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Abstract:

A layer of keratinous scutes encased the skull of Scelidosaurus. The 
neurocranium as well as the associated principal sensory systems of this 
dinosaur are described. The cranial musculature is reconstructed and a 
subsequent functional analysis suggests that jaw motion was orthal, 
allowing pulping of vegetation and some high-angle shearing between 
opposing teeth. Wishboning of the lower jaw was enabled by transverse 
displacement of the quadrates; and the long-axis mandibular torsion that 
occurred during the chewing cycle was permitted by flexibility at the 
dentary symphysis. Limb proportions and pectoral and pelvic 
musculature reconstructions suggest that Scelidosaurus was a facultative 
quadruped of ‘average’ locomotor ability; it retains some anatomical 
features indicative of a bipedal-cursorial ancestry. Hindlimb motion was 
oblique-to-parasagittal to accommodate the girth of the abdomen. 
Scelidosaurus used a combination of costal and abdominally driven 
aspiration. The hypothesis that respiration was an ‘evolutionary driver’ of 
opisthopuby in all dinosaurs is overly simplistic. A critical assessment of 
datasets used to analyse the systematics of ornithischians (and 
thyreophoran subclades) has led to a revised dataset that positions 
Scelidosaurus as a stem ankylosaur, rather than a stem thyreophoran. 
The value of phylogenetic definitions is reconsidered in the light of the 
new thyreophoran cladogram.
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Notes for the copy editor:

1. Heading notation used herein:
[A] centred caps
[B] centred itals
[C] lh ital. new line
[D] lh ital. run on

I don’t indent the first para after all non-run-on headings (stylistic 
preference). And, I tend not to indent at the beginning of new sections within 
body text (and after quotations).

2. I have attempted to use “ize”, except where this is completely inappropriate 
(e.g. exercise, etc.)

3. In-text ref. punct: Author (date); Author, date; Author & Author, date; 
Author et al., date; Author et al. (date). This seems to conform with recent 
ZJLS style.

4. I prefer not to use the ‘Oxford comma’ unless it is obvious, in a syntactical 
sense.

 [A] INTRODUCTION

Scelidosaurus harrisonii Owen, 1861 is, paradoxically, the earliest known 

(1858) substantially complete dinosaur (Norman, 2000, 2001) and yet, at 

least until recently (Norman, 2020a,b,c) has been among the least well 

understood of dinosaurs. A combination of historical neglect of dinosaurian 

studies in Britain, at least until the 1970s, and the formidable difficulties of 

preparing delicate specimens from their limestone encasement, partly explains 

why the animal lay scientifically dormant for over a century and is only now 

being fully described another half century later.

The remains of Scelidosaurus have (to date) been collected exclusively 

from late Sinemurian (Early Jurassic ~193 Ma) cliff exposures on the “Jurassic 

Coast” (a UNESCO World Heritage Site) near the village of Charmouth in west 

Dorset, England (Fig. 1). There have been reports of Scelidosaurus sp. in 

China (Lucas, 1996) and North America (Padian, 1989). Tatisaurus oehleri 

Simmons, 1965 from the Lower Lufeng Formation (?late Sinemurian) of 

Yunnan Province in China was referred to Scelidosaurus by Lucas (1996) but is 

a nomen dubium (Norman, Butler & Maidment, 2007). Several osteoderms 
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collected in the Kayenta Formation (?Pliensbachian) of Arizona, USA were 

referred to ‘S. harrisoni’ by Padian (1989) on the basis of their greater size 

than known osteoderms of the coeval taxon Scutellosaurus lawleri Colbert, 

1981, and general similarity in morphology to those attributed to 

Scelidosaurus. These specimens were not assigned to this taxon on the basis 

of specific diagnostic characters so they cannot be confirmed as referable to 

Scelidosaurus, or more specifically S. harrisonii, until more reliably diagnostic 

skeletal material has been collected and described. 

Two other taxa have been referred to the family Scelidosauridae. 

Lusitanosaurus liasicus Lapparent & Zbyszewski, 1957 (Antunes & Mateus, 

2003) was created for the fragmentary remains of a maxilla with some teeth; 

it is unfortunate that this material is of unknown provenance and age. 

Originally considered to be stegosaurian, Lusitanosaurus was later referred to 

the family Scelidosauridae because it was clearly ornithischian and thought to 

be Liassic in age. This taxon cannot be diagnosed and is of uncertain 

provenance, so it can only be considered a nomen dubium (Norman et al., 

2004). Bienosaurus lufengensis Dong, 2001 was established for some crushed 

and fragmentary cranial remains approximately contemporary with those of 

Tatisaurus oehleri (above). These remains, referred to as incertae sedis 

(Norman et al., 2004), are now considered undiagnosable (Raven, Barrett & 

Maidment, 2019). 

<Figure 1 near here> Charmouth/Church Bay

The scelidosaur remains collected from the cliffs and foreshore at 

Charmouth range in quality from isolated fractured and water-rolled bones 

through to partial or sometimes nearly complete skeletons that range between 

~1.5 and ~4.5 metres in length (Norman, 2020a). There has been a slow but 

relatively steady trickle of specimens emerging from the cliffs of Black Ven 

(Fig. 1) and these are often associated with local cliff collapses or small 

landslides that occur after stormy weather. The poorly consolidated nature of 

the Lias in this area is such that small cliff collapses occur regularly as a 

consequence of water-lubricated rotational faulting. Identifying the precise 

bed from which clay-smeared fossils or fossiliferous nodules (found on the 

scree slopes) emerge can be extremely difficult. There is however a suspicion 

(based on the long experience of local collectors – David Sole, pers. comm. 

Page 2 of 212Zoological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Scelidosaurus – Biology & Systematics

3

2018) that fossils of Scelidosaurus are particularly localised on Black Ven; they 

may only (or very largely) pertain to one specific limestone bed (W.D. Lang’s 

Topstones (Bed 85) – see Norman, 2020a: fig. 7). The limestone bands within 

the Black Ven Mudstone sequence are diagenetic, reflecting short periods of 

coarser (higher energy) terrigenous sedimentary input. This coarser 

sedimentary fabric is more porous than the largely impermeable clay-rich 

Black Ven Marl sequences, and allows saturated ground water to percolate 

through these layers and precipitate carbonate. The carbonate tends to 

crystalise and ‘nucleate’ on and around skeletal material, leading to the 

growth and formation of lenticular ‘doggers’ that surround and eventually 

enclose these bones. These lenticular bodies may continue to enlarge so that 

adjacent ones coalesce over time if carbonate precipitation continues. The 

gradual merging of doggers can ultimately lead to the formation of irregular 

(lumpy) ‘benches’ or more laterally continuous hard limestone-rich bands. It is 

conceivable that many of the dinosaur skeletons that have been recovered 

from a single limestone band (bed) were victims of a local flooding event and 

that their carcasses (representing a sample of different aged individuals) were 

transported by a river, briefly in spate, into the quiet-water near-shore marine 

setting where they settled and were subsequently buried. 

The two original monographs on this dinosaur (Owen, 1861, 1863) 

focused primarily on osteology insofar as it had been revealed through some 

associated small bones (Fig. 2) and others of an articulated larger skeleton 

partly exposed on the surface of a more or less contiguous set of marly 

limestone (marlstone) slabs (Fig. 3). Three much more recent articles 

(Norman, 2020a,b,c) summarise what is currently known of the anatomy of 

Scelidosaurus. This article explores some of the palaeobiological, 

palaeoecological and phylogenetic aspects of this historically important and 

chronostratigraphically early ornithischian dinosaur.

 [B] Historical review of scelidosaur biology and habits

Richard Owen produced a bewildering range of observations and suggestions 

concerning the morphology as well as the inferred biology and habits of 
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Scelidosaurus. These have persisted in various guises to the present day in 

the absence of any detailed follow-up work on this taxon. For example, in 

relation to its locomotor ability and life habits, Owen observed (somewhat 

tangentially) that:

“To whatever extent the Saurian organization has been modified for 

terrestrial life, that [sic = there] has been, in no instance, such as to 

suggest an inability to swim. On the contrary, the disproportionate 

shortness of the fore limbs, even in the Iguanodon [italics], leads to the 

suspicion that they might be short in reference to diminishing the obstacles 

to propelling the body through water by actions of the strong and vertically 

extended tail; and that, as in the living land lizard of the Gallopagos [= 

Galápagos] Islands, called Amblyrhynchus, the fore limbs might be applied 

close to the trunk in the Iguanodon [italics], when it occasionally sought the 

water of the neighbouring estuary or sea.” (Owen, 1861: 6).

<Figure 2 near here> Owen Tab. 3: ‘foetal’ bones of a small scelidosaur

Owen became even more speculative in relation to the reproductive biology 

and habitat preferences of scelidosaurs:

“One would suppose that the newly born or newly hatched young of a 

Dinosaur might be safer on shore than at sea, or at least in waters which, 

like those of the Liassic ocean, seem to have swarmed with carnivorous 

Enaliosaurs [Owen’s plesiosaurs and ichthyosaurs]. If the Dinosauria were 

ovo-viviparous, and produced but a few young at a birth, the remains from 

the lower Lias figured in Tab. III [see Fig. 2] might be those of a foetus 

borne by a gravid Scelidosaur to sea during an occasional excursion, and 

which by some casualty had there perished, and become imbedded, with 

her progeny, in the muddy bottom of the old Liassic ocean. I have not, 

however, been able to obtain precise evidence of the proximity of the small 

bones above described with any of the larger ones attributed to the 

Scelidosaurus, and bones of more than one small individual might have 

been expected to occur in juxtaposition if they had perished before birth. 

The analogy with the crocodile, moreover, would lead us to expect that the 

newly excluded or newly born Scelidosaur would be of a smaller size than 

the individual indicated by the bones in Tab. III.” (Owen, 1861: 6-7).
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In relation to the diet of scelidosaurs, Owen made the following ambiguous 

observations:

“The finely and sharply serrated and pointed teeth of the Scelidosaurus 

glided upon each other, the upper on the outerside of the under, like the 

blade-shaped crowns of the carnassials of feline mammals; and yet the 

similarity of teeth, in their number and uniformly small size, to those of the 

modern Iguanas suggests that they may have been put to like uses. The 

compressed, serrate crowns in those herbivorous lizards worked obliquely 

upon each other, in a similar scissor-blade way. In Iguanodon the dentition 

is obviously modified more decidedly for mastication of vegetable 

substances. In Scelidosaurus it is adapted for division of such substances, 

but it would be equally effective in piercing and cutting or tearing through 

animal textures.

“If this Dinosaur occasionally went to sea in quest of food, it may be 

expected to present in the fore part of the jaws, wanting in the present 

specimen, laniariform teeth, as in Echinodon, for the prehension and 

retention of living prey. Should these prove to be absent, and the dental 

series to begin as it ends, it will incline the balance of probability to the 

phytophagous nature of the Liassic Scelidosaurus.” (Owen, 1861: 14).

<Figure 3 near here> assembled bones of the lectotype>

After describing parts of the vertebral column of the lectotype of Scelidosaurus 

(NHMUK R1111) in the second monograph, Owen concluded with the following 

remark: 

“I infer … especially for Scelidosaurus, a greater aptitude for swimming than 

in the larger Dinosauria.” (Owen, 1863: 12).

The functionality that he proposed for the forelimb and pectoral girdle was 

summarised in the following way: 

“… the functions of the fore limb seem, therefore, to have been less 

important in regard to locomotion on land than in Iguanodon, 

Megalosaurus, and modern Lizards.” (Owen, 1863: 14).

The hindlimb and pelvis did not provoke specific interpretation, except that 

Owen noted that the length of the hindlimb of Scelidosaurus was 
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proportionally greater than that seen in crocodiles and that its feet were 

generally shorter and broader than those of the latter. He regarded the 

scelidosaur limb proportions as being intermediate between those of 

crocodilians and lizards.

In Owen’s insightful biostratinomic analysis of the lectotype skeleton some 

interesting (and perhaps revealing) observations are made:

“The general condition of this almost entire skeleton of a reptile, organized, 

as seems by the structure and proportions of its hind foot, for terrestrial 

rather than aquatic life, or at least for amphibious habits on the margins of 

a river rather than for the pursuit of food in the open sea, I infer that the 

carcass of the dead animal has been drifted down a river, disemboguing in 

the Liassic ocean, on the muddy bottom of which it would settle down when 

the skin had been so far decomposed as to permit the escape of gases 

engendered by putrefaction.”

And a little later …

“… we may account for the loss of much of the dermo-skeleton and of the 

two fore paddles [my italics]. The larger hind limbs with their stronger 

muscles and ligaments, would offer better resistance to such predatory 

attacks …” (Owen, 1863: 26).

What emerges from these discursive passages is that Owen was of the opinion 

that Scelidosaurus was most probably an amphibious, armoured reptile 

(clearly crocodile-like in habit, if not diet) with a scull-like tail, powerful 

hindlimbs and shorter (paddle-like?) forelimbs. It may have had a herbivorous 

diet but, given the marine setting of its remains, piscivory could not be 

excluded – that could only be clearly decided upon when the teeth at the tip of 

its snout were discovered. It is obvious, in hindsight, that Owen was 

influenced in his thinking by the interpretation of the habits of Hadrosaurus 

published a little earlier by Joseph Leidy (1859) – as argued by Norman 

(2000, 2001). Even more speculatively this species, and perhaps dinosaurs 

generally, may have been ovoviviparous (capable of retaining fertilized eggs in 

their oviducts before giving birth to live young).
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Since the time of Owen, little fresh work on the anatomy of Scelidosaurus 

has been done. Charig (1972) used some newly prepared pelvic and hindlimb 

material (NHMUK R6704) as an anatomical reference point in his attempt to 

model the origin and evolution of the ornithischian and saurischian pelvic 

structures. Barrett (2001) investigated tooth wear and jaw action in the 

lectotype (NHMUK R1111) and by doing so removed fish from the diet of 

Scelidosaurus. And Carpenter et al. (2013) presented posed photographic 

reconstructions of the pelvis and sacrum of the lectotype as a basis for 

resolving the structural evolution of the pelvis in thyreophorans. Norman 

(2000, 2001) reviewed the original discovery of Scelidosaurus and Owen’s 

work on this taxon in a historical context. Apart from these contributions, 

Coombs et al. (1990) and Norman et al. (2004) made some general 

observations about the biology and way of life of Scelidosaurus, but neither of 

these could be regarded as new or original. The description of the osteology of 

Scelidosaurus (Norman, 2020a,b,c) enables a more comprehensive 

assessment of the biology, functional anatomy and life habits of this animal; it 

also provides the information necessary for a more informed assessment of its 

systematic position and phylogenetic relationships.

