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Abstract

We propose a test of the hypothesis of conditional stochastic dominance in the presence of

many conditioning variables (whose dimension may grow to infinity as the sample size diverges).

Our approach builds on a semiparametric location scale model in the sense that the conditional

distribution of the outcome given the covariates is characterized by a nonparametric mean func-

tion and a nonparametric skedastic function with an independent innovation whose distribution

is unknown. We propose to estimate the nonparametric mean and skedastic regression func-

tions by the `1-penalized nonparametric series estimation with thresholding. Under the sparsity

assumption, where the number of truly relevant series terms are relatively small (but their iden-

tities are unknown), we develop the estimation error bounds for the regression functions and

series coefficients estimates allowing for the time series dependence. We derive the asymptotic

distribution of the test statistic, which is not pivotal asymptotically, and introduce the smooth

stationary bootstrap to approximate its sample distribution. We investigate the finite sample

performance of the bootstrap critical values by a set of Monte Carlo simulations. Finally, our

method is illustrated by an application to stochastic dominance among portfolio returns given

all the past information.
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1 Introduction

The main purpose of this paper is to provide methodology to test stochastic dominance hypotheses

in the presence of conditioning information. The first order dominance hypothesis (FSD) we consider

is

H0 : Pr (ytj ≤ y|Ft−1) ≤ Pr (ytl ≤ y|Ft−1) (1)

almost surely for all y ∈ R, where ytj and ytl denote the outcomes of interest to compare, and Ft−1 is

information observed at time t−1. If this hypothesis holds, then we may conclude that ytj should be

preferred to ytl by a large class of individuals who prefer more to less, Levy (2016). The alternative

hypothesis we test against is the negation of H0.

An additional hypothesis of interest is the second order stochastic dominance (SSD) hypothesis

that ∫ x

−∞
Pr (ytj ≤ y|Ft−1) dy ≤

∫ x

−∞
Pr (ytl ≤ y|Ft−1) dy (2)

almost surely for all x ∈ R. In this case we may conclude that series ytj should be preferred to ytl by a

large class of risk averse individuals. Stochastic dominance is central in a number of decision-making

contexts, Levy (2016) and Whang (2019).

Allowing for conditioning information is essential in many applied contexts. Gonzalo and Olmo

(2014) developed some tests of conditional stochastic dominance for the low dimensional case. In

fact, there is nowadays a plethora of available data for both decision-makers and econometricians. We

allow the dimensionality of Ft−1 to be large and we allow a general functional form for the conditional

c.d.f.’s of the outcome variables. In particular, we propose a location-scale model for the observed

outcomes with i.i.d. shocks of unknown distribution. The proposed model is semiparametric in the

sense that the location and scale functions can be fully nonparametric functions of a finite number of

conditioning covariates or can be linear functions of a large number of conditioning covariates, while

the unknown error distribution is also left unspecified. The sparsity assumption plays a fundamental

role in high-dimensional data analysis. Under this assumption, the information on the large set of

conditioning variables can be effectively represented by a small subset of variables, although their

identities are unknown to researchers. This plays a key role in determining how to construct a

test of the conditional stochastic dominance hypothesis under the high-dimensional setup. In our

application below we consider one series to be the return on the US stock market and the other

series to be the return on the Rest of the World or Global stock market. We consider a large class of

available information Ft. We use modern data techniques to reduce the dimensionality of Ft to the

most essential components, whose dimensionality, nevertheless, is allowed to grow with sample size.

We estimate the unknown location and scale functions by the regularized least squares and the er-

ror distribution by the empirical distribution. Specifically, the unknown location function is estimated
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by Tibshirani’s (1996) least absolute shrinkage and selection operator (LASSO). It is commonly em-

ployed for the sparse high-dimensional regression and its statistical properties have been intensely

studied for cross sectional data, see e.g. Bickel et al. (2009), but not much work has been published

for time series data, Medeiros and Mendes (2016) being an exception. The scale function is also

estimated by the LASSO in the regression of the absolute value of the first step residuals. Unlike

in other skedastic regressions, we find that the scale normalization by the modulus is more conve-

nient than by the square of the residuals. Then, the error distribution is estimated by the empirical

distribution function of the rescaled residuals. To characterize the sharp weak limit of the empirical

distribution, however, we need to regularize the residuals by thresholding so that we can control the

random variation arising from the imperfect selection of the smallish coefficients. Therefore, we rees-

timate the location and scale functions by the ordinary least squares with the selected variables by

the thresholding. The precise conditions on the thresholding are presented as well as the additional

regularity conditions to validate the thresholding.

We develop a time series extension of an exponential inequality that proves useful to obtain

deviation bounds for LASSO estimators, which in turn yields tightness of the residual empirical

process. The deviation bounds for the LASSO and variants have been developed for random samples

by Bickel et al. (2009), Belloni et al. (2012), among many others. See also reviews by Bühlman and

van der Geer (2011) and Belloni and Chernozhukov (2013) for instance. They justify the selection

consistency based on thresholding the LASSO estimates, provided that so-called beta-min conditions

are met. The weak convergence of an empirical process of residuals from a linear regression with

increasing numbers of regressors has been studied by many others, e.g. Mammen (1996) and Chen

and Lockhart (2001). More recently by Chatterjee et al. (2015) who considered a high-dimensional

penalized regression with homoskedastic errors. Our work extends the literature by allowing for

dependent data and for the rescaled residuals from a nonparametric location scale regression model.

Building on the aforementioned generalizations, we obtain the weak convergence of estimates of the

conditional distribution functions and provide the asymptotic distribution of a supremum statistic

for the conditional stochastic dominance test.

Our statistic for FSD is the maximum deviation of one estimated conditional distribution function

from the other. The conditional distribution functions in our specification are defined on unbounded

dimensions because a conditional distribution function is given by the composite of the distribution

function and the regression functions, whose domains may belong to an infinite-dimensional space.

This is a different feature of our test from the previous finite-dimensional stochastic dominance

tests. We establish the weak convergence of the properly centered and scaled estimated conditional

distribution functions. The statistic for SSD is the maximum deviation between the unweighted

integrals of the estimated conditional distribution functions. The unweighted integral of an empirical
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distribution function does not exhibit weak convergence but the difference can be shown to be tight.

Then, the statistic converges by the continuous mapping theorem to the supremum of a Gaussian

process, which is not pivotal and cannot be tabulated without knowledge of the underlying data

distribution.

We propose a smoothed stationary bootstrap to compute the p-value of the statistic. Several issues

need to be taken care of to implement the bootstrap correctly due to the high-dimensional time series

data and the use of the empirical distribution function. The stationary bootstrap proposed by Politis

and Romano (1994) is suitable to control the serial dependence in the observed variables and errors.

We do not need to impose the martingale difference condition for the errors. The smoothing is used

to impose the smoothness of the error distribution on the bootstrap distribution as in e.g. Neumeyer

(2009). Both methods are combined to generate bootstrap samples. Furthermore, the location and

scale functions for the bootstrap sample are estimated by the ordinary least squares conditioning

on the selection at the original sample, since bootstrapping the LASSO is known to be inconsistent,

Chatterjee and Lahiri (2011). Thus, the computational burden is lowered by not implementing the

LASSO at the bootstrap.

We investigate the finite sample performance of the bootstrap critical values in some Monte Carlo

simulations. We find that the performance is satisfactory even for quite modest sample sizes. Finally,

we illustrate our method by an application to the home bias puzzle, which is why investors are so

overweighted on the US market. In particular we test whether a Global return series dominates the

return on the US market conditioning on a large set of variables available to investors. We find that

generally the US market does not dominate the rest of the world when conditioning on available

variables but there are some periods where it does.

The paper is organized as follows. The following section introduces our model and the preliminary

estimators. The test statistics for FSD and SSD are defined and their asymptotic distributions are

derived in Section 3. The smooth stationary bootstrap is introduced in Section 4 and its finite sample

property is explored through Monte Carlo simulation in Section 5. A few proposals to improve the

power are discussed in Section 4.2. Section 6 illustrates the new test by an application to the home

bias puzzle. All the proofs are delegated to the Appendix, where we establish the weak convergence

of the residual empirical processes from the (moderately) high-dimensional time series regression

and the (conditional) weak convergence of the aforementioned smooth stationary bootstrap residual

empirical process. Each of the results in these sections may be of independent interest and thus

the results are presented self-contained. For these two sections, we consider a model of moderately

high-dimension in the sense that the number of parameters increases but not as fast as to make the

OLS infeasible.

Notation: for a vector x ∈ Rs, |x|q := (
∑n

i=1 |xi|
q)

1/q
denotes the `q-norm of the vector x and
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|x| := |x|2. And for an index set S, xS := (xi : i ∈ S) denotes a subvector of x. Let S (β) denote

the support of a given vector β, that is, S (β) = {j : βj 6= 0}, and let |S| denote the cardinality

of an index set S. All the observations are arrays of variables, whose distributions and dimensions

may depend on n, but we suppress the dependence on n and do not introduce the subscript n for

notational simplicity, unless it is necessary to evade confusion. In particular, Xt denotes the vector

of p basis transformations of qt, while xt is a subvector of Xt that collects truly relevant elements

among Xt. But we use β to indicate the coefficients of both Xt and xt to ease notation. Thus, if β̂ is

defined as the OLS estimate in the regression of yt on xt, then X
ᵀ

t β̂ should be understood as X
ᵀ

t,Sβ̂.

2 Model

We suppose that the following location scale model generates each outcome variable:

ytj = gj (qt) + σj (qt) εtj, t = 1, . . . , n, (3)

where the innovation εtj is an i.i.d. sequence with a marginal distribution F j and first moment

equal to zero. The observed covariate vector qt ∈ Rk may include lagged outcome variables, and its

dimension can be large (increases to infinity as n increases to infinity). The functions gj, σj : Rk → R
are unknown but we specify below some restrictions on them. We suppose that the skedastic functions

σj are bounded away from zero and εtj is non-degenerate so that the mean regression error et = σtεt

is nonzero with probability one. We assume that εtj and qt are mutually independent in which case

the conditional distribution of ytj given qt is characterized by the distribution of εtj and the functions

gj, σj. From here on, we omit the outcome index j when we discuss common features. We will add

the superscripts when it is necessary to avoid confusion. Under our assumptions, for a given y and

q, the conditional distribution of the typical outcome variable is

F (y|q) := Pr (yt ≤ y|qt = q) = F

(
y − g (q)

σ (q)

)
.

The c.d.f.’s F j are of unknown functional form and so are the functions gj, σj. However, we further

suppose that there exists a large dimensional observed vector Xt := (Xt1, . . . , Xtp)
ᵀ

:=

(X1 (qt) , . . . , Xp (qt))
ᵀ

= X (qt) ∈ Rp such that

g(qt) = β
ᵀ

0Xt + rgt, (4)

where β0 is sparse (contains many zeros essentially) and the approximation error rgt → 0 at a proper

rate as the dimensionality of Xt expands with sample size. We do not need to know a priori the

exact identity of Xt, it suffices to have a superset of it. One prominent model is that the regression
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function is partially linear g(qt) = g1(q1t) + α
ᵀ

gq2t, where q2t is a vector of large dimensions, while

q1t is of small, fixed dimensions, and g1 is of unknown form so that g1(q1) =
∑∞

l=1 θlψl(q1), where ψl

are known basis functions and θl are unknown parameters, in which case we can take Xt to contain

q2t, ψ1(q1t), . . . , ψm(q1t) for some finite truncation m. The key question in practice is how to assign

the elements of q to q1 or q2, but our method and theory do not require us to take a position on this:

we can include a superset where we expand all continuous variables and the selection will choose

which ones essentially require nonlinear treatment.

An analogous assumption is imposed on the skedastic function σ so that

σt = σ (qt) = γ
ᵀ

0Xt + rσt, (5)

where γ0 is a sparse vector and the approximation error rσt → 0 as the dimension of Xt grows. The

vector Xt for the function σ may be different from Xt in the specification of g in (4) but we let them

be the same for notational simplicity. It may be viewed as the union of the two if they are different.

We allow σ to determine the scale of the overall error term and impose the scale normalization

on the distribution of εt, specifically we suppose that E |εt| = 1.1

2.1 Estimation

The dimension p of the series terms Xt can be potentially huge because the dimension of qt itself may

be high or the number of the basis transformations that are employed may be large. The series can be

composed of various interactions, their dummies, polynomials, and B-splines and even interactions

of the basic series transformations. Thus, it is generally not feasible to estimate β by unrestricted

least squares; we estimate the coefficients β by a regularized least squares. Our procedure takes three

steps. We first employ a weighted LASSO procedure, and then select elements of Xt by thresholding,

and finally reestimate β by the OLS on the selected variables.

First, we describe the weighted LASSO, i.e., the `1-penalized least squares with penalty varying

for each element in β, which is

min
β∈Rp

1

n

n∑
t=1

∣∣yt −Xᵀ

t β
∣∣2
2

+ λ |Dβ|1 , (6)

where D is a diagonal weighting matrix and λ is a tuning parameter. For instance, in the standard

scale normalization D’s j-th diagonal element is (n−1
∑n

t=1 X
2
tj)

1/2. Song and Bickel (2011) proposed

a lag-order dependent penalty k or k2 when Xtj = yt−k.

1Since E |et|i = E |σt|iE |εt|i, it does not matter which moment of |εt| we choose to normalize. In the case where

εt ∼ N
(
0, σ2

ε

)
, E |εt| = σε

√
2/π, i.e., we would normalize σε =

√
π/2 instead of 1. Note that the function σt is still

viewed as the conditional variance of the error et given qt upto a scale adjustment, since E
(
e2t |Ft−1

)
= σ2

t ·Eε2t . While

i = 2 is more common in the GARCH literature, we let i = 1 as it is more convenient for our test procedure later on.
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Let β̂lasso denote the resulting LASSO estimate. Second, we threshold this estimator further. Let

Ŝ =
{
j :
∣∣∣β̂lasso,j∣∣∣ > λthr

}
(7)

where the threshold parameter λthr is strictly bigger than the LASSO parameter λ.

Third, we re-estimate β by the OLS method on the selected variables defined by Ŝ. Specifically,

β̂Tasso = arg min
β:βj=0,j /∈Ŝ

n∑
t=1

(
yt −X

ᵀ

t β
)2
, (8)

that is, β̂Tasso,Ŝ is equivalent to the OLS estimator2 β̂ from the linear regression of yt on x̂t := Xt,Ŝ.

Then, we set

ĝt = ĝ (qt) = X
ᵀ

t β̂Tasso = x̂
ᵀ

t β̂,

and define the residual êt = yt − ĝt for each t.

To estimate γ, note that under our scale normalization we have |et| = σ (qt)+ηt = γ
ᵀ

0Xt+rσt+ηt,

where E [ηt|qt] = 0. We replace the unobserved et by the residual êt and proceed as for the estimation

of β. Specifically, let

γ̂lasso := argmin
γ∈Rp

1

n

n∑
t=1

(
|êt| −X

ᵀ

t γ
)2

+ µ |Qγ|1 , (9)

where Q is a weight matrix such as the diagonal matrix whose j-th element is (n−1
∑n

t=1 w
2
tj)

1/2 and

µ is a penalty parameter. Then, apply the thresholding to determine a selection

Ŝγ = {j : |γ̂lasso,j| ≥ µthr} ,

for some µthr. Next, let ŵt = Xt,Ŝγ
and γ̂ denote the OLS estimate of |êt| on ŵt. We may also define

γ̂Tasso as the thresholded LASSO estimate as for β̂Tasso. Then, we may set

σ̂t = σ̂ (qt) = X
ᵀ

t γ̂Tasso = ŵ
ᵀ

t γ̂,

provided that w
ᵀ

t γ̂Tasso > 0. In the event that w
ᵀ

t γ̂Tasso ≤ 0, which happens with low probability, we

set σ̂t =
∑n

t=1 |êt| /n.

3 Test Statistics

This section introduces our test statistics for the FSD and SSD hypotheses and then develops their

asymptotic distributions.

We observe the dataset {yt1, yt2, qt}nt=1 . The testing proceeds as follows.

