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The decarbonisation of energy provision is key to managing global greenhouse gas emissions
and hence mitigating climate change. Digital technologies such as big data, machine learning,
and the Internet of Things are receiving more and more attention as they can aid the decarboni-
sation process while requiring limited investments. The orchestration of these novel technologies,
so-called cyber-physical systems (CPS), provides further, synergetic effects that increase effi-
ciency of energy provision and industrial production, thereby optimising economic feasibility and
environmental impact. This comprehensive review article assesses the current as well as the
potential impact of digital technologies within CPS on the decarbonisation of energy systems.
Ad-hoc calculation for selected applications of CPS and its subsystems estimates not only the
economic impact but also the emission reduction potential. This assessment clearly shows that
digitalisation of energy systems using CPS completely alters the marginal abatement cost curve
(MACC) and creates novel pathways for the transition to a low-carbon energy system. Moreover,
the assessment concludes that when CPS are combined with artificial intelligence (AI), decarbon-
isation could potentially progress at an unforeseeable pace while introducing unpredictable and
potentially existential risks. Therefore, the impact of intelligent CPS on systemic resilience and
energy security is discussed and policy recommendations are deducted. The assessment shows
that the potential benefits clearly outweigh the latent risks as long as these are managed by policy
makers.

1 Introduction
1.1 Energy system transition
Transforming the global energy system is a challenging trade-
off between advancing economic competitiveness and safeguard-
ing the environment. Ensuring worldwide access to affordable,
reliable and sustainable energy is a specific requirement of the
United Nations Sustainable Development Goals (SDG)1. Against
this backdrop, reducing CO2 emissions from energy systems is
of vital importance in order to adopt a sustainable development
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pathway. The Paris Agreement suggests that limiting the global
temperature increase to 2◦C requires over 300Gt cumulative CO2
reductions from the energy sector by 20502; whereas the re-
cent IPCC special report on the 1.5◦C pathway demands an even
more radical reduction of fossil fuel generation from the current
level of 65% to 8% in 20503,4. Achieving such a rapid decar-
bonisation of energy systems requires not only disruptive energy-
technology innovation but also a fundamental revision of how
our energy system should be designed, operated and optimised to
maximise the emission reduction potential without affecting secu-
rity and resilience of supply5,6. It has been widely acknowledged
that a successful energy system transition requires combined ef-
forts of technological progress, economic innovation, policy in-
tervention and behavioural change throughout the energy land-
scape7,8. Among such transition processes, several perspectives
are particularly promising and therefore have attracted signifi-
cant research interest, for instance low-carbon power provision
and energy efficiency enhancement. Furthermore, the adoption
of decentralised generation and storage in energy systems has
blurred the distinction between traditional producers and con-
sumers, resulting in so-called “prosumers” - entities that both pro-
duce and consume energy. Such a decentralisation also increases
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the complexity of the energy system, for instance because the tra-
ditional linear supply chain for energy (generation-transmission-
distribution-consumption) will continue to evolve into a com-
plex, intertwined and interdependent network9. In summary,
we are at a critical point in the transformation of our energy
system from traditionally separated energy silos and linear sup-
ply chains into interconnected complex systems with interacting
components and stakeholders. Therefore, the identification of
open questions and potential solutions for this critically important
transition presents energy researchers with unique opportunities.
This comprehensive review and impact assessment will explore &
critically discuss the role of digital technologies in the transition
process - vide infra.

1.2 Cyber-physical systems

The main objective of this paper is conceptualising the different
developments of digital technologies and their impact on energy
systems with specific focus on environmental sustainability and
economic feasibility28. A list of critical digital technologies and
related application examples is shown in Table 1. Although dig-
ital technologies have been classified into various categories in
Table 1, in practice these different technologies are typically in-
tertwined with each other in specific applications. For example,
advanced metering infrastructure (AMI) is an important source
of big data in energy systems, whereas analysis of big data could
be conducted through machine learning (ML). Similarly, the In-
ternet of Things (IoT) can create a scenario where data sharing
through the semantic web is crucial to create virtual representa-
tion of physical entities in a digital twin. In order to bridge this
conceptual gap in digital technologies applications, the concept
of cyber-physical systems (CPS) has been adopted as a high-level
combination of the aforementioned digital technologies29. CPS
are therefore the orchestration of linked computers and physi-
cal systems both horizontally (within a physical system and com-
puter respectively) and vertically (integration between a physi-
cal system and computer). In this paper, CPS are defined as co-
engineered interacting networks of physical and computational
components30, while the actual methodologies are referred to as
subsystems. CPS aim to create a virtual representation (cyber-
space) of real entities (physical space) to seek optimal solutions
to real-world problems by exploring solutions in the cyber-space.
In addition, artificial intelligence (AI) can be combined with CPS
to add intelligent decision-making capability, evolving CPS into
so-called intelligent CPS; herein shown in Figure 1. This integra-
tion of intelligent CPS in energy systems could not only change
their design principle and operation regime, but also contribute
to their transition in many ways; examples of such intelligent
CPS potential benefits include energy efficiency enhancement31,
operational flexibility in a dynamic environment32, resilience of
critical infrastructure29 and more. However, CPS had teething
issues and selected examples and their impact will be outlined
in this article to illustrates issues. Nevertheless, a recent IEA re-
port points out that “digitally interconnected systems could fun-
damentally transform the current energy industry”28; the newly
launched US Department of Energy’s Clean Energy Smart Manu-

facturing Innovation Institute (CESMII) also supports the future
integration of smart manufacturing and the energy industry, of
which one important aspect is exploring the possibility of using
smart manufacturing conceptions to improve the efficiency and
sustainability of the energy industry33; in the European Strategic
Energy Technology Plan (SET Plan), digitalisation is also consid-
ered a revolutionary and unavoidable enabler of the transition of
the energy sector 34. As a result, it is urgent to initiate a thorough
discussion of how intelligent CPS technologies (e.g. IoT, AMI, ML
combined with AI) can be applied in the energy system transi-
tion to improve its economics, sustainability, resilience and safety,
while catalysing decarbonisation endeavours (Figure 1). A hype
that was created around artificial intelligence in the 1960s did
not materialise and the authors believe that this was due to a lack
of computational power at the time. The enormous advances in
computational power combined with ML techniques are already
enabling specific AI at present with the potential of producing
general AI over the coming decades.

Fig. 1 Architecture of intelligent cyber-physical system.

1.3 Scope of the paper
In light of the two aforementioned contexts, this paper strives to
present an impact assessment of CPS technologies on the trans-
formation of energy systems, while focusing on enabling tech-
nologies, potential applications, influence on energy system eco-
nomics and environmental sustainability as well as energy secu-
rity. Section 2 provides a review of the state-of-the-art of the
predominant transition processes for energy systems. Section 3
lays out how CPS are affecting these trends using several rep-
resentative examples of CPS applications, such as intermittent
renewable integration, demand side management and efficiency
enhancement. Section 4 reviews the impact of intelligent CPS
on the economic viability and resilience of energy systems and
deducts policy implications from this socio-economic analysis. Fi-
nally, Section 5 assesses the potential of intelligent CPS for emis-
sion reduction, economic optimisation as well as the security and
resilience of the future energy system.

2 Energy system transition: State-of-play
Although the predominant opinion sees CPS technologies as im-
portant catalysts for the evolution of energy provision, such tran-
sitions can only happen with a rigorous understanding of the
state-of-play of the transition process and a purpose-oriented de-
sign of CPS that does not jeopardise systemic resilience 35. There-
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Table 1 Selected cyber-physical technologies and their applications in energy system.

CPS technology Definition Applications in the energy transition
Big Data Data set with high volume, high velocity and high

variety 10
Big data driven energy management system 11 (see Section 3.2)

Machine Learning Computer programs that can access data and use data to
perform tasks without being explicitly programmed 12

Intermittent renewable and demand forecast 13 (see Section 3.1)

Internet of Things Network of connected devices that could collect
information about the real world remotely and share it
with other systems and devices through
Machine-to-Machine communication 14,15

IoT enabled appliances control in smart home 16 (see Section 3.2)

Advanced
Metering
Infrastructure

An integrated system of smart meters, communications
networks and data management systems that enables
two-way communication between utilities and
customers 17

Advanced metering infrastructure based demand side
management 18 (see Section 3.2)

Edge Computing Edge computing, often occurring on distributed CPUs
embedded in executing devices such as robotics (i.e. at
the extremes of the network) 19

Hierarchical distributed edge computing framework architecture for
smart cities 20 (see Section 3.4)

Blockchain A non-centralised digital transaction ledger that is
public 21

Encrypted ledger for peer-to-peer energy trading 22 (see Section 3.3)

Smart Contracts A smart contract is a computer protocol intended to
digitally facilitate, verify, or enforce the negotiation or
performance of a contract 23

Smart contract based decentralized transactive energy auctions 23

(see Section 3.3)

Semantic Web Semantic description, understanding and integration of
data on the World Wide Web 24

Ontological knowledge management of district energy system 25

(see Section 3.4)
Digital Twin Virtual representation of physical entities in

cyber-space 26
Predictive maintainance of offshore wind farm in cloud-based
platform 27 (see Section 3.4)

fore, a systematic but brief review of the transition process is pre-
sented in this section: major energy transition trends are sum-
marised, while the main barriers for these technology applications
and their cost-effectiveness are outlined hereafter.

2.1 Low-carbon energy provision

A breakdown of the global power generation mix in 2017 is
shown in Figure 2. From this visualisation it is evident that fossil
fuels still dominate the power sector at present, while for 2050
two different scenarios portray two very different futures. On the
one hand, the EIA reference-scenario projects a two-fold increase
of renewable generation by 2050, which is far from the require-
ment under the IPCC 1.5◦C pathway3,4. On the other hand, the
IPCC scenario assumes a rapid switch from fossil fuel to renew-
ables (Figure 2). In order to achieve this, fossil fuel power plants
would have to either be retired prematurely or their CO2 emis-
sion sequestered subsurface 36.
Carbon Capture and Storage Early retirement of fossil fuel power
plants is difficult to achieve due to significant institutional iner-
tia in the regulatory bodies as well as economic considerations
due to long infrastructure lifetimes37,38. As a result, major hopes
have been placed on carbon capture and storage (CCS) as an en-
abler for continuous utilisation of fossil fuel. Energy & Environ-
mental Science has published a series of papers on CCS regarding
its technical, economic and commercial challenges to which the
interested reader is referred to for more in-depth views.39–41. Al-
though CCS could have a unique role in reducing the carbon in-
tensity of power systems, the rhetoric on CCS has not been turned
into reality so far (at the time of writing, there are only two oper-
ating CCS projects in the power sector worldwide with total cap-
ture capacity of merely 2.4 million tons per year42). Even though
the technology readiness level of post-combustion CCS has al-
ready reached the commercial level (TRL9)36, CCS integration

into a coal power plant would result in a two-fold increase of gen-
eration costs with an abatement cost of ca. 40US$/tCO2

∗, thus
undermining the economics of fossil fuel power plants in com-
petitive electricity markets. Enhanced oil recovery – the drain-
ing of oil wells through sequestration of carbon dioxide – could
provide additional incentives for CCS deployment, yet upscaling
from megatonnes to gigatonnes to produce material decarbonisa-
tion faces high uncertainty from carbon pricing, technology learn-
ing and fuel prices44–46.

Fig. 2 Global power generation mix in different scenarios. EIA refer-
ence scenario (left column) with world economic growth at 2.8 percent
per year from 2015 to 2050 and crude oil price at $119 per barrel in
2050 3; IPCC scenario (right column) corresponds to the 1.5◦C pathway
of global warming, IPCC scenario provides a range with uncertainty 4,
only the case with total generation equal to 2050 EIA scenario is shown.

The more sustainable path towards a low-emissions energy sys-
tem is via the provision of renewables. These renewables are

∗Coal power plant average generation cost are 82US$/MWh and 48US$/MWh with
and without CCS, respectively 43.
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divided into biomass and non-biomass (i.e. solar, wind, hydro
power, geothermal and tidal power). Combustion of biomass is
considered as close to carbon-neutral due to CO2 sequestration
during biomass growth. Assessment of the potential of biomass-
enabled decarbonisation in energy systems is challenging because
of uncertainties around the availability of biomass † 47,48 and
risks around the optimal allocation of biomass between different
end users ‡ 49. A recent analysis shows that biomass could pro-
vide 20EJ (i.e. 5500TWh) power supply in the 2◦C Scenario §

(2DS) with a total biomass availability of 112EJ51. Consequently,
there is sufficient biomass supply potential for the IPCC scenario
in Figure 2, however, economic & environmental evaluations of
this approach have not yet been conducted52. Integrated biomass
and CCS, known as BECCS, is a negative emission technology in-
cluded in many mitigation pathways. Opinions around BECCS
are controversial: although many treat BECCS as effective tech-
nology to offset carbon emissions 53,54, others argue that its in-
corporation could postpone the deployment of non-biomass re-
newables55 and result in risky carbon lock-ins56 ¶.

