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Abstract. The no-insulation (NI) winding method is an effective technique for

winding coils from high-Tc superconductors (HTS). NI coils are electrically and

thermally robust due to their ability to radially bypass current away from the

fragile superconducting path when necessary. This avoids stored magnetic energy

being entirely discharged on local defects in the HTS tape. However, the increased

degrees of freedom for the current distribution makes finite-element modelling of these

coils a complicated and multi-level problem. Here we present and validate a 2D

axially symmetric model of an NI (or partially insulated) coil that captures all the

inherent electromagnetic properties of these coils, including axial vs radial current

flow and critical current suppression, and also reproduces the well-known charging

and discharging characteristics. The model is validated against previously reported

discharge measurements, and is shown to produce results consistent with the expected

equivalent-circuit behaviour. Only by solving the NI coil problem with both axial and

radial fidelity can the interplay of critical current anisotropy and turn-to-turn current

be properly accounted for. The reported FE model will now enable coil designers

to simulate key complex behaviours observed in NI coils, such as shielding currents,

magnetic field inhomogeneity and remnant field effects.

Submitted to: Supercond. Sci. Technol.

1. Introduction

High-Tc superconducting (HTS) coils wound without insulation (NI coils) were first

proposed by Hahn [1], and have many useful properties [2–5] and applications [5–13].

Omitting insulation between the turns of the coil provides both current and heat with

alternative pathways through the coil’s structure. In the case of current flow this is

particularly valuable, as localised faults in the HTS winding can be avoided, with
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current instead flowing into and through adjacent turns. This avoids the potentially

destructive quench events that commonly threaten insulated (INS) HTS coils [8, 9, 14].

From a macroscopic viewpoint, the extra current paths can be considered as a resistance

in parallel with the inductance of the coil. This parallel resistance corresponds to the

current flow through one turn of the coil to the next, bypassing the inductive spiral path.

However, the introduction of these extra degrees of freedom to the current flow, poses

challenges when attempting to model and understand the current and field distribution

within an NI coil.

Experiments and modelling [15–23] have shown that current flow, and the associated

electric and magnetic fields are more complicated than that captured by a simple

equivalent-circuit model. However, a full resolution model of such NI coils is practically

difficult to implement due to the high aspect ratio of the superconductor and the need

to consider the currents flowing normal to the conductor’s surface. While progress has

been made using circuit grid models (CGM) [18,24–27], these models lose axial fidelity

and cannot simulate the associated shielding currents, and associated stress [28], within

the HTS windings [23,29–31].

Homogenisation [32–35] of conductors is a technique often used to simplify

finite element (FE) models of INS coils. Here we combine the idea of conductor

homogenisation with the near axial symmetry of the coils to create a 2D axially

symmetric model of an NI coil. This model accounts for the spiral structure of the

coil, whilst also enabling radial turn-to-turn currents to flow. Although the approach

used here can also be applied in 3D, we take full advantage of the symmetry of a circular

pancake coil to further reduce the problem to 2D.

2. Model derivation

Homogenisation aggregates detailed microscopic properties of the conductor and coil

architecture into bulk properties that can be used to represent the homogenised system

at larger length scales. This elucidates the essential physics of a system while ignoring

extraneous detail [32–35], and hence reduces computational cost. Here we develop

a method to represent the spiral geometry of a pancake coil, an inherently axially

asymmetric feature, into a bulk property that can be treated with axial symmetry. In

INS coils this is normally done by approximating each turn of the coil to be concentric

and azimuthal (see figure 1(a) right). This is possible because the spiral current is

always equal to the operational current IT = Iop. However this constraint does not hold

for an NI coil.