2There is some abuse of notation in defining β̂Tasso and β̂ as the two have different dimensions. That is, β̂Tasso

denotes the estimate of the coefficient of Xt while β̂ corresponds to that of x̂t, which is a subset of Xt due to the

selection. We keep this notation as it simplifies the notation without much confusion.
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1. For each j = 1, 2, run the regression of ytj on Xt by the thresholded LASSO as described in

Section 2.1 to get Ŝj.

2. Let Ŝ = Ŝ1 ∪ Ŝ2 and define x̂t := Xt,Ŝ, i.e. the collection of selected elements of Xt in at least

one of the two regressions, and x̂ (q) = XŜ (q).

3. Let β̂j denote the OLS estimate3 in the regression of ytj on x̂t and define the residual êtj =

ytj − x̂
ᵀ

t β̂
j.

4. Likewise, for each j = 1, 2, run the skedastic regression of |êtj| on Xt as explained in Section

2.1 and compute Ŝσ, ŵt, ŵ (q) , and γ̂j analogously to Ŝ, x̂t, x̂ (q) , and β̂j in the preceding

steps, respectively.

5. For each j = 1, 2, construct the scaled residual ε̂tj = (ytj − x̂
ᵀ

t β̂
j)/σ̂jt , its empirical distribution

function

F̂ j (τ) =
1

n

n∑
t=1

1 {ε̂tj ≤ τ} ,

and let τ̂ j (y, q) = (y − x̂ (q)
ᵀ

β̂j)/σ̂j (q) .

6. Construct the test statistic4 for the FSD hypothesis

Tn =
√
n sup

y,q

(
F̂ 1
(
τ̂ 1 (y, q)

)
− F̂ 2

(
τ̂ 2 (y, q)

))
,

and, for the SSD hypothesis,

Un =
√
n sup

y,q

∫ y

−∞
F̂ 1
(
τ̂ 1 (u, q)

)
du−

∫ y

−∞
F̂ 2
(
τ̂ 2 (u, q)

)
du

= sup
y,q

1√
n

n∑
t=1

[
σ̂1 (q)

(
τ̂ 1 (y, q)− ε̂t1

)
+
− σ̂2 (q)

(
τ̂ 2 (y, q)− ε̂t2

)
+

]
.

We may also by analogy construct tests for stochastic maximality in the case with multiple

prospects, McFadden (1989).

3There is some abuse of notation in defining β̂Tasso and β̂ as the two have different dimensions. That is, β̂Tasso

denotes the estimate of the coefficient of Xt while β̂ corresponds to that of x̂t, which is a subset of Xt due to the

selection. We keep this notation as it simplifies the notation without much confusion.
4In practice, the supremums are approximated by the maximums over some grid of (y, q) . This grid search becomes

computationally challenging as the dimension of q grows.
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3.1 Asymptotic Distribution

We next present the large sample distributions of the test statistics. Define the following empirical

processes:

T̄n (y, q) =
√
n
[
F̂ 1
(
τ̂ 1 (y, q)

)
− F̂ 2

(
τ̂ 2 (y, q)

)
−
(
F 1
(
τ 1 (y, q)

)
− F 2

(
τ 2 (y, q)

))]
,

Ūn (y, q) =
√
n

[∫ y

−∞
F̂ 1
(
τ̂ 1 (u, q)

)
− F 1

(
τ 1 (u, q)

)
du−

∫ y

−∞
F̂ 2
(
τ̂ 2 (u, q)

)
− F 2

(
τ 2 (u, q)

)
du

]
.

Note that Tn = supy,q T̄n (y, q) and Un = supy,q Ūn (y, q) under the least favorable case of the null

hypothesis (i.e., when F 1 = F 2).

First, we collect the regularity conditions. Recall that we assume the array structure.

Assumption 1 Suppose that (3), (4), (5), and the following hold for each n:

1. {Xtet, t = 1, 2, . . .} is a β-mixing array with coefficient β (m) satisfying that for some positive

h1, h2, b, and c,

β (m) ≤ exp
(
−cmh1

)
Pr (|Xtiet| > τ) ≤ H (τ) := exp

(
1− (τ/b)h2

)
for all i (10)

h :=
(
h−1

1 + h−1
2

)−1
< 1, (11)

log p = O
(
nh1∧(1−2h1(1−h)/h)

)
. (12)

2. The marginal distribution functions F j of εtj and the regression functions gj and σj are twice

continuously differentiable with uniformly bounded derivatives. Furthermore, the density func-

tions f j of εtj are strictly positive throughout R.

3. The processes σt and σ−1
t are bounded almost surely.

4. E supt (|rgt|+ |rσt|) = o
(
n−1/2

)
.

5. The sparsity parameter s = |S(β0)|+|S(γ0)| satisfies: s4 log3 s = o (n), λthr = o (min {|β0j| : β0j 6= 0})
and µthr = o (min {|γ0j| : γ0j 6= 0}).

The definition for the β-mixing coefficient is given in Section A.3, which provides more discussion

regarding the mixing rate restriction. The β-mixing condition is known to be more convenient to

work with than the strong α-mixing condition as it allows for decoupling as in Berbee’s lemma,

see e.g. Doukhan et al. (1995). We impose this to establish the weak convergence of the residual
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based empirical processes of time series data. Otherwise, the weaker strong mixing condition will be

sufficient.

There is a trade-off between the decay rate of the mixing coefficients and that of the tail proba-

bility. As h < 1 due to (11), we need

h1 (h− 1) /h > −α, (13)

for some α < 1/2 to allow p in (12) to grow. If h2 < 1, this and (11) cannot be met simultaneously.

And for h2 > 1, this condition implies that h1 > (1− α)h2/(h2 − 1).Thus, the smaller h2, the larger

h1 is needed, that is, a trade-off between h1, the mixing decay rate, and h2, the tail decay rate. Refer

to Merlevede et al. (2011) for more discussion on the case h ≥ 1. The tail condition (10) is a weaker

form of E exp
(
δ |vt|h2

)
<∞ with some positive δ due to the Markov inequality.

The condition on the approximation error in Assumption 1.4 appears more stringent than the

usual condition of op (s/n) but it is required to control the error in approximating F by the distribu-

tion function of σ−1
t (et + rgt). In addition, it seems natural to expect that the approximation error

gets smaller as the number of terms used in the approximation increases as described in condition 5.

This is the so-called sparsity assumption. In fact, this condition also imposes the so-called beta-min

condition that the size of the minimal signal is well-separated from zero so that the selection by

thresholding can be perfect asymptotically.

However, the identity of those terms is unknown and not unique. One way to understand the

target value β0 is via the following oracle problem:

s = min

{
argmin

s′

(
min
|β|0=s′

E
(
g (qt)−X

ᵀ

t β
)2
)

+ σ2
e

s′

n

}
β0 ∈ argmin

|β|0≤s
E
(
g (qt)−X

ᵀ

t β
)2
.

See e.g. Belloni and Chernozhukov (2013). Without a proper rank condition on Xt, β0 is not unique.

In fact, we do not need any unique approximation but any approximation that satisfies condition

Assumption 1.4. It is in fact more flexible than the conventional series estimation of the regression

functions since it does not demand the identity of the more important series terms. Furthermore,

it even allows for combining very different bases such as polynomials and B-splines. The same

comments apply to the approximation of σ (·).
The beta-min condition is a strong assumption that enables weak convergence of our test statistic.

It is a sufficient but not necessary condition. It is an interesting future research topic to relax this.

It has been relaxed in some special cases such as Chernozukov et al. (2017, 2018). Here, we discuss

some challenges that lie in wait for this extension in our testing problem. First, our test concerns

not a finite dimensional parameter but whole conditional distribution functions whose number of
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conditioning variables diverges. There should be a strict restriction on the number of conditioning

variables due to the curse of dimensionality. The beta-min condition imposes this restriction. Second,

our test builds on the empirical distribution function of the growing dimensional regression residuals.

It is well established by Mammen (1996) and Chen and Lockhart (2001) that the dimension cannot

be bigger than the sample size raised to a power less than one half for the tightness of the empirical

process. Thus, there might not be a weak limit without the beta-min or similar condition. Third, a

finite sample Gaussian approximation may be considered instead of the weak limit of the test statistic.

For instance, Chernozhukov et al. (2014) develop a Gaussian approximation to the empirical process

which may not be P-Donsker at its supremum. However, the extension from their setting to the

residual empirical process from the high dimensional time series regression is challenging, if it is even

possible.

Although a full rank condition for Xt is impossible for high-dimensional regression, a reason-

able rank condition is required to guarantee a good performance of the LASSO and the OLS after

thresholding. Thus, we introduce the following definition.

Definition 1 A p×p matrix Σ is compatible for an index set S with a compatibility constant φ > 0,

if

|S| b
ᵀ
Σb

|bS|21
≥ φ2,

for any b ∈ Rp such that |bSc |1 ≤ 3 |bS|1.

Sufficient conditions for the compatibility condition are extensively discussed in Bühlmann and

van der Geer (2011, Section 6) and are given by Basu and Michailidis (2015) for certain dependent

data. In view of Bühlmann and van der Geer (2011, Corollary 6.8), the compatibility condition does

not have to hold for the Gram matrix n−1
∑n

t=1XtX
ᵀ

t with a uniform compatibility constant almost

surely. It is sufficient to assume the following conditions:

Assumption 2 The matrix EXtX
ᵀ

t is compatible for S (β0) with some φβ.

Assumption 3 Assume that EXtX
ᵀ

t is compatible for S (γ0) with some φγ.

The tuning parameters λ, λthr, µ, and µthr need to diminish as the sample size n diverges. More,

precisely, we require that √
log (np)

n
= o (λ) , (14)

which is a lower bound for λ. In practice, the cross validation method is commonly used for the

selection of λ.

11



Next, λthr needs to satisfy the following lower bound

λs = o (λthr) . (15)

Since the deviation bound for |β̂lasso − β0|1 is Op (λs) , as shown in Theorem 6 in Section A.4,

the proposed threshold makes Ŝ collect only the relatively significant variables. Other popular

alternatives include the smoothly clipped absolute deviation penalty (SCAD), Fan and Li (2001),

and the adaptive LASSO, Zou (2006). We have chosen the thresholded LASSO mainly because it

is explicit about its selection and is computationally more efficient since it is a convex optimization.

The adaptive LASSO is more difficult to analyze theoretically as it is not explicit about its variable

selection. The estimation of the support of a coefficient vector is a challenging problem. See van der

Geer et al. (2011).

A notable difference in the LASSO estimation of the feasible skedastic regression is that the

LASSO penalty term µ needs to be bigger than λ, the LASSO penalty in the mean regression. This

is because the estimation error in the dependent variable |êt| in the feasible skedastic regression

inflates the standard error of the estimator so that we need

λ
√
s = o (µ) and µsγ = o (µthr) . (16)

To characterize the asymptotic distributions, recall that xt = Xt,S and wt = Xt,Sγ and define

D (y, q) = D (y, q) + f (τ (y, q))D1 − τ (y, q) f (τ (y, q))D2,

where τ (y, q) = (y − g (q)) /σ (q) , and D and D = (D1, D2)ᵀ are centered Gaussians with covariance

kernels specified as follows:

ED (y1, q1)D (y2, q2) = cov (1 {εt1 ≤ τ1} − 1 {εt2 ≤ τ1} , 1 {εt1 ≤ τ2} − 1 {εt2 ≤ τ2})

with τi = (yi − g (qi)) /σ (qi), i = 1, 2, and

EDD
ᵀ

= lim
n→∞

E

[
x̃2
t (εt1 − εt2)2 , x̃t (εt1 − εt2) w̃t (|εt1| − |εt2|)

· w̃2
t (|εt1| − |εt2|)2

]

ED (y1, q1)D = lim
n→∞

E (1 {εt1 ≤ τ1} − 1 {εt2 ≤ τ1})

(
x̃t (εt1 − εt2)

w̃t (|εt1| − |εt2|)

)
,

with x̃t = µ
ᵀ

x

(
Extx

ᵀ

t

)−1
xt and w̃t = µ

ᵀ

w

(
Ewtw

ᵀ

t

)−1
wtσt.

We denote by “=⇒” the weak convergence in `∞(R×Q) that is uniform over the distributions of

conditioning variables and errors in the sense of Theorem 2.8.2 of van der Vaart and Wellner (1996).

Then, the following theorem establishes the uniform P -Donsker property of our test statistics.
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Theorem 1 Suppose that Assumptions 1 - 3 and conditions (14), (15), and (16) hold. Then, as

n→∞
T̄n (·, ·) =⇒ D (·, ·) , Ūn (·, ·) =⇒

∫ ·
−∞
D (u, ·) du, .

The theorem involves several nontrivial extensions of the existing statistical convergence results

concerning the weak convergence of the empirical distribution functions of high-dimensional regres-

sion residuals, the deviation bounds for the weighted lasso estimator for the time series regression

and for the skedastic regression, and the weak convergence of functions defined on an unbounded

domains. These results may be of independent interest and thus are presented in the Appendix in

a more self-contained manner. Building on these results, the convergence of Tn follows from the

continuous mapping theorem.

The weak convergence of the SSD statistic cannot result from applying the continuous map-

ping theorem to the residual empirical process unless the support of the integral is bounded. It is

well-known that the sample analogue higher order stochastic dominance test statistics needs proper

weighting functions to control the tail behavior. In the case of the SSD hypothesis, Horvath et

al. (2006) illustrate that the weak convergence can be achieved without a weighting function in a

simpler case where one can observe ε1t’s and ε2t’s directly, while the previous literature like Linton

et al. (2005) has assumed a bounded support, which is a special case of a weighting function of an

indicator for a bounded set. Later, Linton et al. (2010) reintroduced a weighting function to study

the bootstrap of the stochastic dominance test using residuals.

3.2 Local Power

To analyze the power of the test, we study the centering terms in T̄n and Ūn, that is,
√
n (F 1 (y|q)− F 2 (y|q))

and its integrated version. Let:

g2 (q) = g1 (q) + δ1n (q) (17)

σ2 (q) = σ1 (q) + δ2n (q) (18)

F 2 (τ) = F 1 (τ) + δ3n (τ) , (19)

where recall that
∫
τdF 2 (τ) =

∫
τdF 1 (τ) = 0 and

∫
|τ | dF 2 (τ) =

∫
|τ | dF 1 (τ) = 1. We allow

F j (y|q) to change with the sample size n, but have suppressed the dependence of F j (·) , gj (·) , and

σj (·) on the sample size n for the sake of notational simplicity. By the mean value theorem, for any

given y and q,

F 1 (y|q)− F 2 (y|q) = −F 2
(
τ 2
)

+ F 2
(
τ 1
)
− F 2

(
τ 1
)

+ F 1
(
τ 1
)

=
∂F 2 (τ̄)

∂τ

(
1

σ̄ (q)

)
(δ1n (q) + τ̄ δ2n (q))− δ3n

(
τ 1
)
,

13



where τ̄ = (y − ḡ (q)) /σ̄ (q) and (ḡ (q) , σ̄ (q)) is a mean value between (g1 (q) , σ1 (q)) and (g2 (q) , σ2 (q)) .

If δin = 0, for all i = 1, 2, 3,then it corresponds to the least favorable case of the null hypothesis.

We derive the asymptotic distribution of the test statistic Tn under the drifting sequence of models

(δ1n (q) , δ2n (q) , δ3n (τ)) =
1√
n

(δ1 (q) , δ2 (q) , δ3 (τ)) , (20)

for all n, where δi is continuous and bounded for all i, q, and τ . Here, δ3 (τ) stands for the deviation of

the distribution functions of εtjs, which satisfy Eεtj = 0 and E |εtj| = 1. Thus, it should satisfy some

regularity conditions. First, the continuity of F j (τ) means that δ3(τ) → 0 as τ → ±∞. As Eεtj =

0,
∫ 0

−∞ F
j (y) dy =

∫∞
0

(1− F j (y)) dy by the integral-by-parts, yielding
∫ 0

−∞ F (y) + δ3n (y) dy =∫∞
0

(1− F (y)− δ3n (y)) dy and thus
∫ 0

−∞ δ3 (y) dy = −
∫∞

0
δ3 (y) dy and

∫∞
−∞ δ3 (y) dy = 0. Similarly,

applying the integral-by-parts to the restriction that E |εtj| = 1, we further restrict δ3 to satisfy∫∞
−∞ δ3n (y) dy = 2

∫∞
0

(F 2 (y)− F 1 (y)) dy = 2
∫∞

0
δ3n (y) dy. Unless δ3 (τ) = 0 for all τ , δ3 (·) should

take both positive and negative values. Our discussion is summarized in the following theorem.