Fig. 3 Daily power demand versus renewable supply balance for Ger-
many. Shown here is the percentage of renewable energy supply in daily
demand during different days in 2016 (left); on the right is a hypothetical-
scenario where renewable capacity increased by nine times such that re-
newable energy supply is only insufficient for 30 days through the year 57.

Renewable Energy – Wind and Solar: To compensate for these
biomass-related limitations, non-biomass renewables, mainly so-
lar and wind, are required58. Both solar and wind power have
witnessed substantial growth and simultaneous price reductions
Solar PV capacity has increased more than 300-fold between 2010
and 2017 while its costs was reduced by 73% during the same
period. Concentrated solar power (CSP) capacity has increased
more than 10-fold during this period while generation cost was
reduced by 33%59. Although costs for utility-scale solar PV can be

†The availability of biomass is a complex function of land use, water use, food supply,
agricultural efficiency and biodiversity
‡ (e.g. electricity, heat, transportation fuel and most importantly food and feed
§ The 2DS lays out an energy system pathway and a CO2 emissions trajectory consis-

tent with at least a 50% chance of limiting the average global temperature increase
to 2◦C by 2100 50.
¶BECCS would need to be scaled up to around 16000 power plants in 2050 under

the 2DS pathway whereas there are only 3 industrial demonstrations at the time of
writing

reduced to 36USD/MWh60, its competitiveness still heavily relies
on policy incentives, such as feed-in tariffs (FIT) and investment
tax credit (ITC)61.

Similar trends can be found for wind energy – the global capac-
ities for both onshore and offshore wind generation have multi-
plied between 2010 and 2017, with a 30-fold increase for onshore
wind, and a 280-fold increase for offshore wind Table 3. Simul-
taneously, the average generation cost decreased by 25% for on-
shore and 18 % for offshore wind. Wind generation costs have
been reduced to 29USD/MWh for specific cases60, yet these low-
end costs can only be achieved when the weighted average cost
of capital (WACC) is low and operating conditions such as capac-
ity factors are favourable62. All estimations referred to above by
IRENA and LAZARD are summarised in Table 2.

A challenge for solar and wind is their inherent intermittency
and ancillary generation and storage capacity are needed to bal-
ance supply and demand63. In absence of sufficient storage ca-
pacity, solar and wind energy can only provide 25%-50% of en-
ergy demand, even in countries with significant capacity64. A
recent analysis for Germany shows that renewable energy capac-
ity needs to be increased by nine times to make renewable supply
sufficient over most of the year65,66 (Figure 3). CPS, in particular
ML applications, can facilitate such an alignment between supply
and demand, e.g. by solar and wind variability prediction or co-
ordinated model predictive control28. A detailed discussion on
these perspectives will be provided in Section 3.1.

2.2 Energy efficiency

Increasing Energy Efficiency: In addition to adopting low-carbon
technologies in generation portfolios, increasing energy efficiency
is key for moving towards cost-effective, low-carbon energy provi-
sion: the latest IEA study estimates that 40% of global CO2 emis-
sions could be reduced through energy efficiency improvement50.
Industry, transportation and the building sector have been iden-
tified as key areas to further enhance energy efficiency and rep-
resentative examples are provided in Section 3.2. For energy-
intensive industries, such as steel and iron, pulp and paper and
petrochemicals, increasing energy efficiency could be achieved
through various technologies. One of the most promising is in-
troduced hereafter67.

Supervisory control and data acquisition (SCADA), manufac-
turing execution system (MES) and enterprise resource planning
(ERP) are widely used in industry to monitor the production pro-
cess, facilitate the operation and maintenance of industrial pro-
cesses, and thus reduce energy consumption68. Similarly to in-
dustry, the building sector harbours great potential for improv-
ing energy efficiency using a home energy management system
(HEMS)69: HEMS can monitor and schedule home appliances
based on user patterns and real-time electricity prices, improve
renewable penetration by coordinating supply and demand fore-
cast, and support diagnosis of building energy systems, particu-
larly HVAC system operation70. Considered more broadly, con-
nected HEMS can aggregate to become a so-called System-of-
System (SoS) to reduce the peak energy demand of buildings in
communities and cities; such demand side management capabil-
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Table 2 Cost and emission performance of selected power supply technologies.

Levelized cost of electricity (2016USD/MWh) Life cycle emission (gCO2 eq/kWh)
IPCC estimations IRENA estimations LAZARD estimations IPCC estimations

Coal-PC 30/67/104 - 60/-/143 740/820/910
Coal-PC-CCS 62/120/164 - - 190/220/250
Gas-CCGT 34/78/153 - 41/-/74 410/490/650
Gas-CCGT-CCS 49/94/208 - - 94/170/340
Nuclear 35/71/103 - 112/-/189 3.7/12/110
Biomass 69/142/295 50/70/140 - 130/230/420
Hydropower 7/24/104 20/50/220 - 1/24/2200
Geothermal 13/66/142 30/70/140 71/-/111 6/38/79
Solar PV 61/120/142 50/100/350 36/-/46 18/48/180
CSP 120/164/241 160/220/260 - 9/27/63
Wind onshore 38/65/131 40/60/280 29/-/56 7/11/56
Wind offshore 87/131/197 110/140/240 29/-/56 8/12/35

Table 3 Capacity and cost of solar and wind power from 2010 to 2017 59

Capacity (MW) Cost (US$/MWh)
2010 2017 2010 2017

PV 1234 384621 360 100
CSP 419 4952 330 220
Offshore wind 67 29726 170 140
Onshore wind 16863 494821 80 60

ities of HEMS will be detailed in the next section as well. For
the transportation sector, strategies for improving the energy effi-
ciency of traditional fuel vehicles include fuel economy regulation
and tailpipe emission control71; yet in the long run, the shift from
internal combustion engines to electric drivetrains (EV) for cars
and light-duty vehicles is a more sustainable path for low-carbon
mobility72. Previous studies have shown that the well-to-wheel
CO2 emission of electric vehicles largely depends on the genera-
tion portfolio of electricity grids73, so increasing low-carbon gen-
eration in the electricity mix is critical and therefore discussed in
Section 2.1. Furthermore, the interaction between electric vehi-
cles and the grid has great impact on the design and operation
of power grids. On one hand, EV battery charging could change
the load curve of a power system thus requiring electricity ca-
pacity expansion74; on the other hand, the plug-and-play oper-
ation model of vehicle-to-grid (V2G) could make it a potential
spinning reserve for the frequency control of distribution grid75.
In this case, EV fleet management systems have to have access
to system-wide information sharing and distributed control to
provide charging strategy optimisation, individual mobility mod-
elling and V2G scheduling among others. CPS would clearly be a
highly valuable asset for such an optimisation.

Alternative Approaches: Circular economy (CE) provides an-
other important perspective to further improve energy efficiency.
As an alternative to the traditional linear make-use-dispose econ-
omy, this approach utilises material recycling, re-manufacturing
and energy reuse to effectively avoid resource waste, thereby im-
proving energy efficiency and industrial sustainability76. Based
on the principles of CE, industrial symbiosis (IS) and eco-
industrial parks (EIP) have become popular industry cluster ini-
tiatives in many countries: in Kawasaki Japan, reusing industrial
wastes in cement manufacturing has reduced 15% of greenhouse
gas emissions since 2009; in Karlsruhe Germany, energy exchange
between neighboring companies results in 21% carbon emission

reduction77. The current EIP optimisation approaches for optimal
design of water, energy and material network integration only fo-
cus on single-styled resource networks; in order to reach an opti-
mum symbiotic relationship among industries, all resources need
to be taken into consideration simultaneously. Moreover, vari-
ability of resource supplies should be addressed in more realistic
models because of the inherent uncertainties of related processes.
As a result, integrative decision support tools are needed to facil-
itate data sharing between different end users78. Similarly, CPS
provides significant opportunities for energy efficiency improve-
ment through enhanced energy management frameworks, which
will be shown in Section 3.2.

2.3 Energy storage

The necessity for energy storage is tightly related to the tempo-
ral and spatial imbalances between supply and demand in en-
ergy systems, particularly for intermittent renewables as current
power grid stability without storage would be jeopardised with
more than 20% intermittent renewables64). Additional benefits
of storage technologies include capacity adequacy and energy ar-
bitrage through bulk energy storage, load following, spin/non-
spin reserve and frequency response79. A range of energy stor-
age technologies (chemical, mechanical, thermal and electro-
chemical) have been proposed and assessed in the literature80,81.
However, similarly to CCS, the theoretical potential of various en-
ergy storage options has not yet been fully realised. According
to the global energy storage database in 2016, the vast majority
of global energy storage capacity (i.e. 162.2GW out of 168.6GW)
is fulfilled by pumped-hydroelectric storage, a mature technol-
ogy with significant geographic constraints82. Although pumped-
hydroelectric storage has a relatively high power rating and dis-
charge time, it only has an energy density of around 1Wh/kg;
comparatively, a state-of-the-art lithium-ion battery could achieve
energy density of 200Wh/kg and minute-level discharge capabil-
ity80, which can play the role of spinning reserve in modern elec-
tric grids79. A comprehensive comparison of various energy stor-
age technologies can be found in reference64. There is scientific
consensus that currently there is no silver bullet in energy storage;
to meet the varying needs of grid electricity storage, portfolios of
storage technologies have to be tailored to the specific needs of
the respective electricity grid.

Grid Balancing: Essential for a balanced grid is bulk energy
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storage, large-scale energy storage on the scale of hundreds of
megawatts capable of continuous power provision for multiple
hours83. Important benchmark metrics for bulk energy storage
technologies are investigated in literature based on economic &
energetic analysis and are summarised in (Appendix Table S1).
From this table it can be deducted that battery storage still has
a huge economic and energetic gap compared to mechanical ap-
proaches for bulk energy storage. Recent findings conclude that
substantial bulk energy storage is only necessary when a near-
zero emission energy system is pursued and a high carbon price
is imposed, otherwise dispatchable gas turbines could provide suf-
ficient flexibility 83. Based on this, it remains debateable whether
bulk energy storage is an economically & energetically competi-
tive way to decarbonise the energy system, how much bulk energy
storage is required for different decarbonisation targets, and how
it should be costed appropriately.

The utilisation of temporal price discrepancies in the electric-
ity market using storage capacity, so-called electricity arbitrage,
is a common value-added service related to bulk energy storage.
The benefits of energy arbitrage vary by region and market (from
$1 per kW-year to $163 per kW-year)79 and it is known that
the foreknowledge of real-time energy prices has a huge impact
on the benefits of energy arbitrage, CPS enabled electricity mar-
ket design could therefore play a vital role in energy arbitrage
through Machine-to-Machine (M2M) communication and auto-
mated trading. More perspectives on this aspect will be put forth
in Section 3.

With the exception of bulk energy storage, storage technologies
could also provide ancillary services in power grids such as volt-
age support, spinning/non-spinning reserve, black start and fre-
quency response. Different performance requirements in terms
of discharge and response times are required for different ser-
vices64. Furthermore, electrical storage could be used in power
transmission and distribution systems to facilitate congestion re-
lief and upgrade deferral, while on the customer side improve
reliability, reduce demand and eliminate outages79. Detailed dis-
cussions on how energy storage should be designed, operated and
valued in these applications are beyond the scope of this work84;
instead, the focus of this study centres on how CPS innovations
could facilitate energy storage integration into an energy system
during the energy transition stage. Details will be discussed in
Section 3.3.

