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∗ Unité de Recherche en Informatique et Automatiquethe, Ecole des Mines de
Douai and Johann Bernoulli Institute for Mathematics and Computer

Science, University of Groningen (e-mail: m.jozsa@rug.nl).
∗∗ Centre de Recherche en Informatique, Signal et Automatique de Lille
(CRIStAL) CNRS, Centrale Lille (e-mail: mihaly.petreczky@ec-lille.fr )
∗∗∗ Johann Bernoulli Institute for Mathematics and Computer Science,

University of Groningen (e-mail: m.k.camlibel@rug.nl )

Abstract: We consider output processes which are realizable by stochastic linear time-invariant (LTI)
systems. Such processes can always be realized by LTI systems in forward innovation form, and we study
the transfer matrices of such LTI realizations. We show that such a transfer matrix is consistent with an
acyclic directed graph if and only if the edges of this graph represent Granger-causality relations among
the components of the output process. By consistency we mean that if there is no edge between two
vertices of the graph, then the corresponding block of the transfer matrix is zero. Under this assumption,
conditional Granger non-causality between the components of the process is equivalent with a zero block
in the transfer matrix.

1. INTRODUCTION

Many complex systems arise by interconnecting several smaller
subsystems which communicate with each other. The resulting
network structure and its consequences for the global behavior
of the system are of interest both for control and analysis of
such systems. In addition, reverse engineering of this network
structure is a major challenge in several applications. Under-
standing the relationship between the network structure and the
global observed behavior is essential for addressing all these
problems. Unfortunately, this relationship is far from obvious:
even if the number of subsystems is known, and each subsystem
generates observations, it is not clear if the interaction between
any two subsystems induces an intrinsic relationship between
their observed behavior. If the observed behavior is modelled as
a collection of stochastic processes, then various notions from
probability theory can be used to formalize the interactions
among them. For example, the notion of (conditional) Granger
causality Granger (1963) can be used. Informally, a process y1

does not conditionally Granger cause a process y2 with respect
to y3, if using the past values of y1, y2 and y3 do not allow
to predict the future values of y2 with a higher accuracy then
using only the past values of y2 and y3. The concept of Granger
causality has been used in systems biology, neuroscience and
economics Roebroeck et al. (2011); Valdes-Sosa et al. (2011).
Although there are several ways to represent a stochastic pro-
cess (auto-regressive, moving average, state-space models), the
relationship between Granger causalities and the network struc-
ture of these representations is not evident.

In this paper, we consider discrete-time multivariate stochas-
tic processes with a proper rational spectrum, i.e., stochastic
processes which can be interpreted as outputs of linear-time

1 This work was partially supported by the ESTIREZ project of Region Nord-
Pas de Calais, France

time-invariant stochastic state-space representations, shortly
LTI state-space representation, driven by a white noise process.
Consider such a process y. It is well known that there exists
an LTI state-space representation whose output is y and whose
noise process is the innovation process of y. Furthermore, if
this state-space representation is minimal then it is unique up
to isomorphism, and hence its transfer matrix is uniquely de-
termined by y. We will call this transfer matrix the innovation
transfer matrix of y. It is well known that the LTI state-space
representation with innovation noise (and hence the innovation
transfer matrix) can be computed from the covariances of y, or
estimated from a sample path of y using subspace identification
methods (Lindquist and Picci (2015)).

Contribution. We show that the innovation transfer matrix of
a process y is consistent with a transitive acyclic graph, if
and only if the components of y are related by conditional
Granger non-causality in a way determined by that graph. By
consistency with a graph we mean that the edges of the graph
correspond to potentially non-zero blocks of the innovation
transfer matrix. That is, we relate the graph structure of the
innovation transfer matrix with a graph formed by conditional
Granger non-causality relations of the components of y. Note
that each block of the innovation transfer matrix can be viewed
as a transfer matrix of a subsystem. Hence, the graph with
which the innovation transfer matrix is consistent can be in-
terpreted as a description of interconnections among various
subsystems. That is, the results of the paper relate intrinsic
properties of a process with the interconnection structure of a
finite representation (innovation transfer matrix) of this process.
In addition to providing insights into fundamental theoretical
problems, the result of the paper could serve as a starting point
for testing (conditional) Granger causality.

Related work. Reverse engineering of the network structure
of deterministic linear systems has been investigated in i.e.,
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1. INTRODUCTION

Many complex systems arise by interconnecting several smaller
subsystems which communicate with each other. The resulting
network structure and its consequences for the global behavior
of the system are of interest both for control and analysis of
such systems. In addition, reverse engineering of this network
structure is a major challenge in several applications. Under-
standing the relationship between the network structure and the
global observed behavior is essential for addressing all these
problems. Unfortunately, this relationship is far from obvious:
even if the number of subsystems is known, and each subsystem
generates observations, it is not clear if the interaction between
any two subsystems induces an intrinsic relationship between
their observed behavior. If the observed behavior is modelled as
a collection of stochastic processes, then various notions from
probability theory can be used to formalize the interactions
among them. For example, the notion of (conditional) Granger
causality Granger (1963) can be used. Informally, a process y1

does not conditionally Granger cause a process y2 with respect
to y3, if using the past values of y1, y2 and y3 do not allow
to predict the future values of y2 with a higher accuracy then
using only the past values of y2 and y3. The concept of Granger
causality has been used in systems biology, neuroscience and
economics Roebroeck et al. (2011); Valdes-Sosa et al. (2011).
Although there are several ways to represent a stochastic pro-
cess (auto-regressive, moving average, state-space models), the
relationship between Granger causalities and the network struc-
ture of these representations is not evident.

In this paper, we consider discrete-time multivariate stochas-
tic processes with a proper rational spectrum, i.e., stochastic
processes which can be interpreted as outputs of linear-time

1 This work was partially supported by the ESTIREZ project of Region Nord-
Pas de Calais, France

time-invariant stochastic state-space representations, shortly
LTI state-space representation, driven by a white noise process.
Consider such a process y. It is well known that there exists
an LTI state-space representation whose output is y and whose
noise process is the innovation process of y. Furthermore, if
this state-space representation is minimal then it is unique up
to isomorphism, and hence its transfer matrix is uniquely de-
termined by y. We will call this transfer matrix the innovation
transfer matrix of y. It is well known that the LTI state-space
representation with innovation noise (and hence the innovation
transfer matrix) can be computed from the covariances of y, or
estimated from a sample path of y using subspace identification
methods (Lindquist and Picci (2015)).