Theorem 2 Suppose that Assumptions 1 - 3 and conditions (14), (15), and (16) hold. Then, under

(20) as n→∞

Tn =⇒ sup
y,q

[D (y, q) + B (y, q)] ,

Un =⇒ sup
y,q

∫ y

−∞
[D (u, q) + B (u, q)] du.

This theorem derives the asymptotic distribution under a sequence of alternative hypotheses.

When B (y, q) ≤ 0,the sequence obeys the null hypothesis. Thus, the deterministic non-centrality

function B (y, q) determines the local power of the test. For a given critical value cα of significance

level α from the distribution of supy,q D (y, q) or supy,q
∫ y
−∞D (u, q) du a non-trivial test demands

that the probability of supy,q [D (y, q) + B (y, q)] or supy,q
∫ y
−∞ [D (u, q) + B (u, q)] du greater than cα

exceeds α. Equivalently, B (ŷ, q̂) and
∫ ŷ
−∞ B (u, q̂) du are greater than 0 with a probability bigger

than α, where (ŷ, q̂) denotes the maximizers of the stochastic processes, [D (y, q) + B (y, q)] or its

integrated process, respectively.

We discuss some sufficient conditions for this. To begin with, suppose δ1 (·) > 0 while5 δ2 (·) =

0, and δ3 (·) = 0. Then, as ∂F (τ)
∂τ

1
σ(q)

> 0 for any y and q, B (y, q) > 0 for all y and q thus implying

a non trivial power. Similarly, if δ3 (·) < 0, the tests have non trivial powers. When δ2 (q) 6= 0,

we note that τ = (y − g (q)) /σ (q) can take both positive and negative values for any q and so can

τδ2 (q). Thus, B (y, q) < 0 for some y and q and B (y, q) > 0 for others, with δ1 and δ3 held fixed at

5In fact, it is well-known that FX (τ) ≤ FZ (τ) implies that EX ≥ EZ by the integral by parts formula. Thus, the

conditional mean relation g1 (q) < g2 (q) implies that F 1 (y|q) > F 2 (y|q) for some y.
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zero. The local power in this case depends on the joint distribution of B (ŷ, q̂) and (ŷ, q̂) in a rather

complicated manner.

4 Bootstrap for Inference

This section presents a bootstrap algorithm to approximate the p-values of our test statistics. Our

procedure, we name the smooth stationary bootstrap, combines two separate methods in the lit-

erature to take care of the complexity of our test statistics due to the temporal dependence and

the highly nonlinear nature of the statistics. In the Appendix we review the stationary bootstrap

algorithm and the smooth bootstrap for a generic sequence of variable Zn. Here, we combine them

to approximate the distribution of our residual based processes.

4.1 Bootstrap Test Statistic

The asymptotic distributions of Tn and Un are not pivotal hence the critical values cannot be tabu-

lated once and for all. Thus, we introduce a bootstrap procedure that is based on the post-selection

dataset {x̂t, ŵt, yt, t = 1, . . . , n}. The procedure is as follows

1. Fix constants an and πn within the interval (0, 1) and a smooth distribution function G and

generate {i∗t , ηt} as follows

(a) Let dt and it, t = 1, . . . , n, be random draws from Bernoulli(πn) and Uniform{1, . . . , n}
distributions, respectively.

(b) Let i∗1 = i1. For t = 2, . . . , n, let

i∗t =
(
i∗t−1 + 1

)
(1− dt) + itdt

with the convention that i∗t−1 + 1 = 1 if i∗t−1 = n.

(c) Let ηt be i.i.d.

2. For each j = 1, 2, construct the bootstrap sample
{
x∗t = x̂i∗t , w

∗
t = ŵi∗t

}
and {ε∗tj = ε̂i∗t ,j +anηt},

respectively, and then compute

y∗tj = x∗
ᵀ

t β̂
j + w∗

ᵀ

t γ̂
j · ε∗tj, t = 1, . . . , n.

3. For each j = 1, 2, obtain the OLS estimates β̂j∗ with the bootstrap sample {x∗t , y∗tj}, i.e.,

β̂j∗ =

(
n∑
t=1

x∗tx
∗ᵀ
t

)−1 n∑
t=1

x∗ty
∗
tj,
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and compute the bootstrap OLS residuals ê∗tj = y∗t − x∗
ᵀ

t β̂
j∗, t = 1, . . . , n. Then, compute:

γ̂j∗ =

(
n∑
t=1

w∗tw
∗ᵀ
t

)−1 n∑
t=1

w∗t
∣∣ê∗tj∣∣ ,

ε̂∗tj = ê∗tj
(
w∗

ᵀ

t γ̂
j∗)−1

, and τ̂ j∗ (y, q) =
(
ŵ (q)

ᵀ

γ̂j∗
)−1 (

y − x̂ (q)
ᵀ

β̂j∗
)
.

4. Define the empirical distribution functions:

F̂ j∗ (τ) =
1

n

n∑
t=1

1
(
ε̂∗tj ≤ τ

)
; F j∗ (τ) =

1

n

n∑
t=1

G

(
τ − ε̂tj
an

)
.

Then construct the bootstrap statistic, for the FSD test

T ∗n =
√
n sup

y,q

[
F̂ 1∗ (τ̂ 1∗ (y, q)

)
− F̂ 2∗ (τ̂ 2∗ (y, q)

)
−
(
F 1∗ (τ̂ 1 (y, q)

)
− F 2∗ (τ̂ 2 (y, q)

))]
,

and for the SSD test,

U∗n =
√
n sup

y,q

∫ y

−∞

[
F̂ 1∗ (τ̂ 1∗ (u, q)

)
− F 1∗ (τ̂ 1 (u, q)

)
−
(
F̂ 2∗ (τ̂ 2∗ (u, q)

)
− F 2∗ (τ̂ 2 (u, q)

))]
du.

The bootstrap critical value c∗α for a prespecified significance level α is then computed from

the distribution of T ∗n , which can be approximated from the empirical distribution of the simulated

bootstrap statistics by repeating steps 1-4. Also, the bootstrap p-value, that is, the conditional

probability that T ∗n > Tn, can be approximated as the proportion of the generated {T ∗n} that are

greater than equal to Tn. The same applies for the SSD test.

We next make some remarks on our bootstrap procedure. First, note that the centering term of

the bootstrap residual empirical process is not the empirical distribution function F̂n of the original

sample. The proper centering reflects the smoothing by ηt and thus the c.d.f. F ∗ (·) is continuous

unlike F̂n (·). Second, our bootstrap scheme mimics the OLS steps only using the selected regres-

sors. An alternative bootstrap scheme is to resample both untransformed regressors qt and errors ε̃t

and perform the threshold LASSO for each bootstrap sample. This is computationally much more

demanding since each bootstrap iteration now involves LASSO estimation with high dimensional

variables. Thus, we do not pursue this route in this paper.

Next we establish the asymptotic validity of our bootstrap test.

Assumption 4 Let the i-th derivative of a function g be denoted by g(i) and assume the following:

1. The function G is κ-times differentiable with κ ≥ 3 and the first derivative G(1) of G is a

(symmetric) probability density function such that
∫
G(1) (z) z2dz <∞ and G(v) is bounded for

all v ≤ κ and
∫
G(v) (z)2 dz <∞ for v < κ.
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2. The bandwidth an satisfies that a4
nn→ 0 as n→∞.

Theorem 3 Suppose that Assumptions 1 - 4 and conditions (14), (15), and (16) hold. Let c∗α denote

the bootstrap critical value of level α for Tn. Then, under H0, we have

lim sup
n→∞

Pr {Tn > c∗α} ≤ α

for any 0 < α < 1, while under H1,

Pr {Tn > c∗α} → 1

for any 0 < α < 1. The same holds true for Un.

This result shows the size control and power property of our test.

4.2 Boosting Power

Before concluding the description of our test, we note that Linton et al. (2010) proposed the so-

called contact set approach to improve the power of the unconditional stochastic dominance test.

It works well with the unconditional dominance testing because the contact set is estimated on the

real line. However, it is less practical in our setting since we need to estimate the set for each value

of conditioning variables whose dimension grows. To mitigate this problem, we propose to apply a

screening principle, which is to test certain implications of the null hypothesis with a higher criticism.

This approach is advocated by e.g. Fan et al. (2015).

One implication of the first- and second-order stochastic dominance of y1
t over y2

t (conditional on

qt = q) is the dominance of the conditional means, i.e.,

E
(
Y 1
t |qt = q

)
≥ E

(
Y 2
t |qt = q

)
. (21)

The negation of this implication implies the negation of the null hypothesis. Using the conditional

mean function ĝ (qt) = X>t β̂Tasso, which is estimated to construct our main test statistic Tn in

Section 2.1, we can screen this implication for a sequence of values of qt ∈ {q1, ..., qJ} or Xt ∈
{x1 = x (q1) , . . . , xJ = x (qJ)} by statistics

tk = 1

x
ᵀ
k

(
β̂2 − β̂1

)
σ̂k

> c∗

 , k = 1, . . . , J,

for some scaling σ̂k and a critical value c∗. If tk = 1 for any k, we can stop and conclude that the

null is rejected. Otherwise, we resort to our test statistic Tn. To justify this initial screening, the

value c∗ needs to satisfy the high criticism property that

lim
n→∞

Pr

 max
k∈{1,2,...,J}

xᵀk

(
β̂2 − β̂1

)
σ̂k

≤ c∗

 = 1
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under the null hypothesis.

For sieve nonparametric regression with dependent data, Lemma 2.4 in Chen and Christensen

(2015) provides a uniform deviation bound ||ĥ−h0||∞ ≤ Op(ζnλn
√
n−1 log n)+ bias, where ĥ and h0

stand for the estimated and true regression functions, respectively, λn = λ
−1/2
min (EX (qt)X (qt)

ᵀ), and

ζn is the size of the regressor vector supq ‖X (q)‖. When the support of qt is bounded, ζK,nλK,n =

O(
√
K) for commonly used linear sieves, see Chen and Christensen (2015) for more detailed dis-

cussion. When testing (21), the biases will cancel out or negative. Thus, we may set c∗ =

ζnλn
√
n−1 log n log log n.

As for xk, good candidates are those that promote the sparse alternatives. However, we do not

consider the k-th unit vector ιk = (0, . . . , 0, 1, 0, . . . , 0)ᵀ, under which tk would concern the significance

of each elementwise difference in β̂j, because Xt = X (qt). Rather, we consider xk of the form X (qk)

for a grid of {qk}.
Choosing a proper scaling is a challenging issue in high-dimensional inference. We suggest to set

σ̂2
k = n

∑J
i=1 x

2
ki (
∑n

t=1 X
2
ti)
−2∑n

t=1 X
2
ti

(
x>k γ̂

)2
π/2, which corresponds to the case where there is no

correlation among the Xti’s. These estimates are uniformly bounded.

5 Monte Carlo Simulation

In this section, we provide Monte Carlo simulation results that evaluate the finite sample performance

of our statistic. We generated the data for j = 1, 2 as follows:

yjt = βjq1,t + cv · (|q1,t|+ 1) · εt,

where cv = 0.3, εt is an i.i.d. normal error term with mean 0 and E[|εt|] = 1. On the other hand, the

explanatory variables qi,t are generated by following time series process:

qi,t = a+ bqi,t−1 + ei,t

where i = 1, 2, a = 0, b = 0.5, and t = 1, 2, . . . , n. Here t starts from −99 and thus the first

100 observations are discarded. We estimate the model based on Xt = X(q1,t, q2,t), which are

transformations of q1,t, q2,t and are common for j = 1, 2. They are powers and interaction terms

of q1,t, q2,t up to polynomial order of 10. Hence, Xt has 65 variables excluding the intercept. We also

add additional variables for Xt so that the high-dimensional setting n << p holds. The additional

variables may vary according to subsections.

Through this section, the parameters for LASSO is λ = cv′ ·
√

log p/n where n is the sample

size, p is the number of covariates, and cv′ ∝ cv. Any variable is selected by LASSO if its estimated

coefficient is larger than 2.0 · λ. Then we again run OLS with selected variables.

18



Table 1: Rejection probability with higher polynomial orders

order 10 15 20 25 30 35 40

n \ p 65 135 230 350 495 665 860

100 0.077 0.062 0.065 0.073 0.068 0.082 0.084

200 0.075 0.048 0.060 0.055 0.048 0.060 0.047

300 0.055 0.043 0.048 0.053 0.058 0.045 0.051

400 0.052 0.056 0.055 0.041 0.047 0.051 0.044

500 0.048 0.051 0.047 0.045 0.051 0.039 0.046

Table 2: Rejection probability with additional q pairs

New Pairs 1 3 5 7 10 13 15

n \ p 130 260 390 520 715 910 1040

100 0.071 0.070 0.073 0.085 0.058 0.063 0.068

200 0.061 0.062 0.064 0.057 0.062 0.056 0.061

300 0.058 0.070 0.062 0.044 0.072 0.054 0.055

400 0.048 0.067 0.062 0.057 0.069 0.075 0.052

500 0.048 0.054 0.058 0.062 0.067 0.065 0.054

5.1 Size Simulation

We increase p by adding more terms to Xt with three different ways. First, we grow the polynomial

order of q1,t, q2,t constructing Xt. Second, we can generate more q3,t, q4,t, . . . pairs and add them to

Xt. Finally, we add lagged q1,t, q2,t terms and its powers (up to 10). We draw 105 random grid

points from the uniform distribution of grid support. Then to obtain the supremum of our objective

function, we evaluate the object at each point and take maximum.

We report the rejection rate at the significance level of α = 0.05 with the true parameter value

of β1 = β2 = 1 out of 1000 simulation iterations. Tables 1, 2, and 3 report the rejection frequencies

for each case.

We also experiment with different values of b = 0.3, 0.4, . . . , 0.9 to examine the effect of higher

serial correlation in qt. See Table 4 for the results, which reports minor over rejection tendency for

bigger values of b.

5.2 Power Simulation

In this section, we fix Max Lag = 30 so that p = 665. All other settings are same with the size

simulation. Then we evaluate the power performance of our test in three ways. First, by changing
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Table 3: Rejection probability with lagged q terms

Max lag 5 10 15 20 25 30 35 40

n \ p 165 265 365 465 565 665 765 865

100 0.072 0.072 0.082 0.095 0.088 0.070 0.079 0.078

200 0.064 0.075 0.071 0.070 0.067 0.045 0.067 0.070

300 0.048 0.074 0.082 0.091 0.077 0.060 0.084 0.070

400 0.070 0.073 0.068 0.068 0.071 0.072 0.062 0.070

500 0.063 0.071 0.078 0.070 0.086 0.087 0.075 0.067

Table 4: Rejection probability with different AR coefficients b

n \ b 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100 0.082 0.089 0.087 0.093 0.089 0.088 0.132

200 0.068 0.072 0.080 0.073 0.090 0.088 0.089

300 0.076 0.077 0.082 0.068 0.078 0.070 0.092

400 0.082 0.093 0.057 0.086 0.079 0.081 0.083

500 0.088 0.085 0.072 0.066 0.079 0.060 0.094

β2 = 1.0, 1.1, . . . , 2.0. Second, we shift y2 by adding α = 0.1, . . . , 1.0. We only report the simulated

rejection probability up to the case β2 = 1.5 or α = 0.5 since beyond the value the rejection

probabilities are almost identical to 1. Tables 5 and 6 report the results for each case. As expected

the rejection frequencies grow as the sample size increases and as the alternative models move away

from the null model.

Third, we change the error distribution by letting ε2
t follow (Z2 − 1)/0.9680, i.e. chi-square with

one degrees of freedom normalized to mean 0 and the first absolute moment 1. The following Figure

1 compares it with normal distribution with mean 0 and the first absolute moment 1.

