earn from by being critical for the connection between pairs

of other participants.

[Treatment Betweenness only]

Flow of transactions between two participants will be only made through a shortest path

between them in the network. This means that only a participant who lies on a shortest

path between two other participants can be involved in transactions and earn brokerage

rent. For instance, consider the right part of Figure 1: between Me and P5, there are two

shortest paths: Me-P4-P1-P5 and Me-P3-P1-P5. Both paths have two participants lying

on them, and can be used for trade between Me and P5.

Every connected pair of two participants create a value of 10 points. This value is

divided equally among the connected pair and participants lying on any existing shortest

path. If M is the number of participants lying on any shortest path for the pair, then each

member of the pair earns 10/(M+2) points. Other participants lying on any shortest

path earns 10/(M+2) points multiplied by the proportion of the number of shortest

paths that she lies on. By way of illustration, consider the right part of Figure 1: there are

two shortest paths between Me and P5 with 2 participants lying on each of them (M=2),

and therefore participants P3 and P4 who lie on one shortest path each receive 1.25 points

(10/(2 + 2) × 1/2). However, participant P1 lies on both the shortest paths and receives

2.5 points (10/(2 + 2)).

Your benefits therefore consist of

(1) The benefits you earn from your own connection to other participants,

(2) The brokerage rents you earn for lying on shortest paths between pairs of other par-

ticipants.

[Treatment Distance only]

Flow of transactions between two participants will be only made through a shortest path

between them in the network. This means that only a participant who lies on a shortest

path between two other participants can be involved in transactions and earn brokerage
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rent. For instance, consider the right part of Figure 1: between Me and P5, there are

two shortest paths: Me-P4-P1-P5 and Me-P3-P1-P5. Both of them can be used for trade

between Me and P5.

A participant lying on a shortest path for a pair of participants receives 3 points

multiplied by the proportion of the number of shortest paths that she lies on. By way of

illustration, consider the right part of Figure 1: there are two shortest paths between Me

and P5, and therefore participants P3 and P4 who lie on one shortest path each receive 1.5

points (3/2). However, participant P1 lies on both the shortest paths and receives 3 points.

Every connected pair of two participants have a potential value of 10 points. This

value is realized only if the sum of brokerage rents on a shortest path that need to be paid

by the two connected participants is less than or equal to 10. If the sum of brokerage rents

exceeds the potential value 10, then the value is not realized: the connected pair and all

participants on every shortest path between them earn 0. In case the value is realized, the

connected pair earns a surplus that equals the value (10) less the sum of brokerage rents.

The surplus is equally divided between the two members of the connected pair.

Your total benefits consist of

(1) The benefits you earn from your own connection to other participants,

(2) The brokerage rents you earn for lying on shortest paths between pairs of other par-

ticipants.

[All treatments]

On the cost side, you pay 40 points per link that is created by you. Note that a link

proposal made by you will cost you 40 points only if the participant who received your

link proposal has also made a link proposal to you. Otherwise, your link proposal does not

create a link and costs nothing.

Therefore, your earnings in each round correspond to the network chosen at a random

moment from the last five minutes of the experiment.

Earnings = (sum of values you obtain from your connections with others) + (sum of

values you obtain from brokerage) (total cost of links created by you)
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The top part of the computer screen shows you the earnings that are decomposed into

the three parts:

• Benefits from being connected

• Brokerage rents

• Costs of linking

To give you a concrete idea of how each part of earnings is computed, let us take the

network on the right part of Figure 1. You are presented as Me.

First, observe that there is no path to two participants - P6 and P7: as you are not

connected to them, you obtain no benefit from them.

[Treatment Criticality only]

Second, you are connected to four participants P1, P2, P3 and P4 without any critical

participants. You obtain 10/2 = 5 points from each of these connections. You are also

connected to another participant, P5, and there is one critical participant, P4, between

you and P5. You obtain 10/3 = 3.3 points. Therefore, the benefits that you get from your

connections are

10

2
× 4 +

10

3
≈ 23.3

Third, observe that you are critical between P2 and each of the four participants P1,

P3, P4, and P5. So you obtain brokerage rents from these pairs. Specifically, you are the

only critical participant in three pairs (P2, P1), (P2, P3), and (P2, P4). In the pair (P2,

P5), you and P1 are both critical. The brokerage rents you obtain are

10

3
× 3 +

10

4
= 12.5

Recall that your payoff is only affected by the reciprocated links.

[Treatment Betweenness only]

Second, you are connected to three participants P2, P3 and P4 without any intermediary.

You obtain 10/2 = 5 points from each of these connections.

53



You are connected to participant P1, through two participants P3 and P4, lying on

two distinct shortest paths, between you and P1. You and participant P1 each receive

10/(2+1) = 3.3 points. You are also connected to participant P5 through 3 intermediaries:

P3 and P4 lying on only one shortest path, and P1 lying on both shortest paths. You and

participant P5 each receive 10/(2 + 2) = 2.5 points. Therefore, the benefits that you get

from your connections are

5× 3 + 3.3 + 2.5 ≈ 20.8

Third, observe that you lie on all shortest paths between P2 and each of the four par-

ticipants P1, P3, P4, and P5. So you receive brokerage rents from these pairs (P2, P1),

(P2, P3), (P2, P4), and (P2, P5). You are the only intermediary for the pairs (P2,P3) and

(P2,P4) and therefore earns 3.3 points (≈ 10/(1 + 2)) for each.