Contribution. We show that the innovation transfer matrix of
a process y is consistent with a transitive acyclic graph, if
and only if the components of y are related by conditional
Granger non-causality in a way determined by that graph. By
consistency with a graph we mean that the edges of the graph
correspond to potentially non-zero blocks of the innovation
transfer matrix. That is, we relate the graph structure of the
innovation transfer matrix with a graph formed by conditional
Granger non-causality relations of the components of y. Note
that each block of the innovation transfer matrix can be viewed
as a transfer matrix of a subsystem. Hence, the graph with
which the innovation transfer matrix is consistent can be in-
terpreted as a description of interconnections among various
subsystems. That is, the results of the paper relate intrinsic
properties of a process with the interconnection structure of a
finite representation (innovation transfer matrix) of this process.
In addition to providing insights into fundamental theoretical
problems, the result of the paper could serve as a starting point
for testing (conditional) Granger causality.

Related work. Reverse engineering of the network structure
of deterministic linear systems has been investigated in i.e.,
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Yuan et al. (2015, 2011); Nordling and Jacobsen (2011) and
the references therein. In contrast to the cited papers, we con-
sider stochastic systems and we relate their network structure
to Granger causality of their outputs. In Dufour and Renault
(1998); Caines (1976); Gevers and Anderson (1982) the rela-
tionship between Granger causality of two processes and their
Wold decomposition was investigated. Granger causality for
state-space representation was studied by using transfer matrix
approach in Barnett and Seth (2015). Contrary to those papers,
we consider a more general graph of Granger causality rela-
tions, which involves more than two processes, and we relate
it to the zero blocks of the innovation transfer matrix of the
joint process. The notion of conditional Granger causality is
a type of spurious causality in Hsiao (1982), where Hsiao re-
lated causality relation with representations but did not discuss
multiple causality conditions. More complex causality structure
was also studied for state space representation, see Caines et al.
(2003); Caines and Wynn (2007); Caines et al. (2009). In com-
parison with Caines and Wynn (2007); Caines et al. (2009) we
consider conditional Granger non-causality, while in the cited
papers (non-conditional) Granger causality 2 and conditional
orthogonality has been studied where the conditional orthog-
onality condition has no trivial translation into (conditional)
Granger non-causality. Regarding innovation transfer matrices,
the results in Caines and Wynn (2007) and Caines et al. (2009)
form special cases of the results in this paper since we have
arbitrary covariance of the innovation process. For representing
different kinds of causality relations Eichler (2005) worked on
the approach of causality graphs, however Eichler (2005) did
not link the causality properties of the process with its LTI
representations.

Outline. Before presenting our results, in §2 we introduce the
terminology and the basic tools, such as the stochastic processes
of interest, Hilbert spaces generated by stochastic processes
and transfer matrices. Then, in §3.1 we characterize Granger
non-causality between two components of a process with the
help of transfer matrices. As a generalization, in §3.2 we
present our main result for conditional Granger non-causalities
between several components of a process. In §3.3, we provide
an example for our main result.

2. PRELIMINARIES

2.1 Notation and terminology

We will use standard terminology from theory of stochastic
processes, see for example Lindquist and Picci (2015). In par-
ticular, we consider discrete-time stochastic processes whose
values are vectors with real entries, i.e. by a stochastic process
z taking values in Rk we mean a sequence {z(t)}t∈Z of random
variables taking values in Rk, where z(t) is referred as the value
of z at time t. Here, as usual, Z denotes the set of integers. If ν
is a random variable with values in Rk, then by the coordinates
of ν we will mean the random variables νi, i = 1, . . . , k
taking values in R, such that ν = [ν1, . . . , νk]T . We denote by
E[ν] the mathematical expectation of a random variable ν. For
standard notions of stochastic processes, such as wide-sense
stationarity, spectral density, etc. we refer to Lindquist and Picci
(2015). The class of processes studied in this paper is defined
below:

2 Granger non-causality from y1 to y2 is equivalent with (weak) feedback
freeness of (y1,y2).

Definition 1. [ZMSIR] A stochastic process z is called zero-
mean square-integrable with rational spectrum (abbreviated
by ZMSIR), if it is a zero mean, square-integrable, wide-
sense stationary, purely non-deterministic and full rank process
whose spectral density is rational and strictly positive definite
on the unit circle.

In the sequel, we will use various Hilbert-spaces generated by
stochastic processes. The zero-mean square-integrable random
variables taking values in R form a Hilbert space with the
covariance as the inner product, Lindquist and Picci (2015).
We denote this Hilbert-space by H . By the Hilbert-space
generated by a set S of elements of H we will mean the
smallest (with respect to set inclusion) closed subspace of H
which contains S. Consider a ZMSIR process z taking values
in Rk. Then for each � ∈ Rk, t ∈ Z, �T z(t) is an element of
H and we denote by Hz, Hz

t−, Hz
t+, Hz

t , t ∈ Z respectively
the Hilbert-spaces generated by the sets {�T z(s) | s ∈ Z},
{�T z(s) | s ∈ Z, s ≤ t − 1}, {�T z(s) | s ∈ Z, s ≥ t}, and
{�T z(t)}. Informally, Hz is the Hilbert-space generated by the
coordinates of all the values (past and future) of z, Hz

t− is the
Hilbert-space generated by the coordinates of the past values
{z(s)}t−1

s=−∞ of z up to time t − 1, Hz
t+ is the Hilbert-space

generated by the coordinates of the future values {z(s)}∞s=t
of z starting from the time instance t, and Hz

t is the Hilbert-
space generated by the coordinates of z(t). If z1,. . ., zn are
vector valued processes then z =

[
zT1 ,. . ., z

T
n

]T
will denote the

process defined by z(t) =
[
zT1 (t), . . . , z

T
n (t)

]T
, t ∈ Z. In this

case, sometimes we will denote Hz
t−, Hz

t+, Hz by Hz1,...,zn

t− ,
Hz1,...,zn

t+ , Hz1,...,zn

t respectively.