[A] SCELIDOSAURUS: CRANIAL BIOLOGY

[B] External features

The surfaces of the skull and mandible (Fig. 4) are coated by widespread 

exostoses as well as a small number of discrete osteoderms. This suggests 

that the scelidosaur skull was encased by an array of keratinous epidermal 

scutes or plates.

<Figure 4 near here> Scel. skull in lateral A and dorsal B views.

For comparison, an osteological preparation of the skull of a similarly sized 

sub-adult Green Turtle (Chelonia mydas – Norman, pers. colln – Fig. 5A, B) – 

a taxon belonging to the clade Testudinata with putative (sister-taxon) 

archosaur affinities (Crawford et al., 2012) reveals similarly heavily textured 
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skull roofing bones that, in life, are known to anchor a tessellate covering of 

keratinous scutes (Fig. 5C, D). Unfortunately, this particular specimen does 

not show the pattern of smooth shallow grooves that mark the edges of some 

of the principal cranial scutes (Penkalski, pers. comm. March 2020).

<Figure 5 near here> Chelonia mydas skull. Lateral & Dorsal to 

demonstrate widespread exostoses. Plus tentative restoration of the scute 

pattern.

[C] The premaxillary beak 

In Scelidosaurus a rhamphotheca was, without much doubt, an externally 

smooth casque-like structure referred to as a tomium in Chelonia (Fig. 5C, 

tom) that enveloped the premaxillae (Fig. 6, rsc). The external surface of the 

premaxilla (not including the narial fossa) is slightly rugose and pitted with 

small foramina that in combination would have supported, anchored and 

indicate the presence of a vascular supply that provided nutrients for the 

growth of an overlying rhamphotheca; closely comparable osteological 

features are seen underlying the tomium of the turtle. The scelidosaur 

rhamphotheca formed a short cutting edge along the edentulous margin of the 

premaxilla (Figs 4, 6). The slightly rugose and vascularized lateral wall to the 

dentulous portion of the premaxilla is likely to have been similarly encased by 

a posterior extension of the rhamphotheca, in conformity with the structure 

seen in Chelonia. It is probable that the premaxillary dentition was ensheathed 

(and supported) by this portion of the keratinous beak; the crowns of the 

teeth are envisioned projecting from behind the rhamphothecal parapet (Fig. 

6A) even though there is no modern analogue for such a composite 

arrangement. The dorsal portion of the rhamphotheca coated the external 

surface of the premaxillae and would have extended as far dorsally as the 

base of the dorsomedian premaxillary process, but would have been cut back 

so that it skirted the ventrolateral portion of the external naris. Its 

posterodorsal edge would have merged with the rhamphothecal margin near 

the posterior end of the premaxilla on either side of the snout (Fig. 6A). 

[C] The snout 
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Anteriorly, the dorsal surface of the nasals (Fig. 4B) is characterized by a 

radiating pattern of strands of bony tissue that may have anchored a midline 

scute (Fig. 6A,B, nmsc); this underlying bony pattern corresponds to that 

which supports similar midline scutes on the chelonian skull (Fig. 5B,D). 

Farther posteriorly, the surface of these bones develops a thicker knobbly 

texture that is overprinted by a series of repeated curved ridges. The ridges 

are oriented (more or less) transversely across the roof of the snout and 

extend down the sides of the snout where it is walled by the maxilla and 

prefrontal. The repetition of the curved ridges is suggestive of attachment 

sites for successive (possibly overlapping) scutes that encased the snout 

above the buccal emargination and extended posteriorly as far as the naso-

frontal suture (Fig. 6, nsc). The lateral wall of the snout formed by the maxilla 

and premaxilla is reconstructed here covered by a large maxillary scute (Fig. 

6, msc); however, there are indications (Fig. 4A) of faint attachment ridges, 

so it is possible that a series of overlapping scutes were found here as well. 

Posterior to the reconstructed lateral maxillary scute there is a smooth patch 

of bone (Fig. 6, ?) behind which the lacrimal bears irregular exostotic growth 

that would have supported an overlying scute (Fig. 6, lsc).

There is no equivalent patterning of successive curved exostotic ridges on 

the chelonian skulls that I have examined, so the scute pattern in the 

scelidosaur skull probably differs from the mosaic-like tessellate pattern of 

scutes seen in these living, albeit distantly related, diapsid taxa (Fig. 5).

<Figure 6 near here> skull with scutes restored (lateral & dorsal)

[C] The skull roof and occiput 

The frontals are dominated by a dense pattern of strand-like superficial bone 

that radiates from a midline groove (Fig. 4B). As with the anterior portion of 

the nasal, this morphology is suggestive of the presence of a large shield-like 

scute (Fig. 6B, fsc) that extended across to the adjacent surfaces of the 

prefrontal, middle supraorbital and postorbital.

Lateral to the frontal plate, the palpebral (=anterior supraorbital) and 

posterior supraorbital osteoderms form a shallowly arched bar of bone (=brow 

ridge) that flanks the dorsal orbital margin of the skull roof. The rugose 
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external surfaces of these bones are structurally distinct from the frontal 

plate, and are likely to have anchored their own substantial keratinous sheaths 

(Fig. 6, sosc) that served to shield the orbit and its associated soft tissues. It 

is possible that these keratinous scutes were subdivided into smaller units 

than illustrated here, and may have been superficially ornate for behaviourally 

related reasons; enlarged, sculpted and colourful circumorbital scutes are seen 

in many living squamates.

A rugose, double-ridged sagittal crest dominates the posterior part of the 

skull roof. The ridges are flanked by large ovoid supratemporal fenestrae and 

behind these latter is a divergent pair of prominent curved horn-like occipital 

osteoderms. The temporal arches and occipital margin show some evidence of 

irregular exostotic growth that may well reflect the attachment of overlying 

scutes (Fig. 6, stsc). It is of course possible that this posterior part of the skull 

table was less extensively scute-covered. The fenestrae themselves would 

have been spanned by skin that (although scaly) retained a degree of 

flexibility to allow movement of the underlying temporal musculature. The 

same consideration should also apply to the adjacent infratemporal fenestrae 

(itsc). However, there are areas of the skull of Chelonia mydas where 

exostotic bone is absent and the bone surface is, instead smooth-surfaced 

(Fig. 5A, au); this area (the margins of which are dotted in Figure 5C) is 

covered in life by several scutes (Fig. 5C, ausc). Therefore, it is possible that 

in Scelidosaurus tessellated scutes enveloped the posterior skull roof as well 

as its lateral flanks. The restoration (Fig. 6A,B) includes an imaginary array of 

rather large scutes in these areas.

The occipital osteoderm ‘horns’ have comparatively smooth, finely grooved 

surfaces pock-marked by many tiny foramina; these features are interpreted 

as a combination of points for the connective tissue that tethered an overlying 

keratinous horn (Fig. 6, hsc), and the vascular supply for its continued growth. 

Similar textures are visible on the horn-cores of living bovid mammals (e.g. 

Ovis aries – Norman, pers. colln – Fig. 7A, hc). As can be seen in this 

example, the shape of the horn core may not necessarily have a direct bearing 

on that of the overlying keratinous sheath (Fig. 7B, kh); the same may be true 

in the case of the scelidosaur, but in the absence of new discoveries of 

scelidosaur material in the Lias exhibiting exceptional preservation (e.g. 
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Brown, 2017; Arbour & Evans, 2017) there is no way of judging on the 

matter, so a conservative restoration has been illustrated.

<Fig. 7. Ovis near here> to show horn core A and keratinous horn 

covering B.

[C] Postorbital bar and jugal arch 

The lateral surface of the jugal process of the postorbital is covered to a large 

extent by an externally concave osteoderm. Its dermal origin is betrayed on 

the internal orbital margin of the postorbital; this latter reveals a row of 

vascular foramina that appear to mark the interface between the 

endochondral bone of the postorbital and an overlying dermal bone (Norman 

2020a: fig. 19C). Distally (ventrally) along the jugal process the osteoderm 

structure gradually merges with the surface of the postorbital and more nearly 

resembles an exostosis, rather than a discrete osteoderm. It may be that in 

some instances (perhaps the mandible also) these two processes of superficial 

bone formation become blended – as appears to be the case here. The dorsal 

part of the postorbital osteoderm thickens and produces a shelf, and an 

associated hook-shaped structure that lies adjacent to, and encroaches upon, 

the orbital margin. Together these structures create a sutural surface for the 

posterior supraorbital osteoderm. It is probable that the postorbital osteoderm 

anchored a large scute with a depressed centre (Fig. 6A, posc); its dorsal and 

orbital margins would have been thick and continuous with the keratinous 

scutes on the supraorbital brow ridge – effectively extending the brow-ridge 

below as well as behind the eye socket. The postorbital scute would have 

added to the protection of the eye, and may have augmented a potentially 

ornate superstructure surrounding the eye. This scute may have thinned 

ventrally as it approached the jugal – the adjacent postorbital process of the 

jugal has a completely smooth surface.

The jugal arch is well displayed on the intermediate-sized specimen 

(BRSMG Ce12785 – Norman, 2020a: fig. 13), but perhaps best shown in the 

larger referred skull (BRSMG LEGL 0004 – Norman, 2020a: fig. 14); details 

are a little less clear in the holotype as a consequence of acid-induced 

degradation of the surface textures. Linear strands of bone overlie the 
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tapering anterior (suborbital) process of the jugal and represent a partial 

continuation of the line of rugosities that define the dorsal margin of the cheek 

recess (Fig. 6A, jsc). There also may be some continuity with the strands of 

exostotic material present on the surface of the lacrimal (Fig. 4A). Farther 

posteriorly, the body of the jugal deepens and beneath the postorbital process 

there is a roughly oval patch of granular exostotic bone (jsc); this patch is 

separated by a smooth trough from a far larger and thicker area of exostotic 

bone that covers much of the remaining ventrolateral body of the jugal (jsc). 

The latter patch is rough and granular but has an overlay of irregular strands 

that are oriented posteroventrally and form narrow troughs that terminate at 

foramina; the troughs become shallower distally, before fading out or blending 

into the body of the jugal. The dorsal (postorbital) process of the jugal is 

completely smooth, and the dorsal (infratemporal) margin as well as the free 

ventral margin are also smooth surfaced. The external surface of the 

quadratojugal is not heavily marked by exostoses because it is extensively 

overlapped by the jugal, except for the exposed surface of the wedge-shaped 

lateral ridge that interlocks with a notch on the distal edge of the jugal. The 

jugal may have displayed a moderately complex array of scutes including one 

that borders the anteroventral margin of the orbit (Fig. 6A, jsc), another that 

formed a mound-shaped structure at the base of the postorbital process and, 

separated from the latter, yet another large and probably thick scute that 

encased the posterior body of the jugal and quadratojugal (qjsc).

Comparisons. In ankylosaurids the main posterior body of the jugal and its 

associated quadratojugal are capped by a prominent (almost horn-like) 

osteoderm that has been referred to as the quadratojugal horn (Coombs, 

1978a; Arbour & Currie, 2016). Coombs (1978a) noted that nodosaurids lack 

these quadratojugal horns although some (e.g. Pawpawsaurus and 

Hungarosaurus) bear some surface ornamentation. Stegosaurs show no 

evidence of either exostoses or osteoderms on their jugals or quadratojugals 

(Gilmore, 1914). Scelidosaurus might be interpreted as exhibiting an earlier 

stage in the ankylosaurian reinforcement of the jugal-quadratojugal region of 

the skull through the evolution of pronounced exostoses and the implication of 

their being encased in thick keratinous scutes.
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[C] The mandible

The mandible is only adequately represented in the lectotype (NHMUK R1111 

– Norman, 2020a: figs 36A, 37A) although both of these rami are damaged 

near their mandibular tips and have suffered from superficial damage caused 

by prolonged exposure to mineral acid, which has degraded the bone surface. 

Layers of consolidant have also smoothed-over the original cortical texture. A 

predentary (whether mineralized or not) was undoubtedly present and would 

have been capped by a rhamphotheca (Fig. 6A, pdsc) to match and oppose 

that present on the tip of the premaxillae (rsc). The dentary ramus in the 

holotype is bevelled on either side of a curved ridge that marks the ventral 

margin of the cheek recess. Dorsal to this ridge the external surface of the 

mandible is smooth and marked only by a series of large fusiform foramina. 

Ventral to this ridge the external surface of the dentary ramus is generally 

rugose, rather than smooth, and was coated by a mixture of strands and 

granules of exostotic bone; this coating may have been denser before it was 

subjected to prolonged acid immersion. The dentary might have been covered 

by a mosaic of smaller scutes, but it has been restored in this instance with a 

single large sheath-like scute (Fig. 6A, dsc).

Posterior to the dentary ramus the external surface of the mandible bears 

a prominent, discrete exostosis that is centred upon the angular bone. In the 

lectotype (NHMUK R1111 – Norman, 2020a) this structure has some step-like 

thickened edges, and this gives the general impression that it represents a 

discrete osteoderm; however, it is also possible that some damage may have 

occured during preparation and may account for the appearance of these 

structures on both mandibles. The slightly smaller referred specimen (BRSMG 

LEGL 0004 – Norman, 2020a: figs 14, 39) has not been subjected to such 

corrosive preparation and reveals the natural morphology of the external 

surface of the angular. The angular exostosis develops a thick central mound 

of tissue that has a granular texture. Radiating from this mound are strands of 

bony tissue that extend toward the sutural margins of the angular (and 

seemingly extend across these margins on to the adjacent surfaces of the 

surangular and the dentary). The remainder of the external surface of the 

posterior half of the mandible is smooth and unadorned by exostotic tissue.
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The prominence of the angular exostosis suggests that this part of the 

mandible was covered by a large scute (asc). Whether the overlying scute 

became mineralized during the later stages of ontogeny, creating a genuinely 

ankylosaur-like mandibular osteoderm, is considered probable (judged by the 

appearance of the osteoderm-like structures seen on the mandibles of the 

holotype – NHMUK R1111 – Norman, 2020a), but this ambiguity remains 

unresolved at present.