The integration between electricity and other energy carriers
e.g. heat or fuel commonly referrred to as power-to-X (P2X) also
provides significant opportunities for energy storage. Instead of
power-to-power conversion in power grids, P2X enables the stor-
age of electricity in form of other energy carriers. Some pilot
examples include power-to-heat (through heat pumps), power-
to-gas (H2 through electrolysis), power-to-fuel (via hydrogen
and CO2), and power-to-mobility (via EV)81,85. There are sev-
eral benefits of P2X: firstly, electrification has become a major
trend in primary energy utilisation, yet there are certain difficult-
to-electrify sectors including the aforementioned heating, trans-
portation and chemical industries86 of which P2X assists with de-
carbonisation through sector coupling. Secondly, integrated elec-
tricity, gas and heat networks could provide additional flexibility

Heat pumpThermoelectric

Power to fuel

Combustion

Electric vehicle

Vehicle to grid

Fuel cell Electrolyzer

H2CPS based P2X

Fig. 4 Schematic of various Power-to-X (P2X) technologies applied in
energy system. Shown in the figure are different technologies that could
convert electricity into other energy end-users (e.g. heat, gas, fuel and
mobility) and vice verse.

for power utilisation87 – energy could be stored on longer time
scales (e.g. seasonal or annual) via thermal or chemical path-
ways88 while transportation of gas and chemicals through ex-
isting infrastructure provides another way to balance the spatial
and temporal mismatch between supply and demand in energy
systems89. Comparisons of different P2X pathways in terms of
energetic, economic and environmental impact have been con-
ducted in different studies: a comparative assessment shows that
power-to-heat and power-to-mobility are superior to power-to-
gas and power-to-fuel in terms of global warming impact & opti-
mal resource use81. Net energy analysis in another study suggests
that power-to-gas through regenerative hydrogen fuel cells has a
higher energy return on investment (EROI) compared to battery
storage because of the low energy cost of hydrogen storage90. In
the case of the power-to-fuel pathway, it was concluded that the
direct utlisation of low-carbon electricity is superior to fuel stor-
age in terms of both CO2 mitigation potential and cost91. Ana-
logue to this, an analysis of different pathways for electrochem-
ical synthesis of liquid chemical from CO2 shows that none of
these processes could compete with the present fuel prices based
on traditional manufacturing processes92. Based on these stud-
ies, it is concluded that the environmental benefits and economic
costs of P2X projects should be carefully evaluated based on the
specific context. Intelligent CPS-enabled energy system design
and optimisation could contribute to the solution of such prob-
lems; its potential is detailed in Section 3.3.

2.4 Energy Management Systems:
Systematic activities, procedures and routines including the ele-
ments of strategy planning, implementation operation, control,
organisation and culture, which aim to continuously reduce en-
ergy consumption and its related energy costs, are defined as
energy management systems (EMS)93. EMS utilise hierarchical
frameworks that facilitate the communication between interact-
ing elements in the system. A schematic of such a hierarchical
EMS is shown in Figure 5 and it can be seen that the increas-
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HEMS SCADA

Microgrid

HEMS SCADA

Microgrid

HEMS SCADA HEMS SCADA

Aggregator Aggregator

Energy system

Microgrid Microgrid

Fig. 5 Schematic of CPS enabled hierarchical energy management sys-
tem. Shown in the figure is a hierarchical structure of energy manage-
ment system enabled by the two-way communication between HEMS,
SCADA, microgrid and aggregator in energy system.

ing adoption of advanced metering infrastructure (AMI) in home
energy management systems (HEMS), together with data-driven
decision support, could allow billions of appliances to be involved
in demand response28. Specifically, in the context of HEMS, the
EMS could receive price signals from system operators or aggrega-
tors, which could be treated as moderators between the grid oper-
ator and end users. The HEMS would make decisions on how dif-
ferent appliances should be scheduled in order to maximise utility
without undermining normal function. Sequentially, the control
orders could be sent to different appliances from the EMS through
AMI so that the orders are implemented in different appliances.
Aggregators play a key role in such CPS-enabled demand re-
sponse. as they could bundle groups of customers, possibly to-
gether with the related renewable and storage options under its
management, and act as unified flexible sources in an energy sys-
tem. Early demonstrations of such applications have shown that
for a population of 629 houses, 21% of peak load could be shifted
by combining dynamic pricing and HVAC system control94. Ma-
chine learning methods, especially reinforced learning methods,
could make important contributions in this area95. An overview
over algorithms is shown in Table 4. Combining ML algorithms
with CPS hierarchies in demand forecasting and dynamic pric-
ing,the potential of EMS could be fully unleashed, a critical topics
which will be discussed in Section 3.4.

Throughout Section 2, it was explained that the ongoing energy
transition is a complex, long-term challenge that needs collabora-
tive contributions from low-carbon power provision, energy effi-
ciency enhancement, storage adoption and related areas. Despite
the notable progress in these areas, much remains to be achieved
to meet energy & emission targets. Intelligent CPS technologies
could hypercharge such advancements and therefore accelerate
the energy transition. Hereafter, several “sweet spots” of intel-
ligent CPS technology will be analysed ranging from computer-
vision-aided renewable resource identification, CPS-based build-
ing management system, CPS-enabled smart charging of elec-
tric vehicles, deep learning enabled data centre cooling control,
agent-based modelling and integrated cross-domain platforms for
energy management.

Table 4 Selected machine learning algorithms used in energy system
literature.

Algorithms Definitions
Linear Regression Discover linear relationship between output and

one or more features 96,97

Curvilinear
Regression

Find polynomial relationship between output and
one or more features 96,97

Auto Regressive
Integrated
Moving Average

Coupled auto regression and moving average
method in time series forecast 98,99

Decision Tree Tree-like graph for classification 100

Naive Bayes Classification technique based on Bayes’
theorem 100

Support Vector
Machine

Use kernel method to transform the data then
find the optimal boundary between outputs 13

Random Forest Get mean prediction through multitude of
decision trees 13

Artificial Neural
Network

Regression or classification through
interconnected nodes 101

K-Nearest
Neighbors

Learn feature probability distribution through
distance function 101

Principle
Component
Analysis

Reduce feature space dimension through
orthogonal transformation 102

Boosting Ensemble meta-algorithm 103

Markov Chain Stochastic model describing a sequence of
possible events 104

Reinforcement
Learning

Agent-based AI algorithm in which the agents
learn the optimal set of actions through
interaction with the environment 95

3 Intelligent CPS applications in energy
transition

In Section 2, major trends in the transition of energy systems have
been outlined on a conceptual level, while this section reviews in
detail some applications of selected CPS technologies in this tran-
sition. Current applications of CPS technologies in energy systems
cover various segments including generation, transmission, con-
sumption and storage at various spatial levels (equipment, build-
ing, district, city105). Although the ultimate goal of CPS is to
create a holistic platform that facilitates the design and operation
of energy systems, this is not yet a reality and CPS applications
are restricted to specific contexts, such as promoting low-carbon
renewable integration (Section 3.1), increasing energy efficiency
through demand side management (Section 3.2) and facilitating
energy storage through electric vehicle charging (Section 3.3)28.
In addition, opportunities and challenges for the future develop-
ment of intelligent CPS technologies are discussed in this section
as well (Section 3.4). Hereafter, prominent examples for the im-
pact of CPS on energy systems are outlined.

3.1 Promoting low-carbon energy provision
The application of CPS technologies in CCS power plants can
transform the vast amount of operational data into actionable
intelligence in order to integrate and improve plant operations,
thereby reducing costs and improving energy efficiency106. The
I4GEN project, or Insight through Integration of Information for
Intelligent Generation107, defines three enabling technologies for
such a transformation – real-time information, distributed and
adaptive intelligence, action and response. It is also pointed out
that six digital networks (sensors and actuation, data integration
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and information management, advanced process control, asset
monitoring and diagnostics, advance O&M, optimisation) are im-
portant for such a digital transformation. In the first instance,
the project demonstrates its capability in fault diagnosis through
advanced pattern recognition algorithms, e.g. analysing turbine
blades’ vibration data to prevent turbine damage; analysing cool-
ing tower motor temperature data to spot possible clogs. In the
long run, it is anticipated that CPS technologies can be used for
real-time monitoring of a CO2 storage site as well as leakage de-
tection through drones and computer vision28. Successful appli-
cations of machine learning-based computer vision in natural gas
leakage detection have already been reported108 and the possibil-
ity of using deep learning to classify methane leak sizes at oil and
gas facilities has been proved as well109. The International En-
ergy Agency estimates a 20% decrease in CCS plant operational
costs based on observations at natural gas plants28. Based on
these initial findings, it can be concluded that the application of
CPS technologies in CCS storage and monitoring could enhance
the economic feasibility of this approach to climate change mit-
igation and moreover, alleviate the energy drawbacks of the se-
questration process.

Fig. 6 Automated solar panel location and size estimation through deep
learning techniques based on satellite imagery. On the left is the location
and size of solar panel as detected by satellite imagery; on the right is
the re-constructed image based on deep learning method 110.

In order to bridge the gap between EIA projections and IPCC
targets for renewable energy capacity (Figure 2 outlined in Sec-
tion 2.1), the identification and projection of the global poten-
tial for renewable energy are of vital importance. Aerial photos
and satellite maps provide useful information on this aspect and
the combination of satellite data and numerical analysis meth-
ods for such an assessment has been proposed111. An exam-
ple outcome of such an effort is the Global Wind/Solar Atlas, a
free, web-based application developed, owned and operated by
the Technical University of Denmark (DTU) in partnership with
the World Bank Group, utilizing data provided by Vortex, with
funding provided by the Energy Sector Management Assistance
Program (ESMAP)112,113. In the project, the global potential for
energy provision from wind and solar generation is shown; such
assessments are conducted based on high-resolution remote sens-
ing and can provide important baselines for the planning of new
solar and wind farm projects in terms of optimal location and po-
tential capacity et al.112,113. The Prediction of Worldwide Energy
Resources (POWER) project by NASA is another effort in this area
– by making use of NASA’s satellite observations, the project can

provide net solar radiation and meteorological data at high tem-
poral and spatial resolutions (e.g. 0.5o latitude/longitude and
with hourly results114). With recent developments in machine
learning, in particular deep learning, detailed useful knowledge
extraction from such images becomes possible. For instance, it is
reported that by exploring convolutional neural network (CNN)
and concurrent local sky images, minute-level solar panel out-
put predictions with around 30% relative-root-mean-square error
values (rRMSE) could be achieved115. In another study, deep
learning models are used for automatic detection of solar PV
panel location and size based on satellite imagery; here, a nearly
complete solar panel installation database for the contiguous US
is established110. The input and output of such deep learning
methods are shown in Figure 6. It can be seen here that the cur-
rent deep learning techniques could accurately identify the solar
PV panel location and size from complex satellite imagery in a
fast and scalable way, thus providing updated information about
rooftop solar PV installations. By further utilising socio-economic
data, the model could correlate such factors with solar deploy-
ment to obtain useful insights and predictions on the current solar
power capacity as well as key factors that could shape the future
potential. Based on such insights, it is estimated that at least 8%
more solar PV panels will be installed in the US110.

Fig. 7 Heat map of solar energy generation in the UK power system in
2017. Shown here is the UK power system average hourly solar power
generation over 2017. Darker colors on the heat map represent higher
values. Data shown in the figure is available from 116.

In addition to the assessment of the potential for renewable ca-
pacity, intelligent CPS technologies, in particular machine learn-
ing methods, can also facilitate the integration of intermittent
renewables through improved forecasting of variability. As dis-
cussed in Section 2.1, the intermittent nature of renewable en-
ergy is a main barrier for its large-scale penetration of the energy
system. For example, the hourly solar generation of the UK power
system could reach 6GW during summer peak hours but remain
at 2GW on most days in winter (Figure 7). As a result, a flex-
ible natural gas plant is still needed in the generation mix as a
supplement and backup for such renewables.