Table 7 shows that the power improves as the sample size increases.

Table 5: Rejection probability with β2 being 1.0, 1.1, · · · , 1.5
n \ β2 1.0 1.1 1.2 1.3 1.4 1.5

100 0.090 0.124 0.284 0.433 0.636 0.801

200 0.065 0.135 0.357 0.625 0.816 0.935

300 0.079 0.181 0.465 0.764 0.936 0.976

400 0.091 0.192 0.557 0.866 0.969 0.981

500 0.082 0.238 0.686 0.933 0.977 0.987
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Table 6: Rejection probability after shifting y2 by α

n \ α 0.0 0.1 0.2 0.3 0.4 0.5

100 0.070 0.251 0.488 0.741 0.918 0.988

200 0.086 0.324 0.764 0.970 0.987 0.994

300 0.079 0.452 0.860 0.983 0.994 0.986

400 0.082 0.530 0.933 0.981 0.989 0.994

500 0.081 0.581 0.968 0.983 0.992 0.998

Figure 1: Distributions

Table 7: Rejection probability of normal vs. chi-square error distribution

n Rejection Prob.

100 0.043

200 0.094

300 0.182

400 0.327

500 0.417
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Table 8: Sample Statistics

Mean Std Skew Kurt ρ(1) ρ(2)

US 0.0314 1.134 -0.126 10.979 -0.0285 -0.0431

Global 0.0191 0.916 -0.216 10.306 0.1519 -0.0376

6 Application

We apply our method to the comparison of US and Global equity returns. The home bias puzzle

has been investigated by a number of authors including Chan, Covrig, and Ng (2005), French and

Poterba (1991), and Lewis (1999). Levy and Levy (2014) argue that despite a significant reduction

in implicit and explicit transaction costs around the world, the US home bias in stock and bond

returns has not disappeared, that is, domestic investors invest a higher fraction of their wealth in

domestic stocks than is warranted by the global mean variance trade-off. We shed some light on

this by comparing the conditional return distributions of US stocks and international stocks to see

whether such domestic biased strategies could be justified when accounting for many conditioning

variables in a general way and when adopting stochastic dominance rather than mean variance as

the criterion.

The dataset we use is the Fama-French US and Global risk premium daily series from 7 August

1992 to 30 June 2016 obtained from Kenneth French’s Data Library (6020 sample data in total,

with extra 20 observations in use to accommodate lagged returns). The two return series have

contemporaneous correlation of around 0.842. The sample statistics are reported in Table 8.

We next test the conditional dominance of the US series over the global series with 674 condition-

ing variables detailed below in Table 9.6 We provide more detail on the variables in the appendix.

We conduct a non-overlapping rolling window analysis of size 500, roughly two years, to allow

for nonstationarity. We plot the series of p-values reported from 12 windows below in Figure 2.

Throughout, λ is set to be
√

log(np)/n = 0.1595, the lower bound given in (14), and the LASSO

threshold constant is set to be 0.1. The result reveals that the null hypothesis suggesting the con-

ditional dominance of the US series over the global series is rejected at the 5% level of significance,

except for the periods of 1992-1994, 2004-2006, and 2008-2012 where we do not have sufficient sta-

tistical evidence to so conclude. It appears that those years have been somewhat different relative

to the rest of the sample.

We next investigate the selection process, i.e., which covariates survived. For the period from

07/08/2000 to 06/08/2002, we calculate the sample correlations between the conditioning variables

6We carried out Linton, Maasoumi and Whang’s (2005) LMW test of stochastic dominance using subsampling

based critical values. We cannot reject the SSD hypothesis unconditionally.
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Table 9: Description of the conditioning variables

Index Description

# 1-40 Lagged returns (max. lag = 20)

# 41-200 Powers of lags

# 201-600 Interactions

# 601-638 Momentum measures

# 639-657 Changes in trading volume

# 658-665 Relative strength Indices

# 666-669 Moving average oscillators

# 670-674 Day of the week dummy variables

Figure 2: Tests
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Figure 3: Selection
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Table 10: Correlations of the selected variables, an example

Variable Index Rank Correlation (abs.) Sign of the correlation

# 256 1 0.169272187 +

# 234 2 0.151388803 +

# 424 3 0.145195343 −
# 253 4 0.143038571 −
# 351 6 0.137275434 +

# 650 9 0.129063574 +

# 1 291 0.042979460 +

and the US series, and rank them in descending order of the absolute value of the correlations. Table

10 reports the correlations of 7 “selected variables” from the mean regression (cf. Figure 3); the

result suggests that the selected variables tends to be those with high correlations in general, with 6

out of 7 variables listed on top 9 out of 674.

7 Conclusion

The concept of stochastic dominance has been playing an indispensable role in various economic

analyses. This paper extends the econometric literature to the data rich environment by considering

an abundant set of conditioning information that a rational investor may take account of. We

achieve this by working with a location and scale semiparametric model, which allows for very

general specification of the mean and variance in terms of a large number of conditioners, while

using conventional nonparametric methods to estimate the error distribution. Although we focus

on the stochastic dominance in every possible scenario by considering the supremum statistic over

all realizations of conditioning variables, the results readily carry over to the supremum statistics

over a particular event of interest. There are a number of other extensions that we are interested

in pursuing. Firstly, the case where the outcome is the same random variable but the conditioning

information sets may be different or nested is of interest. This poses some unique problems when

selection is employed to choose relevancy of predictors. Secondly, we may consider the case where

there are many outcome variables and the hypothesis of interest is stochastic maximality, McFadden

(1989).
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Appendix

The first two sections of this appendix derive the weak convergence of the residual-based empirical

distribution functions from high-dimensional time series regression and deviation bounds for the

weighted lasso estimates when the regression under consideration involves time series data and/or it

is the feasible skedastic regression. These results can be of independent interests. Then, we turn to

the proof of main theorems.

A Appendix

A.1 Data series used in application

Suppose that Yt is the daily return on the benchmark and Rt is the daily return on the alternative.

We consider the following price based predictors: Lagged returns Yt−j, Rt−j, j = 1, . . . , 10; Powers

of lags Y k
t−j, R

k
t−j; j = 1, . . . , 10, k = 2, 3, 4, 5; Interactions Yt−jRt−k, j, k = 1, . . . , 10; Momentum

measures
∑k

j=1 Yt−j,
∑k

j=1Rt−j for k = 2, 3, . . . , 11; Local trends of window periods of 5, 10, 15,

20 days, respectively. For example, fit the linear regression logPY i = α + β·i + εi,using the data

i = t−1, t−2, . . . , t−k. Then include the return forecast α̂+ β̂t− logPt−1. Relative strength indices

which are the percentages of the previous 5, 10, 15, 20 days that returns were positive, respectively.

Moving average oscillators, each of which is the difference between an average of the closing prices

over the previous q1 days and that over the previous q2 days, where q1 < q2, q1 = 1, 5, 10, 15 and

q2 = 5, 10, 15, 20. Nonparametric regressions E(Yt|Zt−j), E(Rt|Zt−j), where Z is an observed state

variable, for example Zt−j = Yt−j. We also included additional nonprice based variables such as: Trad-

ing Volume Changes log Vt−j − log Vt−j−1, j = 1, . . . , 10; Day of the week dummies; Term spread;

Junk spread; Industrial production and inflation (at best these are monthly observed); Rescaled time

t/T. For changes in trading volume and the moving average oscillators, we take the S&P 500 daily

trading volume and closing prices data from Yahoo Finance, respectively.

We plot in Figure 4 the estimated conditional means of the two series across the rolling window

period, which shows how closely the conditional means move.

A.2 Smooth Stationary Bootstrap

The stationary bootstrap of a sequence of variable Zn = {v1, . . . , vn}, Politis and Romano (1994), may

be understood as a way to generate random sequences of indexes {i∗t} , with parameter 0 < πn < 1,
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Figure 4: Estimated Conditional Means

to guarantee the stationarity of the resulting sequence
{
vi∗t
}

. Specifically,7

1. Let dt and it, t = 1, . . . , n, be random draws from Bernoulli(πn) and Uniform{1, . . . , n} distri-

butions, respectively.

2. Let i∗1 = i1.

3. For t = 2, . . . , n, let

i∗t =
(
i∗t−1 + 1

)
(1− dt) + itdt

with the convention that i∗t−1 + 1 = 1 if i∗t−1 = n.

The smooth bootstrap by Neumeyer (2009) adds a continuous variable to the original nonpara-

metric bootstrap sample to make the resulting bootstrap variable continuous. The smoothing is

introduced when the continuity of the distribution is a key condition to characterize the asymptotic

distribution of the statistic of interest, as in for example the residual empirical process. Let ηt be

generated from a continuous distribution G (·), which is independent of both {i∗t} and Zn. The idea

7Strictly speaking, we can set πn = 1 since the innovations in our model come from an independently distributed

sequence and the serial correlations in the conditioning variables do not affect the limit distribution. This added

generality, however, may mitigate the effect of such serial correlations coming from the approximation errors in finite

samples.
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of the smooth stationary bootstrap is to construct the bootstrap sample as follows: for t = 1, , . . . , n

let

v∗t = vi∗t + anηt,

where an → 0 as n→∞ is a smoothing parameter. Neumeyer’s work is for i.i.d. data and we extend

it to dependent samples by combining it with the stationary bootstrap.

Remarks on smooth stationary bootstrap:

1. Another way to describe the smooth stationary bootstrap scheme is that, when v∗t−1 = vi∗t−1
, v∗t

is determined as anηt plus a random draw from Zn with probability πn or the next observation

vi∗t−1+1 of v∗t in Zn with probability 1− πn. That is,

v∗t =

{
vit + anηt with probability πn

vi∗t−1+1 + anηt with probability 1− πn.

2. Note that the (stationary) marginal distribution of i∗t−1 is Uniform{1, . . . , n} and that
{
i∗t−1

}
is serially dependent.

3. Suppose that vt is univariate. According to Politis and Romano (1994) and Goncalves and

Politis (2011), this bootstrap sample’s distribution, conditional on the original sample, is also

a strictly stationary Markov chain. The conditional distribution G∗ (s) := Pr {v∗t ≤ s|Zn} of

v∗t , conditioning on the original observation Zn, is given by

G∗ (s) =
1

n

n∑
j=1

G

(
s− vj
an

)
.

4. The choice of smoothing parameter πn is a challenging issue. Politis and Romano (1994)

showed that the optimal rate in terms of the mean squared error of the sample mean is n−1/3,

but suggested πn = 1/b where b is the block length in the moving block bootstrap.

5. The moment of 1 {v∗t ≤ s} and the inner products of 1
{
v∗t1 ≤ s1

}
and 1

{
v∗t2 ≤ s2

}
converges to

the corresponding moment and inner products of 1 {vt ≤ s} and 1 {vt1 ≤ s1} and 1 {vt2 ≤ s2},
respectively, as an → 0.

6. The weighting constant an is similar to the smoothing parameter in the kernel density estima-

tion. Neumeyer (2009) employed an = n−1/4 and 0.5n−1/4.
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A.3 Residual Empirical process from high-dimensional time series re-

gression

This section can be read independently and extends Mammen (1996) and Chen and Lockhart’s

(2001) residual empirical process with many parameters results to the setup of time series regression

with conditionally heteroskedastic errors. The cases for residuals from parametric linear or nonlinear

models have been considered by Koul (1970) and Loynes (1980). The extension to the time series

case was made by Boldin (1983), Bai (1994), Ling (1998) and Schick and Wefelmeyer (2002). For the

empirical distribution of non-parametrically or semi-parametrically estimated residuals from cross

sectional regression models, see Akritas and Van Keilegom (2001) for instance. The challenge in our

case where we have dependent observations and a growing numbers of parameters lies in the limited

availability of a proper maximal inequality.

Specifically, we consider

yt = x
ᵀ

tβ0 + rgt + et, et = σtεt (22)

σt = w
ᵀ

t γ0 + rσt

where {xt, wt} and {εt} can be serially correlated but mutually independent of each other and rgt

and rσt are approximation errors. Compared to our main model characterized in (3), (4), and (5),

this model imposes the sparsity and the regression is performed only for those relevant variables.

Recall the notation that xt = Xt,S and wt = Xt,Sγ .

Let the OLS residual be denoted by êt = yt − x
ᵀ

t β̂, where β̂ is the OLS estimate. Next, the

unknown parameter γ0 can be estimated by regressing |êt| on wt (the skedastic regression). Then, let

σ̂t = w
ᵀ

t γ̂ and introduce the scaled residual ε̂t = σ̂−1
t êt, and the (scaled) residual empirical process

Ẑn(τ) =
1√
n

n∑
t=1

(1 {ε̂t ≤ τ} − F (τ)) . (23)

This process has some distinct features from previous works in that it allows for the conditional

heteroskedasticity of unknown form and the time series dependence.

We define the infeasible empirical process of the unobservable error term εt,

Zn(τ) =
1√
n

n∑
t=1

(1 {εt ≤ τ} − F (τ)) .

We also define a correction term that is due to the estimation error in the first step:

B̃n (τ) = f (τ)µ
ᵀ

x

√
n
(
β̂ − β

)
− τf (τ)µ

ᵀ

w

√
n (γ̂ − γ) ,
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where
(
µ

ᵀ

x, µ
ᵀ

w

)ᵀ
= Eσ−1

t

(
x

ᵀ

t , w
ᵀ

t

)ᵀ
. It can be shown that (see e.g. Theorem 2.8.3 in van der Vaart

and Wellner 1996) (
Zn(τ)

B̃n (τ)

)
=⇒

(
Z(τ)

f (τ)Z1 − τf (τ)Z2

)
,

where ⇒ signifies the weak convergence as introduced ahead of Theorem 2 and Z(τ) and Z =

(Z1, Z2)
ᵀ

are a centered Gaussian process and a centered bivariate Gaussian vector, respectively,

whose covariances are characterized by

EZ(τ1)Z(τ2) = cov (1 {εt ≤ τ1} , 1 {εt ≤ τ2})

EZ(τ)Z
ᵀ

= lim
n→∞

E [(x̃tεt, w̃t (|εt| − 1)) 1 {εt ≤ τ}]

EZZ
ᵀ

= lim
n→∞

E

[
x̃2
t ε

2
t , x̃tεtw̃t (|εt| − 1)

· w̃2
t (|εt| − 1)2

]
,

where x̃t = µ
ᵀ

x

(
Extx

ᵀ

t

)−1
xt and w̃t = µ

ᵀ

w

(
Ewtw

ᵀ

t

)−1
wtσt.

Theorem 4 Suppose Assumption 1 holds. Then,

sup
τ∈R

∣∣∣Ẑn(τ)− Zn(τ)− B̃n (τ)
∣∣∣ = op (1) (24)

sup
τ∈R

∣∣∣∣∫ τ

−∞
Ẑn −

∫ τ

−∞
Zn −

∫ τ

−∞
B̃n

∣∣∣∣ = op (1) . (25)

Furthermore,

Ẑn(τ) =⇒ Z(τ) + f (τ)Z1 − τf (τ)Z2. (26)

The conditions in Assumption 1.1 can be weakened so that the random vector qt is strictly

stationary β-mixing with mixing coefficient of order βm = O (ρm) for some 0 < ρ < 1 and has

bounded fourth moments. The rather strong tail condition is to control the behavior of the lasso

estimator for the high-dimensional regression, which can be weakened when we do not need selection

using the lasso. Note that it is not clear if there exists a weak limit of
∫ τ
−∞ Zn as the natural semi-

metric of L2-norm does not make the functions space of this empirical process totally bounded due

to the integration. And this difficulty can be mitigated later when we consider the differences for

the second order stochastic dominance.