Comparisons. It is notable that among ankylosaurs both ankylosaurids and 

nodosaurids (among examples for which there is sufficient osteological 

evidence) have a large, rugose bony ossification referred to as a mandibular 

osteoderm (Coombs, 1978a). The osteoderm overlies the position occupied by 

the well-developed angular exostosis in Scelidosaurus, but is also considerably 

larger in proportion to the length of the mandible. In contrast stegosaurs do 

not possess an equivalent structure (Gilmore, 1914 – Carrano, pers. comm. 

2018).

[B] Sensory systems

In the absence of good quality soft tissue preservation it is only possible to 

infer a few aspects of the sensory biology of Scelidosaurus from hard-part 

evidence.

[C] Vision

The orbit of Scelidosaurus is large and circular and the depth of the orbital 

cavity suggests that the eyeball may have been close to spherical (even 

though many living diapsids are known to have non-spherical eyeballs). Sight 

was evidently well developed in this taxon. There is no osteological evidence 

of additional soft tissue encroaching upon the orbital cavity (e.g. large 

vascular sinuses or orbital salt-glands) that might reflect physiological 

adaptations to specific environments. 

The discovery of a few ossified segments from the sclerotic ring is not 

unexpected; representatives of all three principal clades of Dinosauria 
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(Ornithischia, Theropoda and Sauropodomorpha) have been reported with 

sclerotic bones. These bones articulate and form a ring that is embedded in 

the sclera that immediately surrounds the iris in living diapsids (excluding 

crocodilians and snakes). Because sclerotic ossicles form an articulated ring 

that is embedded in the sclera, a role associated with structural support of the 

eye cannot be doubted (Hall, 2008), but how this may have translated into the 

functionality of the visual system is a matter of continuing debate (Martin, 

1982). Muscles associated with altering the shape and positioning of the lens 

(and thus the focusing of visual images on the retina) are known to be 

attached to the sclerotic ring; and, because the individual ossicles imbricate, 

the anchorage for these muscles is stable and there would be less tendency 

for distortion of the eyeball during accommodation than would be the case if 

the compliant tissues of the sclera alone were relied upon (as is the case in 

extant mammals and crocodiles). Pressure-related (hydrostatically-induced) 

distortion of the eyeball may be a factor that accounts for the exaggerated 

evolution of sclerotic rings in extant diving birds and extinct aquatic reptiles 

such as ichthyosaurs and marine crocodiles (metriorhynchids and teleosaurs – 

Romer, 1956); this may also account for the pronounced thickening of the 

peri-iris sclera reported in deep-diving mammals (cetaceans). In non-aquatic 

taxa, extreme lens distortion (linked to accommodation) is also known to 

occur in some birds (notably Strigidae – owls [Martin, 1982]) and this is likely 

to have been facilitated by the sclerotic ring-based muscles as well as the 

almost tubular structure of the sclerotic ring. 

There has been some discussion concerning the aperture of the sclerotic 

ring and whether its size might be a predictor of habitat preference. Schmitz & 

Motani (2011) proposed, after surveying a range of living and extinct taxa, 

that the diameter of scleral aperture and the diameter of the orbital cavity 

provided a proxy that allowed them to predict the preferred light level of the 

animal. Large apertures signify a preference for scotopic (primarily nocturnal) 

conditions, small diameters indicate photopic (primarily diurnal) habits, and 

intermediate diameters suggest a preference for mesopic (twilight) conditions. 

Hall et al. (2011) examined the data presented by Schmitz & Motani and 

identified a range of reasons (statistical, sampling and metrical) why the 

claimed correlations could not be justified.
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<Figure 8 near here> sclerotic ossicles and stapes

The few sclerotic ossicles known in Scelidosaurus, either as isolated 

elements or attached to the cultriform process and medial surface of the left 

jugal (Fig. 8A, sc.os) are facetted, showing that individual ossicles overlap one 

another and formed an articulating ring in the living animal (Fig. 6A, sc.os – 

aperture diameter unknown). The individual ossicles are flattened so they 

would have lain roughly parallel to the surface of a spherical eyeball, as is the 

case in many birds and squamates. The role of the sclerotic ring in the visual 

acuity, habits and physiology of this dinosaur remains frustratingly unclear.

[C] Hearing

The preservation of an ossified proximal portion of the stapes (columella auris) 

in its original location on the skull of the lectotype (NHMUK R1111 – Charig, 

pers. comm. c.1980: Fig. 8B,C) confirms the existence of auditory sensitivity 

in Scelidosaurus (Romer, 1956; Dooling et al., 2000). The distal truncation of 

the bony stapes (Fig. 8B, C, est) marks the point of attachment for an 

extrastapedial cartilage. The latter is expected to contact the tympanic 

membrane (assuming there was one) and may have had the remnants of 

dorsal and ventral processes that branched off the extrastapes; the 

extrastapes would have maintained a rudimentary connection with the hyoid 

arch, at least during the early stages of the animal’s development. There are 

no clear osteological markers of the rim (annulus) of the eardrum 

(tympanum), but if this membrane was present it would likely have been 

located in the vicinity of the notch between the embayed posterior margin of 

the dorsal end of the quadrate and the adjacent paroccipital process (Figs 6A, 

9, tym). The location of the oval window (fenestra ovalis) on the braincase 

wall and length of the ossified portion of the columella (~3 cms – Fig. 9, st) 

implies a modest span for the extrastapes (Fig. 9, est). A pressure 

equilibrating round window (fenestra rotunda – Fig. 9, rw) is present 

immediately beneath the fenestra ovalis and separated from the latter by an 

oblique bony partition.

<Figure 9 near here> Sc. reconstructed extrastapes, tympanum and 

middle ear cav?
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For the effective transmission of pressure waves from the low-impedance 

medium of air to the high-impedance fluid medium of the inner ear, it is 

essential that the pressure waves in air are collected by a large-diameter 

tympanum that is acoustically matched to the impedance of air, and therefore 

focuses the majority of this energy on the attached extrastapedial cartilage, 

rather than acting as a reflective surface. The stapes and its extrastapedial 

cartilage are suspended within an air-filled middle ear chamber that facilitates 

energy transfer to the fluids of the inner ear. There will, of course, be some 

inertial energy loss associated with the mass of the stapes. Nevertheless, the 

areal differential between the tympanum and the footplate that impinges upon 

the membrane spanning the oval window magnifies energy transfer between 

the tympanum and the stapedial footplate-oval window interface. It is 

therefore reasonable to suppose that the tympanum of Scelidosaurus was 

large (Fig. 9, tym), and that the acoustic sensitivity range of such ears was 

likely to have been limited to the higher energy and larger air displacement 

levels associated with comparatively low frequency sounds (~2-20kHz). 

Details concerning the structure of the scelidosaur inner ear and whether this 

has some bearing on its potential sensitivity range are not at present available 

but may be visualized after MicroCT scanning (Norman & Porro, in 

preparation).

<Figure 10 near here> Scel – recon nasal passages, soft palate and 

olfactory lobes?? sagittal.

[C] Taste, smell and nasal passage function

There are no osteological markers that can be used to determine the gustatory 

and olfactory senses in this taxon. In the case of its olfactory capabilities, the 

impression of the passages for the olfactory lobes can be seen on the interior 

roof of the frontals of the lectotype skull (Fig. 11) and are reconstructed 

diagrammatically (Fig. 10, ol.b), but the distribution of the olfactory 

epithelium associated with the nasal passages is unknown. The nasal passages 

are dorsally positioned in the snout and, judged by the structure of the 

anterior palatal complex (vomers, epivomers and pterygoids), consist of 

shallowly arched channels (Fig. 10, np). There is no bony secondary palate (as 
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there is in ankylosaurs – Coombs, 1978a), but the presence of a short 

premaxillary palate beneath the external nares, the partial internal shelving on 

the medial walls of the maxillae and the proximity of the ventral edge of the 

vomers suggests that connective tissue spanned the gap between the maxillae 

and was tethered to the ventral edge of the vomers. This would have created 

a soft secondary palate that separated the oral and nasal cavities (Fig. 10, 

sp). The presence of thin epivomers (Epi) that may have reinforced the soft 

tissues forming the roof of each nasal passage is unexpected.

From a physiological perspective it is improbable that the nasal passages 

of scelidosaurs would have been simple tubular passages; they are likely to 

have accommodated the structural equivalent of turbinates, necessary for 

filtering inspired air, providing surfaces for the location of the sensory 

epithelium associated with olfaction, and to serve as energy/moisture 

exchangers during respiration. The ossified portions of the vomers and 

pterygoids that form the internal walls of the nasal passages show no clear 

evidence of anchorage points for turbinates. It is however possible that the 

plate-like epivomers, with their bevelled anterolateral margins (Norman, 

2020a: fig. 26), added not only rigidity to the roof of each nasal passage but 

served to anchor turbinate-like structures that projected ventrally, across the 

nasal passages in Scelidosaurus.

<Figure 11 near here> Skull-Braincase as preserved in the lectotype.

[C] Neural anatomy

The neurocranium of the lectotype is suspended from the bones of the skull 

roof. This portion of the skull has been well-exposed following acid-mediated 

preparation (Fig. 11) and subsequent accidental damage to what was 

originally a fully articulated skull. The latter event resulted in the left side of 

the snout, suspensorium and entire palate being broken away so that the left, 

ventral and posterior sides of the neurocranium can be examined with 

comparative ease, although the remaining portions of the skull roof and 

adjacent structures are extremely fragile. The exposed surfaces of the 

neurocranium reveal an array of fossae and foramina that can be identified, 

comparatively, as being associated with many of the principal cranial nerves 

Page 18 of 212Zoological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Scelidosaurus – Biology & Systematics

19

and vessels that passed through the walls of the neurocranium as they either 

enter or leave the endocranial cavity. 

The brain itself would have been smaller than the endocranial cavity, 

judged by the fact that the neurocranial walls are smoothly contoured. This 

suggests (as noted by Romer, 1956; Jirak & Janacek, 2017; Watanabe et al., 

2019) that the brain was centrally located, not in direct contact with the walls 

of the braincase, and enveloped by thick meninges; it would also have been 

cushioned dorsally and laterally by large vascular and lymphatic sinuses. The 

ventral portion of the neurocranium anterior to the dorsum sellae (posterior 

wall of the pituitary fossa) is not preserved and was presumably cartilaginous 

in life. The foramina for the cranial nerves provide important and reasonably 

consistent landmarks on the archosaur neurocranium; several of these are 

present on the scelidosaur neurocranium (Figs 12, 13).

<Figure 12 near here> Lateral view reconstructed neurocranium with 

cranial nerve foramina id.

**Copy-editor: please try to place this illustration directly above Figure 13 

so they (12 & 13) form a panel, separated by the legend for figure 12, on 

one page.

<Figure 13 near here> transparent reconstruction of the brain and its 

associated vessels and nerves in the endocranial cavity.

[D] Cranial nerve I (cn.I - olfactory) can be reconstructed only speculatively 

(Fig. 13) and would be represented by nerve fibres running from the sensory 

area of the nasal mucosa to the olfactory bulbs (Fig. 10, ol.b). There is a 

central channel on the ventral surface of the skull roof on either side of the 

suture between the conjoined frontals; this is interpreted as the roof of the 

passage for the olfactory tracts leading to the anteriorly placed olfactory 

bulbs.

[D] Cranial nerve II (cn.II – optic). There is no osteological indicator for the 

presence of this nerve because it would have entered the neurocranium 

through the presumably cartilaginous wall of the braincase immediately 
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anterior to the pituitary fossa (Fig. 13 – this interpretation is confirmed by the 

osteology of this region described by Norman, 2020a).

[D] Cranial nerve III (cn.III – oculomotor). This small nerve leaves the 

neurocranium just posterior to the optic nerve and therefore leaves no trace in 

this specimen (Fig. 13).

[D] Cranial nerve IV (cn.IV – trochlear). This is a small nerve associated with 

one of the eye-moving muscles. It has a complex route from the brain, 

emerging through the neurocranium high on the anterolateral surface of the 

neurocranium. It may be the case that the nerve pathway includes the 

foramen preserved on the ‘blade’ of the orbitosphenoid. The position of this 

foramen correlates reasonably closely with that expected of the route taken by 

cn.IV (Figs 12, 13).

[D] Cranial nerve V (cn.V – trigeminal). This large and important nerve 

emerges from the neurocranium via the proötic fossa/fenestra anterior to the 

otic capsule; it is readily identified in many dinosaur neurocrania, as is the 

case in Scelidosaurus (Figs 12, 13). This nerve tract produces three rami that 

emerge from the large ganglion that fills the proötic fossa; of these the 

ophthalmic branch (cn.V(oph)) is the only one that is clearly discernible in the 

lectotype and is represented by a channel extending anteriorly and roofed 

partly by the laterosphenoid. Typically, the other two rami (maxillary and 

mandibular – cn.V(m,m)) loop behind the epipterygoid (still present in 

Scelidosaurus – Norman, 2020a: fig. 28, Ep) before passing into their 

respective skull bones (Fig. 12).

[D] Cranial nerve VI (cn.VI – abducens). Another small cranial nerve supplying 

a single eye muscle; this arises in the floor of the medulla and typically pierces 

the lateral wall of the dorsum sellae (Fig. 13). This is the only part of the 

pituitary fossa that is well preserved in the lectotype (Norman, 2020a: fig. 33) 

and shows two small foramina on either side of the midline. The passages 

from these foramina run obliquely posterodorsally to emerge on the floor of 

the neurocranium, exactly as predicted.

[D] Cranial nerve VII (cn.VII – facial). This nerve emerges from the medulla 

posterior to the trigeminal and typically runs through the anterior wall of the 

otic capsule and emerges just behind the much larger proötic fossa (Fig. 12). 
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One ramus runs down toward the palate via the vidian (=carotid) canal (Figs 

12, vid; 13) and pituitary fossa, while another ramus (Fig. 13, cn.VII(h)) runs 

posteriorly near the lateral head vein and above the fenestra ovalis and 

ossified portion of the stapes.