If η ∈ H and H is a closed subspace of H , then we denote by
El[η |H] the orthogonal projection of η onto H. The orthogonal
projection onto H of a random variable ν taking values in Rk

is defined as follows. Assume that ν = [ν1, . . . , νk]T , i.e.
νi ∈ H , i = 1, . . . , k are the coordinates of ν. Then the
orthogonal projection of ν onto H, denoted by El[ν|H], is
defined as El[ν|H] := [ν̂1, . . . , ν̂k]T , where ν̂i = El[ν

i|H],
i = 1, . . . , k. That is, El[ν|H] is the random variable with
values in Rk obtained by projecting the coordinates of ν onto
H. By a slight abuse of terminology and notation, we will say
that a random variable ν taking values in Rk belongs to a closed
subspace H of H , denoted by ν ∈ H, if every coordinate of ν
is an element of H. This is equivalent to saying that �T ν is an
element of H for all � ∈ Rk. A random variable ν is said to be
orthogonal to a closed subspace H of H , denoted by ν ⊥ H,
if E[νη] = 0 for all η ∈ H.

2.2 Innovation transfer matrix

Consider a transfer matrix G(z) of a finite-dimensional discrete-
time stable deterministic LTI system (Anderson and Moore,
1979, Appendix C & D). Consider its Laurent series expansion,
i.e. let Gk ∈ Rn×m, k ≥ 0 be such that G(z) =

∑∞
k=0 Gkz

−k

for all z ∈ C such that |z| ≥ 1. If y is a ZMSIR process, then
the expression

∑∞
k=0 Gky(t− k) converges in the topology of

Hy
t− (Anderson and Moore, 1979, Theorem 4.1). In the sequel,

we will write

G(z)y(t) =
∞∑
k=0

Gky(t− k).

That is, G(z) can be interpreted as a causal linear filter which
transforms y to the process {G(z)y(t)}∞t=−∞.
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Below we define what we mean by the innovation transfer
matrix. To this end, consider a ZMSIR process y and let
Λk = E[y(t + k)yT (t)] for all k ∈ Z. Then y has a
spectral density function Φy(z) =

∑+∞
k=−∞ Λkz

k defined for
all z ∈ C such that |z| = 1. It is well known Lindquist and
Picci (2015); Anderson and Moore (1979) that Φy(z) admits a
unique decomposition

Φy(z) = P (z)ΩPT (z−1), |z| = 1

with the following conditions: Ω is a positive definite symmet-
ric matrix, P (z) and its inverse 3 Q(z) := P−1(z) are transfer
matrices of a finite-dimensional deterministic exponentially sta-
ble discrete-time LTI system and limz→∞ P (z) = I (Anderson
and Moore, 1979, Section 9.4,Theorem 4.1). We call P (z) the
innovation transfer matrix of y.

The reason for this terminology is as follows. Define the for-
ward innovation process of a ZMSIR process y (that we call
shortly as innovation process) as

e(t) := y(t)− El[y(t)|Hy
t−].

It is known (Lindquist and Picci, 2015, Section 4.1.3) that e is
a white noise ZMSIR process for which He

t− = Hy
t−. From

the properties of P (z) and Q(z) the expressions P (z)e(t) =∑∞
k=0 Pke(t − k) and Q(z)y(t) =

∑∞
k=0 Qky(t − k) are

well defined, where P (z) =
∑∞

k=0 Pkz
−k and Q(z) =∑∞

k=0 Qkz
−k are the Laurent series expansions of P (z) and

Q(z). Moreover, for all t ∈ Z,
y(t) = P (z)e(t), and e(t) = Q(z)y(t).

That is, the innovation transfer matrix P (z) is a causal linear
filter which transforms the innovation process e into y and
Q(z) is a causal linear filter which transforms y into the
innovation process e.

The innovation transfer matrix of y has the following interpre-
tation in terms of state-space representations. Consider a stable
stochastic LTI state-space representation

x(t+ 1) = Ax(t) +Bv(t)

y(t) = Cx(t) +Dv(t)
(1)

of y, where x is the state process, v is a white noise process
and A,B,C,D are matrices with real entries of suitable dimen-
sions. In addition, v(t) is uncorrelated with x(t − k), k ≥ 0.
Note that the transfer matrix G(z) = C(zI − A)−1B + D of
(1) satisfies, Φy(z) = G(z)E[v(t)vT (t)]GT (z−1). Moreover,
G(z) has Laurent series expansion G(z) =

∑∞
k=0 Gkz

−k for
any z ∈ C, ‖z‖ ≥ 1, where G0 = D and Gk = CAk−1B,
k ≥ 1, thus

y(t) = G(z)v(t) =
∞∑
k=1

CAk−1Bv(t− k) +Dv(t).

From stochastic realization theory Lindquist and Picci (2015)
it is known that the LTI state-space representation (1) can be
chosen to be in the so called forward innovation form, for which
v is the innovation process e of y, D = I is the identity matrix
and B is the static Kalman gain. The transfer matrix G(z)
of the LTI state-space representation in forward innovation
form coincides with the innovation transfer matrix P (z) of y.
Conversely, if we consider any LTI state-space representation
(1) such that its transfer matrix G(z) has a stable rational proper
inverse (it is minimum phase), then it can be shown that there
exists an invertible matrix M , such that v(t) = Me(t) for all

3 P (z)Q(z)=Q(z)P (z)=I for all z in the domain of definition of P and Q

t ∈ Z. Therefore, G(z) can be obtained from the innovation
transfer matrix by multiplying it with M−1 from the right. That
is, up to a right multiplication by a nonsingular matrix, the
innovation transfer matrix can be viewed as the transfer matrix
of any LTI state-space representation of y with a stable causal
inverse.

3. NON-CAUSALITY IN TRANSFER MATRICES

In this section we present our main result which deals with the
following question: what form of a transfer matrix in an input-
output system can mean (conditional) Granger non-causality.