Augmenting Grid Balance: For the efficient operation of such
mixed energy systems, accurate forecasts of renewable fluctu-
ation at various time horizons (e.g. intra-hour, intra-day, day-
ahead, week-ahead) are critical as they can contribute to efficient
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management by optimising unit commitment, economic dispatch
and maintenance scheduling among other factors96. Recent ad-
vances in machine learning could play a major role in such ar-
eas. Compared to traditional physical methods like numerical
weather prediction, ML methods could provide higher predic-
tion accuracy at larger temporal and spatial scales (e.g. 1 sec-
ond to 1 month, 1 m to 2 km117). Various ML methods have
been applied in the area of renewable forecasting, among which
the most commonly used include artificial neural network (ANN),
k-nearest neighbor (KNN), support vector machine (SVM) and
random forest13,98. Selected examples of such algorithms and
their definitions are provided in Table 4. Generally, the forecast-
ing methods are divided into two categories: univariate methods
that only use endogenous time-series data of previous power out-
put, and multivariate methods that combine power output time
series and exogenous data from numerical weather predictions
and meteorological measurement99. While detailed descriptions
of the models are beyond the scope of this paper, it is important
to note that state-of-the-art forecasting methods can reduce the
relative-root-mean-square error values (rRMSE) to 2% and 5%
for day-ahead solar and wind forecasting respectively103. Such
an increased prediction accuracy can economically optimise the
operation of energy systems: it is estimated that by applying such
forecast models, the Independent System Operator New Eng-
land (ISO-NE), which operates a system with 13.5% solar power,
could reduce its annual electricity generation cost by 13.2 million
USD118. A similar conclusion is reached by the US National Re-
newable Energy Lab for California’s Independent System Opera-
tor (CAISO), which operates with 25% wind. Here, it is found
that a 10% forecast performance improvement could result in
overall annual savings of 25 million USD due to reduced oper-
ation time of regulation reserve and renewable curtailment119.
The potential benefits of renewable forecasting in other power
systems depend on the specific generation portfolio structure as
well as characteristics of the electricity market; moreover, it could
be projected that as renewable share in energy systems increases,
the benefits of ML-based renewable forecasting would be larger.
In that way, ML-based renewable forecasting could become the
next high value-adding point in future energy system operations.

3.2 Reinforcing energy efficiency

As laid out in Section 2.2, another area in which CPS technolo-
gies are highly likely to make a significant difference is increasing
energy efficiency, for instance in real estate management or the
efficient use of energy infrastructure.

Building Management Systems: In the building sector, CPS will
transform operations when integrated into building management
systems (BMS). The Brick schema is a representative CPS-based
BMS application120 in this area; its main purpose is to represent
the contextual information of sensors, systems and building struc-
tures in existing building management systems (BMS) through
class hierarchy (tag sets) and relationship sets. The Brick schema
is realised in a resource description framework data model that
represents knowledge as triples: subject, predicate and object.
The applications of such meta-data schema are shown through

(a) Hours in a day versus yearly average demand

(b) Duration percentage versus hourly demand

Fig. 8 UK power system demand profile in 2017. Shown here is the
yearly average power system demand for different hours in the day (left);
on the right is the percentage that various hourly demand accounts for.
As can be seen, the top 18% demand only lasts for 10% during the
year 116.

automatically converting raw BMS meter data into structured
data complying to the Brick classes and integrating it with us-
able data analytical techniques for fault diagnosis in buildings. In
particular, Brick schema applications allow us to conduct stuck
damper detection by comparing supply air flow sensor values
and system set points as well as to detect simultaneous heating
and cooling by querying the reheat coil command and supply air
flow temperature sensor of different variable air volume terminals
feeding the same room. BOnSAI, a Smart Building Ontology for
Ambient Intelligence, is another well-developed CPS application
operating at the building level121. Similar to Brick schema, BOn-
SAI targets smart buildings, yet from the perspective of ambient
intelligence (a ubiquitous, personalised, context-aware comput-
ing environment through embedded IoT infrastructure in build-
ings). The classes in BOnSAI are categorised into several main
concepts: hardware, service and context. Hardware class de-
scribes the devices and appliances as part of the physical entities
in buildings, such as air conditioner, lighting, sensor and actuator;
service class describes the functionalities of devices as operations,
with each operation having its own input, output, precondition
and effect; context class describes the dynamics of different op-
erations in different circumstances. Furthermore, BOnSAI was
demonstrated to facilitate the coordinated control of SmartPlugs
on a university campus by interpreting the sensor parameters at
various locations.

Improved Utilisation of Energy Infrastructure: In addition to
improved BMS, CPS can also contribute to the efficient use of
expensive energy infrastructure through demand side manage-
ment. The rationale behind demand side management is tightly
related to the fact that the demand profile of most power sys-
tems is nonlinear; that is to say, high demand only happens dur-
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ing a short period of time all year round as shown in Figure 8.
It can be seen that the top 18% demand only lasts for 10% of
the year, resulting in a high peak-to-average ratio of the power
system. Similar demand characteristics of other energy systems
at different temporal and spatial scales have been reported122.
In order to tackle such challenges, the conception of demand
response has been proposed to reduce the peak-to-average ra-
tio in power systems and has been implemented in various con-
texts: through demand response, the peak demand of CAISO,
ISO and New England have been reduced by 1500 MW, 530 MW
and 1100 MW respectively123. The latest IEA report estimates
a 185 GW flexibility benefit by implementing demand response
worldwide, which could result in around 270 billion USD savings
by avoiding investment in new electricity infrastructure28. The
potential for demand response could be realised through two ap-
proaches: price-based schemes and incentive-based schemes124.
In the price-based approach, a dynamic pricing mechanism is de-
signed so that end users could adjust their load schedule accord-
ingly. Examples of such dynamic pricing schemes include time
of use rates (TOU), critical peak pricing (CPP), real-time pricing
(RTP) etc. In contrast, in an incentive-based approach, partici-
pating customers are obligated to change their consumption pat-
tern as required and receive an incentive/punishment for their
response/inaction125. In both cases, a major challenge is that
two-way communication between consumer and utility is needed
in order to both pass the price signal to consumers and collect
power consumption data from different end users126. As a result,
most existing price-based demand side management projects are
designed for energy-intensive industry and commercial end users
because of the relatively high energy intensity and existing com-
munication infrastructure (e.g. the supervisory control and data
acquisition system mentioned in Section 2.2). CPS provides a
new paradigm for such EMS including big data driven analytical
frameworks (BDDAF) and AI-based solutions for energy-intensive
industries. BDDAF has been proposed as architecture for future
industry EMS, which strives to connect high-resolution process
simulations with real-time data by taking advantage of IoT and
distributed artificial intelligence127. Successful examples of such
CPS based EMS in improving the energy efficiency of industrial
processes have been reported in literature33. In Germany, it is
estimated that demand side management potential from energy-
intensive industries, such as wood pulp production, aluminum
electrolysis and cement mills, could reach 1230MW in 2020128.

The recent development of deep learning has been successfully
implemented in energy efficiency improvements130. DeepMind,
the company behind AlphaGo, has developed an AI system which
was used for data center cooling control129. Control of data cen-
ter cooling is difficult due to the complex interaction between
equipment and environment as well as the unique architecture
and environment of each data center and as a result, traditional
rule-based engineering and heuristics do not work optimally in
these cases131. To address such a complex problem, DeepMind
has developed a deep neural network based algorithm for efficient
and adaptive optimization of the energy efficiency of Google’s
data centers. Trained with historical data that has been collected
by various sensors, the AI system can reduce energy demand from

Fig. 9 Performance of Deepmind AI system in cooling control of data
center. Shown in the figure is the change of energy saving (green) and
number of training examples (blue) of data center cooling control AI sys-
tem enabled by deep neural network 129.

data center cooling by 30% (green line in Figure 9). Moreover, an
internal list of safety constraints has been proposed to guarantee
that the optimal actions computed by AI are vetted; operators of
data center could also exit the AI mode at any time when safety
precautions are raised. The self-learning nature of the deep neu-
ral network also enables performance improvements by AI over
time with increasing data availability (blue line in Figure 9), and
therefore further efficiency gains are highly likely. The efficiency
gains outlined above have economic and environmental ramifica-
tions which will be addressed in Section 4.1. Similarly, Google
Nest is using self-learning thermostats for home automation to
save energy from building energy utilization132; the application
of AI technologies for energy efficiency improvements is becom-
ing a new paradigm.

Fig. 10 Predicted electricity demand increase in Germany from 2016
to 2050 due to sector coupling between electricity sector and other end-
users 57.

3.3 Facilitating energy storage
As mentioned in Section 2.3, P2X enables the coupling between
the electricity and other sectors, such as transportation, heating
and cooling, fuels as well as chemicals. Although “electrification
of everything” combined with low-carbon power generation pro-
vides a theoretical pathway to a net-zero-emission energy sys-
tem86, it would simultaneously induce a significant increase in
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electricity demand. For instance, it is estimated that by introduc-
ing power-to-gas, power-to-heat, and power-to-mobility applica-
tions in Germany, the total electricity demand would increase by
two to three times from 2016 to 2050 (Figure 10). In such a
context, it is important to design novel strategies that utilize syn-
ergetic effects throughout the integrated energy supply chain as
shown in Figure 4. Intelligent CPS technologies can therefore
play a vital role in the holistic design and control of such inte-
grated energy systems.

Fig. 11 Impact of regular and smart charging strategies on the peak
power demand. Shown in the figure is the comparison between regular
and smart charging resulted EV charging demand: peak power demand
can be reduced significantly by combining mobility data and distributed
control method.

Coordinated Charging: CPS-based smart charging of electric ve-
hicles is a good example of such synergetic applications. The ex-
pansion of the EV market in the coming years will result in a
significant increase in EV charging-related power demands, but
such an increase can be flattened out by implementing advanced
charging control133. Achieving such a goal requires a coordinated
smart charging strategy; the schematic of a CPS-enabled smart
charging scheme is shown in Figure 11. It can be seen from this
figure that by combining mobility data, EV battery characteristics
and distributed intelligence, the peak power demand resulting
from EV charging could be significantly reduced. In the illustrated
scenario, it is assumed that three different charging stations are

responsible for three different EVs which come to the charging
stations at different times with different loads. In the conven-
tional “park and charge” scenario, the EVs would be fully charged
once they reach the charging station; in such a scenario, the ag-
gregated power demand from EV charging is 15kW at maximum
(Figure 11, orange line). In the “smart charging” scenario, the
vehicle would provide the charging station with its energy needs
for the coming day74, and the intelligent CPS would use the data
from all vehicles to design a charging schedule that smooths de-
mand and utilises the lowest possible electricity prices; peak de-
mand would be reduced to 5 kW (Figure 11, green line). The
possibility of such a smart charging strategy has been proven in
the Pecan Street Project, a US Department of Energy’s Office of
Electricity Delivery and Energy Reliability funded Energy Internet
demonstration project in Austin, Texas134. The project physically
connects over 1000 residences with smart energy, gas and water
meter data. The smart meter data holistically covers the home’s
electricity use data at the individual circuit level as well as so-
lar PV generation and EV charging. The temporal resolution of
the data collection process could be as high as one second. The
Pecan Street Project demonstrates that wireless IoT data acquisi-
tion and storage techniques combined with robust data backhaul
and server-side data storage and manipulation can lead to im-
proved solutions. By analysing the Pecan Street data, researchers
have gained new insights about the optimisation of EV charging
135 and storage integration solution, increasing the feasibility of
EV applications while minimising grid impacts 136. Moreover, its
technical solution of data collection, cleaning, sharing and anal-
ysis, although mostly commercially confidential at present, sets
up a proper prototype of how a smart charging strategy can be
implemented in reality. Recent studies have shown that in more
complex scenarios, the benefits of such coordinated EV charging
become larger: in the case of the UK power system with a hypo-
thetical 10% market penetration of EVs, uncontrolled EV charg-
ing could result in an 18% daily peak demand increase whereas
coordinated smart charging would only result in a 10% peak de-
mand increase137. Similar patterns have been found for other
P2X applications, for example, for power-to-heat applications in
the German energy system, coordinated optimisation based on
distributed information could reduce peak power demand by ap-
proximately 20% compared to uncoordinated operation138. In
the same way, the increase in peak power demand caused by elec-
trolysers in power-to-hydrogen applications can be mitigated by
generating accurate hydrogen demand forecasts which allow for
optimised incorporation133.

