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Abstract

Background

Pooling individual participant data to enable pooled analyses is often complicated by diver-

sity in variables across available datasets. Therefore, recoding original variables is often

necessary to build a pooled dataset. We aimed to quantify how much information is lost in

this process and to what extent this jeopardizes validity of analyses results.

Methods

Data were derived from a platform that was developed to pool data from three randomized

controlled trials on the effect of treatment of cardiovascular risk factors on cognitive decline

or dementia. We quantified loss of information using the R-squared of linear regression

models with pooled variables as a function of their original variable(s). In case the R-squared

was below 0.8, we additionally explored the potential impact of loss of information for future

analyses. We did this second step by comparing whether the Beta coefficient of the predic-

tor differed more than 10% when adding original or recoded variables as a confounder in a

linear regression model. In a simulation we randomly sampled numbers, recoded those < =

1000 to 0 and those >1000 to 1 and varied the range of the continuous variable, the ratio of

recoded zeroes to recoded ones, or both, and again extracted the R-squared from linear

models to quantify information loss.
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Results

The R-squared was below 0.8 for 8 out of 91 recoded variables. In 4 cases this had a sub-

stantial impact on the regression models, particularly when a continuous variable was

recoded into a discrete variable. Our simulation showed that the least information is lost

when the ratio of recoded zeroes to ones is 1:1.

Conclusions

Large, pooled datasets provide great opportunities, justifying the efforts for data harmoniza-

tion. Still, caution is warranted when using recoded variables which variance is explained

limitedly by their original variables as this may jeopardize the validity of study results.

Introduction

The sample size in individual cohort studies and randomized controlled trials (RCTs) is often

too small to answer specific (secondary) research questions. Pooling individual participant

data (IPD) from multiple studies increases the sample size and statistical power to perform

subgroup analyses and enable assessment of consistency of findings across different studies.

To enable IPD meta-analyses it is necessary to harmonize data from different studies, which is

often complicated by diversity across the available datasets.

Differences in data collection include, but are not limited to, data in multiple file formats

and languages, the use of different instruments or scales to measure the same domains and use

of different units of measurement. When syntaxes to recode data are developed ad hoc, with-

out detailed information on the data collection procedure, misinterpretation may lead to a

decrease of validity of the data [1].

For this reason much attention is given to state-of-the-art data harmonization techniques, as evi-

denced by the development of software such as DataSHAPER and ViPAR [2, 3]. These initiatives

facilitate data pooling from different studies while overcoming differences in the collection of the

data. Regardless of whether data harmonization is performed using specific software or by hand, lit-

tle is known on the extent of information that is lost during the data harmonization process.

The aim of this study was to quantify the consequences of recoding variables for data pool-

ing with regards to loss of information and the resulting loss of validity of study results. We

therefore explored how much information was lost after recoding of variables, expressed as the

proportion of the variance in the pooled variables that is explained by the data in the original

datasets. We hypothesized most variance was lost when variables were recoded from continu-

ous to discrete, which is in line with previous studies. We used data that were pooled from

three clinical trials as well as simulated data to study our hypothesis. When a substantial loss of

information occurred for a non-simulated variable, we additionally explored the potential

impact on the validity of analyses outcomes. In a simulation study, we explored the influence

of the range of continuous variables and ratio of dichotomous variables on information loss.

Finally, we share all recoding schemes that we used for pooling variables relevant for research

on cardiovascular risk factors and cognitive decline.

Methods

Data collection

Individual participant data from three recently completed RCTs on multi-domain interven-

tions to prevent cognitive decline or dementia with a total of 6435 participants, were pooled.
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These were the Prevention of Dementia by Intensive Vascular Care trial (preDIVA, ISRCTN

29711771 [4]), the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and

Disability trial (FINGER, NCT 01041989 [5]) and the Multidomain Alzheimer Preventive

Trial (MAPT, NCT 00672685 [6]). The study teams of these three clinical trials collaborate in

the HATICE consortium (www.hatice.eu), and are dedicated to share data amongst each

other. All data had been pseudonymized prior to access for analysis. In Table 1 the study char-

acteristics are shown.

Recoding schemes

The pooled dataset consisted of 170 variables, of which 101 were available for the original FIN-

GER subset of the database, 137 for the MAPT subset and 91 for the preDIVA subset. This

sums to a total 329 recoding schemes that were necessary to create the pooled variables. For

238 recoding schemes an algorithmic transformation of the original variable was not necessary

to create the pooled variable. We did not perform analyses for these recoding schemes, since

these would be redundant by definition. This means we conducted analyses only for those 91

recoding schemes in which an algorithmic transformation of the original variable(s) was

required to create the pooled variable. Three different algorithmic transformations were used:

(1) Continuous variables that were recoded into discrete variables (Noriginal = 8); (2) Discrete

variables that were recoded into discrete variables with a different number or order of catego-

ries (Noriginal = 44); and (3) Recoded variables that were based on multiple original variables

(Noriginal = 39).