A.3.1 Auxiliary Lemmas

We require certain maximal inequalities to show Theorem 4. Specifically, we employ the max-

imal inequality developed by Doukhan, Massart and Rio (1995). It builds on some high-level

assumptions and indeterminate quantities that need to be verified and computed carefully. To
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state the theorem, it is useful to have some definitions. Let F ba denote the sigma field gener-

ated by a sequence of given random variables {ζa, . . . , ζb}. Define the mixing coefficient βm =

2−1 sup
∑

(i,j)∈I×J |P {Ai ∩Bj} − P {Ai}P {Bj}|, where the supremum is taken over all finite parti-

tions {Ai, i ∈ I} that is F0
−∞ measurable and {Bj, j ∈ J} that is F∞m measurable. Introduce a norm

of a random function g (ζt)

‖g‖2,β =

√∫ 1

0

β−1(u)Qg(u)2du,

where β−1 (u) is the cadlag inverse of the β-mixing coefficients and Qg(u) is the inverse of the tail

probability function z 7→ P{|g| > z}. The function Qg(u), called the quantile function in Doukhan,

Massart and Rio (1995), is different from the familiar quantile function u 7→ inf{x : u ≤ P{|g(ζt)| ≤
x}}. Also let

Gβn,δ =
{
g : ‖g‖2,β < δ

}
,

and Gn,δ denote an envelope of Gβn,δ. In comparison, we use ‖·‖p to denote the standard Lp-norm for

random variables. Now, we reiterate their Theorem 3 in the following.

Theorem 5 Let {ζt} be a strictly stationary and absolutely regular process with β-mixing coefficient

βm = O (ρm) for some 0 < ρ < 1. Then, there exists a positive constant C, which depends only on∫ 1

0
β−1 (u) du, such that

E sup
g∈Gβn,δ

| 1√
n

n∑
t=1

(g (ζt)− Eg (ζt)) | ≤ C[1 + δ−1qGn,δ(min{1, vn(δ)})]ϕn(δ), (27)

where

qGn,δ(v) = sup
u≤v

QGn,δ(u)

√∫ u

0

β−1(ũ)dũ

with the envelope function Gn,δ of Gβn,δ, and vn(δ) is the unique solution of

vn(δ)2∫ vn(δ)

0
β−1(ũ)dũ

=
ϕn(δ)2

nδ2
, (28)

and where

ϕn(δ) =

∫ δ

0

√
logN[](ν,Gβn,δ, ‖·‖2,β)dν.

Note that u−1
∫ u

0
β−1(ũ)dũ is bounded away from zero and bounded above by the condition that

βm = O (ρm) and ε < ρ < 1− ε.
Next, we derive a lemma that verifies the high-level conditions in the above theorem and compute

the explicit formula for the bound on the right of the inequality in (27).
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Lemma 1 Consider functions gb (·, ·) : R× Rs → R, indexed by b =
(
b1, b

ᵀ

2

)ᵀ
, such that gb (ε, ζ) =

1
{
ε− b1 − b

ᵀ

2ζ ≤ 0
}
− 1 {ε ≤ b1} and a collection of such functions

Gn,δ = {gb (·, ·) : b1 ∈ R, |b2| ≤ δ}

for some finite C and e−
√
s < δ < s−1ε. Let {εt, ζt} satisfy the mixing condition of being a strictly

stationary and absolutely regular process with β-mixing coefficient βm = O (ρm) for some ε ≤
ρ ≤ 1− ε and the moment conditions of infθ:|θ|=1E

∣∣ζᵀ

t θ
∣∣ > 0 and supj Eζ

2
jt <∞. Then,

E sup
g∈Gn,δ

∣∣∣∣∣ 1√
n

n∑
t=1

(g (εt, ζt)− Eg (εt, ζt))

∣∣∣∣∣ ≤ C

(
1 +

√
s log s− log δ

s1/4
√
δn

)
s1/4
√
δ
(√

s log s− log δ
)
.

Proof. We apply Theorem 5. Since the supremum in the theorem is over Gβn,δ while it is over Gn,δ in

this lemma, we first need to establish the relation between different norms. To this end, it was shown

by Doukhan et al. (1995) and Seo and Otsu (2018) that for bounded random variables obeying the

mixing condition of the lemma,

‖·‖2 ≤ ‖·‖2,β ≤ C ‖·‖2 sup
u∈[0,1]

u−1

∫ u

0

β−1(ũ)dũ (29)

where C = supu∈[0,1] u
−1
∫ u

0
β−1(ũ)dũ, which is bounded for all ρ ∈ [ε, 1− ε]. Hereafter, C, C1, c, etc

denote generic positive finite constants. Note that for any g ∈ Gn,

‖g‖2
2,β ≤ C ‖g‖2

2 = CE
∣∣1{εt ≤ b1 + ζ

ᵀ

t b2

}
− 1 {εt ≤ b1}

∣∣2
= CE

∣∣F (b1 + ζ
ᵀ

t b2

)
− F (b1)

∣∣ ≤ C1E
∣∣ζᵀ

t b2

∣∣ ≤ C2E |ζt| |b2| ≤ c
√
s |b2| ,

where the constants depend only on the distribution of the sample and the inequalities follow from the

boundedness of f , Cauchy Schwarz inequality, and the fact that E |ζt| ≤
√
E |ζt|2 ≤

√
smaxj Eζ2

jt,

respectively. This implies that

Gn,δ ⊂ Gβn,Cs1/4δ1/2 (30)

because ‖g‖2,β ≤ cs1/4δ1/2 for any b such that |b| ≤ δ.

Now the bound in (27) involves the bracketing numbers in terms of ‖·‖2,β-norm but the norm

‖·‖2,β is not convenient to compute the bracketing numbers. However, based on the norm relation

we have just derived in (29), we may proceed it with ‖·‖2 .It is useful to note that for any b̄, and
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η > 0, ζ̃t =
(
1, ζ

ᵀ

t

)ᵀ
,

E sup
b:|b2−b̄2|<η,|F (b1)−F(b̄1)|<η

∣∣∣1{εt ≤ ζ̃
ᵀ

t b
}
− 1

{
εt ≤ ζ̃

ᵀ

t b̄
}∣∣∣2

≤ E sup
|b2−b̄2|<η

1
{
F−1

(
−η + F

(
b̄1

))
< εt − ζ

ᵀ

t b2 ≤ F−1
(
η + F

(
b̄1

))}
+ E1

{
ζ̃

ᵀ

t b̄− |ζt| η < εt ≤ ζ̃
ᵀ

t b̄+ |ζt| η
}

≤ 2E
(
F
(
ζ

ᵀ

t b̄2 +
∣∣∣ζ̃t∣∣∣ η + F−1

(
η + F

(
b̄1

)))
− F

(
ζ

ᵀ

t b̄2 −
∣∣∣ζ̃t∣∣∣ η + F−1

(
−η + F

(
b̄1

))))
≤ 2C

(
E
∣∣∣ζ̃t∣∣∣+ 1

)
η, (31)

where the last inequality is due to the boundedness of the derivative of F and an expansion that

F−1
(
η + F

(
b̄1

))
− F−1

(
−η + F

(
b̄1

))
≤ 2ηf

(
b̄1 + η

)−1

and that (
F
(
ζ

ᵀ

t b̄2 +
∣∣∣ζ̃t∣∣∣ η + F−1

(
η + F

(
b̄1

)))
− F

(
ζ

ᵀ

t b̄2 −
∣∣∣ζ̃t∣∣∣ η + F−1

(
−η + F

(
b̄1

))))
≤ f

(
ζ

ᵀ

t b̄2 +
∣∣∣ζ̃t∣∣∣ η + F−1

(
η + F

(
b̄1

)))(
2
∣∣∣ζ̃t∣∣∣ η + 2ηf

(
b̄1 + η

)−1
)

when
(
ζ

ᵀ

t b2 +
∣∣∣ζ̃t∣∣∣ η + F−1

(
η + F

(
b̄1

)))
>
(
ζ

ᵀ

t b̄2 −
∣∣∣ζ̃t∣∣∣ η + F−1

(
−η + F

(
b̄1

)))
, while the other case

is handled similarly. Recall that E |ζt| = O (
√
s). Then, let d (b, bj) = |F (b1)− F (b1j)| + |b2 − b2j|

and consider the brackets with upper and lower bounds 1
{
εt ≤ ζ̃

ᵀ

t bj

}
±Bj

(
εt, ζ̃t

)
, where

Bj

(
εt, ζ̃t

)
= sup

b:d(b,bj)<ν2/C
√
s

∣∣∣1{εt ≤ ζ̃
ᵀ

t b
}
− 1

{
εt ≤ ζ̃

ᵀ

t bj

}∣∣∣
for a sequence of bjs and some finite C2. Then, L2-norms of these brackets are bounded by ν due

to (31). In particular, we choose bjs to be the centers of the set of hypercubes of equal side length

η1 = 2ν2/C2s with circumradius ν2/C2

√
s that partition [0, 1] × [−C1δ, C1δ]

s. Here recall that the

circumradius of the hypercube of side lengths (a1, . . . , as+1)
ᵀ

is
√∑s+1

j=1 a
2
j/2. The number of such

hypercubes is (2/η1)s+1 C (C1δ)
s = (C2s/ν

2)
s+1

C (C1δ)
s. Thus, a direct algebra using the indefinite

integral formula
∫

log xdx = const. + x(log x− 1) yields that

ϕn(δ) ≤
∫ δ

0

√
log
(
(C2s/ν2)s+1C (C1δ)

s)dν
≤ δ

(√
(s+ 1) (C3 + log s)− 2 log δ

)
,

for some C3 <∞.
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Given the mixing condition, vn that solves (28) satisfies

vn (δ) ≤ C
ϕn(δ)2

nδ2
≤ C

(
C +

√
(s+ 1) log s− 2 log δ

)2

n
≤ 1.

Then, noting that Gn,δ is bounded and
√∫ u

0
β−1(ũ)dũ ≤ Cu uniformly, we conclude that

qGn,δ(vn (δ)) ≤ C
√
vn (δ) ≤

√
s log s− 2 log δ√

n
.

Putting all these together yields the bound in (27) as

C

(
1 +

√
s log s− 2 log δ

δ
√
n

)
δ
(√

s log s− 2 log δ
)
. (32)

Finally, revoking the relation in (30), we replace δ in (32) with cs1/4δ1/2.

Next, we give a maximal inequality for the SSD statistic. The bound here are not equivalent

to the preceding lemma due to the unboundedness of the class of functions and a different entropy

number.

Lemma 2 Consider a collection of functions

Gn,δ =
{
gb (ε, ζ) =

(
ε− b1 − b

ᵀ

2ζ ≤ 0
)

+
− (ε ≤ b1)+ : b1 ∈ R, |b2| ≤ δ

}
,

for some e−
√
s < δ < s−1ε. Let {εt, ζt} satisfy the mixing condition of being a strictly stationary and

absolutely regular process with β-mixing coefficient βm = O (ρm) for some ε ≤ ρ ≤ 1 − ε and the

moment conditions of infθ:|θ|=1E
∣∣ζᵀ

t θ
∣∣ > 0 and supj Eζ

2
jt <∞. Then,

E sup
g∈Gn,δ

∣∣∣∣∣ 1√
n

n∑
t=1

(g (εt, ζt)− Eg (εt, ζt))

∣∣∣∣∣ ≤ C

(
1 +

√
s log s− 2 log s1/2δ

s1/2δ
√
n

)
s1/2δ

(√
s log s− 2 log s1/2δ

)
.

Proof. This proof highlights the difference from that of the preceding Lemma 1. First, in this case,

our class of functions are unbounded and thus (29) and (30) need to be modified. Due to Lemmas 1

and 2 of Doukhan et al (1995) ,

‖g‖2 ≤ ‖g‖2,β ≤ ‖g‖φ,2

√
1 +

∫ 1

0

φ∗ (β−1 (u)) du, (33)

where φ∗ (y) = supx>0 [xy − φ (x)] for a given function φ, ‖g‖φ,2 = inf
{
c > 0 : Eφ

(
|g/c|2

)
≤ 1
}
.

This is the Orlicz norm and is equivalent to ‖g‖2p when φ (x) = xp and p > 1. Furthermore, when

φ (x) = xp, we have
∫ 1

0
φ∗ (β−1 (u)) du = Cp

∑∞
n=1 n

1
p−1βn, where Cp is a constant dependent only on

p, see Doukhan et al (1995 p. 404) . Also

E

∣∣∣∣(εt − ζ̃ᵀ

t b
)

+
− (εt − b1)+

∣∣∣∣2p ≤ E
∣∣ζ>t b2

∣∣2p = O (sp) |b2|2p ,
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where E
∣∣∣ζ̃t∣∣∣2p = O (sp) by Jensen’s inequality. This yields that

Gn,δ ⊂ GβCδs1/2 . (34)

Next, to compute the entropy with L2p-norm due to (33), note that for any b̄, and η > 0,

ζ̃t =
(
1, ζ

ᵀ

t

)ᵀ
,

21−2pE sup
b:|b2−b̄2|<η,|F (b1)−F(b̄1)|<η

∣∣∣∣(εt − ζ̃ᵀ

t b
)

+
− (εt − b1)+ −

((
εt − ζ̃

ᵀ

t b̄
)

+
−
(
εt − b̄1

)
+

)∣∣∣∣2p
≤ E sup

b:|b2−b̄2|<η,|F (b1)−F(b̄1)|<η

∣∣∣∣(εt − ζ̃ᵀ

t b
)

+
− (εt − b1)+ −

((
εt − ζ

ᵀ

t b2 − b̄1

)
+
−
(
εt − b̄1

)
+

)∣∣∣∣2p
+ E sup

b:|b2−b̄2|<η,|F (b1)−F(b̄1)|<η

∣∣∣∣((εt − ζᵀ

t b2 − b̄1

)
+
−
(
εt − b̄1

)
+

)
−
((

εt − ζ̃
ᵀ

t b̄
)

+
−
(
εt − b̄1

)
+

)∣∣∣∣2p
≤ E |ζt|2p

(∣∣b̄2

∣∣+ η
)2p

1
{
F−1

(
−η + F

(
b̄1

))
< εt ≤ F−1

(
η + F

(
b̄1

))}
+ E (|ζt| η)2p

≤ E
∣∣∣ζ̃t∣∣∣2p (η2p + η

∣∣b̄2

∣∣2p) .
Recall that E

∣∣∣ζ̃t∣∣∣2p = O (sp) . Then, η1 in the proof of Lemma 1 can be set as either η1 = (2ν/ (C2δ
√
s))

2p
or

η1 = ν/
√
s. And proceed along the proof with η1 = (2ν/ (C2δ

√
s))

2p
to note that

ϕn(δ) ≤
∫ δ

0

√
log
(

(ν2/s)−s/p δ2s
)
dν

≤ δ
(√

(s/p) (C3 + log s)− 2 log δ
)
,

which is equivalent to the bound for ϕn(δ) in the proof of Lemma 1, meaning that we get the bound

corresponding to (32), which is

C

(
1 +

√
s log s− 2 log δ

δ
√
n

)
δ
(√

s log s− 2 log δ
)
.

Finally, revoking the relation in (34), we replace δ in (33) with cs1/2δ to achieve the following bound

C

(
1 +

√
s log s− 2 log s1/2δ

s1/2δ
√
n

)
s1/2δ

(√
s log s− 2 log s1/2δ

)
.

The case with η1 = ν/
√
s is analogous and the details are omitted.

Next, we state some standard results for the sake of later reference.

Lemma 3 ∣∣∣β̂ − β0

∣∣∣
1

= Op

(
s

√
log s

n

) ∣∣∣β̂ − β0

∣∣∣
2

= Op

(√
s log s

n

)
.
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Proof. Note that the Hölder inequality yields that

∣∣∣β̂ − β0

∣∣∣
1
≤

∣∣∣∣∣∣
(

1

n

n∑
t=1

xtx
>
t

)−1
∣∣∣∣∣∣
∞

∣∣∣∣∣ 1n
n∑
t=1

xtet

∣∣∣∣∣
1

and
∣∣∣( 1
n

∑n
t=1 xtx

>
t

)−1
∣∣∣
∞

= Op (1) as the minimum eigenvalue of 1
n

∑n
t=1 xtx

>
t is bounded away from

zero with probability approaching to one due to Lemma 8, while
∣∣ 1
n

∑n
t=1 xtet

∣∣
∞ ≤

∣∣ 1
n

∑n
t=1 xtrgt

∣∣
∞+∣∣ 1

n

∑n
t=1 xtσtεt

∣∣
∞ = Op (log s/

√
n) due to Assumption 1 and Lemma 6. Then,

∣∣ 1
n

∑n
t=1 xtet

∣∣
1
≤

s
∣∣ 1
n

∑n
t=1 xtet

∣∣
∞ . We may proceed similarly for

∣∣∣β̂ − β0

∣∣∣
2

using the Cauchy Schwarz inequality and

bounding
∣∣ 1
n

∑n
t=1 xtet

∣∣
2
≤
√
s
∣∣ 1
n

∑n
t=1 xtet

∣∣2
∞ = Op

(√
s log s/n

)
as above.