3.1 Granger non-causality

To begin with, we define the notion of Granger non-causality
introduced in Granger (1963). Granger non-causality is also
known as feedback freeness in the literature. In addition, it
can be defined via conditional orthogonality of certain spaces.
More precisely, Definition 2 is equivalent with (weak) feedback
freeness of (y1,y2) in Gevers and Anderson (1982); Caines and
Chan (1975); Caines (1976) and with conditional orthogonality
of the spaces Hy2

t+ and Hy1

t− with respect to Hy2

t− (Lindquist and
Picci, 2015, Section 2.6.5).

Definition 2. Consider a ZMSIR process y =
[
yT
1 ,y

T
2

]T
. We

say that y1 does not Granger cause y2 if for all t, k ∈ Z, k ≥ 0

El[y2(t+ k) | Hy2

t−] = El[y2(t+ k) | Hy
t−].

It is well known that Granger non-causality is equivalent to
the innovation transfer matrix being in block triangular form
Caines (1976); Caines and Chan (1975); Gevers and Anderson
(1982), or in other words, the Wold decomposition being in
block triangular form. In the next theorem we recall this result.
Theorem 1. Consider a ZMSIR process y = [yT

1 ,y
T
2 ]

T . Then
y1 does not Granger cause y2 if and only if the innovation
transfer matrix P (z) of y has the form of

P (z) =

[
P11(z) P12(z)

0 P22(z)

]
, (2)

where Pij(z) is an (ni × nj) block of P (z), for i, j = 1, 2, and
ni is such that yi takes values in Rni , i = 1, 2.

Let e be the innovation process of y, and let ei be the Rni

valued process, i = 1, 2 such that e = [eT1 , e
T
2 ]

T . Then (2) is
equivalent to

y1(t) = P11(z)e1(t) + P12(z)e2(t)

y2(t) = P22(z)e2(t)

In the next subsection, we generalize Theorem 1 for ZMSIR
processes partitioned into n ≥ 2 components. The result is
about the equivalence of conditional non-causality relations
among the components and the zero blocks of the innovation
transfer matrix.

3.2 Conditional Granger non-causality

Our goal is to generalize Theorem 1 for a ZMSIR process
y = [yT

1 , . . . ,y
T
n ]

T with more complex causality structure,
correspondingly, for a more complex zero structure of the
transfer matrices. For this, we need to introduce the notion of
conditional Granger non-causality.
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Below we define what we mean by the innovation transfer
matrix. To this end, consider a ZMSIR process y and let
Λk = E[y(t + k)yT (t)] for all k ∈ Z. Then y has a
spectral density function Φy(z) =

∑+∞
k=−∞ Λkz

k defined for
all z ∈ C such that |z| = 1. It is well known Lindquist and
Picci (2015); Anderson and Moore (1979) that Φy(z) admits a
unique decomposition

Φy(z) = P (z)ΩPT (z−1), |z| = 1

with the following conditions: Ω is a positive definite symmet-
ric matrix, P (z) and its inverse 3 Q(z) := P−1(z) are transfer
matrices of a finite-dimensional deterministic exponentially sta-
ble discrete-time LTI system and limz→∞ P (z) = I (Anderson
and Moore, 1979, Section 9.4,Theorem 4.1). We call P (z) the
innovation transfer matrix of y.

The reason for this terminology is as follows. Define the for-
ward innovation process of a ZMSIR process y (that we call
shortly as innovation process) as

e(t) := y(t)− El[y(t)|Hy
t−].

It is known (Lindquist and Picci, 2015, Section 4.1.3) that e is
a white noise ZMSIR process for which He

t− = Hy
t−. From

the properties of P (z) and Q(z) the expressions P (z)e(t) =∑∞
k=0 Pke(t − k) and Q(z)y(t) =

∑∞
k=0 Qky(t − k) are

well defined, where P (z) =
∑∞

k=0 Pkz
−k and Q(z) =∑∞

k=0 Qkz
−k are the Laurent series expansions of P (z) and

Q(z). Moreover, for all t ∈ Z,
y(t) = P (z)e(t), and e(t) = Q(z)y(t).

That is, the innovation transfer matrix P (z) is a causal linear
filter which transforms the innovation process e into y and
Q(z) is a causal linear filter which transforms y into the
innovation process e.

The innovation transfer matrix of y has the following interpre-
tation in terms of state-space representations. Consider a stable
stochastic LTI state-space representation

x(t+ 1) = Ax(t) +Bv(t)

y(t) = Cx(t) +Dv(t)
(1)

of y, where x is the state process, v is a white noise process
and A,B,C,D are matrices with real entries of suitable dimen-
sions. In addition, v(t) is uncorrelated with x(t − k), k ≥ 0.
Note that the transfer matrix G(z) = C(zI − A)−1B + D of
(1) satisfies, Φy(z) = G(z)E[v(t)vT (t)]GT (z−1). Moreover,
G(z) has Laurent series expansion G(z) =

∑∞
k=0 Gkz

−k for
any z ∈ C, ‖z‖ ≥ 1, where G0 = D and Gk = CAk−1B,
k ≥ 1, thus

y(t) = G(z)v(t) =
∞∑
k=1

CAk−1Bv(t− k) +Dv(t).

From stochastic realization theory Lindquist and Picci (2015)
it is known that the LTI state-space representation (1) can be
chosen to be in the so called forward innovation form, for which
v is the innovation process e of y, D = I is the identity matrix
and B is the static Kalman gain. The transfer matrix G(z)
of the LTI state-space representation in forward innovation
form coincides with the innovation transfer matrix P (z) of y.
Conversely, if we consider any LTI state-space representation
(1) such that its transfer matrix G(z) has a stable rational proper
inverse (it is minimum phase), then it can be shown that there
exists an invertible matrix M , such that v(t) = Me(t) for all

3 P (z)Q(z)=Q(z)P (z)=I for all z in the domain of definition of P and Q

t ∈ Z. Therefore, G(z) can be obtained from the innovation
transfer matrix by multiplying it with M−1 from the right. That
is, up to a right multiplication by a nonsingular matrix, the
innovation transfer matrix can be viewed as the transfer matrix
of any LTI state-space representation of y with a stable causal
inverse.