Two other intermediaries (P3 and P4) are lying on a shortest path for the pair (P2,

P1). Since they each lie on only one of the two existing shortest paths, you earn 2.5 points

(= 10/(2 + 2)).

Similarly, there are three other intermediaries lying on a shortest path for the pair (P2,

P5): P3 and P4 lie on only one of the two shortest paths, and P1 lies on both of them (as

you do). As a result, you earn 2 points (= 10/(3 + 2)).

You also lie on one shortest path out of the two shortest paths between P3 and P4.

You therefore receive brokerage rents 1.7 points (≈ 10/(1 + 2)× 1/2) from this pair. The

total brokerage rents you obtain are

2× 3.3 + 2.5 + 2 + 1.7 ≈ 12.8

Recall that your payoff is only affected by the reciprocated links.

[Treatment Distance only]

Second, you are connected to three participants P2, P3 and P4 without any intermediary.

You obtain 10/2 = 5 points from each of these connections.

You are connected to participant P1, through two participants P3 and P4, lying on
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two distinct shortest paths, between you and P1. You and participant P1 each receive

(10− 3/2− 3/2)/2 = 3.5 points.

Finally, you are connected to participant P5 through 3 intermediaries: P3 and P4 lying

on only one shortest path, and P5 lying on both shortest paths. You and participant P5

each receive (10− 3/2− 3/2− 3)/2 = 2 points. Therefore, the benefits that you get from

your connections are

5× 3 + 3.5 + 2 ≈ 20.5

Third, observe that you lie on all shortest paths between P2 and each of the four

participants P1, P3, P4, and P5. So you receive brokerage rents (3 points) from these

pairs (P2, P1), (P2, P3), (P2, P4), and (P2, P5). You also lie on one shortest path out

of two shortest paths between P3 and P4. You therefore receive brokerage rents 1.5 points

(= 3/2) from this pair. The total brokerage rents you obtain are

3× 4 + 1.5 ≈ 13.5

Recall that your payoff is only affected by the reciprocated links.

D Network game interface

The decision making interface used in the experiment is similar across all treatments. More

specifically, Figure 21 illustrates a (fictitious) example of a subject’s computer screen in

Treatment Criticality. The top part of the screen depicts information about the timer

indicating how much time has lapsed in the current round (the timer turns red when payoffs

become effective, i.e., after 1 minute has passed), and a comprehensive description of the

subject’s own payoff. Information about payoffs include own benefits from own connections,

brokerage rents, the cost of linking, and the net earnings. The bottom part of the screen

shows detailed information about the network (the subject’s node is highlighted in yellow).
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Figure 21: Example of decision screen for Criticality Treatment
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E Questionnaires

At the end of the experiment, subjects answered a set of surveys aiming at measuring

various types of individual differences. More precisely, incentivized measures of compre-

hension in network game, social preferences, and risk preferences were used. Finally non

incentivized personality measures were used before which subjects filled up a debriefing

questionnaire that includes demographics information.

E.1 Comprehension check

In order to assess the subjects’ comprehension of the network game played during the

experiment, we provided 6 questions, each of which with a unique correct answer. Each

correct answer was rewarded with 0.1 euro for the subject.

All the same 6 questions were used across all treatments. In all treatments, the correct

answers are “10 pts” to question 1, and “40 pts” to question 2, and “a randomly selected

moment in the last 5 mins” to question 3.

The following questions 3, 4, and 5 relate to best response behavior in forming a link in

some network. Correct answers are as follows: “P1” in question 4 (all treatments); “P1”

(hub of the left hand side star) in question 5 (all treatments); “P18” (only node connecting

the left and right component) for Criticality treatment, and “P1” (center of wheel on left

hand side) for Betweenness and Distance treatments in question 6.
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E.2 Social preferences

The social preferences measure was adapted from Andreoni and Miller [2002] and involved

a series of five money allocation tasks between the decision maker and some anonymous

external participants of another experiment at the LINEEX lab (corresponding payments

were therefore made to these external passive participants). The five tasks used in our

experiment were represented through sliders as shown in the following figure:
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Note however that each question was presented in a different screen, and the order

of presentation was randomized for every subject. Furthermore, 50 points were worth 1

euro both the subject, and the other anonymous external participant. Detailed instructions

provided to the subjects, as well as a screenshot highlighting one of the above five questions

are described below.

Instructions: You are asked to answer a series of 5 questions, each of which consists of

selecting an allocation of points that you most prefer between yourself and an anonymous

randomly selected person who is participating to a different experiment in this lab. At

the end of the study, we will randomly select your allocation for 1 of the 5 questions to

determine the payments for both you and the other person in this part. Your decisions will

remain unknown to the other persons you are matched with.
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E.3 Risk preferences

The risk preference measure was adapted from Holt and Laury [2002] and consisted of a

series of five binary choices between lotteries, presented as in the figure below.

E.4 Personality test

Non incentivized measures were used through a simplified version of the Big Five person-

ality inventory test adapted from Rammstedt and John [2007], as shown below.
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