Rather than assume each turn of the coil is azimuthal, we simply homogenise the

properties of each portion of a turn across its thickness. This process can be done in

coordinates local to each part of the HTS winding. Shown in figure 1, the coordinates

are defined by: the surface normal of the tape n̂, the tangent to the spiral of the tape

T̂ , and the axial direction ẑ. In this coordinate system the anisotropic resistivity of the
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Figure 1. (a) Illustration of the spiral winding of an HTS pancake coil, exaggerating

the pitch and spacing of the turns (left), as well as the traditional concentric

approximation used to enforce axial symmetry in INS coils (right). (b) A comparison

of the locally defined normal-tangential unit vectors, n̂ and T̂ , for the spiral winding

vs the cylindrical unit vectors r̂ and φ̂, which differ by a small angle α. (c) lumped

circuit model of the NI coil.

tape is easily understood in the tensor form:

~E ′ = ρ′ ~J ′ =

 ρn 0 0

0 ρsc 0

0 0 ρz


n̂,T̂ ,ẑ

~J ′, (1)

where ~E ′ is the electric field, ~J ′ is the current density, and ρ′ is the resistivity tensor

containing: the turn-to-turn resistivity ρn, the resistivity of the superconductor ρsc, and

the axial resistivity ρz. Note that ′ denotes the local coordinate system which is always

oriented tangential to the conductor.

At any given point in the global cylindrical coordinate system, r, φ, z, the local

tangential coordinates are simply small rotations from the cylindrical system, given by

the rotation matrix:

g =

 cos(α) − sin(α) 0

sin(α) cos(α) 0

0 1

 , (2)

where α is the small angle of deviation between the orientation of the spiral winding

and the azimuthal direction. This is given geometrically by:

α = ± sin−1(
d

2πr
) ∼ ± d

2πr
as

d

r
→ 0, (3)

where d is the thickness of the turn and the ± accounts for the winding direction of the

coil.
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We can rotate the resistivity tensor from the tangential system, where it is easily

understood, into the global cylindrical coordinate system where they can be expressed

in an axially symmetric finite element model:

~E = g ~E ′ = gρ′g−1 ~J, (4)

where ~E and ~J are the electric field and current density in the global coordinates.

Substituting equations (1) and (2) into (4), we then obtain the axially-symmetric

resistivity tensor in the global coordinates as:

ρcoil = gρ′g−1 =

 ρrr ρrφ 0

ρφr ρφφ 0

0 0 ρz


r̂,φ̂,ẑ

, (5a)

where the components are:

ρrr = ρn cos2(α) + ρsc sin2(α), (5b)

ρrφ = ρφr =
1

2
(−ρn + ρsc) sin(2α), (5c)

ρφφ = ρsc cos2(α) + ρn sin2(α). (5d)

As ρcoil is now expressed in the cylindrical coordinate system, we can explicitly

associate a resistivity with every point of our model. The off-diagonal terms, ρrφ and ρφr,

describe the desired coupling between the radial and azimuthal currents. In principle,

with appropriate choices of ρn, ρsc, and ρz, the full range of coil behaviour can be

successfully modelled, from no-insulation (ρn → 0), to fully insulated (ρn →∞).

We use the E-J power law [36, 37] to express the nonlinear resistivity of the

superconductor:

ρsc =
E0

Jc(B, θ)n
|~J ′‖|

n−1, (6)

where E0 is threshold field used to define Jc (conventionally E0 = 1 µV/cm), n is the

flux creep exponent, ~J ′‖ is the in plane current density of the HTS tape. Jc(B, θ) is the

homogenised engineering critical current density of the tape, expressed as a function of

the local magnetic field magnitude B and field angle θ to the tape. Jc(B, θ) is given by:

Jc(B, θ) =
Ic(B, θ)

wd
, (7)

where Ic(B, θ) is the measured [38] critical current performance of the conductor, w

is the width of the tape and measurement perturbations due to self field effects are

ignored [39]. For simplicity the axial resistivity ρz is also assumed to be equal to ρsc.

Finally, for ρn we simply assume that the contact resistance is evenly distributed over

the contact area. We then allocate the contact resistivity as a bulk value:

ρn =
Rct

d
. (8)

Unlike the traditional approach, the total current in the coil is not explicitly constrained,

rather the coil is connected to a current source, see figure 2 , which effectively applies

a constraint only on the net radial current Ir = 2πr
∫ −w/2
−w/2 Jrdz = Iop. The operating
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Figure 2. Geometry of the 60 turn coil model. (a) the coil itself is labelled Ωc

(dark grey), current leads Ωcl (light grey) leading to and from the current source (not

shown), and air ΩA (blue grid). (b) Zoomed view of the coil domain corner showing

the rectangular mesh used.

current Iop is transfered to the coil through a normal-conducting bus simulated as copper

with a resistivity ρcu = 1.67× 10−8 Ωm.