Lemma 4 For τ ∈ R,

√
n
(
Zn(τ), µ

(
β̂ − β0

)
, µ

ᵀ

x (γ̂ − γ0)
)>

=⇒
(
Z(τ), Z>

)>
,

which is a centered normal variate with

EZ(τ1)Z(τ2) = cov (1 {εt ≤ τ1} , 1 {εt ≤ τ2})

EZ(τ)Z
ᵀ

= lim
n→∞

E [(x̃1ε1, w̃1 (|ε1| − 1)) 1 {ε1 ≤ τ}] .

and

EZZ
ᵀ

= lim
n→∞

E

[
x̃2
t ε

2
t , x̃tεtw̃t (|εt| − 1)

· w̃2
t (|εt| − 1)2

]
,

where x̃t = µ
ᵀ

x

(
Extx

ᵀ

t

)−1
xt and w̃t = µ

ᵀ

w

(
Ewtw

ᵀ

t

)−1
wtσt.

Proof. This is straightforward by the central limit theorem and law of large numbers for stationary

arrays, see e.g. Davidson (1994) while the uniform tightness of
√
nZn(τ) is standard, see e.g. Theorem

2.8.3 in van der Vaart and Wellner (1996) as the class of indicator functions of half intervals is a V-C

subgraph class of functions.

Now, we turn to the proof of the main theorem in this section.

A.3.2 Proof of Theorem 4

To begin with, it is useful to note that

{ε̂t ≤ τ} = {êt − τ σ̂t ≤ 0}

=
{
εt + σ−1

t rgt − σ−1
t x

ᵀ

t

(
β̂ − β

)
− τσ−1

t σ̂t ≤ 0
}

=
{
εt + σ−1

t rgt + τσ−1
t rσt ≤ τ + σ−1

t x
ᵀ

t

(
β̂ − β

)
+ σ−1

t w
ᵀ

t (γ̂ − γ) τ
}
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and that,

sup
τ,c

∣∣Pr
{
εt + σ−1

t rgt + τσ−1
t rσt ≤ c

}
− F (c)

∣∣
= sup

τ,c
E
∣∣F (c− σ−1

t rgt − τσ−1
t rσt

)
− F (c)

∣∣
≤ f̄E sup

τ

∣∣σ−1
t rgt + τσ−1

t rσt
∣∣ = o

(
n−1/2

)
, (35)

where the first equality follows from the independence of εt from xt, the inequality is due to the

boundedness of the density of εt and the last equality is due to Assumption 1 and the boundedness of

τ and σ−1
t . For the same reason, Pr

{
supτ

∣∣σ−1
t rgt + τσ−1

t rσt
∣∣ ≤ b−1

n

}
→ 1 with bn = n1/2 (s log s)−1/2 .

Let rt = σ−1
t rgt + τσ−1

t rσt and consider the following process

Zn(b, g, τ) =
1√
n

n∑
t=1

(
1
{
εt ≤ τ + σ−1

t x
ᵀ

t b+ σ−1
t w

ᵀ

t gτ + rt
}
− F (τ)

)
,

on Θn = {|b| , |g| ≤ Cb−1
n , |τ | ≤ C} for a given C < ∞. Here the size of the index set reflects

the rate, at which the estimators β̂ and γ̂ converges to the true value β0 and γ0. And note that

Zn
(
β̂ − β0, γ̂ − γ0, τ

)
= Ẑn (τ). Then, write

Zn(b, g, τ) = Zn(b, g, τ)− Zn(τ) + Zn(τ)

= Mn(b, g, τ)−Mn(τ) + EZn(b, g, τ) + Zn(τ), (36)

where Mn(b, g, τ) = Zn(b, g, τ)−EZn(b, g, τ) is an empirical process and Mn (τ) = Mn (0, 0, τ). Note

that Zn(τ) = Zn(0, 0, τ) and EZn(τ) = 0. First, we show that

E sup
b,g,τ
|Mn(b, g, τ)−Mn(0, 0, τ)| → 0, (37)

where the supremum is over Θn. We can apply Lemma 1 and a truncation argument to verify (37).

Note that for any C1n and C2,{
1
{
εt ≤ τ + σ−1

t x
ᵀ

t b+ σ−1
t w

ᵀ

t gτ + rt
}
− 1 {εt ≤ τ} : |τ | ≤ C1n, |b| , |g| ≤ C2b

−1
n

}
⊂ Gn =

{
gtτθ = 1

{
εt − τ − ζ

ᵀ

t θ ≤ 0
}
− 1 {εt ≤ τ} : |τ | ≤ C1n, |θ| ≤ b−1

n C2C1n

}
,

where ζt =
(
σ−1
t x

ᵀ

t , σ
−1
t w

ᵀ

t , rt
)ᵀ

. Then, apply Lemma 1 by setting δ proportional to b−1
n C1n and

s = o
(
n1/2

)
. Then, the resulting bound becomes O

(
n−1/4s (log s)3/4

)
, since

√
s log s−log δ

s1/4
√
δn

= o (1) for

s/
√
n = o (1). This allows for s order up to n1/4 aside from the logarithmic factor. Furthermore, for

τ < −C1n, for any ε > 0, the following holds for sufficiently large n

E
(
1
{
εt − τ − ζ

ᵀ

t θτ ≤ 0
}
− 1 {εt ≤ τ}

)
= E

∣∣F (τ + ζ
ᵀ

t θτ
)
− F (τ)

∣∣
≤
∫
f (τ (1 + z̄)) zp

(
z

an

)
1

an
dz

≤ f (−C1n (1− ε)) an = o
(
n−1/2

)
, (38)

40



where p (·) denotes the maximum of densities of ζ>t a over the unit vectors a and an = b−1
n C1n, by the

change of variables. The argument for the case τ > C1n is similar and thus omitted.

Next, the standard Taylor series expansion for EZn(b, g, τ) yields that

EZn(b, g, τ) =
1√
n
E

n∑
t=1

(
F
(
τ + σ−1

t x
ᵀ

t b+ σ−1
t w

ᵀ

t gτ − rt
)
− F (τ)

)
=

1√
n
E

n∑
t=1

f (τ̂)
(
σ−1
t x

ᵀ

t b+ σ−1
t w

ᵀ

t τg − rt
)

for some value τ̂ between τ and τ+σ−1
t x

ᵀ

t b+σ
−1
t w

ᵀ

t gτ+rt. And the boundedness of the first derivative

of f means that

1√
n

∣∣∣∣∣E
n∑
t=1

f (τ̂)σ−1
t x

ᵀ

t b− f (τ)Eσ−1
t x

ᵀ

t b

∣∣∣∣∣
≤ C

1√
n
E

n∑
t=1

(∣∣σ−1
t x

ᵀ

t b+ σ−1
t w

ᵀ

t gτ − rt
∣∣ ∣∣σ−1

t x
ᵀ

t b
∣∣) = o (1)

if
√
nEr2

t , n
−1/2E

∑n
t=1

(
σ−1
t w

ᵀ

t g
)2
, and n−1/2E

∑n
t=1

(
σ−1
t x

ᵀ

t b
)2

are o (1) , by the Cauchy Schwarz

inequality. However,
√
nEr2

t = o (1) by assumption and n−1/2E
∑n

t=1

(
σ−1
t x

ᵀ

t b
)2

is bounded by

Cn−1/2E
∑n

t=1

(
x

ᵀ

t b
)2

by the boundedness of σ−1
t , which is o (1) as |b| ≤ b−1

n = n−1/2 (s log s)1/2.

By proceeding similarly for the term with w
ᵀ

t τg and due to (35), we can conclude∣∣EZn(b, g, τ)− f (τ)E
(
σ−1
t x

ᵀ

t

√
nb+ σ−1

t w
ᵀ

t τ
√
ng
)∣∣ = o (1) ,

uniformly in b, g,and τ on Θn. By setting b =
(
β̂ − β0

)
and g = (γ̂ − γ0) and applying Lemma 4

yields the weak limit (26).

The proof of (25) is analogous. We can redefine Zn(b, g, τ) in (36) as

Zn(b, g, τ) =
1√
n

n∑
t=1

((
−εt + τ + σ−1

t x
ᵀ

t b+ σ−1
t w

ᵀ

t gτ + rt
)

+
− E (−εt + τ)+

)
,

and proceed to show (37) by applying Lemma 2 similarly for the proof of (24) using Lemma 1 in there.

The truncation argument is applied by showing Mn(b, g, τ)−Mn(0, 0, τ)−(Mn(b, g, C1n)−Mn(0, 0, C1n))

is op (1) uniformly over |τ | > C1n for the same reason as (38). �

A.4 Weighted LASSO Regressions in Time Series

We derive oracle inequalities that show the variable selection property and deviation bounds for the

parameter estimates and prediction. Despite the huge literature on the lasso, the results for the time

series model are limited. Recently, Medeiros and Mendes (2016) studies the lasso estimate for the
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dependent data but the bounds in there are not as sharp as those in this section. And Basu and

Michailidis (2015) focuses on the Gaussian vector autoregression. Furthermore, no result is available

for the lasso estimator of the skedastic regression.

Let S (β) denote the support of a given vector β while |S| denote the cardinality of an index set

S. Recall that βS = (βj : j ∈ S) denotes the |S|-dimensional subvector of a p-dimensional vector β.

Also, recall that xt = Xt,S and x̂t = Xt,Ŝ

Let β̃ := β̂lasso and γ̃ := γ̂lasso throughout this section to ease notation. Also let X, Y and e

denote the matrices stacking X
ᵀ

t , yt, and εt, respectively. The results in this section holds under

more general strong mixing (α-mixing) conditions than the absolutely regular conditions. See the

conditions in Proposition 1 below for specifics.

A.4.1 Weighted LASSO with Dependent Data

Theorem 6 Let Assumption 1, and 2 hold. Then, the followings hold with probability approaching

one when λ satisfies the constraint (14):

Part (i).

2

n

n∑
t=1

(
X

ᵀ

t β̂lasso − g (qt)
)2

+ λ
∣∣∣β̂lasso − β0

∣∣∣
1
≤ 6

1

n

n∑
t=1

r2
gt +

48λ2 |S|
φ2
β

,

and if λs = o (min {|β0j| : β0j 6= 0}) in addition, then Pr
(
β̂lasso,j 6= 0 : j ∈ S

)
→ 1.

Part (ii). Furthermore, assume that λthr = o (min {|β0j| : β0j 6= 0}). Then Pr
(
Ŝ = S

)
→ 1 and

∣∣∣β̂Tasso − β0

∣∣∣
2

= Op

(√
sx log sx

n

)
.

Also, for any a 6= 0
√
na

ᵀ
(
β̂Tasso − β0

)
=⇒ N

(
0, aSM

−1ΩM−1aS
)
,

where M = E
(
xtx

ᵀ

t

)
and Ω = Extx

ᵀ

t e
2
t .

Proof of Theorem 6 The proof of Part (i) consists of three lemmas, Lemma 5, 7, and 8.

More specifically, Lemma 5 gives the deviation bound in the theorem conditional on the other

two lemmas’ conclusion. Here, we assume x′ts elements are scale normalized, i.e. D = I. The

claim that Pr
{
Ŝ ⊃ S

}
then follows from the triangle inequality that

∣∣∣β̂i∣∣∣ =
∣∣∣β̂i − β0i + β0i

∣∣∣ ≥∣∣∣|β0i| −
∣∣∣β̂i − β0i

∣∣∣∣∣∣ > 0 under the uniform beta-min condition λs = o (min {|β0j| : β0j 6= 0}). Sim-

ilarly in Part (ii) we can derive the perfect variable selection property of the thresholded lasso and

under the perfect variable selection the asymptotic normality is standard. In fact, given the result in
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Part (i), Pr
{
Ŝ ⊃ S

}
, it remains to argue that β̂i is smaller than λthr if β0i = 0 with probability ap-

proaching one. But this is obvious due to the deviation bound in Part (i) as
∣∣∣β̂ − β0

∣∣∣
1

= Op (λs) and

λs = o (λthr) . �

Now, we present the promised lemmas.

Lemma 5 Consider a sequence of events

An =
{

8n−1 |eᵀX|∞ ≤ λ
}
. (39)

Conditional on An, we have

4n−1
∣∣∣Xβ̃ − g∣∣∣2

2
+ 3λ

∣∣∣β̃Sc∣∣∣
1
≤ 4n−1 |ry|22 + 5λ

∣∣∣β̃S − β0

∣∣∣
1
.

Furthermore, if n−1X
ᵀ
X is compatible for S with compatibility constant φ = φβ/

√
2, then

2n−1
∣∣∣Xβ̃ − g∣∣∣2

2
+ λ

∣∣∣β̃ − β0

∣∣∣
1
≤ 6n−1 |ry|22 + 24λ2 |S|φ−2.

Proof. Since β̃ is the minimizer,

1

n

∣∣∣Y −Xβ̃∣∣∣2
2

+ λ
∣∣∣β̃∣∣∣

1
≤ 1

n
|Y −Xβ0|22 + λ |β0|1 .

Then, as Y = Xβ0 + ry + e,

n−1
∣∣∣Xβ̃ − g∣∣∣2

2
+ λ

∣∣∣β̃∣∣∣
1
≤ n−1 |ry|22 + 2n−1eᵀX

(
β̃ − β0

)
+ λ |β0|1 . (40)

By the Hölder inequality, n−1
∣∣∣eᵀX (β̃ − β0

)∣∣∣ ≤ n−1 |eᵀX|∞
∣∣∣β̃ − β0

∣∣∣
1
. Then, recall the condition

(39) of the lemma and proceed as in Bühlmann and van der Geer’s (2011) Lemma 6.3 to obtain the

first part of the lemma.

The second part of the lemma is Bühlmann and van der Geer’s (2011) Theorem 6.2.

Next, we derive a maximal inequality for the strong (α-) mixing array to control the probability of

the event An in Lemma 5 (39). Let αm denote the strong mixing coefficient, which is the supremum

of |P {G ∩H} − P {G}P {H}| over every element G ∈ F0
−∞ and H ∈ F∞m . The sequence αm is

bounded by the β-mixing coefficient βm by construction.

The following simplified version of Merlevede et al’s (2011) Proposition 2 serves as a building

block to Lemma 6.

Proposition 1 Let an array {ξt} be a strictly stationary α-mixing array satisfying that for some

positive h1, h2, b, and c,

α (m) ≤ exp
(
−cmh1

)
Pr {|ξt| > t} ≤ H (t) := exp

(
1− (t/b)h2

)
h−1

1 + h−1
2 > 1. (41)
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Also let h =
(
h−1

1 + h−1
2

)−1
, M = b

(
1 + nh1

)1/h2 and ξMt = ξt1 {|ξt| ≤M} + M1 {|ξt| > M}. Then,

for any positive ` < cnh1(h−1)/h, there exists a K <∞, which does not depend on `, such that

logE

(
exp

(
`

n∑
t=1

(
ξMt − EξMt

)))
≤ K

n`2

1− `nh1(1−h)/h
.

Here, K is universal for a class of distributions with uniformly bounded h1, b, and c, and h ≤ 1− ε
for some positive ε.

In applying this bound, it is worth noting that the permissible ` should not be too small and it

is linked to the mixing decay rate and the tail probability through h1 and h2. Then,

Lemma 6 Let {ξti}, i = 1, . . . , p, be α-mixing arrays satisfing the conditions in Proposition 1. Also

assume that

log p = O
(
nh1∧(1−2h1(1−h)/h)

)
. (42)

Then,

max
i≤p

∣∣∣∣∣
n∑
t=1

ξti

∣∣∣∣∣ = Op

(√
n log p

)
.

There are two upper bounds for p, in (42). Both are increasing functions of h1 but the value of

h2 determines which is lower.