Peer-to-Peer (P2P) Energy Trading: This is another area where
CPS technologies can aid the integration of energy storage. One
key dimension of the current energy transition is the creation of
prosumers that directly participate in distributed production, con-
sumption and storage. However, the distributed energy resources
are mostly intermittent, and thus a transaction-based energy mar-
ket is needed to enable trading between prosumers – so-called
P2P energy trading139. The establishment of such a P2P energy
trading platform provides an additional lever utilised towards the
implementation of effective energy storage. Blockchain technol-
ogy, especially when combined with smart contracts, is a promis-
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ing technology to address the challenges of P2P energy trading
through transparent, tamper-proof and secure systems140. Al-
though the development of blockchain-enabled P2P energy trad-
ing and storage has not yet been widely applied, there are al-
ready multiple explorations in the literature: blockchain-enabled
P2P electricity trading in the chemical industry has been success-
fully demonstrated where two electricity producers and one elec-
tricity consumer can trade with each other22. The possibility of
combining such blockchain-enabled energy trading with an au-
tomatic price predictor for energy arbitrage is also reported141.
A further study has proven that smart contracts can manage the
auction throughout the bidding and energy exchange with mul-
tiple consumers bidding for PV power23. The benefits of such
blockchain-based platforms have also been reported: in Roma-
nia, a blockchain platform that enables bilateral transactions be-
tween consumers and renewable energy producers could achieve
up to 30% reduction in energy costs, whereas 40% savings is re-
ported for another decentralised platform for energy trading be-
tween generating units and consumers in Slovenia142. A draw-
back that has to be solved to deliver energy & emissions savings is
the energy intensity of blockchain mining & transaction verifcia-
tion. In short, both processes are highly energy intense and there-
fore affect energy use & emissions; consequently, energy balances
have to examined to determine if blockchain approaches deliver
bottom-line savings. For details we refer to a recent review article
on blockchain technology in the energy sector140 The full poten-
tial of such CPS-based P2X and P2P processes can only be fully
unleashed when privacy and security issues can be overcome, a
topic that will be discussed in Section 4.

3.4 Integrated energy management

Apart from the various CPS applications that have been proposed
in the previous section, a promising direction for future CPS ap-
plication in the energy transition is integrated energy manage-
ment. Compared to CPS applications in the single domain, in-
tegrated energy management usually requires cross-domain in-
teraction with other sectors of the economy, which would bring
additional barriers stemming from the following aspects – data
collection, communication, information exchange and data anal-
ysis.

Data Collection: The 3V (high volume, high velocity and high
variety) characteristics of big data (Table 1) present practical
problems in terms of data storage, processing and manipulation
in CPS applications. Firstly, in modern smart meters, the temporal
resolution of data collection could be as high as one second; such
data sets could easily reach terabyte scale in the short term11. As
a result, it is important to find an optimal way to store the data
either locally or in the cloud143,144. Moreover, CPS data are char-
acterised not only by their large volume but also by their high
heterogeneity25. CPS data are highly heterogeneous in both for-
mat and semantics. Data from different sources (sensors, texts,
web, etc.) could be presented in completely different formats (ta-
bles, figures, natural languages, math equations, etc.). Moreover,
such data could also be semantically not interoperable120, as do-
main knowledge is only known implicitly to domain experts and

different domains might refer to the same conception as different
silos and vice versa. To some degree, overcoming this data hetero-
geneity is more challenging than handling the 3V data challenge
in energy system CPS145.

Communication and Information Exchange: As per the commu-
nication layer, data heterogeneity is also a significant issue that
can affect communication performance and the design of com-
munication protocols. Yet another challenge is balancing these
privacy concerns and personal data control during communica-
tion with the possibility of accessing data to provide better ser-
vices. Because CPS manages large amounts of data, including
sensitive information like health, gender and religion, significant
issues about data privacy are raised146. CPS requires privacy poli-
cies in order to address privacy issues, thus a data anonymisation
management tool is required to produce anonymised information
before the system processes it126.
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Fig. 12 A typical procedure of knowledge extraction from data through
machine learning.

Data Analysis: Gathering insights from big data through ma-
chine learning is a core competency in many CPS applications and
computational intelligence plays a key role during such a process
(Figure 12). Recent advances in machine learning techniques,
especially deep learning, open new possibilities for such data-
driven approaches in many energy system contexts31,147. How-
ever, most ML models are black box and have low interpretabil-
ity148, whereas most existing energy management systems are
rule-/logic-based149. As a result, a combination of such machine
intelligence and prior expert knowledge in energy CPS projects
poses another great challenge. Another concern in the computa-
tion aspect comes from the computational cost. Many ML models
are quite computationally expensive and relatively slow, which
could impose barriers for real-time applications such as parameter
updating and model predictive control150. From such a perspec-
tive, it is expected that the future computational engine in CPS
energy systems could balance domain knowledge and machine in-
telligence in a delicate manner such that best performance could
be achieved with a modest computational cost.

Integration: Cooperation and coordination between different
components in the energy system as well as between the energy
system and other sectors (e.g. transportation, water, food) is a
key feature of future energy systems151. To achieve maximal syn-
ergy of such an integrated system, a holistic optimisation frame-

12 | 1–28Journal Name, [year], [vol.],



work is needed. Such integration needs much more than data
assimilation; in most cases, interoperability between tools and
models is essential12. However, most models currently available
only contain a description of mathematics without methodolo-
gies, making it difficult to understand how the model should be
reused and under what conditions the models are valid152. Only
by changing such model representation standards, together with
the incompatibilities between platforms and communication tech-
nology, problem-solving strategy in a distributed and coordinated
manner could be formulated so that integration within the energy
system could be realised153.
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Fig. 13 Various interacting players in the social-technical subsystems of
power system as typical complex adaptive system 154.

Upgraded Urban Management:Agent-based modelling (ABM) is
another commonly used method for such integrated energy man-
agement problems154. The interaction between different socio-
technical players in a power system makes it a typical complex
adaptive system, which features heterogeneous, interacting and
adaptive units as well as emergent properties155. In Figure 13,
different players in a power system (i.e. power producer, system
operator, consumer in the social subsystem) are modelled as dif-
ferent agents that have their corresponding physical assets in the
physical subsystem. By simulating the separate and interacting
decision-making of different agents, system-level dynamics could
be evaluated using an “assemblage” approach156. By combin-
ing GIS-based temporal and spatial information representations,
ABM can link high-level master planning and low-level project
planning for resource and infrastructure planning. Furthermore,
by combining ABM and mathematical programming (e.g. linear
programming, nonlinear programming), resilient and sustainable
urban energy system planning can be achieved157. Digital city
exchange is a pilot project in this area158 (Figure 14) that aims
to revolutionise the urban infrastructure by integrating energy,
transport, waste and utility resources. The project takes advan-
tage of recent progress in pervasive sensing, large-scale mod-
elling, new optimisation techniques, web services technologies,
the Internet of Things and cloud computing to find innovative so-
lutions to optimise the use and planning of cities. Specifically, the
projects look into the following aspects: sensor and data, cross-
sector integration, real-time data incorporation and digital ser-
vices implementation. Key findings of the project include urban
sensor data integration techniques159, design of reliable commu-

nication networks for sensors160 and the interaction between be-
havioural economics and transportation energy consumption161.
For such a project, it is estimated that peak power demand can be
reduced by 20% by deploying the dynamic pricing based on such
a demand response32.
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Fig. 14 Schematic of digital city exchange: An integrated platform for
energy, transportation, waste and utility planning through pervasive sens-
ing, large-scale modeling, new optimization techniques and web services
technologies 158.

Enhanced Management of Industrial Complexes: Increasing the
reusability and interoperability of CPS subsystems is another chal-
lenge for CPS-enabled large scale energy system applications. J-
Park Simulator, a general cross-domain research platform that has
been used for energy management of large-scale energy systems
based on distributed knowledge graphs and interoperable agents,
provides some useful insights25,162,163. The Knowledge Graph
represents a collection of interlinked descriptions of entities and
aids the CPS with regard to data management, while agents are
the executive subroutines of the CPS algorithm. The architec-
ture of the J-Park Simulator is shown in Figure 15. In order to
achieve high interoperability between different models and sub-
systems, modular ontologies of various domains have been used.
Some of the domain ontologies have been adopted, some have
been obtained from the Linked Open Data Cloud and others have
been developed as part of the JPS project. Such ontologies con-
tain explicit descriptions of notions (concepts) for different do-
mains so that heterogeneous data from different sources can be
integrated into an interconnected knowledge graph. For exam-
ple, in Figure 15, OntoKin contains ontological descriptions of
chemical reaction mechanisms (which could be used for calcu-
lating emissions from combustion in engines or chemical pro-
cesses in the atmosphere)164; OntoCAPE has detailed informa-
tion about the energy conversion unit, equipment and process165;
the weather ontology, DBpedia and OntoCityGML provide infor-
mation about weather, common sense and urban infrastructure
respectively166,167. A key difference between a knowledge graph
and classic relational database is that both data (instances) and
concepts are represented by unique IRI which can be easily ex-
tended, both in terms of instances and concepts. The semantic
representation allows logical operations on the elements of the
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knowledge graph. The operations on the knowledge graph are
carried out by agents that are also described in form of concepts
and instances. This facilitates interoperability between different
domains, for example electricity and steam networks25. Based on
such a knowledge graph, agents – namely “a physical or virtual
entity that can act, perceive its environment (in a partial way)
and communicate with others, is autonomous and has skills to
achieve its goals and tendencies" –168, can retrieve information
from knowledge graph, perform specific tasks, interact with each
other in a distributed manner and find an optimal solution to en-
ergy system design and operation problems. Several agent types
have been proposed in order to tackle the inherent complexity of
the energy systems.

Through the combination of the aforementioned types of
agents, J-Park Simulator can automatically formulate solutions
for different energy system related problems, such as optimal eco-
nomic dispatch of power flow169, industrial symbiosis network
optimisation163 and waste energy utilisation25. It is shown that
by optimising the power and heat cogeneration system on Jurong
Island Singapore, the annual power generation can be reduced
from 19 TWh to 12 TWh, a reduction of 63%169.

operate on

Agents

Real entity

SensorActuator

Knowledge Graph

Fig. 15 Architecture of a cross-domain platform for energy management
of large-scale energy system based on distributed knowledge graph and
inter-operable agents.

Through discussion of the above projects, it can clearly be seen
that the applications of CPS technologies in energy systems have
grown significantly over recent years while the complexity of the
associated problems has grown simultaneously. The integration
of CPS technologies into energy systems has changed from inar-
ticulate to ubiquitous, adding a new dimension to the ongoing
energy transition. As a result, contemporary energy systems are
evolving from a purely physical to a cyber-physical system. This
evolution generates a fully digital representation of the physical
world in cyberspace. Studying the interaction and mutual impact
of cyber and physical elements in energy systems has a signif-
icant impact on the economic, security and resilience of future
cyber-physical energy systems, which will be detailed in the next
section.

4 Impact of cyber-physical systems on the
energy transition

The preceding sections have illustrated that CPS are critical for
the transformation of centralized, high-carbon energy systems to
decentralised, low-carbon energy provision. Associated with this
transition are clearly costs as well as benefits, because signifi-
cant investments in sensing and computational models precede
the benefits arising from more efficient resource use and lean op-
erations. In the subsequent section, three distinct areas that are
deemed critical – economics, security concerns as well as policy –
implications are addressed. While there are obviously no holistic
studies on the economic and policy implications of CPS, there are
many clear conclusions that can be drawn.

4.1 Economic & environmental impact assessment

The electricity sector is going through a significant digital trans-
formation because traditional boundaries between the various
branches of energy supply sectors such as heating, cooling, and
transport are blurring. Moreover, established conceptions of en-
ergy markets, business models and consumption patterns are be-
ing turned upside-down and new providers such as platform tech-
nology from other sector are already entering the market170. In
addition to the current challenges of transformation, new tech-
nologies are impacting internal business culture, strategies and
the general management of the energy companies in an ever
faster cycle. For instance, global investments in digital electric-
ity infrastructure and software have increased by 20% per annum
in 201728. The economic rational behind these investments is
clear: the cost savings potential of CPS and its subsystems is esti-
mated to be in the area of US$ 80 billion between 2016 and 2040.
Most of the reduction potential is due to reduced operations and
maintenance costs, efficiency improvements as well as reduced
downtimes and prolonged lifespans28. According to the IEA, the
following four areas are the main contributors28:

1. Smart demand response by preserving energy consumption
and massive investment in new installed electricity supply
capacity;

2. Integration of intermittent renewables;

3. Advanced charging technologies for electric vehicles;

4. Promotion of distributed energy resources (e.g. domestic
generation & storage.)

These are also the areas in which CPS and its subsystems will
catapult energy systems from silos to digitally interconnected net-
works and therefore the estimated US$ 80 bn are mainly at-
tributable to CPS. Herafter, distinct areas of impact, for which
reliable data is available, will be addressed: Firstly, ad-hoc calcu-
lations of emissions and costs savings for the representative ex-
amples outlined in Section 3 will be presented. Secondly, repre-
sentative examples for the literature are examined to quantify the
benefits of intelligent CPS.