Statistical analyses

For the current analyses we focus on available baseline data. Handling missing data with con-

text-free data encoding has been described previously [7, 8]. We used a stepwise procedure to

first quantify the information loss of pooled variables, and subsequently explored the potential

impact on future analyses by using variables that had lost most information (Fig 1).

Step 1: We used linear regression models with the recoded variables as dependent variables

and the original variables as independent variables and extracted the R-squared as measures

for explained variance. In case a recoded variable was based on multiple original variables, we

used these as predictors in a single linear regression model. When the R-squared was at least

0.8, an arbitrarily set threshold, we considered the amount of information that was lost accept-

able, else we continued with step 2.

Table 1. Main study characteristics of pooled studies.

preDIVA FINGER MAPT

Year started 2006 2009 2008

Year completed 2015 2014 2014

Sample size 3526 1260 1679

Age (years) 70–78 60–75 >70

Intervention

(years)

6–8 2 3

Primary outcome dementia incidence, disability

level

change in cognitive function change in cognitive function

Main secondary

outcomes

cardiovascular events, change in

cognitive function, depression

cardiovascular events, dementia incidence, depression,

disability level, quality of life, health resources

utilization

cardiovascular events functional assessment,

depression, dementia incidence, health resources

utilization

https://doi.org/10.1371/journal.pone.0232970.t001
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Step 2: To explore the potential impact of the information loss, in a linear regression

model we assessed whether the Beta coefficient of an independent variable changed by more

than 10% when using the pooled variable instead of the original variable as a confounder. A

Beta coefficient is the degree of change in the dependent variable for each one unit increase

of the independent variable [9]. This is analogous to commonly applied criteria for confound-

ers [10]. For these regression models we chose an independent and dependent variable

which we, based on literature, expected to be associated to each other as well as to the con-

founder. Therefore, we used various independent and dependent variables for these step 2

analyses.

In our simulation study we randomly generated continuous variables and recoded these to

dichotomous variables. For these simulated variables we explored how much information was

lost with varying range of the continuous variable (type 1a), varying ratio of recoded ones to

recoded zeroes (type 1b) and a combination of both (type 2). For all simulations we sampled

two sets of numbers. The sampling method for the first set was the same across iterations,

while the second set differed in range of continuous numbers, ratio of recoded ones to recoded

zeroes (by differing sample sizes recoded to 1 while the amount recoded to 0 remained the

same), or both. For the first set 1000 numbers between 0 and 1000 were sampled. For the sec-

ond set we sampled K numbers between 1001 and N. For type 1a K was kept at a constant of

1000, while N was a factor of between 1 and 34 as high or low compared to 1000. Therefore,

the lowest N was 1030 (1000/34+1001) and the highest N was 35001 (1000�34+1001). For type

1b N was kept at a constant of 1000, while K was a factor of between 1 and 34 as high or low

compared to 1000. The lowest K was therefore 29 (1000/34) and the highest K 34000

(1000�34). For type 1a and 1b each of the 67 simulations (a factor of 1 as high or low is the

same) was replicated 100 times. For our type 2 simulations, all combinations of K and N from

type 1a and 1b were used, therefore yielding 4489 (67 � 67) combinations. Each of these combi-

nations was replicated 10 times. With this latter simulation type we tested to what extent infor-

mation loss caused by a difference in range for set 1 and set 2 numbers can be compensated for

or exaggerated by varying the ratio of ones to zeroes. For all three types of simulations num-

bers between 0 and 1000 were recoded to 0 and those above 1000 to 1. We then could use the

same linear models as in the Step 1 analyses, in which the recoded zeroes and ones were the

dependent variables and the sampled numbers the independent variables. From these models

we again extracted the R-squared to explore to what extent the R-squared changed depending

Fig 1. Flowchart of step 1 and step 2 analyses.

https://doi.org/10.1371/journal.pone.0232970.g001
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on the difference in range of numbers, the ratio of ones to zeroes or a combination of both.

The full syntax of this simulation is available in the supplement.

Normality and homoscedasticity of residuals have been checked for the linear regression

models. The impact of violations of assumptions are discussed at the end of the results section.

All analyses have been conducted using R Studio [11], specifically the built-in package ‘stats’

[12] for the linear models and the additionally loaded packages ‘ggplot2’ [13] and ‘gridExtra’

[14] for the visualizations.