3. NON-CAUSALITY IN TRANSFER MATRICES

In this section we present our main result which deals with the
following question: what form of a transfer matrix in an input-
output system can mean (conditional) Granger non-causality.

3.1 Granger non-causality

To begin with, we define the notion of Granger non-causality
introduced in Granger (1963). Granger non-causality is also
known as feedback freeness in the literature. In addition, it
can be defined via conditional orthogonality of certain spaces.
More precisely, Definition 2 is equivalent with (weak) feedback
freeness of (y1,y2) in Gevers and Anderson (1982); Caines and
Chan (1975); Caines (1976) and with conditional orthogonality
of the spaces Hy2

t+ and Hy1

t− with respect to Hy2

t− (Lindquist and
Picci, 2015, Section 2.6.5).

Definition 2. Consider a ZMSIR process y =
[
yT
1 ,y

T
2

]T
. We

say that y1 does not Granger cause y2 if for all t, k ∈ Z, k ≥ 0

El[y2(t+ k) | Hy2

t−] = El[y2(t+ k) | Hy
t−].

It is well known that Granger non-causality is equivalent to
the innovation transfer matrix being in block triangular form
Caines (1976); Caines and Chan (1975); Gevers and Anderson
(1982), or in other words, the Wold decomposition being in
block triangular form. In the next theorem we recall this result.
Theorem 1. Consider a ZMSIR process y = [yT

1 ,y
T
2 ]

T . Then
y1 does not Granger cause y2 if and only if the innovation
transfer matrix P (z) of y has the form of

P (z) =

[
P11(z) P12(z)

0 P22(z)

]
, (2)

where Pij(z) is an (ni × nj) block of P (z), for i, j = 1, 2, and
ni is such that yi takes values in Rni , i = 1, 2.

Let e be the innovation process of y, and let ei be the Rni

valued process, i = 1, 2 such that e = [eT1 , e
T
2 ]

T . Then (2) is
equivalent to

y1(t) = P11(z)e1(t) + P12(z)e2(t)

y2(t) = P22(z)e2(t)

In the next subsection, we generalize Theorem 1 for ZMSIR
processes partitioned into n ≥ 2 components. The result is
about the equivalence of conditional non-causality relations
among the components and the zero blocks of the innovation
transfer matrix.

3.2 Conditional Granger non-causality

Our goal is to generalize Theorem 1 for a ZMSIR process
y = [yT

1 , . . . ,y
T
n ]

T with more complex causality structure,
correspondingly, for a more complex zero structure of the
transfer matrices. For this, we need to introduce the notion of
conditional Granger non-causality.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

5117

Definition 3. Consider a ZMSIR process y = [yT
1 ,y

T
2 ,y

T
3 ]

T .
We say that y1 conditionally does not Granger cause y2 with
respect to y3, if for all t, k ∈ Z, k ≥ 0

El[y2(t+ k) | Hy2,y3

t− ] = El[y2(t+ k) | Hy
t−].

Intuitively, conditional Granger non-causality from y1 to y2

with respect to y3 means that the past values of y1 does not
help to predict y2 if we already have the information about the
past values of y2 and y3.

To interpret our generalization of Theorem 1 we introduce a
class of graphs: the transitive acyclic directed graphs (TADG).
Consider a graph G = (V,E), with set of nodes V =
{1, . . . , n} and set of directed edges E ⊆ V × V and denote
the edge from node i to node j by (i, j). The graph G is
called acyclic if there is no cycle, i.e., closed directed path.
Furthermore, it is transitive if for i, j, k ∈ V (i, j), (j, k) ∈
E =⇒ (i, k) ∈ E.

Let P (z) be the innovation transfer matrix of a ZMSIR process
y = [yT

1 , . . . ,y
T
n ]

T . Assume that yi takes values in Rni ,
i = 1, . . . , n and consider the following decomposition of P (z)

P (z) =




P11(z) P12(z) . . . , P1n(z)
P21(z) P22(z) . . . , P2n(z)

...
... · · ·

...
Pn1(z) Pn2(z) . . . , Pnn(z)


 , (3)

where Pij(z) is a (ni × nj) block of P (z). In other words, if
e = [eT1 , . . . , e

T
n ]

T is the innovation process of y such that ei
takes values in Rni then, for i = 1, . . . , n

yi(t) =

n∑
j=1

Pij(z)ej(t).

We say that the transfer matrix P (z) has G-zero structure if for
all i, j = 1, . . . , n, i �= j the block transfer matrix Pij(z) is
zero if and only if (j, i) /∈ E. Roughly speaking, an (i, j)-block
of the transfer matrix P (z) is zero if the (j, i)-element of the
adjacency matrix of G is zero.

Take a TADG graph G = (V,E) with the set of nodes V =
{1, 2, . . . , n} and define Ij as the index containing node j and
its parent nodes, Ij := {j} ∪ {i|∃(i, j) ∈ E}. For simplicity, if
we have a set I = {i1, . . . , ik} then we write yI for the process
[yT

i1
, . . . ,yT

ik
]T .

The next theorem is the main result of this paper. It is a
generalization of Theorem 1 for transfer matrices with TADG
graph-zero structure.
Theorem 2. Consider a ZMSIR process y = [yT

1 , . . . ,y
T
n ]

T

and a TADG graph G = (V,E) where V = {1, . . . , n}. The
innovation transfer matrix P (z) of y has a G-zero structure if
and only if yi conditionally does not Granger cause yj with
respect to yIj for every (i, j) /∈E.

Informally, Theorem 2 can be explained as follows: knowing
which components help to predict which component in a pro-
cess y, is equivalent with knowing how the information flows
between y and its innovation process. If the transfer matrix is
not an innovation transfer matrix or its graph-zero structure
is non-TADG then in general, the zero blocks of the transfer
matrix do not define non-causal relations.

In the proof of Theorem 2 we rely on the property of TADG-
zero structures that they are closed to multiplication and inver-
sion.
Lemma 1. Consider a ZMSIR process y = [yT

1 , . . . ,y
T
n ]

T and
a TADG graph G = (V,E), V = {1, . . . , n}. If the innovation
transfer matrix P (z) of y has G-zero structure then the inverse
transfer matrix Q(z) := P−1(z) has also G-zero structure.