Proof. We begin with a maximal inequality for the sums of truncated variables. For any L, Jensen’s

inequality yields

Emax
i≤p

∣∣∣∣∣
n∑
t=1

(
ξMti − EξMti

)∣∣∣∣∣ ≤ L log

[
E exp

(
L−1 max

i≤p

∣∣∣∣∣
n∑
t=1

(
ξMti − EξMti

)∣∣∣∣∣
)]

.

Since e|x| ≤ ex + e−x and the moment bound is uniform in i in Proposition 1 with ` = L−1,

L log

[
E exp

(
L−1 max

i≤p

∣∣∣∣∣
n∑
t=1

(
ξMti − EξMti

)∣∣∣∣∣
)]

= L log

[
Emax

i≤p
exp

(
L−1

∣∣∣∣∣
n∑
t=1

(
ξMti − EξMti

)∣∣∣∣∣
)]

≤ L log

[
2pE exp

(
L−1

n∑
t=1

(
ξMti − EξMti

))]
≤ L log (2p) +

Kn

L− nh1(1−h)/h

≤ (3 +K)
√
n log p,

where the last inequality follows by setting L = nh1(1−h)/h + (n/ log 2p)1/2 due to (42).
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For the remainder term, we show by the union bound for the maximum and Markov inequality

that

Pr

{
max
i≤p

n∑
t=1

∣∣ξti − ξMti + EξMti
∣∣ > C

}
≤ pPr

{
n∑
t=1

∣∣ξti − ξMti + EξMti
∣∣ > C

}
≤ C−1npE

∣∣ξt − ξMt + EξMt
∣∣

≤ 2C−1np

∫ ∞
M

H (x) dx

= O
(
np exp

(
−nh1

))
,

where the last equality follows from the standard algebra, that is, the integral is bounded by

MH(M) = exp
(
−nh1

)
in general and M−1H (M) if h2 > 1 since H (x) decays at an exponential

rate.

Finally, note that

max
i≤p

∣∣∣∣∣
n∑
t=1

ξti

∣∣∣∣∣ ≤ max
i≤p

∣∣∣∣∣
n∑
t=1

ξMti − EξMti

∣∣∣∣∣+ max
i≤p

∣∣∣∣∣
n∑
t=1

ξti −
(
ξMti − EξMti

)∣∣∣∣∣
= Op

(√
n log p

)
+Op

(
np exp

(
−nh1

))
and recall that log p = O

(
nh1
)

from (42), which implies that Op

(
np exp

(
−nh1

))
= Op

(√
n log p

)
.

The preceding maximal inequality leads to the following bounds on the probability of conditioning

event An.

Lemma 7 Suppose log(n∨p)
λ
√
n

= o (1). Then,

Pr
(
4n−1 |eᵀX|∞ > λ

)
= o (1) .

Proof. This is a direct consequence of Lemma 6 under Assumption 1.

Lemma 8 Under Assumption 2, n−1XᵀX is compatible for S with compatibility constant φβ/
√

2

with probability approaching one.

Proof. Due to Assumption 2 and Bühlmann and van der Geer’s (2011) Corollary 6.8 it is sufficient

to show that
∣∣n−1XᵀX − EXtX

ᵀ

t

∣∣
∞ is bounded by (32s)−1 φ2 with probability approaching one.

However, in view of Lemma 6,
∣∣n−1XᵀX − EXtX

ᵀ

t

∣∣
∞ = Op

(
n−1/2

√
log np

)
= o (φ2/s).
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A.4.2 Skedastic LASSO Regression

Theorem 7 Let Assumption 1, and 3 hold. And suppose that

µ = o (1) and λ
√
s = o (µ) .

Then, the following holds with probability approaching one :

Part (i)

2

n

n∑
t=1

(
w

ᵀ

t γ̂lasso − σ (qt)
)2

+ µ |γ̂lasso − γ0|1 ≤
6

n

n∑
t=1

r2
σt +

48µ2 |Sγ|
φ2
γ

Part (ii) if µthr = o (min {|γ0j| : γ0j 6= 0}) in addition, then

Pr
(
Ŝγ = Sγ

)
→ 1

and

|γ̂Tasso − γ0|2 = Op

(√
|Sγ| log |Sγ|

n

)
.

Also, for any a 6= 0
√
na

ᵀ
(γ̂Tasso − γ0) =⇒ N

(
0, a0M

−1
w ΩwM

−1
w a0

)
,

where Mw = E
(
w0tw

ᵀ

0t

)
and Ω = Ew0tw

ᵀ

0tη
2
t with w0t = (wtj : γ0j 6= 0) and a0 = (aj : γ0j 6= 0).

Proof of Theorem 7 Recall the definition of êt and write that

|êt| − w
ᵀ

t γ = ηt +
(
σt − w

ᵀ

t γ
)

+ (|êt| − |et|)

and by the triangle inequality

||êt| − |et|| ≤ |êt − et| =
∣∣∣g (qt)− x̂

ᵀ

t β̂
∣∣∣ .

Then, (
êt − w

ᵀ

t γ
)2 −

(
êt − w

ᵀ

t γ0

)2
=
(
σt − w

ᵀ

t γ
)2 − r2

σt

− 2ηtw
ᵀ

t (γ − γ0)− 2w
ᵀ

t (γ − γ0) (|êt| − |et|) .

By an iterated applications of the Hölder inequality,∣∣∣∣∣ 1n
n∑
t=1

(
gt − x̂

ᵀ

t β̂
)
w

ᵀ

t (γ̂ − γ0)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
t=1

wt

(
gt − x̂

ᵀ

t β̂
)∣∣∣∣∣
∞

|γ̂ − γ0|1

≤ sup
1≤i≤p

(
1

n

n∑
t=1

w2
ti

)1/2(
1

n

n∑
t=1

(
gt − x̂

ᵀ

t β̂
)2
)1/2

|γ̂ − γ0|1
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and ∣∣∣∣∣ 1n
n∑
t=1

ηtw
ᵀ

t (γ − γ0)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
t=1

ηtwt

∣∣∣∣∣
∞

|γ − γ0|1 .

Conditional on

En =

 sup
1≤i≤p

(
1

n

n∑
t=1

w2
ti

)1/2(
1

n

n∑
t=1

(
gt − x̂

ᵀ

t β̂
)2
)1/2

+

∣∣∣∣∣ 1n
n∑
t=1

ηtwt

∣∣∣∣∣
∞

≤ µ

8

 ,

the remaining steps of the proof are identical to that of Theorem 6. That is, we have arrived at the

equation (40) and the conditional event En corresponds to the event An, which bounds |n−1eᵀX|∞.

Finally, note that the probability of En converges to 1 due to Theorem 6 and Lemma 6. �

A.5 Proofs of Main Theorems

A.5.1 Proofs for Section 3

Proof of Theorem 2 Since Ŝ = S with probability approaching one due to Theorem 6, we assume

Ŝ = S without loss of generality and thus we define ĝj (qt) = x
ᵀ

t β̂
j .

Convergence of T̄n. Recall that

Ẑj
n

(
y − ĝj (q)

σ̂j (q)

)
=
√
n
(
F̂ j (y|q)− F j (y|q)

)
and let τ j (y, q) = y−gj(q)

σj(q)
for each j =1, 2. Since the sum of uniform P -Donskers is a uniform P -

Donsker, to derive the limit distribution of Tn, we first show that for each j = 1, 2 the process

Ẑj
n

(
y−ĝj(q)
σ̂j(q)

)
is a uniform P -Donsker, then derive the limit of

√
n (F 2 (y|q)− F 1 (y|q)) explicitly

and the limit covariance kernel of Ẑ1
n

(
y−ĝ1(q)
σ̂1(q)

)
− Ẑ2

n

(
y−ĝ2(q)
σ̂2(q)

)
, finally apply the uniform continuous

mapping theorem in Linton, Song, and Whang (2010) since the supremum is a Lipschitz continuous

operator.

However, Lemma 9 below shows the uniform weak convergence of Ẑj
n

(
y−ĝj(q)
σ̂j(q)

)
to the limit Gaus-

sian process Zj
(
y−g(q)
σ(q)

)
+Bj

(
y−g(q)
σ(q)

)
for each j. Furthermore, a direct computation of the covariance

terms as in the proof of Theorem 4 yields the desired form of the limit Gaussian process.

Convergence of Ūn Since Theorem 4 establishes an asymptotic equivalence, we need to derive

(i) the weak convergence of B̃n (τ) = EZ1
n(b1, g1, τ) − EZ2

n(b2, g2, τ) when bj = β̂j − βj
0 and gj =

γ̂j − γj0 for j = 1, 2 and (ii) the weak convergence of

An (τ) =

∫ τ

−∞
Z1
n (u)− Z2

n (u) du, τ ∈ R.
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The former follows from the Taylor series expansion of EZn(b, g, τ) and the standard CLT as in

Lemma 4, analogously as for FSD. Note that An (τ) is an empirical process indexed by functions of

(τ − ε1t)+ − (τ − ε2t)+ with τ ∈ R. It is easy to see that we can set F = |ε1t − ε2t| as an envelope,

whose second moment is bounded. Also, note that this class of functions is a V-C subgraph class

as the index τ varies the function values monotonically. Thus, we can apply the uniform weak

convergence result as in Theorem 2.8.3 in van der Vaart and Wellner (1996).

To deal with the composite process where we plug in τ̂1 (y, q) and τ̂2 (y, q) , we consider a gener-

alized version of An (τ), that is,

An (τ, τ1) =

∫ τ

−∞
Z1
n (u)−

∫ τ+τ1

−∞
Z2
n (u) du, τ ∈ R and τ1 ∈ (−δ, δ)

for some δ > 0. As for An (τ) , we can see that we can set the envelope F = |ε1t − ε2t| + δ and the

argument for V-C subgraph class remains valid as τ1 is bounded. Then, the equivalence relation∫ τ̂1(y,q)

−∞
Ẑ1
n (u)−

∫ τ̂2(y,q)

−∞
Ẑ2
n (u) du

=

∫ τ̂1(y,q)

−∞
Ẑ1
n (u)−

∫ τ̂2(y,q)

−∞
Ẑ2
n (u) du−

∫ τ(y,q)

−∞
Ẑ1
n (u)− Ẑ2

n (u) du

+

∫ τ(y,q)

−∞
Ẑ1
n (u)− Ẑ2

n (u) du

=

∫ τ(y,q)

−∞
Ẑ1
n (u)− Ẑ2

n (u) du+ op (1) ,

follows similarly as in Lemma 9, which also shows that τ̂ j (y, q)
p−→ τ (y, q) uniformly in y and q, for

both j = 1, 2. �

Now, we present the lemma cited above. Here, we omit the superscript j.

Lemma 9 Under the assumptions of Theorem 2,

Ẑn
(
y − ĝ (q)

σ̂ (q)

)
⇒ Z

(
y − g (q)

σ (q)

)
+B

(
y − g (q)

σ (q)

)
.

Proof. Recall from Theorem 4 that

Ẑn (τ) = Zn (τ) + B̃n (τ) + op (1) (43)

and

Zn (τ) + B̃n (τ)⇒ Z (τ) +B (τ)

over the real line due to due to the standard CLT and uniform weak convergence of empirical

distribution functions, see e.g. Theorem 2.8.3 in van der Vaart and Wellner (1996). To extend this
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result, introduce semimetrics

ρ̇ (τ1, τ2) =
(
E (1 {εt ≤ τ1} − 1 {εt ≤ τ2})2)2

= |F (τ1)− F (τ2)|1/2

and

ρ̈ (z1, z2) =
(
E (1 {εt ≤ τ (z1)} − 1 {εt ≤ τ (z2)})2)2

with z = (y, q) . Certainly, the semimetric space (R, ρ̇) is totally bounded. Since ρ̇ (τ1, τ2) =

ρ̈ (z1, z2) for τi = τ (zi), (R∞, ρ̈) is totally bounded. Also, the stochastic ρ̇-equicontinuity of Ẑn (τ)

is equivalent to the stochastic ρ̈-equicontinuity of Ẑn (τ (y, q)) not to mention the finite-dimensional

convergence of Ẑn (τ) being identical to that of Ẑn (τ (y, q)). Thus, the uniform weak convergence of

Ẑn (τ (y, q)) over R∞ follows.

Furthermore, note that τ̂ (z) is uniformly ρ̇-consistent since

sup
z
|ρ̇ (τ̂ (z) , τ (z))|2 = sup

z
|F (τ̂ (z))− F (τ (z))|

≤ sup
(y,q)

∣∣∣∣F (y − ĝ (q)

σ̂ (q)

)
− F

(
y − g (q)

σ̂ (q)

)∣∣∣∣+ sup
(y,q)

∣∣∣∣F (y − g (q)

σ (q)

)
− F

(
y − g (q)

σ̂ (q)

)∣∣∣∣
= Op (‖ĝ − g‖∞) +Op (‖σ̂ − σ‖∞) = op (1) ,

where the last equality is due to the uniform convergence result in Chen and Christensen (2015) and

Assumption 1-1. This and the uniform stochastic ρ̇-equicontinuity of Ẑn (τ) imply that

sup
(y,q)

∣∣∣Ẑn (τ̂ (y, q))− Ẑn (τ (y, q))
∣∣∣ = op (1) .

This establishes the lemma. �

A.5.2 Proofs for Section ??

In the following, we maintain the convention that the quantities defined with superscript “∗” denote

the bootstrap counterparts of the original terms in the preceding proofs and thus we do not redefine

them. And let “⇒ in P” denote the weak convergence of bootstrap statistics conditional on the

original data, and define the stochastic order notation Op∗ (1) and op∗ (1) in terms of the conditional

distribution given the original data. Specifically, for any ε > 0 , τ ∗n = o∗p (1) if P ∗ {|τ ∗n| > ε} p−→ 0,

and τ ∗n = O∗p (1) if there exists C = Op(1) such that P ∗ {|τ ∗n| > C} < ε for all sufficiently large n.

Proof of Theorem 3 We imitate the derivation of the asymptotic null distributions in Theorem

2. Some intermediate steps are given in separate lemmas later in this section.
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First, Theorem 8 below shows that the process Ẑj∗
n (τ) is a uniform P -Donsker and establishes

the weak convergence of Ẑj∗
n (τ) =⇒∗ Zj (τ) + Bj

(
y−g(q)
σ(q)

)
in P , for j = 1,2. Next, suppressing the

supscript j, we consider the composite process Ẑ∗n (τ̂ ∗ (y, q)) and show that Ẑ∗n (τ (y, q)) is a uniform

P -Donsker and that

Ẑ∗n (τ̂ ∗ (y, q))− Ẑ∗n (τ (y, q)) = o∗p (1) .

This follows for the same reasoning as Lemma 9. That is, since the process Ẑ∗n (τ (y, q)) on R∞ is

a uniform P -Donsker as shown in the first part of the proof of Lemma 9, it remains to show that

τ̂ ∗ (y, q) is uniformly ρ̇-consistent to τ (y, q). Note that with z = (y, q)

sup
z
|ρ̇ (τ̂ ∗ (z) , τ (z))|2 = sup

z
|F (τ̂ ∗ (z))− F (τ (z))|

≤ sup
(y,q)

∣∣∣∣F (y − ĝ∗ (q)

σ̂∗ (q)

)
− F

(
y − g (q)

σ̂∗ (q)

)∣∣∣∣+ sup
(y,q)

∣∣∣∣F (y − g (q)

σ (q)

)
− F

(
y − g (q)

σ̂∗ (q)

)∣∣∣∣
= O∗p (‖ĝ∗ − g‖∞) +O∗p (‖σ̂∗ − σ‖∞) = o∗p (1) ,

by the uniform consistency result in Chen and Christensen (2015).

The preceding steps establish the weak convergence of Ẑj∗n (τ̂ ∗ (y, q)) for each j = 1, 2 and our

statistic is the sup of the difference. In view of the continuous mapping theorem for the sup operator

and the permanence property of P -Donsker for the sum of two classes of functions, we only have to

verify the covariance kernels converges properly. This step proceeds as in the derivation of (46) in

the proof of Theorem 8 and thus details are omitted.