Illustrative calculations:
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1. Data centres: The energy consumption of global data cen-
ters is forecasted to grow to 3000 TWh by 202528. Since
DeepMind’s technology has the proven potential to reduce
energy consumption of servers and data centers by 30%129,
900 TWh of electricity generation could be saved. Using to-
day’s electricity price and carbon footprint of California (215
kg/MWh & 0.16 US$/kWh)171, where most servers are lo-
cated, this AI-CPS efficiency improvements would equate to
a staggering CO2 emission mitigation of 193 Mt as well as
144 bn US$ cost savings. Such examples clearly illustrate
the environmental and economic benefits CPS can provide.

2. Building management system: EIA estimates that build-
ing energy use will be responsible for 30% of global energy
use by 2050, which corresponds to 1000 TWh3. According
to the analysis of California’s Independent System Operator
(CAISO), 10% energy savings can be achieved through im-
plementing BMS-related energy management and demand
side response techniques, enabling the potential of 100 TWh
reduction in electricity use28. Reducing the need for this
portion of electricity results in a potential abatement of 22Mt
of CO2 (eq.) as well as a reduction of costs of approximately
16bn US$.

3. EV Charging: The IEA’s Global EV Market Outlook antic-
ipates over 120 million EVs on road in 2030, resulting in
an overall energy demand of EV charging that accounts for
6% of global power demand, (approximately 200TWh)172.
The analysis shows that coordinated EV charging can reduce
the electricity demand by 40%137, resulting in 80TWh to-
tal savings. Based on current electricity prices and emission
intensities, the benefits of CPS in EV charging can be quanti-
fied as 18Mt CO2 emission abatement and 13bn US$ saving
respectively.

4. Renewable forecasting: Based on projection of the EIA, en-
ergy provision by intermittent renewables (e.g. wind and so-
lar) has the potential to reach 11500 TWh by 20503. Again,
according to a case study by California’s Independent System
Operator (CAISO), a 15% increase in renewable penetration
can be expected with a 10% forecast performance improve-
ment119, which equals to 1725 TWh electricity generation
increase. The corresponding CO2 emission reduction poten-
tial and financial optimization can reach 380Mt and 276bn
US$ respectively.

5. Power system optimization: For the proposed integrated
energy management tool – J-Park Simulator – previous stud-
ies have shown that by optimizing the power and heat co-
generation system on Jurong Island Singapore, the annual
power generation can be reduced from 19TWh to 12TWh
providing a staggering reduction of 63%169. Using Sin-
gapore’s power emission intensity and electricity price (i.e.
431kg/MWh & 0.12US$/kWh) as benchmark173, it is esti-
mated that 3Mt of CO2 emissions could be achieved while
840m US$ could be saved.

These illustrative sample calculations based on the representa-
tive cases presented within this review already show the substan-
tial economic gains and environmental benefits stemming from
the application of intelligent CPS. In addition, larger scale indus-
try studies that gauge the impact of CPS, or indeed one of its sub-
systems, have been carried out and will be reviewed hereafter.

Electricity Generation & Distribution Costs: As explained in Sec-
tion 3, CPS can reduce production costs of an energy system con-
sisting of 13.5% solar power by 13.2 million US$ by integrating
the intermittent renewable more efficiently. Based on an over-
all cost of generation of US$ 120 million, this equates to savings
in excess of 11% illustrating the enormous potential delivered by
CPS. Analogue for wind generations, we reported that a system
that operates with 25% wind, a 10% forecast improvement could
result in overall annual saving of 25 million US$ which translates
to 20% reduction of overall costs. McKinsey & Company estimate
that digitalization across the value chain of utilities can produce
staggering improvements and hence costs savings174. In their
2018 report, the consultancy estimates that the main cost savings
originate from firstly, process automation, secondly digital en-
ablement and thirdly, advanced analytics fully in accordance with
our assessment. The report estimates potential savings in the elec-
tricity generation alone at 11% while 26% are possible in trans-
mission and distribution. These savings are highly significant,
especially in the context of a lean industry accustomed to annual
gains of 1% to 2% in real terms, at the optimum. In their prac-
tice, the consultancy has seen operators reduce their costs by 10%
in medium-voltage distribution grids, 15% in high- and medium-
voltage overhead lines and underground cables, and 20% in high-
and medium-voltage substations. Moreover, simultaneous to the
operational improvements, asset reliability increases and asset
management costs decrease, which will be addressed in the sub-
sequent section 174.

Energy Infrastructure and Maintenance: As outlined in Sec-
tion 3, the transformational potential for digitalization in energy
stems its ability to break down systemic boundaries increasing
flexibility and enabling enhanced systemic integration. The elec-
tricity sector is the integral part of this transformation, because
of the progressive electrification of the whole energy system and
the proliferation of decentralized power sources. Within this de-
centralization, digitalization is blurring the distinction between
supply and demand, and creating opportunities for consumers
to interact directly in balancing demand and supply. The IEA
estimates that by 2040, 1 billion smart households and 11 bil-
lion smart appliances could actively participate in interconnected
electricity systems, which would assist in balancing demand and
supply28. This smart demand response could provide 185 GW of
system flexibility equivalent to the currently installed electricity
supply capacities of Italy and Australia28. This additional sys-
temic flexibility could reduce necessary investments in new elec-
tricity infrastructure by US$ 270 billion or 15% while ensuring
security of supply. Moreover, digitalization is and will be criti-
cal when integrating intermittent renewables by enabling grids
to match energy demand to the variable provision of renewables.
In the EU, increased storage and demand response could reduce
the curtailment of solar photovoltaic (PV) and wind power from
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7% to 1.6% in 2040, and avoid about 30Mt of CO2 emissions by
2040. The roll-out of coordinated charging for EVs which mini-
mizes peak demand and assists in balancing supply and demand,
could save between US$ 100 billion and US$ 280 billion (depend-
ing on EV uptake) by superseding investment in electricity infras-
tructure between 2016 and 204028. As outlined in Section 3.2,
in Germany the impact would be highest as the potential for de-
mand side management for its energy intensive industries, could
reach 1230MW or 12% by 2020128. However, not only the in-
vestments into new infrastructure will be affected by CPS and
its subsystems, also the lifespan and management costs will be
positively affected. Again, McKinsey & Company in their 2018
study on digitizing utilities estimate that asset-management costs
can be reduced by up to 20%174. Moreover, digital infrastructure
can facilitate larger shares of distributed energy resources, turn-
ing consumers into so-called prosumers, while novel instruments
such as the blockchain may facilitate such local energy trading
systems as discussed in Section 3.3. From these examples, it can
clearly be deducted that CPS already have an impact on the evo-
lution of energy systems and hence, impact the design of the next
generation energy architecture.

Trade-off between energetic costs & benefits: The energy savings
potential of CPS obviously goes hand-in-hand with energy utilised
by the system and net energy savings have to be assessed to gauge
the overall impact. Thiede studied a cyber-physical production
system called EnyFlow that monitors energy demand data. It col-
lects this data with a resolution of 1 second for machinery (10W,
220 days per year) while utilising a desktop computer (150 W,
8760 hours per year), and tablet as well as several sensors. In-
troducing EnyFlow increases the energy invested by 7.7% while
reducing energy needs by 20% leading to a net improvement
of 12.6% and lead to an environmental breakeven below one
year. The economic break-even, i.e. the return on investment, for
EnyFlow is achieved within the first year according to Thiede175.

As decision support for assessing CPS, feasibility diagrams are
essential. Based on the EnyFlow case, Figure 16 shows favorable
and non-favorable areas for CPS based on the absolute potential
(in kWh) that is addressed combined with necessary relative im-
provement impact over a defined time frame. The isopleths mark
the break-even line. With that, for a given production situation
(with its potential) necessary relative improvements to achieve a
brea-keven in a given time frame can be derived. This example
clearly illustrates that CPS can provide economic and environ-
mental benefits.

Fig. 16 hlCPPS environmental feasibility diagram based on EnyFlow 175.

Feasibility diagrams of this kind have to be developed for larger
CPS in order to ensure that cost and benefits, environmental as
well as economic, are balanced and that CPS provide true bene-
fits.

While there are many cases in which CPS have been an ex-
cellent tool for optimisation, there have been teething problems.
The UK Government’s Smart Meter Program has faced resistance
from the public and consequently, has only broke even in 2019.
Analogue, Duke Energy in the US has fitted 2 million homes at
the cost of around US$300 million and have not yet recovered
their costs. In industry, General Electricity’s IoT platform Predix
has cost billions and not provided the returns. However, all these
monetary losses look pale compared to the issues with the CPS
failure of Boeing’s 737 Max aeroplanes, where a failure of the au-
tomated system is likely to be the cause of two crashes. This case
will be discussed in more detail in 4.3. Nevertheless, it is widely
anticipated that the overall effect of intelligent CPS is positive in
terms of economic and environmental optimisation of energy sys-
tems. Because the transition has an impact on energy economics
and investments as well as the emission-abatement potential, they
notably alter the marginal abatement cost curve (MAAC), vide in-
fra.

4.2 Impact on the Marginal Abatement Cost Curve:

In 2007, McKinsey & Company published the marginal abatement
cost curve (MACC), a curve that illustrates both the marginal cost
of abatement as well as the abatement potential of certain tech-
nologies. The MACC has long been critisised and McKinsey her-
self admitted that version 1 was from the 16th century, while ver-
sion 2 had moved to the 18th century. Among the various points
of concern around the MACC are (i) the static representation of
costs, (ii) the ancillary benefits e.g. by reducing air pollution and
(iii) the wider mitigation of social costs 176,177. The emergence
of CPS technologies has brought further improvements that will
have to be considered in the MACC in order to further establish
it as a discussion tool for climate mitigation strategies; hereafter,
we will argue that the MACC was further altered by CPS and has
to be updated continuously due to the rapid improvements by
digital technologies.

CPS have altered both the abatement potential and the eco-
nomics of selected decarbonization technologies, because CPS
improve efficiency, reduce risks and optimise overall processes.
Figure 17 shows a simplfied version of the original MACC with
each technology characterized by the abatement potential and
cost (top), the impact of CPS on the MACC resulting in 20% in-
crease in batement potential (middle) as well as an AI enhanced
CPS version with an abatement potential increased by additional
30% (bottom)178. In the baseline scenario, the marginal abate-
ment potential and cost of selected sectors by 2030 (including
building sector, petrochemical, iron and steel sector, solar, wind,
coal CCS, BECCS and hybrid/electric vehicle as shown in the leg-
end in Figure 17) is taken from the original publication, the ag-
gregated CO2 mitigation potential from these sectors is estimated
at 7.7Gt176,177,179.

In the CPS scenario, aforementioned CPS technologies are as-
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Fig. 17 Impact of CPS technologies on the marginal abatement cost of selected decarbonization technologies in energy transition. Shown in the figure
is the marginal abatement cost of selected decarbonization technologies (represented by different colors) without CPS technologies (top 177), with CPS
technologies (middle 34,119,180), and with intelligent CPS technologies (below 176,178,179).
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sumed to be applied, leading to significant increases in abatement
potential as well as reductions in cost as noted by striped areas
in the middle of Figure 17. A few illustrative examples clarify the
basis of the newly rendered MACC: Buildings are forcasted to be
resposinsible for 20% of global energy use and building energy
management is likely to reduce 10% through CPS-optimisation
resulting in a 3% reduction in global energy use28. EV charging
will be responsible for 6% of global electricity demand and co-
ordinated charging could reduce demand by 40% consequently
reducing electricity demand globally by 2.4%137. CPS-based in-
tegrated energy management can reduce energy use of industrial
complexes by 63% and thereby increase CO2 emission abatement
potential by this factor169. A full overview over the data utilised
to establish new new MACC curve (centre of Figure 17) including
references to the original literature can be found in the supporting
information.