[D] Cranial nerve VIII (cn. VIII – vestibulocochlear). The nerve cannot be 

traced externally because it never emerges from the side of the medulla 

directly into the otic capsule.

[D] Cranial nerve IX (cn. IX – glossopharyngeal). A comparatively small nerve 

that often accompanies cn.X (vagus) as it leaves the medulla and more often 

than not uses the same foramen as the latter; this route may be the situation 

in Scelidosaurus (Fig. 13).

[D] Cranial nerve X & XI (cn.X+XI – vagus and spinal accessory nerve). A 

large and more important nerve emerges from the lateral surface of the 

medulla through a large vagus/jugular foramen that forms at the junction 

between the opisthotic and exoccipital bones (a remnant of the metotic fissure 

(see Figs 12, vag-jug; 13).

[D] Cranial nerve XII (cn.XII – hypoglossal). There may be as many as three 

roots that emerge from the neurocranium via two or three foramina all of 

which exit through the lateral wall of the exoccipital. There are two separate 

foramina in the wall of the opisthotic-exoccipital (Figs 12, 13). In some taxa 

an anterior root may also leave via the vagus/jugular foramen and there is 

room for such a possibility in Scelidosaurus.

[C] Associated vascular anatomy of the neurocranium

A large fissure can be seen on the dorsolateral surface of the neurocranium, at 

the junction of the parietal, laterosphenoid and proötic (Fig. 12, vcd). This 

marks the entry point for venous blood draining from the adductor chamber 

and the occiput (via the remnant of the post-temporal fenestra) into the 

transverse sinuses that lie on the endocranial wall flanking the dorsolateral 

regions of the brain. The lateral sinus vents from the endocranial cavity 

through the neurocranial wall into the ventral part of the adductor chamber 

and from there into the lateral head vein. There is no clear indication of the 

ventral drainage of this system; however, it may be the case that the 
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transverse sinuses drained into the lateral head vein via the large jugular-

vagus foramen (Fig. 12) farther posteriorly on the braincase wall (as shown in 

Fig. 13, jug.v).

A large carotid (vidian) canal foramen is present on either side of the 

basisphenoid. It marks the entrance of a canal that enters the ventrolateral 

corner of the dorsum sellae; this represents the passage for the carotid artery 

(Fig. 13, c.art) that supplies blood to the pituitary (p), the floor of the brain 

itself and the more anteriorly positioned organ systems.

Apart from these few fenestrae and foramina, no other indicators of the 

cranial circulatory system of Scelidosaurus are visible.

[B] Musculature, jaw motion and feeding

[C] Musculature

Little attention has been paid to the jaw musculature of thyreophoran 

ornithischian dinosaurs for a combination of reasons. Stegosaurs rarely 

preserve skull material and those known in some detail are not particularly 

informative osteologically, so jaw muscle reconstructions have been 

comparatively simple (Holliday, 2009; Nabavizadeh, 2016). In contrast, the 

skulls of ankylosaurs are robust, highly consolidated and many more are 

known; however, the degree of development of exostoses and osteodermal 

shielding obscures much of their anatomy that is relevant to the description of 

their jaw musculature, which is treated either fleetingly or not at all (Holliday, 

2009). Haas (1969) attempted to identify and reconstruct parts of the jaw 

musculature in ankylosaurs by reference to two well-preserved skulls of cf. 

Euoplocephalus (but it should be noted that the taxonomy of these specimens, 

and of others formerly assigned to the genus Euoplocephalus is in a state of 

flux [Penkalski, 2018 – and pers. comm. March 2020]). Most of Haas’ 

observations focused upon the unadorned posterior, medial and dorsal 

portions of the mandible, and limited areas of the adductor chamber that were 

enveloped by what he referred to (appropriately) as a ‘carapace’ of 

osteoderms. Components of the adductor mandibulae complex were cautiously 

identified by reference to their insertion points, represented by muscle scars 

Page 22 of 212Zoological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Scelidosaurus – Biology & Systematics

23

on the mandible and rather vague indications of their origins within the skull 

roof. Ösi et al. (2017) attempted a slightly more detailed reconstruction of the 

jaw musculature in ankylosaurid and nodosaurid ankylosaurs and, although it 

provides a little more information concerning the internal architecture of the 

skull and likely areas of muscle origin, the general anatomical pattern 

conforms closely in the inferred lines of muscle action (Ösi et al., 2017: fig. 

13) to the original interpretation of Haas – although the muscle identification 

and figure annotations are slightly contradictory.

Unlike more derived thyreophorans, the skull of Scelidosaurus has the 

advantage of being comparatively little modified from that of a more 

generalized early ornithischian such as Lesothosaurus (Sereno, 1991). 

Although the skull of Scelidosaurus bears a patina of exostotic bone and a few 

osteoderms, it lacks the carapace-like plating of osteodermal tissue seen in 

ankylosaurs. However, the evidence for the presence of individual muscles on 

the skull and mandibular bones is fraught with difficulty in fossil taxa. Areas of 

muscle attachment vary greatly in appearance between the various muscles in 

a single individual and this is compounded by differentiation that occurs during 

ontogeny (as well as through evolutionary time) that may alter muscle size, 

orientation and function. Therefore similar anatomical locations cannot be 

used to establish unequivocal muscle homology and the use of such 

approaches as phylogenetic bracketing (Bryant & Russell, 1992) to constrain 

the interpretation of muscle locations is either of limited utility or may be 

totally inadequate (viz. Holliday, 2009). Extant squamate skulls (‘typical 

sauropsids’ – Fig. 14) provide a generalized template for comparison and 

interpretation of scelidosaur jaw muscle distribution; this helps to avoid some 

of the problems of identification that arise because of the evolutionary history 

of profound skull modification and muscle reorganisation seen in the more 

closely related (archosaur-line) crocodilians or birds. 

<Figure 14 near here> Varanus muscle origins and insertions

In the instance of Scelidosaurus, cranial and mandibular construction is not 

too dissimilar to that seen in the generalized sauropsid (Figs 14, 15). As a 

consequence a simple (comparatively uncontroversial) reconstruction of its 

jaw musculature is possible; this has also been informed by interpretations 

that have been generated through the study of other ornithischians (Ostrom, 

Page 23 of 212 Zoological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Scelidosaurus – Biology & Systematics

24

1961; Galton, 1974; Norman, 1977; Norman & Weishampel, 1990; Holliday, 

2009; Norman et al., 2011). Luther (1914) established the fundamentals of 

our current recognition of mandibular musculature, and this was augmented 

by the work of many others in subsequent years (notably Lakjer [1926] for 

sauropsids). Luther established the fundamental separation of the trigeminal 

musculature into the three functional groupings seen in non-mammalian 

tetrapods: adductor mandibulae, constrictor dorsalis and intermandibularis. 

The first two muscle groups and a small part of the branchial musculature are 

described below.

<Figure 15 near here> Jaw muscles of Scelidosaurus

 

[D] M. levator anguli oris (AN.OR). There are few osteological correlates 

associated with this superficial slip of muscle, but the thick and rugose ventral 

edge of the jugal is a perfectly acceptable area for origin of this muscle, which 

would have run forward to insert on a ligament near the ‘angle of the jaw’ 

[corner of the mouth] (Haas, 1969). The possibility exists that an anterodorsal 

expansion of this muscle (following the rugose edge of the jugal on to the 

adjacent lateral surface of the maxilla) and an equivalent expansion along the 

rugose ridge on the lateral surface of the mandible produced a sheet of muscle 

(a physical cheek) that enclosed the buccal emargination. This hypothetical 

cheek muscle is indicated in Figure 15B (AN.OR).

[D] M. adductor mandibulae externus superficialis (MAMES). In the squamate 

(Fig. 14) this muscle originates along the entire lateroventral surface of the 

narrow postorbital-squamosal bar. Birds show a highly modified skull that 

entirely lacks an upper temporal bar and this muscle originates on the 

squamosal. Crocodiles also have a much-altered adductor chamber and this 

muscle originates on the medial surface of the quadratojugal. In Scelidosaurus 

the external surface of the squamosal, anterior to the articular cotylus for the 

quadrate, forms a recess above which there is an overhanging ledge; this 

would have provided an area of origin for this muscle. It is unclear how far 

along the postorbital-squamosal bar the origin of MAMES extended. In 

squamates this muscle inserts on the dorsolateral surface of the surangular. In 

Scelidosaurus, the dorsolateral surface of the surangular is marked by a 
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clearly defined horizontal ridge and it is likely that this muscle inserted here. 

Given the horizontal extent of the surangular ridge it is probable that the 

origin of MAMES extended along the entire length of the postorbital-squamosal 

bar and anchored a broad (curtain-like) sheet of muscle that spanned most of 

the infratemporal fenestra (Fig. 15B, MAMES).

[D] M. adductor mandibulae externus medialis (MAMEM). In squamates this is 

a substantial muscle that originates along the dorsal and posterior margin of 

the supratemporal fenestra (Fig. 14). In birds and crocodiles this muscle is 

considerably more varied in form and attachment areas on the skull (Holliday, 

2009); there is however a little more consistency of its attachment to the 

coronoid region of the mandible (generally via a shared aponeurosis). In 

Scelidosaurus there is a large recess in an equivalent area formed by the 

lateral lamina of the parietal and a medial lamina of the squamosal, so it is 

likely that this was the area for origin of this muscle (Fig. 15A, MAMEM). Its 

insertion site is unclear osteologically in a range of sauropsids because this 

muscle combines with other adductor muscles to insert via a common 

attachment (the bodenaponeurosis) that projects from the dorsal surface of 

the surangular. A similar arrangement probably pertains in Scelidosaurus (Fig. 

15C, bod).

[D] M. adductor mandibulae external profundus (MAMEP). In squamates this 

muscle originates on the lateral surface of the braincase immediately beneath 

the MAMEM (Fig. 14). In crocodiles this muscle originates in the posteromedial 

corner of the supratemporal fenestra and runs forward across the oblique 

quadrate-quadratojugal partition before abruptly descending to insert on the 

surangular of the mandible. In birds the huge expansion of the cranial vault 

obviates a temporal fenestra origin and this muscle attaches to the temporal 

fossa or postorbital process although a discrete insertion is found on the 

coronoid portion of the mandible. A broadly similar pattern to that seen in the 

squamate probably pertains in Scelidosaurus: the dorsolateral surface of the 

braincase (proötic-opisthotic) forms a broad, concave passageway for this 

muscle that was tethered to the sagittal crest (Fig. 15A, MAMEP). A 

mandibular insertion on the surangular via a bodenaponeurosis is likely.
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[D] M. pseudotemporalis (MPST). In the squamate this muscle typically 

occupies an anterodorsal position within the temporal cavity (Fig. 14). In 

crocodiles the muscle is constrained by the structure of the adductor chamber, 

being confined to the laterosphenoid; it inserts via a tendon in the adductor 

fossa. In birds this muscle is reduced to a slip that originates on the 

laterosphenoid buttress of the temporal region and inserts on the medial side 

of the coronoid area of the mandible. In Scelidosaurus the area of origin may 

have been along the anterolateral margins of the parietal and the main body 

of this muscle would have been guided by the shape of the laterosphenoid in 

its passage toward the mandible. An attachment toward the anterior end of 

the surangular (possibly distinct from the bodenaponeurosis) might be 

expected, and in Scelidosaurus may be reflected in the pattern of striations 

seen on, and around, the coronoid and surangular where they project dorsally 

at the anterior end of the coronoid eminence (Fig. 15C).

[D] M. pterygoideus (MPT). In squamates, crocodiles and birds this muscle 

(undivided into dorsal and ventral components in squamates) originates along 

the lateral surface of the main body of the pterygoid and extends 

posteroventrally toward the posterior end of the mandible, wrapping around 

its ventral surface and forming an extensive insertion area beneath the jaw 

articulation (Fig. 14). In crocodiles (and birds) the M. pterygoideus is 

subdivided and originates dorsally and ventrally on a deeper and more 

complex pterygoid than seen in squamates (Iordansky, 1964). 

Overall, this muscle acts as an adductor (massive and very important in 

crocodiles) and also stabilizes the jaw joint; it also imparts a torsional force 

(lateral rotation at the level of the dentition) on the mandible. In 

Scelidosaurus the details of muscular origin are not clear; it is probable that 

the ectopterygoid, pterygoid and palatine, where they form the pterygoid 

flange or its supporting framework, provide areas for attachment a dorsal 

component of this muscle. Additional slips of this muscle may also have 

extended on to more medioventral surfaces of the pterygoid (in the manner 

suggested by Ostrom, 1961: fig. 42). Insertion on the mandible, in the area 

beneath the jaw articulation on the angular and laterally on the surangular, is 

probable and the surangular displays a patina of ridges on its lateral surface in 

just this area that are indicative of muscle attachment (Fig. 15D). 
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Casey Holliday proposed that a ventral slip of this muscle wrapped around 

the ventral margin of the mandible before extending anterodorsally up the 

lateral side of the mandible and inserted along the ventral edge of the jugal in 

both ornithopodan hadrosaurs and theropodan tyrannosaurs (Holliday, 2009: 

fig. 7). This reconstruction was partly informed by the fact that this muscle 

“even attaches to the jugal in some parrots (Hofer, 1950)” (Holliday, 2009: 

1259). It was claimed that there was no clear demarcation between the points 

of insertion of the MAMES and MPT on the lateral surface of the mandible of 

the taxa in question, and that striae along the ventrolateral edge of the jugal 

could be best interpreted as indicating an area of insertion of MPT in 

hadrosaurs and tyrannosaurs. 

In Scelidosaurus there is a clear ridge on the surangular available for 

insertion of MAMES, and there is a muscle scar on the lateral surface of the 

surangular below the glenoid for the MPT. On these bases the extraordinary 

layout suggested for this muscle in hadrosaurids and tyrannosaurids is 

considered improbable in the case of Scelidosaurus.