The verification of convergence of U∗n follows the same reasoning for that of T ∗n imitating the

derivation of the convergence of the original sample statistic.

Finally, the consistency of the test is straightforward since the bootstrap statistic T ∗n = Op (1)

under both the null and alternative hypotheses while Tn, Un → +∞ under a fixed alternative that

F 1 (y|q) > F 2 (y|q) for some (y, q). That is, at such a (y, q) we have

√
n
(
F̂ 1 (y|q)− F̂ 2 (y|q)

)
=
√
n
(
F 1 (y|q)− F 2 (y|q) +Op (1)

)
→ +∞

and thus the supremum and the supremum of their integrals also diverge. �

The following lemma, which is a modification of the maximal inequality in Lemma 1 to allow for

unbounded functions, is first verified to establish Theorem 8 afterward.

Lemma 10 Consider functions g (·, ·) : R× Rs → R indexed by τ and b such that g (et, xt) =
1
an
G(1)

(
τ−et
an

)
x

ᵀ

t b and its collection

Gn,δ = {g (·, ·) : |τ | ≤ C, |b| ≤ δ}

50



for some finite C and δ > 0. Let {et, xt} be a strictly stationary and absolutely regular process with β-

mixing coefficient βm = O (ρm) for some ε < ρ < 1−ε and the moment conditions infθ:|θ|=1E
∣∣xᵀ

t θ
∣∣ > 0

and supj Ex
2p
jt <∞ for some p > 1. Then, for δ2 < a3

ns and some finite C ′

E sup
g∈Gn,δ

∣∣∣∣∣ 1√
n

n∑
t=1

(g (et, xt)− Eg (et, xt))

∣∣∣∣∣ ≤ C ′
s

a
3/2
n

δ log sδ−1.

Proof of Lemma 10 We modify the proof of Lemma 1. We begin with establishing ‖g‖2,β ≤ C ‖g‖2p

with p > 1 and some bounded C, which only depends on the distribution of the sample. For a given

function φ, let φ∗ (y) = supx>0 [xy − φ (x)] . Then, due to Lemma 1 and 2 of Doukhan et al (1995) ,

‖g‖2 ≤ ‖g‖2,β ≤ ‖g‖φ,2

√
1 +

∫ 1

0

φ∗ (β−1 (u)) du,

where ‖g‖φ,2 = inf
{
c > 0 : Eφ

(
|g/c|2

)
≤ 1
}
, which is the Orlicz norm and is equivalent to ‖g‖2p

when φ (x) = xp. Furthermore, when φ (x) = xp, we have
∫ 1

0
φ∗ (β−1 (u)) du = Cp

∑∞
n=1 n

1
p−1βn,

where Cp is a constant dependent only on p, see Doukhan et al (1995 p. 404). Note that given the

mixing condition the sum
∑∞

n=1 n
1
p−1βn is bounded for any p > 1. Then,

‖g‖2p
2,β ≤ C ‖g‖2p

2p = CE

∣∣∣∣ 1

an
G(1)

(
τ − et
an

)
x

ᵀ

t b

∣∣∣∣2p
≤ C ′a−2p

n E |xt|2p |b|2p

≤ C ′sp |b|2p a−2p
n ,

due to the boundedness of G(1), Cauchy-Schwarz inequality, and the fact that

E |xt|2p = spE

(
s−1

s∑
j=1

x2
tj

)p

≤ spE

(
s−1

s∑
j=1

x2p
tj

)
≤ sp max

j
E |xtj|2p . (44)

This yields that

Gn,δ ⊂ Gβn,Cs1/2δa−1
n
.

This replaces (30). On the other hand, it follows from the rank condition on xt and the fact that

G(1) is a density that

E

∣∣∣∣ 1

an
G(1)

(
τ − et
an

)
x

ᵀ

t b

∣∣∣∣2 ≥ C |b|2 ,

which implies that

Gβn,δ ⊂ Gn,C1δ. (45)
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The next step to compute the bracketing number depends on the bound in (31), which in the current

lemma becomes for any θ̄, where θ =
(
b
ᵀ
, τ
)ᵀ

,

E sup
θ:|θ−θ̄|≤v

1

a2
n

∣∣∣∣(G(1)

(
τ − et
an

)
x

ᵀ

t b−G(1)

(
τ̄ − et
an

)
x

ᵀ

t b̄

)∣∣∣∣2
≤ 3

a2
n

E sup
θ:|θ−θ̄|≤v

∣∣∣∣(G(1)

(
τ − et
an

)
x

ᵀ

t

(
b− b̄

))∣∣∣∣2
+

3

a2
n

E sup
θ:|θ−θ̄|≤v

∣∣∣∣(G(1)

(
τ − et
an

)
−G(1)

(
τ̄ − et
an

))
x

ᵀ

t b̄

∣∣∣∣2
≤ 1

an
E |xt|2 v2 +

v2

a3
n

E |xt|2
∣∣b̄∣∣2 ≤ sv2

(
1

an
+
δ2

a3
n

)
≤ 2sv2

an
.

The remaining steps proceeds similarly given these updated bounds and thus details are omitted. �

In the following, we employ the common notation of the superscript “∗” to indicate the bootstrap

quantities, “⇒ in P” to denote the weak convergence of bootstrap statistics conditional on the original

data, and the stochastic order notation Op∗ (1) and op∗ (1) in terms of the conditional distribution

given the original data. Specifically, for any ε > 0 , τ ∗n = o∗p (1) if P ∗ {|τ ∗n| > ε} p−→ 0, and τ ∗n = O∗p (1)

if there exists C = Op(1) such that P ∗ {|τ ∗n| > C} < ε for all sufficiently large n.

Theorem 8 Let Assumption 1 hold and x∗t and ε∗t satisfy the mixing condition in Assumption 1.1.

Furthermore, if an = o (s−1/ log s) and s
√

log sn−1/4 = o (an), then

Ẑ∗n (τ) =⇒ Z (τ) + f (τ)Z1 − τf (τ)Z2 in P

where Z, Z1 and Z2 are the same as in Theorem 4.

Proof of Theorem 8 First, as for Ẑn (τ) , we begin with verifying the conditional weak convergence

of the bootstrap empirical process

Ẑ∗n (τ) ≡
√
n
(
F̂ ∗ (τ)− F ∗ (τ)

)
=

1√
n

n∑
t=1

(
1
{
y∗t − x∗

ᵀ

t β̂
∗ ≤ τ

}
−G

(
τ − ε̂t
an

))
,

where the last equality follows from 1√
n

∑n
t=1

1
n

∑n
j=1G

(
τ−ε̂j
an

)
= 1√

n

∑n
t=1G

(
τ−ε̂t
an

)
. Note that we

begin with the case where σt is fixed at 1.

Since y∗t = x∗
ᵀ

t β̂ + ε∗t , {
y∗t − x∗

ᵀ

t β̂
∗ ≤ τ

}
=
{
ε∗t − x∗

ᵀ

t

(
β̂∗ − β̂

)
≤ τ

}
.
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Then, by the same reasoning as in Lemma 3, rn

∣∣∣β̂∗ − β̂∣∣∣
2

= O∗p (1), with rn =
√
n/
√
s log s. Next,

recall that

ε∗t = ε̂i∗t−1
+ anηt = yi∗t−1

− xᵀ

i∗t−1
β̂ + anηt

and define

Z∗n (b, τ) =
1√
n

n∑
t=1

(
1
{
ε∗t − x∗

ᵀ

t b ≤ τ
}
−G

(
τ − ε̂t
an

))
,

so that Ẑ∗n (τ) = Z∗n
(
β̂∗ − β̂, τ

)
. Then, we can imitate the convergence of Z∗n conditional on Xn since

the conditional distribution of {ε∗t} and {x∗t} conditional on Xn satisfies the stationarity and mixing

conditions. In particular,

M∗n (b, τ) = Z∗n (b, τ)− E∗Z∗n (b, τ)

=
1√
n

n∑
t=1

[
1
{
ε∗t − x∗

ᵀ

t b ≤ τ
}
−G

(
τ −

(
ε̂t − x

ᵀ

t b
)

an

)]
.

And by Lemma 1

sup
τ

sup
|b|≤r−1

n C

|M∗n (b, τ)−M∗n (0, τ)| = o∗p (1) ,

for any C <∞. Then, since E∗Z∗n(0, τ) = 0,

Z∗n(b, τ) = M∗n(b, τ)−M∗n(0, τ) + E∗Z∗n(b, τ) + Z∗n(0, τ)

= E∗Z∗n(b, τ) + Z∗n(τ) + o∗p (1) ,

where Z∗n (τ) := Z∗n (0, τ).

We begin with the conditional weak convergence of Z∗n (τ) = 1√
n

∑n
t=1

(
1 {ε∗t ≤ τ} −G

(
τ−ε̂t
an

))
.

The uniform tightness of the process follows from the same argument as that of Zn (τ). For the

finite dimensional convergence, first note that the variable 1 {ε∗t ≤ τ}− 1
n

∑n
t=1 G

(
τ−ε̂t
an

)
is centered,

stationary, and mixing (conditional on the original sample) with covariance (conditional on the

original sample)

cov∗ (1 {ε∗t ≤ τ1} , 1 {ε∗s ≤ τ2})

= E∗1 {ε∗t ≤ τ1} 1 {ε∗s ≤ τ2} −
1

n

n∑
t=1

G

(
τ1 − ε̂t
an

)
1

n

n∑
t=1

G

(
τ2 − ε̂t
an

)
p−→ E1 {εt ≤ τ1} 1 {εs ≤ τ2} − F (τ1)F (τ2) . (46)

To see this, first suppose s = t and τ1 = τ2 and note that E∗1 {ε∗t ≤ τ1} 1 {ε∗s ≤ τ2} = E∗1 {ε∗t ≤ τ1} =
1
n

∑n
t=1G

(
τ1−ε̂t
an

)
. The convergence of 1

n

∑n
t=1G

(
τ1−ε̂t
an

)
to F (τ1) in P is straightforward from the
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uniform law of large numbers for triangular arrays and the mean value expansion of

EG

τ1 − εt + x
ᵀ

t

(
β̂ − β0

)
an


= EG

(
τ1 − εt
an

)
− 1

an
EG(1)

(
τ1 − ε̂t
an

)
x

ᵀ

t

(
β̂ − β0

)
,

for which we note that

EG

(
τ1 − εt
an

)
=

1

an

∫
G(1)

(
τ1 − s
an

)
F (s) ds→ F (τ1) ,

by the integration by parts and then by the change-of-variables and the dominated convergence theo-

rem and that 1
an
EG(1)

(
τ1−ε̂t
an

)
x

ᵀ

t

(
β̂ − β0

)
= o (1) due to the deviation bound that E

(
x

ᵀ

t

(
β̂ − β0

))2

=

o (an) and the fact that EG
(
τ1−ε̂t
an

)
= O (an).

Now, if s = t and τ1 6= τ2, by the same argument as above, E∗1 {ε∗t ≤ τ1} 1 {ε∗s ≤ τ2}
p−→

F (τ1

∧
τ2). And for t = s+ k and k > 0, by construction

cov∗ (1 {ε∗t ≤ τ1} , 1 {ε∗s ≤ τ2}) = (1− πn)k cov∗
(
1
{
εj∗s+k ≤ τ1

}
, 1
{
εj∗s ≤ τ2

})
.

And

E∗1
{
εj∗s+k ≤ τ1

}
1
{
εj∗s ≤ τ2

}
=

1

n

n∑
t=1

G

(
τ1 − ε̂t+k

an

)
G

(
τ2 − ε̂t
an

)
with the convention that ε̂t+k = ε̂t+k−n if t+ k > n. Following very similar algebra as above, we can

show that it converges in probability to E1 {εt ≤ τ1} 1 {εs ≤ τ2}. Finally, by Theorem 1 of Politis

and Romano (1994), the sum over k also converges.

Turn to the limit of E∗Z∗n(b, τ). For some mean value b̃, we can expand

E∗Z∗n (b, τ) =
1√
n

n∑
t=1

[
G

((
τ −

(
ε̂t − x

ᵀ

t b
))

an

)
−G

(
τ − ε̂t
an

)]

=
1

nan

n∑
t=1

G(1)

τ −
(
ε̂t − x

ᵀ

t b̃
)

an

x
ᵀ

t

√
nb

and show that

sup
τ

sup
|b|≤Cr−1

n

∣∣∣∣∣∣ 1

nan

n∑
t=1

G(1)

τ −
(
ε̂t − x

ᵀ

t b̃
)

an

x
ᵀ

t

√
nb− f (τ)Ex

ᵀ

t

√
nb

∣∣∣∣∣∣ = op (1) .
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Let k̂t := x
ᵀ

t

(
β̂ − β0 + b̃

)
. By the Cauchy-Schwarz inequality and the triangle inequality, the LHS

of the proceeding equation is bounded by

sup
τ

sup
|b|≤Cr−1

n

∣∣∣∣∣ 1√
nan

n∑
t=1

(
G(1)

(
τ − εt − k̂t

an

)
x

ᵀ

t b− E

[
G(1)

(
τ − εt − k̂t

an

)
x

ᵀ

t b

])∣∣∣∣∣
+ sup

τ
sup

|b|≤Cr−1
n

∣∣∣∣∣ 1

an
E

[(
G(1)

(
τ − εt − k̂t

an

)
−G(1)

(
τ − εt
an

))
x

ᵀ

t b
√
n

]∣∣∣∣∣
+ sup

τ
sup

|b|≤Cr−1
n

∣∣∣∣[ 1

an
EG(1)

(
τ − εt
an

)
− f (τ)

]
Ex

ᵀ

t b
√
n

∣∣∣∣ .
For the first term, we can apply the maximal inequality in Lemma 10. For the second, we note that

since G(1) has a bounded derivative, we can bound it by

a−2
n E

∣∣∣k̂txᵀ

t b
√
n
∣∣∣ ≤ a−2

n

∣∣Extxᵀ

t

∣∣
∞

(
|b|1 +

∣∣∣β̂ − β0

∣∣∣
1

)2√
n = o (1) ,

due to the Hölder inequality and the triangle inequality. Finally, the standard argument in the kernel

density estimation using change-of-variables formula and dominated convergence theorem yields that

a−1
n E

[
G(1)

(
τ−εt
an

)]
− f (τ) = O (an) uniformly in τ and E

∣∣xᵀ

t b
√
n
∣∣ = O

(√
s log s

)
uniformly in b.

Thus, the last term is O
(
an
√
s log s

)
= o (1) as well.

The proof for the general case proceeds similarly for the known σt case but with much heavier nota-

tion. As in the proofs of Theorem 4, we can replace ε̂∗t with ε∗t−σ∗−1
t x∗

ᵀ

t

(
β̂∗ − β̂

)
−σ∗−1

t w∗
ᵀ

t (γ̂∗ − γ̂) τ

when we consider the set {ε̂∗t ≤ τ}, where ε∗t = ε̂i∗t−1
+ anηt. Compared to the case of known σt, we

have an additional term σ∗−1
t w∗

ᵀ

t (γ̂∗ − γ̂) τ . It demands us to derive the limit of (γ̂∗ − γ̂) and intro-

duce Z∗n (b, g, τ) analogously to Zn (b, g, τ) in the proof of Theorem 4. The convergence of (γ̂∗ − γ̂)

is standard as γ̂∗ is an OLS estimator. Then, the same maximal inequality in Lemma 1 yields that

sup
τ

sup
|g|,|b|≤r−1

n C

|M∗n (b, g, τ)−M∗n (0, 0, τ)| = o∗p (1) ,

where M∗n (b, g, τ) = Z∗n (b, g, τ)− E∗Z∗n (b, g, τ) .

Turning to E∗Z∗n (b, g, τ) , note that

E∗Z∗n (b, g, τ) =
1√
n

n∑
t=1

[
G

(
a−1
n

(
τ −

(
ε̂t −

x
ᵀ

t b

w
ᵀ

t γ̂
− τ w

ᵀ

t g

w
ᵀ

t γ̂

)))
−G

(
a−1
n (τ − ε̂t)

)]
,

and its expansion is similar to that of E∗Z∗n (b, τ) and the details are omitted for the sake of space.

�
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