This model has been implemented in COMSOL multiphysics 5.4 using the H-

formulation [40, 41], chosen for its stability when solving problems with power-law

resistivities [42]. However, in principle the approach described above is independent

of the numerical system used to solve it.

3. Model validation

We validated this FE model against three data sets collected by Wang et al. [43] from a

pancake coil with varying number of total turns, N . These authors initially performed

sudden-discharge measurements on a 60 turn dry-wound pancake coil, before reducing

the turn number to make a 40 turn coil on which the measurements were repeated.

The process of turn removal was then repeated once more to create a 20 turn coil

and on which measurements were also repeated. The reported experiments employed

a constant winding tension throughout, in an attempt to maintain a constant contact

resistivity Rct within the coils. Wang et al. analysed their sudden-discharge results

using an equivalent circuit model (see figure 1(c)), and their geometric interpretation of

the turn-to-turn resistance [43]:

Rc =
N∑
i=1

Ri =
N∑
i=1

Rct

2πriw
, (9)

where, Ri is the resistance between the ith turn and the next.

Table 1 shows the geometric parameters for each of the experimental coils which

we have modelled in 2D axial cross-section. Figure 2 shows the model geometry used

to deliver current to and from the coil. As the model must conserve axial and radial

currents, normal-conducting bus rings are used to connect the inner and outer surfaces

of the coil to a simulated current source. This current source is modelled as a highly

resistive ring with an imposed current density, which is constrained to flow through the
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Parameter N20 N40 N60

Inner radius Rin (mm) 30.0 30.0 30.0

Outer radius Rout (mm) 31.25 32.5 38.8

Turns N 20 40 60

Table 1. Key coil design parameters as reported by Wang et al. The dimensions of

the tape used for all coils were width w = 4.0 mm and thickness d = 63 µm. [43] .

Figure 3. Comparison of experimental decay data (——) for all three coils from Wang

et al. [43] with the 2D axially symmetric model presented here.

source and hence the connected bus leads. The critical current Ic(B, θ) for the model is

taken from measured data of a SuperPower inc. advanced pinning tape [38,44], similar

to that used by Wang et al.

Experimentally, the azimuthal current cannot be measured directly, so the central

field Bm, measured by a Hall probe, is reported as an analogue. Figure 3 shows the

experimental sudden discharge measurements for each coil, normalised to B0 = Bm|t=td ,

where td is the discharge time. The experimental curves (solid) show a slight rounding

at the onset of the decay, which may correspond to a finite switching time τs ≈ 200 ms

(although this is not commented on in [43]).

The decay time constant of each coil is determined from the gradient of the straight-

line sections of each curve shown in figure 3, using :

τ =
t0 − t1

ln (Bm(t1)
Bm(t0)

)
, (10)

where t0 is taken to be 300 ms (to ensure it is more than than the switching time τs). To

match the data over the whole decay we take t1 = t(Bc/B0 = 2%), to ensure confidence

in the fidelity of the data extracted from [43]. Then, the characteristic resistance Rc

can be calculated from τ = L/Rc. Hence, values for ρn in the model are obtained from

(9) and (5a).

The model gives the 3 dashed curves in figure 3, which match the experimental

data well, see table 2. This validates the model, and also shows that (for a regime

where the broad circuit behaviour is dominant) the FE model delivers macroscopic
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Parameter N20 N40 N60

Inductance L (µH) 50.85 195.54 427.59

Rc (experiment) (µΩ) 323.8 458.7 615.8

Time constant τ (ms)

Experiment 157.1 426.3 694.4

Model 153.6 419.3 683.5

Table 2. Extracted coil parameters, showing comparison of time constants extracted

using eq (1) from both the original experimental data in [43], and numerically simulated

data produced from the FE model.