[D] M. adductor mandibulae posterior (MAMP). This muscle originates on the 

anteromedial surface of the quadrate (pterygoid wing) and inserts on the 

medial surface of the surangular and adductor fossa (Fig. 14). In 

Scelidosaurus the anteromedial surface of the quadrate forms a deep plate 

that overlaps the pterygoid and was available for muscle attachment; the 

medial surface of the surangular and adjacent adductor fossa on the mandible 

would also have been available for muscle insertion even though there are no 

clear osteological correlates for attachment (Fig. 15D, MAMP).

[D] Mm constrictor dorsalis complex. In squamates M. levator pterygoideus 

(MLPt) originates on the lateral surfaces of the parietal and proötic and inserts 

on the epipterygoid (Fig. 14). An origin on the proötic (Fig. 15D, MLPt) is 

plausible in Scelidosaurus (the side walls of the braincase are much higher 

than squamates, which probably excludes an origin on the parietal). The 

retention of an epipterygoid in this taxon may betray the existence of a 

remnant of this muscle, but its function (it is thought to have some influence 

on palate/pterygoid motion in kinetic taxa) is unclear because the skull of 
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Scelidosaurus is structurally akinetic. Interestingly, a discrete flange (“saddle-

like groove” – Heaton, 1972: 190) is present on the central dorsal margin of 

the pterygoid (topographically equivalent to the position of the epipterygoid in 

Scelidosaurus) in the hadrosaur Edmontosaurus. This structure represents the 

basal articulation (Lambe, 1920; Ostrom, 1961; Heaton, 1972; Weishampel, 

pers. comm. October 2019) – rather than an area for the insertion of the M. 

levator pterygoideus (or its ligamentous remnant) as claimed by Holliday 

(2009: fig. 3I: 1256).

In squamates M. protractor pterygoideus (MPPt) originates from a 

discrete area on the ventrolateral wall of the basisphenoid and inserts along 

the dorsal margin of the rod-shaped pterygoid; this muscle is involved in 

palinal displacement of the push-rod-like pterygoid during snout elevation and 

depression in these kinetic taxa (Fig. 14). In Scelidosaurus the anterior 

portion of the basisphenoid is unossified so no osteological correlates for the 

origin of this muscle can be identified. The fact that Scelidosaurus has an 

akinetic skull suggests that this muscle, if it was present, would have been 

little more than a remnant muscle slip (or residual ligament sheet) serving to 

counter torsional strain in the pterygoid and maintain position the pterygoid 

adjacent to the braincase.

[D] Branchial muscles. As in all extant taxa (Fig. 14; see also Ostrom, 1961: 

fig. 52) M. depressor mandibulae (MDM) links the occipital region of the skull 

to the retroarticular process of the mandible. The paroccipital process of 

Scelidosaurus is robust and its distal end bears a discrete vertical facet that 

probably provided an origin for this muscle. MDM would have spanned the 

shallow embayment created by the bowed posterior edge of the quadrate 

shaft (Fig. 15B, MDM). The dorsal portion of this embayment accommodated 

the tympanum (Fig. 9, tym) and the latter was physically protected from 

deformation by the overhang of the paroccipital process. The retroarticular 

process of the mandible, although relatively short, would have provided an 

area for the attachment of the tendon of MDM and sufficient leverage for 

muscle-assisted mandibular abduction.
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[C] Jaw motion

The principal anatomical features of the dentition, jaws and their supporting 

skeletal framework in Scelidosaurus have been summarised earlier (Norman, 

2020a). Assembling the evidence from the original dental and osteological 

observations and the more interpretative work on the myology of the skull, it 

is possible to gain a more detailed understanding of the jaw action and food 

processing capabilities of Scelidosaurus. 

<Figure 16 near here> – curvature of dentitions

[D] Dentition. The maxillary and mandibular tooth rows are inset relative to 

the external surface of the cranium, creating substantial recesses (buccal 

emarginations) that were covered by fleshy-muscular cheeks that may have 

derived muscle fibres from M. levator anguli oris – Fig. 15B. Individual tooth 

crowns are triangular in profile with coarsely cuspidate edges; their bases 

overlap their neighbours and sit obliquely in their alveoli creating an en 

echelon array (Figs 16, 17). Abrasion facets, where present, are high-angle 

and mostly localized on the crowns of individual teeth, and those on dentary 

crowns, when well-developed, extend on to the swollen base of the crown. A 

lip (a small, oblique shelf – Norman, 2020a: figs 42, 43) is sometimes present 

along the basal edge of this facet, creating an imperfect crushing structure 

(Barrett, 2001). The discontinuous distribution of abrasion facets along the 

dentition (contra Ösi et al., 2017: fig. 15) reinforces the impression gained 

from tooth macro- and micro-wear features that jaw motion was primarily 

orthal (Barrett, 2001) and combined orthal pulping of vegetation and irregular 

high-angle shearing resulting from crown-crown occlusion (Fig. 17D,ii). 

Dentitions that show little development of abrasion facets on crowns (viz. 

BRSMG LEGL 0004 – Norman, 2020a: figs 14, 39) indicate that some 

individuals used orthal pulping alone (Fig. 17, Di); these latter individuals 

conform more closely to the expectation generated in the theoretical model of 

the basal style of ankylosaur jaw action suggested by Ösi et al. (2017).

<Figure 17 near here> Occlusion of dentitions

The complementary bowing/curvature of the opposing dentitions (Figs 

16, 17A,B) supports the view that jaw action in Scelidosaurus was orthal 
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because aligned occlusion could only occur when the two dentitions matched 

one another positionally (Fig. 17B). Palinal displacement would misalign the 

dentitions and create malocclusions and irregular damage to tooth crowns 

(Fig. 17C). The medial inset of both maxillary and mandibular dentitions 

imposes asymmetrical forces on the jaw bones. During jaw closure some (but 

not all) teeth occlude – judged by the distribution of abrasion facets of the 

crowns of teeth along the dentitions. Occluding teeth in the mandible 

encounter orthal (vertical) and medial force vectors: a combination of 

adductor muscle vectors and the reaction forces generated by the pressure on 

the occlusal surfaces of the crowns if the teeth are to achieve an effective 

power-stroke and shearing action (Fig. 17, Dii). In equal measure, the body of 

the maxilla would experience a combination of vertical and lateral force 

vectors because there is overbite.

[D] Jaws and skull form. The skull roof is akinetic. However, slight pivoting of 

the quadrate head against the squamosal cotylus permitted minor 

lateromedial translation of the distal end of the quadrate (Fig. 18A,B, q-sq.j - 

arrows). Combined with the modified trochlear structure of the mandibular 

joint (Fig. 18B), the jaw rotates around a transverse axis (ensuring orthal 

occlusion). 

The mandibular joint is slightly offset ventrally, relative to the occlusal 

plane of the posterior portion of the mandibular dentition (Fig. 4A). The 

longitudinal (ventral) arching of the mandibular dentition causes the anterior 

dentition (and beak margins) to occlude in-line with the mandibular joint.

<Figure 18 near here> skull mechs diagrammatic

The suturing between the bones of the skull roof (and secondary 

reinforcement created by the exostoses and their overlying scutes) anchored 

and strengthened the maxillary bones to counter the lateral forces induced in 

these bones during jaw closure and tooth-tooth shearing occlusion. In 

contrast, the mandibles articulate freely against the quadrates and are more 

susceptible to force vectors generated by the adductor mandibulae complex 

that tend to induce medial long-axis rotation (Fig. 18C, AM). The structure of 

the mandibular joint, which is expanded transversely, abutting the surangular 
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(Fig. 18B, Sa), is adapted to resist induced torsion. However, the mandibular 

symphysis, in the single juvenile example that displays this structure 

(Norman, 2020a: fig. 40), is incapable of resisting torsion; and the predentary 

(insofar as its structure may be inferred) is equally unlikely to have prevented 

mandibular torsion at the symphysis.

[D] Muscular effects during jaw closure. The principal jaw adductor muscles 

(MAMES, MAMEM, MAMEP, MAMP, MPST) have their origins on the lateral walls 

of the braincase, temporal arches and quadrate (Fig. 15). The muscles run 

obliquely (ventrolaterally) from their areas of origin to insert principally upon 

the coronoid eminence either directly (Fig. 15B, C, MAMES, MPST), or via a 

common bodenaponeurosis (Fig. 15C, bod). While such muscles exerted force 

vectors that result in orthogonal (vertical) closure of the jaws, the posterior 

portion of the mandibles where the musculature inserted would also be 

subjected to medially directed forces: reflecting the sum of the predominantly 

mediodorsal lines of action of these jaw muscles, combined with the 

dorsolateral location upon the mandible of many of the points of muscle 

insertion (Fig. 18, AM). Occlusion (with overbite) that occurred between some 

of the teeth within the dentition would also impose medial force vectors on the 

mandibles. The combination of the muscular and occlusion-induced medial 

forces would induce medial torsion on both mandibles during isognathic 

(Norman & Weishampel, 1985) jaw closure.

Some degree of torsional ‘balance’ would have been generated by the 

action of the pterygoideus group that forms a sling-like arrangement in which 

muscles arising on the pterygoid (dorsomedially) wrap around the 

posteroventral end of the mandibles and insert on the lateral surfaces of the 

surangular-retroarticular processes. These muscles help to stabilize the jaw 

joint during jaw closure and induce a modest (clockwise) torsional couple (Fig. 

18C, MPT) that counteracts the (anticlockwise) medial couple (Fig. 18C, AM) 

experienced by the mandibles.

The presence of the epipterygoid, a comparatively rare and unusual 

feature among dinosaurs generally, can be associated with the presence of 

components of the constrictor dorsalis musculature in extant squamates (Fig. 
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15D). In the context of a consideration of the stress (and potential strain) 

induced in the skull roofing bones when subjected to lateral forces 

experienced by teeth involved in occlusion in the maxillae, the constrictor 

dorsalis musculature (perhaps even as ligamentous remnants) may have been 

retained to act as the equivalent of ‘tensioners’ linking the maxilla to the 

braincase via the physical bridge formed by the palate bones (pterygoid and 

palatine). A complementary role (stabilizing the maxillae) may also have been 

played by the connective tissues that appear to have spanned the gap 

between the maxillae to form a soft secondary palate (Fig. 10, sp).

[C] Jaw motion summarised 

Anteroposterior pivoting of the quadrate (conventional streptostyly) did not 

occur. Slight movement of the quadrate head within the squamosal cotylus 

was possible and would have allowed subtle mediolateral displacement 

(wishboning) of the mandibles. Such motion facilitated passive re-positioning 

of the mandibles during the chewing cycle. The structure of the mandibular 

joint indicates that each mandible hinged uni-axially against the quadrate 

condyle. The lateral expansion of the quadrate condylar surface (to contact 

and form an articular facet with the surangular) as well as the ventromedial 

angulation of the quadrate condyle may have helped resist medial rotation 

(torsion) induced in the mandible during jaw closure. 

The orientation of the principal mandibular adductor muscles and their 

insertion on the coronoid eminence promoted principally orthal motion of the 

mandible. The positioning of the teeth (medially offset, relative to the 

longitudinal axis of the tooth-bearing bones) as well as the shape of the 

opposing dentitions had several predictable effects. The overbite of the 

maxillary dentition induced medially directed forces (a torsional couple) on 

each mandible and laterally directed forces on the maxillae. The bowing seen 

along the length of both dentitions in occlusal views created large-scale 

‘guides’ that ensured accurate positioning of mandibular and maxillary 

dentitions during biting to ensure that opposing dentitions engaged correctly 

(Fig. 17B). The sinuous profile of each dentition altered the mechanics of 

occlusion along the length of the dentition because the anterior dentition is at 
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the level of the jaw articulation (facilitating a scissors-like action), whereas the 

posterior dentition is dorsally displaced and would have occluded 

simultaneously (en bloc). Displacement of the latter type is seen in specialist 

herbivores (Norman & Weishampel, 1985; Greaves, 1995). This mechanical 

variation in configuration along the length of the mandible is suggestive of a 

partial differentiation of function: the beak and anterior dentition provided a 

cutting and pulping apparatus, whereas the posterior dentition was more 

involved in orthal pulping (non-occluding crowns) and shearing-crushing 

(occluding crowns) prior to swallowing. Repeated jaw closure, particularly at 

the rear of the mouth would have required cheeks to enclose the buccal 

cavities and limit food loss from the sides of the mouth during each cycle of 

occlusion (Lull & Wright, 1942; Ostrom, 1961; Galton, 1973; Norman, 1984a; 

Weishampel, 1984; Norman & Weishampel, 1985).

The symphyseal region of the mandible was unfused in ontogenetically 

immature specimens and it is considered unlikely that fusion occurred in 

adults because the inferred dynamics associated with jaw closure imply a 

combination of active and passively induced mandibular torsion. Torsion that 

occurred during biting would also generate elastic strain energy in the 

ligaments binding the mandibles at the symphysis that would be released 

during abduction. This elastic recoil would contribute to the restoration of the 

mandibles to their pre-closure configuration. The undulatory pattern seen on 

the surface of the bones that form the symphysis in the immature specimen 

(BRSMG Ce12785 – Norman, 2020a: fig. 40) lends support to the 

hypothesized mobility of this joint. The predentary may well have played a 

role in the symphysial stabilization and recoil system proposed here, but until 

this bone (or its soft tissue equivalent) is discovered this suggestion remains 

speculative.

[C] Oral food processing (and potential diet)

On the basis of the interpretations above, oral food processing in 

Scelidosaurus may be considered to have been ‘imperfect’ judged by the 

irregular and discontinuous occlusal surfaces found along the dentition. The 

beak and anterior dentition formed a relatively narrow but sharp-edged 

cropping structure. A narrow beak is commonly interpreted as being 

Page 33 of 212 Zoological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Scelidosaurus – Biology & Systematics

34

associated with selective feeding that equates to specialized food preferences 

(Jarman, 1974; Carrano et al., 1999; Ösi et al., 2017).

Posterior to the beak region the upper and lower dentitions are inset 

medially, creating a prominent embayment that was spanned by a (muscular) 

cheek. The longitudinal curvature of the dentitions creates guides that impose 

precision on (orthal) jaw motion because the dentitions can only effectively 

engage in one position. The surfaces of the teeth in the dentition are not 

uniformly abraded: some develop high-angle abrasion facets indicating a close 

occlusal relationship with an opposing tooth, whereas others show little or no 

wear. As a consequence, the non-beak dentition combined orthal pulping with 

a degree of power-stroke shearing, and a minor component of crushing where 

a few abrasion facets form oblique ledges near the base of dentary crown 

facets (Norman, 2020a: figs 42, 43). 