Proof. We start with proving that if a transfer matrix P (z) has
G-zero structure then any power of P (z) has G-zero structure.
Take (P 2(z))ij =

∑
k∈{l∈V |(j,l),(l,i)∈E} Pik(z)Pkj(z) and

notice that from transitivity (j, l), (l, i) ∈ E ⇒ (j, i) ∈ E. It
then follows that if (j, i) /∈ E then the set {l ∈ V |(j, l), (l, i) ∈
E} = ∅ and hence (P 2(z))ij = 0. Consequently, P 2(z) has G-
zero structure. If we assume that P r(z) has G-zero structure for
r = 1, . . . ,m then it follows that Pm+1(z) = Pm(z)P (z) is
a product of two transfer matrices with G-zero structure thus
(Pm+1(z))ij =

∑
k∈{l∈V |(j,l),(l,i)∈E} P

m
ik (z)Pkj(z) is zero

if (j, i) /∈ E. In this way we proved that P r(z) has G-zero
structure for all r ≥ 1. Since P−1(z) can be expressed as a
polynomial of P (z), and taking linear combinations preserves
the G-zero structure, the statement follows. �

Proof. [Proof of Theorem 2] We start with the proof of suf-
ficiency. From Lemma 1 we know that the inverse of the in-
novation transfer matrix P (z) =

∑∞
k=0 Pkz

−k, denoted by
Q(z) =

∑∞
k=0 Qkz

−k has G-zero structure. Take the decom-
position of P (z) and Q(z) as in (3). From the G-zero structure
of P (z) and Q(z) we obtain that Pji(z) = Qji(z) = 0 for all
(i, j) /∈ E, or equivalently i /∈ Ij . Therefore, yj(t) and ej(t),
j ∈ {1, . . . , n} can be written as follows

yj(t) = ej(t) +
∑
i∈Ij

∞∑
k=1

(Pk)jiei(t− k)

︸ ︷︷ ︸
Pij(z)ei

ej(t) = yj(t) +
∑
i∈Ij

∞∑
k=1

(Qk)jiyi(t− k)

︸ ︷︷ ︸
Qij(z)yi

.

(4)

Note that since e is the innovation process of y it follows that
Hy

t− = He
t−. Consider that e(t) ⊥ Hy

t− and e(t − k) ∈ Hy
t−

for k > 0. Then, taking the projection of yj(t) onto Hy
t− we

obtain that

El[yj(t)|Hy
t−] =

∑
i∈Ij

∞∑
k=1

(Pk)jiei(t− k) ∈ H
eIj

t− .

We mention here that eIj (t) := yIj (t) − El[yIj (t)|H
y
t−] is

not the innovation process of yIj unless (conditional) Granger
causality conditions hold. Notice that from (4) we have that
ej(t) ∈ H

yIj

(t+1)−. From transitivity, if i ∈ Ij then Ii ⊆ Ij and

thus ei(t− 1) ∈ H
yIj

t− for all i ∈ Ij . It leads to the following:

El[yj(t)|Hy
t−] ∈ H

eIj

t− ⊆ H
yIj

t− .

As a consequence, El[yj(t)|Hy
t−] = El[yj(t)|H

yIj

t− ] for j ∈
{1, . . . , n}. Likewise, the k-step prediction equals

El[yj(t+ k)|Hy
t−]=

∑
i∈Ij

∞∑
l=k+1

(Pl)jiei(t+ k − l)∈H
yIj

t− .
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It implies that El[yj(t + k)|Hy
t−] = El[yj(t + k)|H

yIj

t− ], thus
that yi conditionally does not Granger cause yj with respect to
yIj for i /∈Ij , or equivalently, for (i, j) /∈E.

It remains to see that if the conditional Granger non-causality
conditions hold then the innovation transfer matrix has G-zero
structure. From the conditions it follows that for any (i, j) /∈ E,
El[yj(t)|H

yIj

t− ] = E[yj(t)|H
yIj

,yi

t− ]. Since for every i, either
(i, j) ∈ E and hence i ∈ Ij , or (i, j) /∈ E and hence
i /∈ Ij by transitivity, it then follows that El[yj(t)|H

yIj

t− ] =
El[yj(t)|Hy

t−], thus eIj is the innovation process of yIj . From
yj(t) = ej(t) +

∑n
i=1

∑∞
k=1(Pk)jiei(t − k) we can deduce

that

El[ej(t) +

n∑
i=1

∞∑
k=1

(Pk)jiei(t− k)|Hy
t−] =

n∑
i=1

∞∑
k=1

(Pk)jiei(t− k) ∈ H
yIj

t− = H
eIj

t− .

Note that H
yIj

t− = H
eIj

t− holds since eIj is the innovation pro-
cess of yIj . Considering that

∑
i∈Ij

∑∞
k=1(Pk)jiei(t−k)∈H

eIj

t−

it follows that
∑

i/∈Ij

∑∞
k=1(Pk)jiei(t− k) ∈ H

eIj

t− . Conse-
quently, there exist {αk}∞k=0 such that 4

∑
i/∈Ij

∞∑
k=1

(Pk)jiei(t− k) =

∞∑
k=1

αkeIj (t− k). (5)

Denote the complementary index set of Ij by Īj := {1, . . . , n}\
Ij and for Īj = {i1, . . . , im} denote the transfer matrix
[(Pk)ji1 , . . . , (Pk)jim ] from eĪj to yj by (Pk)jĪj . Notice that
(5) can be written as

∞∑
k=1

[
(Pk)jĪj ,−αk

]
e(t− k) = 0.

If we take the variance of the equation above and consider that
e is a white noise process, we have that

∞∑
k=1

[(Pk)jĪj ,−αk]E[e(t)eT (t)][(Pk)jĪj ,−αk]
T = 0.