Figure 4. (a) Time evolution in the 60-turn NI coil of the average turn-to-turn current

Ī ′n (both averaged across the full cross-section of the coil) and the spiral current Ī ′T.

The applied current Iop is also shown. (b) Radial profile across the 60-turn coil of the

spiral current in the HTS tape I ′T and the turn-to-turn current I ′n plotted for each of

the four key times highlighted in (a).

values consistent with a simple circuit model [18,43]. However, figure 3 also shows that

the model predicts a small remnant magnetisation for each coil. This is simply not

captured by any lumped-circuit or circuit-grid models [18], as it requires a model which

can describe both azimuthal and axial current distributions in the coil.
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Figure 5. Coil cross-sections showing azimuthal current density Jφ [(a)-(d)] and

magnetic field aberration ∆B [(e)-(h)] at key moments highlighted in figure 4(a). (a)

and (e) show the conclusion of the applied current ramp at t = 1.5 s. (b) and (f)

show the moment immediately before the discharge test at t = td, t. (c) and (g) show

the moment after the switch is fully open, t = td + τs + τ , at which point the turn-

to-turn current achieves its peak value. (d) and (h) show the fully discharged coil at

t = td + 10s, where the net currents are zero .

4. Model interrogation

Figure 4(a) shows the evolution of the areal-average currents in the 60 turn coil FE

model:

Ī ′n =
w

A

Rout∫
Rin

drI ′n =
2π

A

Rout∫
Rin

dr

w/2∫
−w/2

dzJ ′n(z, r), (11)

and:

Ī ′T =
w

A

Rout∫
Rin

drI ′T =
d

A

Rout∫
Rin

dr

w/2∫
−w/2

dzJ ′T(z, r), (12)

where A is the cross sectional area of the coil. As expected, the applied current Iop,

induces a spiral current Ī ′T but with an inductive lag. The overflow turn-to-turn current

Ī ′n also flows which initially accounts for all of the applied current flow. However this

then decreases as a percentage of Iop. Once the applied current ramp stops at t = τramp,

Ī ′n decays exponentially as current adopts the resistance-free spiral pathway. Some time

later, Iop is switched off and falls to zero over a switching time τs. This causes a rapid

increase in Ī ′n which is now required to return the radial component of the spiral current.

It is noteworthy that Īn reaches its peak before the modelled switch is fully open. After

this point the average currents then proceed to decay as expected.
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Figure 4(b) shows the spiral current in the HTS tape I ′T, and the total current

flowing between each turn I ′n, plotted as a function of radial position across the coil at

4 times indicated in figure 4(a), see (11) and (12). We see that the normal and spiral

currents always sum to a uniform value over the coil, namely Iop. However, both I ′T and

I ′n vary with radial position, r. This is because both the local resistivity and inductance

change across the coil. For example, at t = td + τs + τ both currents are smallest at

the inner diameter of the coil, due to the lower Jc(B, θ) and lower mutual inductance

at this point. These features are broadly similar to those produced from circuit grid

models [18].

Figure 5(a-d) show the azimuthal current densities Jφ for the same moments

illustrated in figure 4(a). Figure 5(a) shows that at the conclusion of the applied current

ramp, the azimuthal current Jφ flows at the top and bottom edges of the coil, and is

approximately zero in the central regions. . Given enough time, Jφ current relaxes into

the distribution shown in figure 5(b). Note that Iop < Ic which can be seen as the

current has not fully penetrated the coil.

Figure 5(c) shows the distribution of Jφ at a time equal to one time constant after

sudden discharge of the coil. Here we see that the total azimuthal current decays through

creating new shielding currents of opposite polarity at the top and bottom edge (not by

reducing the current density in the interior). This behaviour is reminiscent of the Bean

model-like distributions commonly seen in AC loss scenarios [41, 45]. These azimuthal

shielding currents are themselves driven by the tendency of the superconductor to resist

changes in magnetic flux. As the opposing azimuthal currents can recirculate in the

axial direction, they follow a current path which avoids resistive turn-to-turn transfer.