The duration of oral processing prior to swallowing cannot be determined 

but it is inevitable that vegetation was pulped and partly chewed (hence the 

need for cheeks to retain food as it was repeatedly cut) before it was 

swallowed. This probably represents an adaptation to the type of vegetation 

consumed by, or available to, this animal; or more subjectively the position 

occupied by Scelidosaurus on an functional-evolutionary trajectory associated 

with dinosaurian feeding efficiency. The remains of the terrestrial flora 

associated with the marine Lias of Charmouth are limited to comparatively 

rare (usually pyritized) chunks of coniferous wood and extremely rare leaf 

fragments. Roughly contemporaneous deposits reveal that the Early Jurassic 

flora associated with the tropical summer/wet environment of the Lias was 

dominated by microphyllous cycads, bennettitaleans, conifers, abundant ferns 

and sphenopsids (Rees, Ziegler & Valdes, 2000; Willis & McElwain, 2014). 

Most of these plants are low-growing potential browse for scelidosaurs. The 

narrowness of the cropping beak of Scelidosaurus suggests some selectivity of 

food items: fleshier leaves might have been susceptible to non-occlusal 

pulping and comparatively less cutting and crushing (see below: Digestion)

[B] Osteological anomalies
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[C] Epistyloid bones

Long, blade-ended bones are seen projecting obliquely from the posterior 

surface of the skull in the articulated skeleton (BRMSM LEGL 0004: Fig. 19A)  

and a partially ossified epistyloid is preserved with the skeleton of the smaller 

individual (CAMSM X39256 – Fig. 19B). The structure of the bone in the 

juvenile individual differs from that seen in the larger (sub-adult) individual 

because its shaft is narrow rather than rod-shaped and the bladed distal 

portion is more asymmetrical and is not as fully developed as in the larger 

individual.

<Figure 19 near here> epistyloids

Norman (2020a) suggested that these bones represent a calcified 

tendinous portion of the m. cucullaris cervicis complex (Theis, 2010) that in 

diapsids runs from the pectoral girdle to the floor of the braincase and controls 

head movement and positioning (see Fig. 20). If these bony structures in 

these two individuals are correctly interpreted, they grew during the life of the 

dinosaur and, as they did so, developed from a tendinous origin into a narrow, 

flattened shaft that finally ‘matured’ into more cylindrical form, whereas the 

distal blade deepens and develops additional vanes that anchored tendon 

sheets. This sparse and tentative morphological ontogeny implies that these 

bones are metaplasticly remodelled from the tendinous portion of the 

cucullaris musculature. The tendons that develop in the calf muscles of extant 

domestically bred turkeys first form as laterally compressed sheaths (Norman, 

pers. obs) and this may echo the initial stages of development of the 

epistyloids recovered in Scelidosaurus.

<Figure 20 near here> reconstructed cucullaris musculature

Remarkably, given the range and variety of dinosaur skull material 

discovered and described to date, this is the first report of these anatomical 

structures in the skull of any dinosaur. These bones were not observed or 

recorded in the articulated lectotype skeleton but this may be because the 

skull nodule was detached from the original skeleton and then eroded by 

water-rolling before it was discovered. If remnants of these bones were 

preserved during the process of acid-mediated preparation they may have 
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been mistaken for fragments of cervical rib or perhaps ossified tendons 

displaced from the spine.

[C] Epivomer bones

These shallowly arched, thin, roughly triangular bones have only been 

recorded in the acid-prepared skull of the lectotype (NHMUK R1111 – Norman, 

2020a: fig. 26; and diagrammatically in Figure 10). Evidence suggests that 

they are associated with the vomers in the dorsal region of the nasal cavity of 

Scelidosaurus. These bones are as enigmatic as the epistyloids described 

above. They are paired structures, and each displays a bevelled sutural edge 

(Norman, 2020a: fig. 26, sut) that corresponds in shape and surface 

topography to an equivalent bevelled edge on the dorsolateral margin of each 

vomer. There is another bevelled margin on each anterolateral edge (Norman, 

2020a: fig. 26, bev). If correctly identified, these bones represent ossifications 

within the connective tissue that formed the roof of each nasal passage. It has 

been suggested above (see Taste, smell and nasal passage function) that they 

might have anchored respiratory/olfactory turbinates.

[C] Epipterygoid bones

Among dinosaurs epipterygoid bones are comparatively rare (Holliday, 2009). 

The preservation of an epipterygoid adhering to the dorsolateral edge of the 

central portion of the pterygoid in Scelidosaurus Norman, 2020a: fig. 28) is 

not entirely unexpected because epipterygoids have been reported in some 

ankylosaurids (Maryańska, 1977). The retention of an epipterygoid (more 

commonly associated with kinetic skulls) may be associated with a remnant of 

the constrictor dorsalis musculature that connects the lateral wall of the 

braincase and the dorsomedial edge of the pterygoid (Fig. 15D, MLPt). This 

muscle, or a ligamentous remnant thereof, counteracted strain induced in the 

skull roof during chewing by tensioning the pterygoids medially.

The structure of the epipterygoid shows that it was not part of an 

articular linkage between the palate and braincase (traditionally associated 

with cranial kinesis). It either represents an atavism linked to its theropod and 
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dinosauromorph ancestry (Baron et al., 2017b), or its presence reflects some 

other, so far unexplained, role associated with the functionality of the skull.

[C] Pterygoid ‘pocket’

A narrow pocket-like structure is preserved near the ventral edge of the 

medial wall of the left pterygoid of the holotype skull (Norman, 2020a: fig. 

28B). Its medial wall is partially split away from the body of the pterygoid and 

resembles a rectangular flake of bone attached to the medial wall of the 

pterygoid. Nevertheless, it appears to have had a good dorsal edge and 

creates a narrow, pocket-like structure of unknown function. This feature is 

not preserved on the right pterygoid, so it seems more likely to be a 

preservational artefact created by physical damage.

[C] Antorbital fossa

The antorbital fossa is small and has a bean-shaped outline. Its edges and 

extent are demarcated clearly because its internal (medial) wall is smooth (in 

marked contrast to the exostotic bone that corrugates the surface of most of 

the bones surrounding it on the side of the snout). The role of the antorbital 

fossa in archosaurs and dinosaurs has been much discussed in the past. 

Explanations have focused mainly upon its housing a glandular structure, 

usually interpreted to be an extra-renal salt gland (Broom, 1913) – a view 

supported by Ewer (1965), a muscle (Dollo, 1884; Ewer, 1965; Schumacher, 

1973), or a diverticulum of the nasal/pneumatic system (Osmólska, 1985; 

Witmer, 1997). 

The glandular hypothesis is negated by the fact that in extant taxa such 

glands are located within the orbital cavity, along the dorsal margin of the 

orbit or the more medial portion of the nasal cavity (rather than the lateral 

surface of the snout). Equally, the muscular origin hypothesis, most often 

linked to providing an enlarged origin for the anterior pterygoid muscle, has 

been refuted on several occasions because this muscle invariably originates on 

the pterygoid and palatine bones. And in forms such as extant crocodiles, in 

which this muscle inserts on the maxilla, there is no antorbital fossa (this 

latter argument fails when Mesozoic crocodiles are considered because they 
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retained an antorbital fossa). In contrast, the proposal that the fossa 

represents a cavity to accommodate a diverticulum of the paranasal 

pneumatic sinus system is preferred because osteological correlates exist in 

living archosaurs (including birds) and these can be traced back through the 

dinosaur fossil record to pseudosuchian archosaurs (Witmer, 1997).

<Figure 21 near here> Facial region of 0004.

In Scelidosaurus the posterior portion of the antorbital fossa marks the 

position of the anterior edge of a more deeply positioned (posterior) antorbital 

fenestra. The anterior margin of this latter fenestra is a pillar formed by the 

maxilla that swings acutely anteromedially into the floor of the nasal cavity, 

medioventral to the lacrimal (Norman, 2020a: fig. 12A,B, af). This structure 

can reasonably be interpreted as the passageway for a paranasal sinus that 

lined the antorbital fossa. The function of such a sinus is unclear and it may 

represent no more than a dwindling attempt by the pneumatic system to 

invade the fabric of the snout in an otherwise robust skull, as argued by 

Witmer (1997). However, in the skull associated with the large referred 

skeleton (BRSMG LEGL 0004 – Fig. 21) there is a discrete smooth patch of 

bone and an adjacent groove directly above the antorbital fossa. This bony 

surface is particularly noticeable because all the surrounding bone surfaces are 

adorned by roughly textured exostotic tissue. The absence of exostotic bone 

just in this one place suggests that the tissues associated with the paranasal 

sinus and its associated tissues may have extended between the keratinous 

scutes immediately dorsal to the antorbital fossa (see Fig. 6, ?). A sinus 

extension of this sort might have formed an inflatable pouch adjacent to the 

orbital region, perhaps associated with some aspect of the behavioural 

repertoire of this animal.

[A] SCELIDOSAURUS: POSTCRANIAL BIOLOGY

[B] Digestive system
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A diet of terrestrial plants requires a variety of modifications to be made to the 

digestive system (King, 1996; Sues, 2000). Land plants have a skeletal 

scaffold formed by a combination of structural polymers: lignin, hemicellulose 

and cellulose, none of which can be hydrolysed by vertebrate gut enzymes. To 

release the soluble contents of plant cells their lignin/cellulose fabric needs to 

be broken down. This process is started in the mouth using teeth and jaw 

muscles. There is structural evidence in Scelidosaurus for a small, sharp 

keratinous beak that was narrow so that the animal was capable of cropping 

plant material (perhaps more succulent items) selectively. Once in the oral 

cavity a modest amount of pulping and shearing of plant tissue occurred prior 

to swallowing, judged by the morphology of the dentition. The structure of the 

gut into which the browse was passed is unknown in Scelidosaurus but the 

wide span of the ribcage (Norman, 2020b) indicates that the torso was broad. 

In its proportions and general body shape Scelidosaurus more closely 

resembles those seen in ankylosaurs (Fig. 22A) than the vertically extended 

(narrow and deep) torso morphology exhibited by stegosaurs (Fig. 22B).

<Figure 22 near here> comparison on body shapes.

It is reasonable to assume that a modest amount of chewing of ingested 

plant material occurred in the mouth; however, the residence time in the gut 

to allow for the enzymatic breakdown of lignin and digestion of cellulose would 

be expected to be long, prior to absorption and assimilation of the plant 

breakdown products. There are additional factors to be considered, such as 

the presence of anti-predation chemical defences produced by the plants such 

as alkaloids, terpenoids, condensed and hydrolysable tannins (Swain, 1976), 

as well as the relative succulence and physical texture of the browse. A crop 

can be inferred (because it is present in living archosaurs) as a specialized 

sac-like compartment at the base of the oesophagus, adjacent to the stomach. 

The crop can store and chemically prepare the browse for subsequent 

digestion by softening and enzymatically detoxifying plant tissue. Herbivorous 

reptiles and birds have a far greater tolerance of alkaloids than, for example, 

crop-less herbivorous mammals (King, 1996); this may in part be attributed to 

the ability of the former groups to chemically neutralize these poisons in the 

crop before they enter the absorptive part of the digestive system. 
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The stomach of living birds and crocodiles is also modified by the 

presence of a muscular gizzard whose walls are abrasive and used to 

physically pulverise the plant tissues (or large bones in the case of crocodiles) 

in preparation for digestion. Birds and crocodiles are known to swallow grit or 

stones (gastroliths) that become lodged in the walls of the gizzard and assist 

in the physical breakdown of food in the stomach (gastroliths are also known 

to serve as ballast in crocodiles – Taylor, 1987). Beyond the stomach and 

gizzard, the intestine has an absorptive section (small intestine) that can 

remove soluble plant cell contents released by the crushing of their tissues. In 

herbivorous birds this region of the gut contains a series of blind-ended 

pouches (caecae). The caecae are diverticulae in the gut (sometimes spirally 

coiled) into which the partly digested and crushed plant material passes for 

further digestion mediated by symbiotic microbes (prokaryotes and 

protistans). Unlike their vertebrate hosts these microbes are capable of 

producing enzymes that hydrolyse plant cell walls by converting them to 

breakdown products such as sugars and volatile fatty acids (McBee, 1977). 

Enzymatic breakdown of the plant cell walls releases sugars, proteins, 

minerals and vitamins that can be absorbed through the lining of the caecum 

and small intestine. The process of providing nutrition to the population of 

symbiotic microbes boosts their population, which in turn allows the host to 

absorb amino acids and other breakdown products derived from cell death 

among symbionts. In living herbivorous lizards (and mammals) the more 

distal region of the gut accommodates a voluminous caecum that arises at the 

junction of the small and large intestines (Romer & Parsons, 1980). 

The size of the abdominal cavity simply reflects the storage capacity of 

the gut and its ability to cater for the lengthier phases of digestion and 

absorption inherent in a vegetarian diet. Only in exceptional circumstances are 

traces of the soft tissues of the gut (cololites) preserved (Dal Sasso & Signore, 

1998; Ji et al., 1998), but in the case of Scelidosaurus there is, to date, no 

known preservation of gut tissues or gastroliths in association with the 

abdominal cavity that might illuminate gut structure and function.

[B] Respiratory system
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The respiratory systems of dinosaurs are not preserved but they are so central 

to the development of an understanding of the physiology and metabolic 

status of these animals that they have become a persistent subject of 

investigation. Carrier & Farmer (2000a,b), Perry (2001) and Perry & Sander 

(2004) did much to promote debate on this topic by focusing on the 

respiratory potential in dinosaurs, given what was then known about the 

skeletal mechanics and respiratory physiology of extant squamates, crocodiles 

and birds. The close relationship between theropod dinosaurs and birds 

(Huxley, 1868; Ostrom, 1976; Xu et al., 2014) focused much of the 

subsequent discussion about dinosaur lung structure on the osteological 

correlates identifiable in theropods: pneumatized bones, uncinate ribs and 

gastralia (Claessens, 2004; O’Connor & Claessens, 2005; Codd et al., 2008; 

Benson et al., 2012) and to a lesser extent sauropods (Britt, 1997; Perry & 

Reuter, 1999). Benson et al. (2012: 188), in an article that focused solely 

upon skeletal pneumaticity and its implications for dinosaurian (including bird) 

physiology, noted that Ornithischia is a clade of diverse and abundant 

dinosaurs that is deeply nested within ornithodiran archosaurs and yet lacks a 

pneumatic postcranium, implying that this factor needed to be reconciled in 

any model of dinosaurian biology.