From the survey outlined in the preceding sections and the il-
lustrative examples above, it can be concluded that state-of-the-
art CPS technologies will continue to be integrated in different
sectors in the coming years and the delivery of economic and en-
vironmental benefits is highly likely. Moreover, future develop-
ments of CPS technologies, such as the combination of AI with
CPS, are estimated and displayed in the bottom graph of Fig-
ure 17). Based on the analysis presented herein, it is estimated
that by integrating both current CPS technologies and future CPS
technologies into the investigated sectors, the CO2 abatement po-
tential could be increased from 7.7Gt to 9.4Gt (20% increase)
and 12.2Gt (another 30% increase) respectively. In particular, the
largest increase comes from hybrid/electric vehicles, the building
sector as well as solar and wind generation, for which the CO2
abatement potential could increase by 40%, 28% and 20% re-
spectively. The authors are aware of the fact that technological
progress, especially for instruments such as AI, is not foresee-
able. However, it can already be predicted with certainty that
AI and ML will bring significant efficiency improvements and the
uncertainty is solely on the upside, i.e. in the extent of efficiency
improvements delivered. Furthermore, it has to be noted that
the impact of CPS technologies on renewables and electric ve-
hicles critically depends on the penetration level of renewables
in energy system as well as the percentage of electric vehicle in
the overall fleet. In this paper, predictions for these factors are
adopted from reference180,181. Consequently, the calculations
presented herein are critically dependent on the accuracy of the
forecasts cited. Moreover, the application of CPS technologies in
the investigated sectors could reduce the abatement cost of such
decarbonization technologies, especially in sectors which already
have significant ICT infrastructures. According to our estimations,
CPS technologies could reduce abatement costs in most sectors by
5%-15% without any additional investment (striped areas in Fig-
ure 17).

While the estimates used for the establishment of the revised
MACCs displayed in Figure 17) are subject to distinct uncertain-
ties, the economic assessment of CPS technologies combined with
the abatement potential speaks for itself: CPS, especially when
combined with AI, can catapult us on unforeseeable decarboni-
sation pathways while saving money. In order to meet emission

targets and restrict the increase of global average temperatures
to 1.5◦C, intelligent CPS are indispensable. Unfortunately, the
application of these systems not only come with upsides, but also
noteworthy downside that will be discussed in the subsequent
section.

Uncertainties are obviously significant, but there is a consen-
sus that AI and CPS will improve the efficiency of processes,
while the extent is not foreseeable. Therefore upwards uncertain-
ties are significant, while downwards uncertainties are negligible
(i.e. it is unlikely that digital technologies will increase overall
emissions or costs). Since digital technologies evolve on shorter
timescales than physical technologies, optimisation of processes
is accelerated. The improvements of AI are therefore displayed
more transperant in the bottom graph of Figure 17. The MACC is
an excellent visualisation tool to engage practitioners, but there
are many caveats and the overall message needs to be updated
to include the many effects of digitalisation and CPS as well as
the anticipated impacts of AI. In conclusion, the enormous and
swift advances of digital technologies demand that the MACC is
updated on a regular basis in order to keep it the excellent illus-
trative tool for strategic thinking on climatic change and decar-
bonisation.

4.3 Energy security implications

Cyber-threats to energy & industrial security: The enormous bene-
fits outlined in Section 4.1, however, come with distinct down-
sides: while CPS will enhance the operations of critically im-
portant sectors such as energy and industry, it will simultane-
ously make them more vulnerable to cyberattacks and thereby
cyber-dependent182. Hostile entities could severely affect na-
tional economies by disrupting the strategically important sup-
ply of energy at any point across the energy value chain. Due
to the inherent nature of CPS, which connect the cyber sphere
with the physical world, attacks can penetrate from one to the
other thereby creating significant risk in the real world. CPS are
consequently not only the enabler of efficiency improvements, in-
creased resilience and heightened safety, but simultaneously ex-
acerbate the consequences of a potential cyber-threat183. For in-
stance, industrial control systems (ICS) could be disabled which
would lead to loss of control of critical infrastructure and hence
could cause a dangerous failure of a critical energy asset. More-
over, a cyber attack could open a safety valve or redefine security
settings thereby creating significant risks to humans in the phys-
ical world. Cyber-attacks on the energy sector are therefore a
severe threat to public safety and economic security184. Conse-
quently, this new form of crime creates new risks and vulnera-
bilities, particularly for the stable functioning of Critical Infras-
tructures (CIs), ICS as well as integrated and digitalised supply
chains. To make matters worse, cyber attacks have become both,
more sophisticated and more frequent. Hereafter, we will briefly
review the economic impact, countermeasures as well as the role
of governments in mitigating cyber-threats.

Potential economic impact: Even though political and public
consensus has been building on the importance of cyber-security
in general and especially for energy provision and industrail pro-
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duction, efforts by industry to strengthen its cyber-defense capa-
bilities are not deemed to be sufficient185. Estimations put the
economic damage from cyber-crime for global businesses at US$
450 billion186. For example, a cyber-attack on the distributed
energy resource management system could result in damage
to transformers, which are expensive and often difficult to re-
place184. Therefore, industrial production and energy provision
have been the main targets of cyber-attacks with 33% and 16% re-
spectively. Accenture and the Ponemon Institute estimate that the
average levelised cost for the energy and utilities sector amounts
to 17.2 million US$187.

The insurance market Lloyd’s of London estimates that an ex-
tremely disruptive cyberattack could cause up to 120 bn US$ of
economic damage which exceeds major natural catastrophes188.
It is therefore of paramount importance that industrial-scale op-
erating systems are equipped with built-in security measures that
exhibit several layers of protection as opposed to an external secu-
rity wall. While such multi-layer systems are being implemented,
progress is rather slow. The economic ramifications of cyber at-
tacks therefore justify significant investments in cyber-security
measures; an important topic that will be outlined in the sub-
sequent section.

Cyber security & resilience: Cyber-resilience focuses, until re-
cently, on hardening the perimeter around cyber-system, how-
ever, these measures are not always the most cost-effective ways
to reduce the impact of cyber-crime. Accenture proposes a three-
step process in order to shield CPS from cyber-attacks and thereby
prevent real-world damage187. According to the analysis, higher-
value assets, i.e. the assets critical for operation and security, have
to be shielded using several, hardened perimeters. The rational
behind this is to make it difficult, expensive and time-consuming
for attackers to achieve their goals. Apart from the focus on criti-
cal assets, three maximes are proposed:

1. Strong Foundation: security intelligence as well as advanced
access control are the foundation of an intelligent cyber-
security system;

2. Pressure testing: testing using outside agents is key to verify
the protection of critical assets and furthermore, locate other
vulnerabilities of the CPS;

3. Invest in next-generation technology: AI and advanced an-
alytics will, over the coming decade, help with both protec-
tion from and detection of cyber-attacks. Investments in this
area are needed to protect CPS from the next generation of
cyber-attacks.

In a recent review article addressing the challenges for secur-
ing CPS, Cardenas et al. dive into the specific of safeguarding189.
Therein, the authors argue that patching and frequent updates
are not well suited countermeasures for CPS-based control sys-
tems as these monitor industrial processes in real-time and there-
fore cannot easily be taken off-line and upgraded. Better suited
antidotes are redundancy and diversity to miminize the effect of
one affected entity, the princliple of least privilege that limits the
amount of duties one entity has as well as utilising game theory
to play through realistic attack scenarios.

In the traditional approach to CPS security, supervisory con-
trol and data acquisition (SCADA) systems collect measurements
from smart meters and sends them to a control center where op-
erational constraints are verified. Based on this data, contingency
analyses are carried out on a regular basis to evaluate if the power
system is stable. However, this approach is relatively slow due
to its centralised nature and novel, distributed approaches have
been proposed, vide infra.

Over the last 10 years, security information and event manage-
ment (SIEM) software has received much attention from corpo-
rates as a means to efficiently manage cyber-threats and attacks.
SIEM technology initially evolved from the log-management,
i.e. the monitoring of agents logging in to a cyber system.
SIEM software collects and aggregates log data generated by the
cyber-system’s technology infrastructure, from host systems and
applications to network and security devices such as firewalls
and antivirus filters. The software then identifies, categorizes
events/incidents, and analyzes them. Thereby, the software ful-
fills two main objectives: firstly, it reports on security-related in-
cidents, such as successful and failed logins, malware activity or
other potentially malicious activities. Secondly, it uses the anal-
ysis to report on potentially malicious activities. It is therefore
a mechanism that helps companies to mitigate cyber-attacks at a
point when they have already managed to circumvent the perime-
ter and penetrate the system190–192. As so often with technologi-
cal progress, humans are the weakest point. Many cyber-security
strategies therefore rely on awareness building for both, devel-
opers and users of CPS by training developers to code securely,
training operations staff to prioritize a strong security posture. It
can therefore be concluded that there are many efficient ways to
safeguard CPS and increase their cyber-resilience, their effective-
ness will only be tested when they are applied in the real world.
Yet another difficulty arises when the threat actually comes from
within the CPS - an issue that will be address henceforth.
Smart grids & cascading effects: Smart grids are an extreme case
of connecting the cyber and the physical world, because they not
only connect critical infrastructure such as power plants and the
electricity net, but also connect vulnerable home-based CPS such
as smart homes with the critical infrastructure. Owing to this
critical connection, cascading effects that span from a failure in a
home system can potentially affect the energy system at the na-
tional or even continental level are theoretically possible. There-
fore, four specific threats for smart grids are defined and solutions
are proposed:

1. The high level of complexity and interconnectivity at domes-
tic as well as continental scale demands security solutions
that prevent cascading effects, i.e. the spread of digitally
induced misfunctions through the smart grid.

2. Due to the very long lifetime of energy systems in which the
components remain in the field for decades, security solu-
tions should be designed to be extensible and evolving to
integrate new components and new security requirements.

3. Architecture and governance of a smart grid must be de-
veloped so that compromised components are detected and
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isolated in a way that minimises the impact on the rest of
the infrastructure.

4. Disaster recovery techniques are required in case of major
disruption so that security of supply is ensured.

Also for this case, clear countermeasures are proposed. Firstly,
application security: Many cyber-attacks occur via web-based ap-
plications, the weakest technical point in CPS. Also here, user
education as well as developer’s awareness of the issue are key.
Users have too know that these apps are entrance points and de-
velopers have to be conscious of the threat and code with security
in mind. These measures have to be augmented with fuzzing and
penetration testing to deliver apps that are not easy points of en-
try. Secondly, security measure for home systems could have reg-
ulated security standards, analogue to computer network safety
standards. Thirdly, even small entities have sufficient computa-
tional power to monitor and report abnormalities and the security
process can thereby be decentralised in hyper-connected smart
grids. This approach is commonly referred to as distributed in-
telligence (DI), will significantly improve smart grid security193

and aid the process of making CPS intelligent, vide infra. Never-
theless, these procedures have to be implemented and reviewed
continually as threats are difficult to foresee, while policy makers
have to establish appropriate incentives to support these security
measures.
Novel Assessment Frameworks for Cyber-Security: Power system se-
curity assessment plays a central role in maintaining a high secu-
rity of supply. Traditional CPS approaches rely on monitoring and
contingency analysis, however, this approach is likely to fail for
hyperconnected CPS in the energy sphere. Rasmussen et. al. pro-
posed a novel framework that, ahead of monitoring, introduces
a intrusion detection system (IDS) and utilises an electronic con-
tinuous risk management (CRM)193. Another novel technique to
this enhanced security assessment framework is to distribute the
process of monitoring, contingency analysis and preventive ac-
tions decision, i.e. to delegate it to integrated electronic devices
(IEDs) thereby decentralizing security responsibility and conse-
quently, increasing cyber-resilience193.

It has to be noted that this section is only a broad overview
over the manifold of security measures for CPS and the interested
reader is referred to a recent review article that discusses this
topic in detail 193,194. A full discussion of cybersecurity for CPS
is out of the scope of this article.
Making CPS Intelligent: Yet another issue stems from the fact that
AI carries intrinsic risk ranging from risks for human employment
to existential risk for humanity. An example of existential risk
posed by intelligent CPS and fiercely discussed at present is the
issue surrounding the crashes of two of Boeing’s 737 Max aero-
planes. Due to incorrect data from a faulty sensor which indicated
that the airplane was stalling, an automated system known as the
maneuvering characteristics augmentation system was initiated,
incorrectly pointing the aircraft’s nose down to prevent stalling.
In both accidents, involving an Indonesian and an Ethiopian car-
rier, the pilots did not manage to overrule the machine’s actions,
resulting in the death of several hundred people. It is far beyond
the scope of this review article to address the general ethical and

philosophical concerns regarding AI and the interested reader is
therefore referred to books by Barrat195, Harrari196, Bostrom197,
Tegmark198 and Kurzweil199. It is without the scope of this ar-
ticle, however, to discuss which safeguards CPS could provide
and which override mechanisms could be implemented to pre-
vent tragedies like these two aircraft crashes.