Since y is a weakly stationary full rank process, the variance of
its innovation process at any time t ∈ Z, E[e(t)eT (t)] is strictly
positive definite. It then follows that αk = 0 and (Pk)jĪj = 0
for all k ≥ 0 which proofs the G-zero structure of P . �

Remark 1. Notice that if yi is a root node in the TADG graph
then none of the other components causes yi (simple conse-
quence of Ii = {i}). In this case the conditional Granger non-
causality becomes Granger non-causality.
Remark 2. It is worth to mention that we started from a fixed
partitioning of the output process and investigated the condi-
tional non-causality structure between the chosen components.
In fact, we can also choose the components of the output pro-
cess for which the transfer matrices have TADG-zero structure.
The more detailed partitioning we choose for the block trans-
fer matrix, the more information we have about the causality
structure.

4 Considering that the one dimensional components of {E[eIj (t)e
T
Ij
(t)]−1

eIj (t − k)}∞k=0 form an orthonormal basis for H
eIj
t− , the existence of

{αk}∞k=0 follows.

3.3 Example for non-TADG and TADG-zero structures

In this subsection we give an example for Theorem 2 and
explain Remark 2 in more details. In Remark 2 we mentioned
that the components of the process for which we observe
the causality relations can be chosen in several ways. As an
example, take the simplest non-transitive directed graph G =
({1, 2, 3}, {(1, 2), (2, 3)}). Suppose that the transfer matrices
between a process y = [yT

1 ,y
T
2 ,y

T
3 ]

T and its innovation
process e has G-zero structure as follows:

P (z) =

[
P11(z) 0 0
P21(z) P22(z) 0

0 P43(z) P44(z)

]
. (6)

If y2 can be decomposed into [yT
21,y

T
22]

T , it can happen that
the transfer matrix above has a hidden TADG-zero structure for
[yT

1 ,y
T
21,y

T
22,y

T
3 ] e.g.,

P (z)=



P11(z) 0 0 0
P21(z) P22(z) P23(z) 0

0 0 P33(z) 0
0 0 P43(z) P44(z)


 (7)

or that the transfer matrix has non-TADG structure (there might
be for other partitioning) for [yT

1 ,y
T
21,y

T
22,y

T
3 ] e.g.,

P (z)=



P11(z) 0 0 0
P21(z) P22(z) 0 0

0 P32(z) P33(z) 0
0 0 P43(z) P44(z)


 . (8)

Fig 1a–1b and 1c illustrate the three possible zero-structures
(6)− (7) and (8) of the innovation transfer matrix, respectively.

1 2 3

(a) Original partitioning of y

1 2

3 4

(b) TADG partitioning

1 2

3 4

(c) non-TADG partitioning

Fig. 1. Graph-zero structures of the innovation transfer matrix

To illustrate the results of Theorem 2, we give an example
for the case when there is a hidden TADG-zero structure for
[yT

1 ,y
T
21,y

T
22,y

T
3 ]. We define the following state space repre-

sentation of a y = [yT
1 ,y

T
2 ,y

T
3 ]

T process (y2 = [yT
21,y

T
22]

T ):

x(t+ 1)=



0.7 0 0 0
0 0.6 0 0
0 0 0.7 0
0 0 0 0.8




︸ ︷︷ ︸
A

x(t)+



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
B

e(t)

y(t)=



0.8 0 0 0
0.3 0.5 0.4 0
0 0 0.5 0
0 0 0.7 0.9




︸ ︷︷ ︸
C

x(t)+



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
D

e(t).
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It implies that El[yj(t + k)|Hy
t−] = El[yj(t + k)|H

yIj

t− ], thus
that yi conditionally does not Granger cause yj with respect to
yIj for i /∈Ij , or equivalently, for (i, j) /∈E.

It remains to see that if the conditional Granger non-causality
conditions hold then the innovation transfer matrix has G-zero
structure. From the conditions it follows that for any (i, j) /∈ E,
El[yj(t)|H

yIj

t− ] = E[yj(t)|H
yIj

,yi

t− ]. Since for every i, either
(i, j) ∈ E and hence i ∈ Ij , or (i, j) /∈ E and hence
i /∈ Ij by transitivity, it then follows that El[yj(t)|H

yIj

t− ] =
El[yj(t)|Hy

t−], thus eIj is the innovation process of yIj . From
yj(t) = ej(t) +

∑n
i=1

∑∞
k=1(Pk)jiei(t − k) we can deduce

that

El[ej(t) +

n∑
i=1

∞∑
k=1

(Pk)jiei(t− k)|Hy
t−] =

n∑
i=1

∞∑
k=1

(Pk)jiei(t− k) ∈ H
yIj

t− = H
eIj

t− .

Note that H
yIj

t− = H
eIj

t− holds since eIj is the innovation pro-
cess of yIj . Considering that

∑
i∈Ij

∑∞
k=1(Pk)jiei(t−k)∈H

eIj

t−

it follows that
∑

i/∈Ij

∑∞
k=1(Pk)jiei(t− k) ∈ H

eIj

t− . Conse-
quently, there exist {αk}∞k=0 such that 4

∑
i/∈Ij

∞∑
k=1

(Pk)jiei(t− k) =

∞∑
k=1

αkeIj (t− k). (5)

Denote the complementary index set of Ij by Īj := {1, . . . , n}\
Ij and for Īj = {i1, . . . , im} denote the transfer matrix
[(Pk)ji1 , . . . , (Pk)jim ] from eĪj to yj by (Pk)jĪj . Notice that
(5) can be written as

∞∑
k=1

[
(Pk)jĪj ,−αk

]
e(t− k) = 0.

If we take the variance of the equation above and consider that
e is a white noise process, we have that

∞∑
k=1

[(Pk)jĪj ,−αk]E[e(t)eT (t)][(Pk)jĪj ,−αk]
T = 0.

Since y is a weakly stationary full rank process, the variance of
its innovation process at any time t ∈ Z, E[e(t)eT (t)] is strictly
positive definite. It then follows that αk = 0 and (Pk)jĪj = 0
for all k ≥ 0 which proofs the G-zero structure of P . �

Remark 1. Notice that if yi is a root node in the TADG graph
then none of the other components causes yi (simple conse-
quence of Ii = {i}). In this case the conditional Granger non-
causality becomes Granger non-causality.
Remark 2. It is worth to mention that we started from a fixed
partitioning of the output process and investigated the condi-
tional non-causality structure between the chosen components.
In fact, we can also choose the components of the output pro-
cess for which the transfer matrices have TADG-zero structure.
The more detailed partitioning we choose for the block trans-
fer matrix, the more information we have about the causality
structure.