Aspiratory respiration became established in amniotes ancestral to 

Archosauria, resulting in the potential to increase the overall efficiency of gas 

exchange among these animals (Perry & Sander, 2004). Most models of 

amniote respiration were understood to be driven by muscle-induced 

repositioning of the ribs to change the volume of the thoracic cavity (costal 

aspiration). However, it has become clear that respiration can be augmented 

by cuirassal aspiration (indicated by the presence of an abdominal skeleton of 

gastralia – belly ribs), and pelvic aspiration (dependent upon an ability to flex 

either the entire pelvis against the dorsal vertebral column, or specialized 

parts of a fixed pelvis – Carrier & Farmer, 2000a, b). 

In living birds, highly compliant air sacs evolved in association with a 

unidirectional (‘flow-through’) lung structure. A strictly comparable respiratory 

system was hypothesized for theropods ancestral to birds (O’Connor & 

Claessens, 2005; Benson et al., 2012). Abdominal wall compliance probably 

Page 41 of 212 Zoological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Scelidosaurus – Biology & Systematics

42

increased in birds with the loss of gastralia. However, cross-current 

(unidirectional) gas exchange systems were then identified by Farmer & 

Sanders (2010) in the lungs of alligators. The strong similarity in air-flow 

patterns in the lungs of birds and crocodilians suggests that these features are 

plesiomorphic for Archosauria (Schachner et al., 2013a). Flow-through lungs 

are also now recognized more widely among diapsid amniotes including 

squamates (Schachner et al., 2013b; Cieri & Farmer, 2016) so the inference of 

the existence of this type of lung in dinosaurs cannot seriously be doubted. 

[D] Crocodiles. The combination of a non-pneumatic postcranium and an 

absence of air sacs in association with flow-through lungs in crocodiles and 

varanid squamates is of importance in relation to any interpretation of the 

biology of ornithischian dinosaurs because, as Schachner et al. (2013a) 

argued, it breaks what had become over time an embedded stack of inductive 

reasoning: pneumatic bones = an air sac system = unidirectional (‘flow-

through’) bird-like respiratory system = bird-like physiology. However, 

crocodiles also exhibit two other osteological correlates linked to 

interpretations of respiratory physiology: uncinate plates or flanges (Hofstetter 

& Gasc, 1969) reminiscent of – but not necessarily homologues of – the 

slender, ossified uncinate processes seen on the ribs of avian theropods and 

birds (Codd et al., 2008); and gastralia (an indicator of cuirassal aspiration). 

The respiratory physiology of living crocodiles is multifaceted and linked 

inextricably to secondary skeletal modifications for a life spent both in water 

and on land. Such animals are unlikely to be reliable analogues from which to 

infer respiration in ornithischian dinosaurs because of their secondarily 

evolved aquatic adaptations (e.g. Crush, 1984). Nevertheless, they possess 

anatomical features that may offer tangential insights into scelidosaur 

breathing. On land, there are two distinct modes of respiration. Adult 

crocodiles spend considerable amounts of time lying motionless and 

thermoregulating (basking); when doing so they lie sprawled on the ground 

with their bodies unsupported by limbs. Gravitational compression of the body 

results in the ribcage becoming anchored against the substrate and forming a 

self-supporting arch (the individual strut-like ribs may be reinforced by the 

presence of the uncinate plates). The lungs can thus hang comparatively 
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freely within the thoracic cavity without becoming compressed by anterior 

displacement of the abdominal organs (the gastralia may also strengthen and 

tension the abdominal wall in this regard). In this sprawled posture pelvic 

aspiration dominates and is mediated by musculature attached to a movable 

pubis and body wall that facilitates the slow piston-like motion of the liver (the 

hepatic piston pump) that alternately compresses and decompresses the 

thoracic cavity (Gans, 1970). It should be noted that experimentation on 

juvenile crocodiles (e.g. Munns et al., 2012, Brocklehurst et al., 2017) 

demonstrates that costal ventilation is a component of resting terrestrial 

ventilation, but these animals are far more agile and considerably less 

gravitationally challenged than adult crocodilians and can be more adaptively 

flexible in their recruitment of aspiratory musculature. 

When walking terrestrially, the hindlimbs support a high percentage of 

the body weight, and the vertebral column (particularly in large crocodiles) 

bows downward anterior and posterior to the pelvic region. The dermal 

skeleton controls the degree of bowing of the vertebral column by tensioning 

the vertebral column and ribcage via sheets of ligament that connect the 

overlying osteoderms to the neural spines and dorsal surfaces of the ribs 

(Frey, 1984, 1989). As a consequence, during the ‘high walk’ the back of the 

animal is stiffened and the mobility of the ribs is reduced: thus cuirassal and 

diaphragmatic aspiration become of greater importance. Abdominal 

musculature (ischiopubis-ischiotruncus) anchored to the ischium, and a kinetic 

pubis attached to the gastralia draw the gastralia posteriorly and ventrally, 

decompressing the abdominothoracic chamber (inspiration). The rectus 

abdominus musculature linking the gastralia to the sternum draws the 

gastralia forward and dorsally, reducing the abdominothoracic volume during 

expiration (Carrier & Farmer, 2000a,b). In water, the vertebral column and 

ribcage are freed from the gravitationally imposed tensile restriction imposed 

by the dermal skeleton. The ribs can also be moved by intercostal musculature 

and the iliocostalis system to alter the volume of the thoracic cavity 

(Brocklehurst et al., 2017; Codd et al., 2019). Whether the diaphragmatic 

(hepatic-piston pump) and cuirassal systems operate during swimming is 

unknown; but as Gans (1970) pointed out, crocodiles, when hunting prey 

could avoid the tendency to ‘bob’ in the water by adjusting their mode of 
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breathing to minimize unwanted buoyancy-related side-effects (see also 

Uriona & Farmer, 2008).

[D] Ornithischians in general. Osteologically, this clade exhibits neither 

postcranial pneumatism nor gastralia. However, some thyreophoran 

ornithischians (including Scelidosaurus – Norman, 2020b) possess crocodile-

like mineralized uncinate plates; these have also been identified in 

ankylosaurs (Brown, 1908), a basal stegosaur (Zhou, 1984) and several 

ornithopods (Butler & Galton, 2008). 

Carrier & Farmer (2000a) reviewed the occurrence of pelvic respiratory 

mechanisms in archosaurs and considered the enigma of ornithischian 

aspiratory mechanics. The absence of gastralia removes the possibility of 

cuirassal aspiration, and it was argued that the large herbivore gut would have 

made cuirassal breathing “uneconomical” because of the energy expenditure 

needed to raise the heavy viscera for each expiration. Three possibilities 

remain: costal aspiration alone, costal and diaphragmatic aspiration in 

combination, or costal and some “unique form of pelvic aspiration” (Carrier & 

Farmer, 2000a: 282). Costal aspiration alone was considered unlikely and 

there was no osteological evidence for a crocodile-like diaphragmatic system, 

so attention was focused on the distinctive pelvic morphology displayed by this 

clade.

The anteroposterior elongation of the iliac blade for the attachment of 

limb protractor and retractor muscles, the large number of sacral vertebrae, 

the sagittal expansion of the blades of tall neural spines that were flanked by 

bundles of ossified tendons clustered around the pelvic region, indicated 

“strength and limited ilio-sacral mobility” in ornithischians. It was also noted 

that the pubis and ischium did not support the femoral articulation and were 

“loosely” attached to the ilium judged by their unfused articular joints. The 

latter has led to ambiguity in pelvic reconstructions (as noted in Norman, 

2020b). In such (generally) large-bodied animals the pubis and ischium would 

have had to respond to increasing support-related and locomotor muscle-

induced forces, but this was evidently not reflected in the strengthening of 

their sutural relationships. However, instead of diminishing in size and 
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importance (because their support and anchoring roles were of secondary 

importance), these bones became enlarged through the development of large 

“paddle-shaped” prepubic processes, and ischia that became strong, elongated 

bones.

A pelvic aspiration model was proposed for the lower pelvic bones. Using 

the example of derived ceratopsians, it was proposed that the pubo-ischium 

(as a unit) was capable of parasagittal rotation against the ilium: in effect 

rocking backwards and forwards to expand and contract the abdominal cavity 

and pressurize-depressurize the thorax. This system was suggested to have 

been driven by antagonism between the rectus abdominis and ischiotruncus 

musculature (Carrier & Farmer, 2000a: fig. 10A). Alternatively, using the 

example provided by stegosaurs and ornithopods, it was suggested that the 

pubis acquired a kinetic relationship with respect to the adjacent pelvic bones: 

the joints between the pubes and the ilia became mobile and the (posteriorly-

directed) pubic shaft was considered to be capable of rotating about its long 

axis where it lay parallel to the ischium. As a consequence, the “paddle-

shaped” prepubic blades could be abducted, thereby expanding the abdomen. 

A new iliopubic muscle was proposed (Fig. 23) that ran between the dorsal 

margin of the iliac blade and lateral surface of the prepubic blade (although an 

antagonist to this muscle was not considered). It was also noted that the 

pumping action of the prepubic blades would have been more effective if there 

were lung diverticula (or air sacs) in the abdominal cavity – for which there is 

no evidence.

<Figure 23 near here> Carr & Farm model of pelvic asp. in ornithischians

It can be noted that in stegosaurs the pubic shaft rests snugly against 

the entire length of the shaft of the ischium and would have been bound to the 

latter by ligaments that may have permitted some axial twisting of the pubis 

and consequential abduction-adduction of the prepubic blade. In ornithopods, 

a characteristic feature of the ischium is the presence of the tab-shaped 

obturator process; this latter had the potential to provide an appropriate 

anchoring point and attachment site for ligaments that controlled the 

movement of the pubic shaft. 
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It is perhaps understandable why Carrier and Farmer did not expand 

their idea to reconcile their theoretical model with aspiratory mechanisms in 

ankylosaurs: the construction of the ankylosaur pubis (reduced and fused to 

the ilium) is not compatible with their line of reasoning. Equally, the fusion 

between dorsal ribs and dorsal vertebrae of ankylosaurs has the potential to 

compromise a costal aspiratory mechanism. Ankylosaur aspiratory 

mechanisms are enigmatic and may well have been diaphragmatic given the 

mechanical restrictions that seem to have applied to their costal and pelvic 

regions. However, one consistent feature among ankylosaurs is the extremely 

broad, laterally overhanging preacetabular process of the ilium. This structure 

has the potential to anchor a sling of musculature surrounding the abdomen 

and capable of alternately compressing and decompressing the abdominal 

region in these animals to achieve ventilation of the lungs.

[C] Scelidosaurus 

Contrary to Richard Owen’s interpretation that “In different parts of the matrix 

of blocks (Tabs. II and IV) are portions of long and slender bones, which are, 

most probably, abdominal ribs” (Owen, 1863: 6), there is no convincing 

evidence of gastralia in Scelidosaurus; and there is no evidence of postcranial 

pneumatism (Norman, 2020b). If Carrier & Farmer (2000a) are correct in their 

general thesis concerning archosaur aspiratory mechanisms then the 

dinosauromorph ancestors of this lineage (represented by Herrerasaurus – see 

Fig. 27A) are likely to have used a combination of costal and cuirassal 

aspiration. The additional presence of osteoderms (retention of an archosaur 

symplesiomorphy?), or even their secondary development in thyreophorans, 

may have influenced rib mobility and the extent to which the costal system 

could contribute to volume/pressure changes within the thoracic cavity (cf. 

crocodiles). Such constraints might have required thyreophorans (including 

Scelidosaurus) to use additional (but so far unknown) mechanisms for 

ventilation.

[D] Costal aspiration. Brocklehurst et al. (2017) examined rib mobility in 

juvenile alligators. One particular consideration was the arrangement of the 

para- and diapophyseal articular facets along the dorsal series and the degree 
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to which the positioning of the facets affected rib motion. Archosaurs (and 

alligators are no exception; Brocklehurst et al., 2017: fig. 1; see also Norman, 

1980: figs 34, 37) display migration of these facets along the dorsal vertebral 

series: the parapophysis rises from the lateral surface of the centrum to the 

transverse process and then migrates toward the distal end of the latter 

before finally merging with the diapophysis. In Scelidosaurus, the 

parapophyses of the first three dorsals rise sequentially to occupy a position 

on the anteroventral edge at the base of the transverse process. However, 

once this position is attained no further migration takes place until the last two 

dorsals in the series (Norman, 2020b: figs 20, 21). The parapophyseal facets 

are all dimple-shaped and smoothly concave, indicating a normal synovial 

joint. The diapophyseal facets are more complex having a ventral half that is 

synovial and a dorsal half that is pockmarked by ligament pits (Norman, 

2020b: fig. 16, pits), suggesting that the upper half of the suture between the 

diapophysis and tuberculum formed a firmer, fibrous joint.