From this section, it can be concluded that CPS will provide
real advantages in terms of sustainability and economics in many
areas while introducing completely new risks. In order to safe-
guard against these risks, policy makers must have the foresight
to implement policies aimed at alleviating them; several impor-
tant proposals will now be outlined.

4.4 Policy implications

The rapid developments of digital technology combined with the
falling costs outlined in this review article are driving the digi-
talisation of energy systems and industrial production. However,
efficient policy and market design are critical to help steer this
transformation onto a secure and sustainable path. Many govern-
ments have developed holistic policy packages to support CPS,
for example in Industry 4.0, as implementing the mechanisms of
advanced manufacturing and efficient energy provision is seen
as a clear competitive advantage. Missing out on this advantage
would cost economies significantly and therefore, many govern-
ments have decided to support digitalisation efforts as well as
their safeguarding using public funds.

Supporting Cyber-Physical Systems: Governments understand
that the economic competitiveness of their respective countries
critically depends on the efficient implementation of digital tech-
nologies, i.e. CPS and its subsystems, in advanced manufactur-
ing and low-carbon energy provision. The European Union, for
instance, has established complete frameworks that put in place
policies and supporting funding for developing pilots, education
or research in digital manufacturing. These policy levers are
mainly targeted at SMEs to ensure that this segment can par-
ticipate in and benefit from the advantages provided by CPS. A
comprehensive overview of the EU’s initiatives as well as the en-
deavours of its member countries are provided in200. Singapore’s
Industry 4.0 initiative is outlined in201, while the US’s “Revitalis-
ing American Manufacturing" can be found in202. Figure 18 gives
a visual overview of the policy landscape in the EU, at present the
leading region with regard to advanced manufacturing and digi-
tal energy. It can be seen from the third column of Figure 18 that
investments are substantial; for instance, the largest public in-
vestor in this sphere is France, who has committed approximately
10 billion EUR to reinvigorate its manufacturing base after experi-
encing fierce industrialisation over the past decade. Germany, the
EU’s industrial powerhouse, has committed much less but has in-
vested very early in order to remain one of the world’s top indus-
trial producers. In the German case, investments are directed to
CPS rather than Industry 4.0 (Figure 18, rightmost column) illus-
trating that although initially an industrial topic, CPS are deemed
relevant in other economic sectors as well.

Due to the pronounced impact that CPS will have, and the
large investments committed, the authors conclude that imple-
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Fig. 18 Overview over targeted policy framework that foster Industry 4.0
as well as the implementation of cyber-physical systems 200.

menting CPS will be crucial for economic survival, especially for
advanced economies. However, simultaneous to fostering invest-
ments in CPS and its development, policy makers are concerned
with the impacts of these systems on environmental sustainabil-
ity and national security, two dimensions of CPS that will be ad-
dressed briefly in the following paragraphs.

Environmental Policy: CPS have already been applied to moni-
tor many environmental processes ranging from water supply to
fire detection. Policy makers should incentivise the use of CPS
in order to accelerate their uptake in environmental protection.
Such incentives could range from direct support or to tax schemes
favouring secure CPS technologies that provide environmental
benefits. Moreover, regulations could be adapted, for instance
a tightening of energy standards for appliances and machinery
that can only be met when monitored and optimised in the cyber-
realm. In any case, more and more regions have internalised
emissions in energy prices using carbon pricing or taxes and con-
sequently, economic incentives to use CPS to optimise operations
are already in place, though indirectly.

Security Policy: Just as in the case of environmental concerns,
private sector players already have clear incentives to safeguard
their CPS as attacks can be enormously costly (see above). Since
industrial production and energy security are matters of national
security, policy makers have to ensure that security standards are
implemented to safeguard economic output and hence society as
a whole. The U.S. Department of Homeland Security, for instance,
has initiated the cyber-physical systems security (CPSSEC) task
force. CPSSEC engages through a combination of coordination
with the appropriate sector-specific oversight agency, government
research agencies, industry engagement and support for sector-
focused innovation, small business efforts and technology transi-
tion. This work encompasses the development of sector-specific
industry consortia tasked with monitoring and improving the se-
curity and resilience of CPS203. Germany has initiated a similar
endeavour, the cyber-security strategy, part of the Federal Office
of Security in Information Technology204. This cyber-security
strategy contains a range of policy levers that are aimed at in-
creasing security and safeguarding the German economy. While

these are two prominent examples of leading economies, most
OECD countries have holistic policy packages implemented to
protect industry, citizens and their national interest from cyber-
attacks. A comprehensive comparison can be found here205.

In addition to these direct threats, policy makers are aware of
the issue of data protection for consumers and businesses and
have proposed solutions that safeguard data protection and IT se-
curity, minimising economic vulnerability in this regard. The EU’s
general data protection regulation (GDPR) is already tackling pri-
vacy and security issues that arise from the implementation of
CPS in various walks of life.

Governing Artificial Intelligence: Nick Bostrom argues that suffi-
ciently intelligent machines could improve their own capabilities
faster than human computer scientists and therefore the outcome
could be an existential catastrophe for humans197. Since CPS
bridge the cyber-world in which AI exists with the real, physical
world, they are the enablers of AI’s direct impact on the world
and hence human lives198. Via CPS, super-intelligence could af-
fect our life in the physical world and consequently marginalise
humankind. It is therefore of utmost importance and urgency
to regulate AI appropriately in order to avoid such an existential
risk. While there are clear proposals for regulating AI, the regu-
lation of AI-enhanced CPS is in its very early stages. Respecting
data privacy has to be implemented into AI algorithms to balance
functionality and data privacy, i.e. AI should be most effective
while respecting people’s privacy. While the EU’s GDPR has made
tremendous progress in this realm, combining CPS with AI will be
the next hurdle for smart policy design.

Yet another important area is transparency; the operations of AI
have to be fully transparent so that the chain of reasoning leading
to a decision is fully comprehensible. This is critical, for example
when investigating the negative effects caused by a decision made
by an AI-like algorithm. Fairness as well as ethics of machine
decisions have to be accounted for, a formidable problem not only
to be solved by policy makers, but also philosophers.

It is anticipated that AI in the medium-term will be equiva-
lent to human intelligence, so-called human-like machine intelli-
gence, and will also have the ability to surpass it in the long-term,
so-called super-intelligence. Such advanced AI has to be guided
by governing principles, equivalent to Asimov’s Laws of Robotics,
that ensure that AI works to promote the wellbeing and prosper-
ity of humankind as a whole while protecting individual human
rights and fostering democracy. This issue will be addressed in
a forthcoming publicationIt can be concluded that policy mak-
ers are well aware of the issues surrounding CPS and that policy
frameworks are in place that foster the development of CPS, safe-
guard them and direct them onto a sustainable pathway. The crit-
ical gap is the implementation of AI into CPS, so-called intelligent
CPS; here, policy makers have to act with foresight to preempt
possible detrimental impacts on economies and people.

From the analysis of the advanced marginal abatement cost
curve as well as policies of leading economies in this race, it can
be concluded that the risk CPS pose is well worth taking and the
benefits of CPS clearly outweigh the risk for cyber-security, given
the right measures are adopted.
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5 Conclusions
In this comprehensive review article, the impact of so-called
cyber-physical systems (CPS) as well as their subsystems on the
decarbonisation of energy was assessed. CPS are defined as high-
level orchestrations of various cutting-edge digital technologies
creating a digital representation of the physical world. This dig-
ital representation enables the advanced operation and control
of the physical system using advanced optimisation tools as well
as novel digital technologies. Among these technologies are big
data, machine learning, IoT, AMI, blockchain and the semantic
web. This orchestration will lead to synergetic benefits in terms
of economic improvements and environmental sustainability that
go way beyond the potential of isolated digital technologies.

The envisioned transition of energy systems towards sustain-
ability has three critical dimensions relevant for its success: (i)
low-carbon power provisions, (ii) energy efficiency improvements
and (iii) energy storage adoption. This article gives clear exam-
ples showing that CPS technologies will be critical for the suc-
cessful implementation of all three dimensions. First examples of
the implementation of AI into CPS have shown that this syner-
getic combination can have unanticipated benefits and will lead
inevitably to economic and environmental gains, but may lead to
societal risks that are unforeseeable at the time of writing.

Case studies were used to illustrate the benefits of CPS and its
sub-systems for the economic and environmental viability of the
main pathways to the low-carbon energy systems named above.
In case of renewables, CPS will promote the integration of the in-
termittent energy source in existing energy system, e.g. through
computer-aided renewable resources identification and renew-
able energy forecasts improved by machine learning technology.
In the case of energy efficiency, CPS are having an impact that
is highly likely to increase significantly over the coming years;
this effect is exemplified using advanced building management
systems, the optimisation of data centres and enhanced demand
side management. Last but not least, CPS will be critical for fa-
cilitating energy storage especially when considering cross-sector
power-to-X. This effect is illustrated using CPS-enhanced smart
charging of electric vehicles and blockchain-enabled P2P energy
trading.

These case studies illustrate that intelligent CPS will not only
be beneficial for economic optimisation, but will deliver environ-
mental advantages like emission abatement and simultaneously
increase energy security. Ad hoc calculations of the monetary ben-
efits and emission savings potential illustrate and prove this point.
CPS are already having an impact on CO2 emissions and the eco-
nomic viability of industry; it was shown that even in sectors that
are used to improvements in the single digit percentages, CPS
can enable improvements of 30% and beyond while advances in
artificial intelligence will likely drive improvements even further
over coming decades. A clear illustration of the cumulative ben-
efits of intelligent CPS is given in the revamped MACC curve –
abatement potential can be improved by 56% while costs can be
reduced by more than 30%. Our study therefore also provides an
overdue update to the MACC and further establishes it as a toold
for practitioner and policy makers concerned with decarbonisa-

tion efforts.
Ekholm & Rockström estimate that in energy provision, man-

ufacturing, agriculture and land use, buildings, services, trans-
portation and traffic management combined, an emission reduc-
tion of 15%, i.e. one-third of the 50% reduction required, could
be delivered by digitalisation alone206. In a related assessment,
the energetic costs and benefits of digitalisation are examined and
it is concluded that the benefits clearly outweigh the costs as the
digital sector itself reduces its carbon footprint continuously 207

Our assessment also clearly shows that supporting CPS in the
field of energy provision is also an obvious climate change miti-
gation strategy. Governments should support CPS that drive en-
ergy efficiency as part of their decarbonisation strategies; from
a cost-benefit perspective CPS deliver emission savings at a cost
far below that of traditional mitigation strategies. Policy makers
should consider incentives for CPS that optimise not only energy
provision, but also industrial production and transport .

All these benefits have clear downsides. While beneficial for
energy security, CPS are connecting cyber-threats with the real,
physical world and therefore cyber-crime could have more direct
impact. Policy makers have to continuously review CPS and AI
in order to foster benefits and safeguard risks by simultaneously
supporting cyber-security measures while regulating critical ar-
eas. Policies for this have to be adapted continuously in a cycle
much shorter than the current one. Moreover, governance of arti-
ficial intelligence is a most pressing issue: it has to be regulated as
AI connected to CPS creates a deus ex machina with unforeseeable
consequences and thinkers from the realm of ethics, philosophy,
law and computer science have to devise ways to ensure that AI
and intelligent CPS are serving humanity.

6 Outlook
It was shown that CPS are already having an impact in the realm
of energy provision while there are indeed teething issues. The
impact of CPS will likely increase in the short-term and centainly
will affect energy provision & industrial production in the long-
term. The actual impact will depend on the real-world adoption
of novel technologies, such as electric vehicles, renewables and
distributed storage, but in any case will be significant. Artificial
intelligence will further add to the impact of CPS, and the pace of
development of AI and its ultimate scale are not currently foresee-
able, posing a significant challenge to policy makers. Due to the
uncertain but potentially enormous impact, governance of intelli-
gent CPS is critical and policy makers have to act. Owing to the
uncertainty, developments in CPS and AI are difficult to forecast
and this area must therefore be monitored continuously.

It is also clear that intelligent CPS will not only affect indus-
trial production and energy provision, but will significantly ac-
celerate scientific research and technological developments, mak-
ing long-term predictions even more difficult than before. In the
short-term, however, these systems are likely to demand signif-
icant amounts of electricity and precious resources. Neverthe-
less, intelligent CPS have the possibility of finding pathways that
can help humankind to meet the ambitious decarbonisation and
emissions targets that are at present deemed unreasonable and
unattainable. Therefore, intelligent CPS may have the potential
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to “save the planet”.
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