Eventually the total azimuthal current decays to approximately zero whilst leaving the

final remnant currents shown in figure 5(d).

In cases where field homogeneity is critical, the effect of these recirculating shielding

currents must be addressed. Figure 5(e-h) depict the magnetic field aberration for this

NI coil, calculated as:

∆B = | ~B − ~Buni|, (13)

where ~Buni is the magnetic field for an identical coil within which the same net azimuthal

current Iφ is uniformly distributed throughout. ∆B thus captures the difference between

a typical ’first-cut’ magnet design study, (where current is assumed to be uniform

through the conductor), and the real situation where non-uniform current distributions

occur. Interestingly, we see the largest aberration occurs at the end of the applied current

ramp, figure 5(e). Figure 5(f) shows that once the coil is in steady-state operation we

still observe non-zero ∆B, due to the incomplete current penetration. During sudden

discharge (figure 5(g-h)), aberrations are primarily at the top and bottom edges of the

coil, and ultimately equals the remnant magnetisation, ∆B = B, in figure 5(h). For all

the results in figure 5 the small asymmetry between the top and bottom of the coil is

caused by the anisotropy in Jc.
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Figure 6. Current densities and field aberration for coil overdrive Iop = 50 A > Ic =

43 A. (a) The azimuthal current density. (b) The turn-to-turn bypass current Jn. (c)

The critical current density Jc. (d) The magnetic field aberration ∆B caused by the

nonuniform distribution of current in the coil.

5. Current overdrive

Driving NI coils at currents above their critical current Ic,coil is an interesting way

of maximising coil performance [46]. Normally INS HTS coils are limited once some

portion of the coil reaches its local Ic(B, θ). However, in an NI coil the applied current

can radially bypass such regions and hence continue to be increased. Our model is

uniquely capable of tackling this problem, by solving the current bypass and Jc(B, θ)

behaviours simultaneously.

Figure 6 shows the effect of driving the 60-turn NI coil well past its Ic to

Iop = 1.16×Ic,coil [43]. As shown in figure 6(a), the distribution of Jφ becomes highly non-

trivial. Even at 50 A above Ic,coil, the coil does not appear to be completely saturated,

as evidenced by the absence of radial bypass current in the interior region of the coil,

see figure 6(b). This is reinforced by the fact that Jφ < Jc in much of that region of

the coil, compare figure 6 (a) and (c). Finally ∆B is shown in figure 6(d) where we

see that the aberration is of a similar magnitude to that observed in the under-driven

coil in steady-state operation (figure 5(f)). However, in the over-driven case the spatial

distribution of ∆B is highly asymmetric, and oriented in a different direction. Again

we attribute this behaviour to the anisotropy in Jc.
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6. Conclusion

The simulation of shielding currents, field inhomogeneities and remnant fields are

integral to the development and design of future NI coils. Here, we have derived and

demonstrated a computationally and conceptually simple FE approach which captures

and predicts the full electromagnetic behaviour of an NI coil. This model correctly

replicates experimental ’sudden-discharge’ data reported in literature [43], and delivers

macroscopic values which correspond to lumped equivalent-circuit models. The model

also produces the interchange between the turn-to-turn current and spiral current across

the width of the coil, as seen in circuit grid models [18]. However, the power of this FE

model lies in its ability to predict the evolution of fields and current at each point within

the full coil cross-section. Interrogation of its results reveal the evolution of currents

within the cross-section of the NI coil during current ramping, steady-state operation

and sudden discharge — with full radial and axial fidelity. Finally, we have also explored

a model coil when operated in an ‘over-driven’ regime, Iop > Ic,coil, revealing the highly

nontrivial azimuthal current densities.

This is all achieved within a single, cohesive finite-element model which requires

no inter-model coupling. Indeed, no a priori azimuthal current constraints are ever

imposed on the coil to produce the delivered results. As a result this approach could

be readily incorporated into other coupled physics problems such as thermal and stress

simulation. We expect an easy extension to 3D and coupled physics problems.
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