Participants gave written informed consent prior to their baseline visit. The preDIVA study

was approved by the Medical Ethics Committee of the Academic Medical Center, Amsterdam.

The MAPT trial protocol was approved by the French Ethical Committee located in Toulouse

(CPP SOOM II) and was authorized by the French Health Authority. FINGER was approved

by the coordinating ethics committee of the Hospital District of Helsinki and Uusimaa.

Results

For the eight continuous-to-discrete recoded variables, the median R-squared of the regression

models, as described as the first step of our analyses, was 0.54 (IQR: 0.37–0.67). For the 44 dis-

crete-to-discrete recoded variables it was 0.97 (IQR: 0.92–1.00) and for the 39 multiple-to-sin-

gle recoded variables 0.98 (IQR: 0.92–1.00) (Fig 2). All individual R-squareds and the recoding

schemes, listed by content category, are provided in the S1 File.

Eight regression models yielded an R-squared of below 0.8. For these we performed explor-

atory analyses as described for our step 2 method (Table 2). The Beta coefficient of the inde-

pendent variable changed by more than 10% in four out of eight models depending on

Fig 2. Pooling accuracy for three data recoding categories.

https://doi.org/10.1371/journal.pone.0232970.g002
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whether recoded or original confounders were used. In other words, in half of the models the

Beta coefficient changed considerably when using the recoded instead of original variables as

confounders, which may lead to a different interpretation of the results.

The type 1a simulation study, in which the range of numbers recoded to 1 differed from the

range of numbers recoded to 0, yielded a median R-squared of 0.63 (IQR: 0.62–0.64). The

median R-squared of the type 1b simulation, in which the ratio of ones to zeroes varied, was

0.38 (IQR: 0.30–0.51). This means the R-squared is more negatively impacted by differences in

amount of ones compared to zeroes than by difference in ranges between numbers that were

either recoded to 0 or 1. When combined, in type 2 of our simulation study, the median R-

squared was 0.54 (IQR: 0.16–0.74). When the range of the set 2 numbers increased, the R-

squared increased when the ratio of ones to zeroes decreased, while the R-squared decreased

even more when the ratio of ones to zeroes also increased (Fig 3).

For most linear regression models the assumptions of normality and homoscedasticity of

residuals were met. We exploratively assessed to what extent the R-squared changed when log-

transformed dependent and independent variables were used instead of untransformed vari-

ables. We did this for all 91 linear regression models in which pooled variables were modelled

that had not been pooled directly. We observed a median change of 0.03 (IQR: 0.00–0.06) and

a maximum change of 0.27 in the R-squared when this procedure was used. This suggests

using log-transformed variables for this purpose generally does not considerably alter the R-

squared.

Table 2. Change of the beta coefficient of an association when using the recoded variable as a confounder compared to the original variable for the variables with

less than 80% explained variance after recoding to assess the impact of information loss on the validity of associations.

Original variable Recoded variable Study Proportion of

variance

explained

Dependent

variable

Independent

variable

Βeta of independent

variable when using

original confounder

Βeta of independent

variable when using

recoded confounder

Change in

Beta >10%

Number of years

stopped smoking

Stopped smoking

more than 3

years (yes/no)

preDIVA 0.10 BMIa Age -0.027 (-0.098 to

0.043, p = 0.448)

-0.042 (-0.112 to

0.028, p = 0.237)

yes

Glucose level (mmol/

L)

Glucose normal

(yes/no)

preDIVA 0.20 Diagnosis of

diabetes

LDLb -0.076 (-0.086 to

-0.065, p < .001)

-0.125 (-0.138 to

-0.112, p < .001)

yes

Glucose level (g/L) Glucose normal

(yes/no)

MAPT 0.35 Diagnosis of

diabetes

LDL -0.038 (-0.085 to

0.009, p = 0.111)

-0.045 (-0.090 to

0.000, p < .001)

yes

Zungc sumscore Depression (yes/

no)

FINGER 0.42 MMSEd sum

score

Age -0.043 (-0.068 to

-0.017, p = 0.001)

-0.045 (-0.070 to

-0.019, p = 0.001)

no

Glucose level (mmol/

L)

Glucose normal

(yes/no)

FINGER 0.51 Diagnosis of

diabetes

LDL -0.083 (-0.102 to

-0.064, p < .001)

-0.084 (-0.102 to

-0.065, p < .001)

no

GDS-15e sum score Depression preDIVA 0.58 MMSE sum

score

Age -0.016 (-0.040 to

0.007, p = 0.179)

-0.020 (-0.045 to

0.004, p = 0.107)

yes

GDS-15 sum score Depression MAPT 0.63 MMSE sum

score

Age -0.047 (-0.064 to

-0.030, p < .001)