4 Considering that the one dimensional components of {E[eIj (t)e
T
Ij
(t)]−1

eIj (t − k)}∞k=0 form an orthonormal basis for H
eIj
t− , the existence of

{αk}∞k=0 follows.

3.3 Example for non-TADG and TADG-zero structures

In this subsection we give an example for Theorem 2 and
explain Remark 2 in more details. In Remark 2 we mentioned
that the components of the process for which we observe
the causality relations can be chosen in several ways. As an
example, take the simplest non-transitive directed graph G =
({1, 2, 3}, {(1, 2), (2, 3)}). Suppose that the transfer matrices
between a process y = [yT

1 ,y
T
2 ,y

T
3 ]

T and its innovation
process e has G-zero structure as follows:

P (z) =

[
P11(z) 0 0
P21(z) P22(z) 0

0 P43(z) P44(z)

]
. (6)

If y2 can be decomposed into [yT
21,y

T
22]

T , it can happen that
the transfer matrix above has a hidden TADG-zero structure for
[yT

1 ,y
T
21,y

T
22,y

T
3 ] e.g.,

P (z)=



P11(z) 0 0 0
P21(z) P22(z) P23(z) 0

0 0 P33(z) 0
0 0 P43(z) P44(z)


 (7)

or that the transfer matrix has non-TADG structure (there might
be for other partitioning) for [yT

1 ,y
T
21,y

T
22,y

T
3 ] e.g.,

P (z)=



P11(z) 0 0 0
P21(z) P22(z) 0 0

0 P32(z) P33(z) 0
0 0 P43(z) P44(z)


 . (8)

Fig 1a–1b and 1c illustrate the three possible zero-structures
(6)− (7) and (8) of the innovation transfer matrix, respectively.

1 2 3

(a) Original partitioning of y

1 2

3 4

(b) TADG partitioning

1 2

3 4

(c) non-TADG partitioning

Fig. 1. Graph-zero structures of the innovation transfer matrix

To illustrate the results of Theorem 2, we give an example
for the case when there is a hidden TADG-zero structure for
[yT

1 ,y
T
21,y

T
22,y

T
3 ]. We define the following state space repre-

sentation of a y = [yT
1 ,y

T
2 ,y

T
3 ]

T process (y2 = [yT
21,y

T
22]

T ):

x(t+ 1)=



0.7 0 0 0
0 0.6 0 0
0 0 0.7 0
0 0 0 0.8




︸ ︷︷ ︸
A

x(t)+



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
B

e(t)

y(t)=



0.8 0 0 0
0.3 0.5 0.4 0
0 0 0.5 0
0 0 0.7 0.9




︸ ︷︷ ︸
C

x(t)+



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
D

e(t).
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Calculating the innovation transfer matrix 5 of the process y as
P (z) =C(Iz −A)−1B +D we obtain that

P (z)=




z+0.1

z−0.7
0 0 0

0.3

z−0.7

z−0.1

z−0.6

0.4

z−0.7
0

0 0
z−0.2

z−0.7
0

0 0
0.7

z−0.7

z+0.1

z−0.8




Notice that P (z) has G-zero structure for the TADG graph
G = ({1, 2, 3, 4}, {(1, 2), (3, 2), (3, 4)}) and the partitioning
[yT

1 ,y
T
12,y

T
22,y

T
3 ]

T of y. Note that from Lemma 1 we also
know that the inverse transfer matrix Q(z) = P (z)−1 has also
G-zero structure. Indeed,

Q(z)=




z−0.7

z+0.1
0 0 0

−0.3z+0.18

z2−0.01

z−0.6

z−0.1

−0.4z+0.24

z2−0.3z+0.02
0

0 0
z−0.7

z−0.2
0

0 0
−0.7z+0.56

z2−0.1z−0.02

z−0.8

z+0.1



.

From Theorem 2 the G-zero structure of P (z) is equivalent
with the following (conditional) Granger causality conditions:

(i) [yT
12,y

T
22,y

T
3 ]

T does not Granger cause y1

(ii) y3 conditionally does not Granger cause y21 with respect
to [yT

1 ,y
T
22]

T

(iii) y3 does not Granger cause y22

(iv) [yT
1 ,y

T
12,y

T
3 ]

T does not Granger cause y22

(v) [yT
1 ,y

T
12]

T conditionally does not Granger cause y3 with
respect to y22.

From the conditions above we can also infer for the original
partitioning of y = [yT

1 ,y
T
2 ,y

T
3 ]

T . Accordingly, from (i) it
follows that [yT

2 ,y
T
3 ]

T does not Granger cause y1; from (ii)-
(iii) we can derive that y3 conditionally does not Granger cause
y2 with respect to y1 and finally, from (v) we have that y1

conditionally does not Granger cause y3 with respect to y2.
Note that without partitioning y2 into [yT

12,y
T
22]

T , the two latter
conditions do not follow from the zero-structure of the (3 × 3
block) transfer matrix. In addition, condition (i) and (iii) can
also be seen from Theorem 1.

CONCLUSION

This paper formulated results on Granger non-causality and
graph structures of transfer matrices. We showed that Granger
non-causality and conditional Granger non-causality can ap-
pear in a forward innovation representation as a zero block of
the transfer matrix. We introduced the class of transitive acyclic
directed graphs (TADG) to which we restricted ourself in terms
of zero structure of transfer matrices. We can conclude that if
the zero structure of the innovation transfer matrix of a pro-
cess has TADG-zero structure then it characterizes conditional
Granger non-causalities among the components of the process.
This opens up the possibility to test and identify conditional
Granger non-causalities. Future work will be directed to includ-
ing inputs, translating the results to state-space representations
5 For minimum phase systems where D = I the innovation transfer matrix is
the transfer matrix.

and to introducing quantitative characterizations of Granger
causality.
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