-0.048 (-0.066 to

-0.031, p < .001)

no

Heart disease: Father

(yes/no) Mother

(yes/no) Sibling (yes/

no) Child (yes/no)

Family history of

heart disease

(yes/no)

preDIVA 0.78 History of

heart disease

(yes/no)

LDL -0.130 (-0.145 to

-0.114, p < .001)

-0.130 (-0.145 to

-0.114, p < .001)

no

a Body mass index
b low-density lipoprotein
c Zung Self-Rating Depression Scale
d Mini-Mental State Examination
e Geriatric Depression Scale

https://doi.org/10.1371/journal.pone.0232970.t002
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Discussion

In pooling data from three RCTs, recoding of 91 variables resulted in a loss of explained vari-

ance of more than 20% in 8 variables. Most substantial loss was observed for variables that

were recoded from continuous to discrete. Exploratory analysis suggested that the impact of

recoded variables with substantial loss of explained variance on multivariate analyses might

not be trivial.

To our knowledge, this study is the first to explore the degree of information in original

data that is lost when harmonizing data, including analyses to assess potential consequences

for the validity of findings using recoded variables from a pooled dataset. Although most of the

recoded variables within the harmonized database appear to be valid and reliable, those vari-

ables that lost a substantial part of the explained variance following their recoding should per-

haps be left out of future analyses or be handled with caution. These include important areas

of study that are measured as continuous such as cognitive and depressive symptomatology.

Using data dictionaries such as CDISC when designing studies is recommended. Within a

specific research field, a certain level of harmonization of assessment instruments would also

reduce the need for recoding. However, even if agreement will be attained, recoding variables

is sometimes inevitable, for example when pooling data from trials from countries with differ-

ent standard measures. Specific attention should be paid to assessing of the potential altered

findings when analyzing data with variables that were recoded from a continuous to a discrete

scale. We encourage other researchers conducting pooled analyses to include a quantification

of the information that was lost due to the recoding process. Also, we recommend that when

data has been recoded for a pooled analysis, the analysis should be repeated in the original

dataset with both the original and the recoded variable, and results should be reported (at least

in a supplement), to illustrate the impact of recoding. Using the R-squared of linear regression

models is appropriate as a crude summary to quantify information loss of pooled variables.

When the dependent variable is nominal, a linear regression may not be the appropriate

Fig 3. R2s for simulations in which numbers between 0 and 1000 are recoded to 0 and those above 1000 to 1. For all iterations, 1000 numbers between 0 and 1000

were sampled and recoded to 0. Numbers that were recoded to 1 originated from sampling numbers between 1001 and N with sample size K. Left: K was a constant of

1000, N was between 1 and 34 times as high or low as 1000 (simulation type 1a, red circles); N was a constant of 2001, K was between 1 and 34 times as high or low as

1000 (simulation type 1b, blue triangles). Right: N was between 1 and 34 times as high or low as 1000 and K was between 1 and 34 times as high or low as 1000

(simulation type 2).

https://doi.org/10.1371/journal.pone.0232970.g003
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analysis. For consistency and enhancement of comparability of the R-squareds as a crude sum-

mary of information loss, we decided to use linear regression models for all types of recoded

variables. More generally, this method may be less valid in case of violations of assumptions

for linear models. However, exploratory analysis showed that using log-transformed variables

instead of untransformed variables has only limited impact on the R-squared (median change

in R-squared after transformation of all 91 non-directly pooled models: 0.03 (IQR: 0.00–0.06)).

Adding the R-squared of key variables in pooled analyses in summary results allows readers to

assess the full impact of harmonization of data on research findings.

The impact of data harmonization is most substantial in case a continuous variable is

recoded into a dichotomous variable, as hypothesized. This in line with findings of previous

studies [15, 16] and followed both from our main analyses as well from our simulation study.

Our different types of simulations showed that the R-squared is more influenced by differences

in ratio of ones to zeroes than by differences in ranges between numbers that have been

recoded to 0 or 1. Also, it followed that increasing differences in ranges between two sets, can

be compensated for by decreasing the size difference between the two groups of numbers that

have been recoded to either 0 or 1, and vice versa. We do not recommend excluding variables

that have been recoded from continuous to dichotomous from pooled analyses for the purpose

of increasing overall explained variance of pooled variables.

To conclude, large, pooled datasets provide important opportunities, justifying the efforts

for data harmonization. However, caution is warranted when using recoded variables whose

variance is poorly related to that of the original variables as this may jeopardize the validity of

study results.

Supporting information

S1 File. Recoding schemes and R-squareds for all pooled variables.
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