The ribs are notable for their span when placed in articulation (Norman, 

2020b: fig. 34): the back of the animal was broad rather than narrow and 

deep. The distal ends of the thoracic ribs are bluntly truncated, indicating that 

their ends articulated with sternal rib cartilages (none of the latter are 

preserved). The presence of facets on the trailing edges of some of the longer 

anterior dorsal ribs, as well as what appears to be a partly mineralized plate 

(Norman, 2020b: fig. 35A) shows that uncinate plates were present – but may 

have been localized to the middle of the shafts of the longer thoracic ribs – 

and similar indications of uncinate plates have been reported in other 

ankylosaurs (e.g. Brown, 1908 – see also Gilmore, 1930) as well as the basal 

stegosaur Huayangosaurus (Zhou, 1984: fig. 19). The more specialized 

slender uncinate processes reported in some avialians have been linked to the 

mechanics of the respiratory system (Codd et al., 2008). Recent work (Codd 

et al., 2019) has also shown that in alligators the iliocostalis musculature is 

attached to the uncinate plates on the ribs and was capable of facilitating rib 

movement, augmenting thoracic compression (exhalation) under terrestrial 

conditions. Slender uncinate processes are present on all the dorsal ribs of the 

extant lepidosaurian Sphenodon, but these have muscular connections to the 

gastralia and may be associated with cuirassal aspiration (Codd et al., 2019). 
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In Scelidosaurus, the uncinate plates are mineralized sheets of tissue 

(probably cartilage) that are in their structure more similar to the flap or 

flange-like uncinate plates seen in crocodiles. These are here interpreted 

primarily as rib stabilisers or ‘spacers’, but there is the possibility that they 

also anchored iliocostalis musculature that facilitated exhalation, as described 

in alligators.

Ribs may also play a role in supporting the osteoderms that form 

conspicuous rows running the length of the torso. The most prominent 

osteoderms are found along the flanks of the animal and lie adjacent to the 

distal ends of the rib shafts. There is superficial similarity between the 

osteoderms covering the back of Scelidosaurus and those seen in crocodiles; 

however, crocodilian osteoderms are more closely packed and articulate, 

creating a flexible dermal carapace, whereas those of this dinosaur do not 

articulate (apart from in the cervical region), being more widely spaced. The 

area between individual torso osteoderms comprises a semi-flexible dermis 

formed by a mosaic of much smaller osteoderms (Norman, 2020c: fig. 36). 

Individual large osteoderms are lightly constructed, with a thin cortex and a 

cancellous medulla (Norman, 2020c: fig. 43), so the weight of the dermal 

armour was unlikely to have been excessive. The extent to which osteoderms 

were anchored by ligaments to the ribcage and formed part of a tension 

system similar to that seen in extant crocodilians is unclear, but is considered 

to be unlikely given their widely spaced and non-articular arrangement in the 

thoracic region. The ossified tendon bundles that flanked the neural spines of 

the dorsal vertebrae would have tensioned the backbone in an analogous 

manner to the osteoderm-based tension system of crocodilians. However, the 

larger osteoderms were likely to have been capped by keratinous sheaths 

(Brown, 2017) and formed rows of defensive spikes. Firm anchorage in the 

dermis and to the underlying skeleton (ribs) might be expected – and this 

anchoring is perhaps reflected in the preservation of semi-natural arrays of 

these osteoderms in some articulated skeletons (e.g. BRSMG LEGL 0004 – 

Norman, 2020c: fig. 8). 

Overall, the ribcage of Scelidosaurus has a broad span and there was a 

conspicuous uniformity in the articular relationships (and range of possible 

movements) of the thoracic ribcage. Rib motion is likely to have been of the 
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bucket-handle type (Brocklehurst et al., 2017) which would have permitted 

modest volumetric change in the thoracic cavity; this may have been 

augmented by the iliocostalis musculature that, in alligators, inserted on the 

uncinate plates (Codd et al., 2019). The longer thoracic ribs were stabilized 

proximally by fibrous connections running across the diapophyseal-tubercular 

joints, and their shafts were ‘spaced’ distally by the presence of cartilaginous 

uncinate plates (that became mineralized in more mature individuals) so that 

the thoracic ribs moved as a parallelogram-like unit. The ribs supported and 

helped to anchor the larger osteoderms. There is, however, no convincing 

evidence that the ribs and osteoderms formed a tensioning system that 

stiffened the backbone as in crocodiles. Modest uniform flexure of the thoracic 

ribs provided a mechanism for costal aspiration.

[D] Cuirassal aspiration. In the absence of gastralia there is no osteological 

evidence for cuirassal aspiration and this aspiratory mode is considered  

improbable by Carrier & Farmer (2000a). 

[D] Diaphragmatic aspiratory mechanisms akin to those seen in extant 

crocodilians cannot be entirely discounted because diaphragmatic muscles 

might have been anchored to the prepubic blades, although their lateral 

positioning counts against this possibility, provided that the crocodilian model 

of hepatic pistoning is an applicable comparator.

[D] Pelvic aspiration. The observations of Carrier & Farmer (2000a) prompt 

brief consideration in relation to the respiratory capacity/potential in 

Scelidosaurus. Pelvic flexure (between the dorsal vertebrae and sacrum) can 

be excluded given the presence of bundles of ossified tendons that run along 

the entire dorsal series and are anchored to the sacrum; these would inhibit 

flexure between the dorsal series and sacrum. The pubis and ischium are not 

fused to the ilium but rather articulate with the latter via thick connective 

tissue pads. The pubic shaft and ischium are equal in length, whereas the 

prepubic process forms a laterally-directed blade. In basal ornithischians 

(Lesothosaurus – Baron et al., 2017a; Heterodontosaurus – Santa Luca, 1980; 

Galton, 2014) the prepubic process forms a rectangular plate that projects 

anteriorly beneath the preacetabular process of the ilium to a greater extent 

than indicated in the reconstruction of Carrier & Farmer (2000a: fig. 11A). In 

Scelidosaurus, the prepubic process is short in juvenile individuals (NHMUK 
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R6704: Norman, 2020b: fig. 73) but becomes a more substantial rectangular 

plate in larger (sub-adult) individuals (Norman, 2020b: fig. 74). 

The pubic shaft is a long rod, coterminous with the distal end of the 

ischium and lies against the shaft of the ischium. The Carrier-Farmer model of 

rotation of the pubic shaft permits the prepubic blade, if adducted, to 

compress the broadly expanded posterior abdominal wall. If diverticula or air 

sacs were present (unknowable), respiration would have been augmented. A 

model involving a combination of costal (possibly diaphragmatic?) and pelvic 

aspiration (achieved by pubic mobility) is at least plausible for Scelidosaurus.

[A] OPISTHOPUBIC PELVIC STRUCTURE: A REFLECTOR OF HERBIVORY OR 

RESPIRATORY BIOLOGY?

Macaluso & Tschopp (2018) argued that it was necessary to demonstrate that 

respiration was more likely to be an “evolutionary driver” of opisthopuby in 

dinosaurs than was herbivory. The basis for this proposition was a false 

premise: that opisthopuby in all dinosaurs had previously been causally linked 

to the adoption of an herbivorous diet. Furthermore, they claimed that this 

idea had been proposed by Weishampel & Norman (1989). However, 

Weishampel & Norman never made such a claim in that article. Rather 

opisthopuby, which characterizes Ornithischia, was proposed as a 

biomechanical adaptation that permitted small ornithischian herbivores to 

retain a bipedal posture and limb proportions indicative of cursoriality in the 

face of predation by coeval bipedal and cursorial theropods (Norman & 

Weishampel, 1991). This latter proposition was never expanded by these 

authors to encompass all dinosaurian sub-clades. The evolution of an 

analogous form of opisthopuby among some avian-theropods, although 

interesting per se from an evolutionary perspective – particularly in light of 

the work of Baron et al., (2017b,c) – has always been considered (certainly by 

Norman and Weishampel) to be a functionally and physiologically unrelated 

matter. 

An awareness of cranial adaptations that can be interpreted as indicators 

of a herbivorous or omnivorous diet among theropods (traditionally considered 
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exclusively carnivorous) was highlighted in a general review by Barrett & 

Rayfield (2006). Their general thesis was further developed by Zanno et al., 

(2009) in which a wider range of cranial as well as postcranial morphologies, 

and their distribution among taxa, were mapped phylogenetically across a 

range of coelurosaurian theropods (Zanno et al., 2009). They concluded that 

coelurosaurian theropods were not primitively ‘hypercarnivorous’ but were 

dietarily flexible, ranging from herbivory through omnivory to carnivory, and 

that strict carnivory was a secondary specialization found in one group of 

paravian theropods (dromaeosaurids). The recognition of dietary flexibility 

among coelurosaurians was posited as an evolutionary benefit because it 

allowed them to be dietary opportunists.

Returning to the issue of respiration vs herbivory as a driver of 

opisthopuby, Gatesy & Dial (1996a,b) demonstrated that the evolution of 

opisthopuby is coupled with a reconfiguration of body proportions and limb 

function among Avialae; this alteration presaged the ‘modularized’ bodies of 

extant birds. In short, the tail undergoes progressive reduction in its skeletal 

and muscle mass; as a consequence, the tail’s cantilevering effect is reduced 

and it simultaneously reduces its capacity to anchor the principal hindlimb 

retractor muscles (m. caudifemoralis longus). An anatomical marker reflecting 

the reduction of the femoral retractor musculature is the size and prominence 

of the femoral 4th trochanter, which progressively reduces before disappearing 

completely in ‘paravian’ theropods (see Fig. 28). To maintain a bipedal pose a 

number of sub-clades of shorter- or slender-tailed avian-theropods evolved 

degrees of pubic retroversion, ranging from intermediate (mesopuby) to full 

opisthopuby – followed by eventual separation of the pubes and ischia in the 

midline so that the abdomen can extend posteriorly beneath and behind the 

sacroiliac vault (see Figs 27, 28). These changes reflect a re-balancing of the 

body to compensate for the loss of the cantilevering effect of the tail. There is 

also a consequential re-purposing of the hindlimb. The femur becomes an 

exclusively anteriorly-directed suspension member of the hindlimb, and the 

knee-joint adopts the role of a ‘neoacetabulum’. The anteriorly displaced knee-

joint becomes the centre of balance and the locomotor stride of the hindlimb is 

achieved by swinging the elongated tibiotarsus and tarsometatarsus, 

pendulum-like, from the knee (as is the case in extant birds). 
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In this general context, gross expansion of the gut cavity and 

retroversion of the pubis (linked to a shortening of the tail), and the 

maintenance of a bipedal stance, can be correlated with herbivory in the 

highly modified opisthopubic condition described in therizinosaurs such as 

Nothronychus (Zanno et al., 2009) but these are truly exceptional 

theropodans – see Figure 27D.

[C] Observations 

Macaluso & Tschopp (2018) undertook a study that was purposely restricted in 

scope: they limited the biological ‘drivers’ considered to just two. In terms of 

logic, the study is internally consistent in that they consider whether dinosaurs 

exhibit carnivory, omnivory or herbivory, assign these traits to the taxa under 

consideration, and then plot their assignments on a general phylogeny 

(Macaluso & Tschopp, 2018: fig. 2). They indicate, on that phylogeny, the 

presence or absence of gastralia and whether pelvic anatomy was ‘propubic’, 

‘mesopubic’ or ‘opisthopubic’ – employing the terminology adopted by 

Rasskin-Gutman & Buscalioni (2001). Dinosaur taxa (representative of 

selected dinosaurian sub-clades) are then scored according to the authors’ 

interpretation of pelvic morphology, diet and respiratory capacity. An 

analytical protocol was applied to their scores which promotes the view that 

opisthopuby is more strongly correlated with respiratory mechanics than with 

herbivory in these dinosaurs. 

Their approach conflates an objective analytical protocol with a set of 

subjective decisions concerning diet and respiratory capacity, and uses 

simplified two-dimensional images of hip structure. They admit in the 

discussion section “that a change in the ventilatory system was [not] the only 

evolutionary force acting on the structure of the archosaurian pelvis. For 

instance, egg morphology, locomotion, nesting behaviour and reproductive 

organs could all have been equally influential.” (Macaluso & Tschopp, 2018: 

714). There was no mention of herbivory, but these other factors were not 

explored because they were considered by the authors to be “more difficult to 

recognise in the skeleton” (p. 714). 
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On the basis of the published literature and available descriptions, it can 

be stated objectively that ornithischians and sauropods are the only dinosaur 

groups that show no evidence of gastralia. Representatives of all the theropod 

clades considered by Macaluso & Tschopp are known to possess gastralia 

(contra Macaluso & Tschopp, 2018: fig. 2 – note that node 4 in this figure 

implies that all ‘Pennaraptoran’ taxa [oviraptorosaurs, dromaeosaurs + 

Sinovenator] possess gastralia and yet, paradoxically, were designated as 

non-cuirassal breathers. Taken in total, the approach adopted in their article 

establishes a false premise and subsequently fails to account for the range 

and variety of anatomy, inferred biology and functional organisation of these 

animals – all of which have a material bearing on our understanding. It has 

always been understood (certainly by Norman & Weishampel) that the unique 

evolution of the opisthopubic pelvis in ornithischians, and also seen to have 

arisen iteratively among some avian-theropod sub-clades, were independent, 

anatomically distinct and functionally-unrelated events. 

To provide an overview of the biological and functional issues associated 

with respiratory capacity and its linkage to the evolution of pelvic structure in 

dinosaurs (and their extant descendants birds) a set of summary comments is 

offered.

<Figure 24 near here> Dinosaur phylogeny crude

[C] Summary 

Irrespective of basal dinosaur systematics (Baron et al., 2017b,c; Langer et 

al., 2017) it can be agreed (following the work of Carrier & Farmer, 2000b) 

that stem-lineage taxa (dinosauromorph archosaurs) had mobile bicipital 

dorsal ribs and gastralia. This indicates that they were capable of using to 

varying degrees a combination of costal and cuirassal modes of aspiration. 

Gastralia, and by implication cuirassal-style aspiration, are retained 

(symplesiomorphically) in Late Triassic dinosaurian taxa belonging to 

Sauropodomorpha and Theropoda (Fig. 24), but this anatomical character and 

the inferred aspiratory mechanism is absent (synapomorphically) in the Early 

Jurassic clade that has a sister-taxon relationship with Theropoda: the 

Ornithischia (Fig. 24) – although it does not matter from which basal 
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dinosaurian clade the Ornithischia are derived in this regard. It is established 

that the iterative evolution of degrees of opisthopuby among sub-clades of 

Theropoda can be linked functionally to the re-organisation of the bodies of 

these animals (Gatesy & Dial, 1996a,b). It is only among Aves (flight-adapted 

birds) that gastralia are lost and the structural adaptations associated with the 

avian flow-through respiratory system can plausibly be inferred (see Fig. 27).

<Figure 25 near here> repr ornithischian skeletons

1. Ornithischia. The earliest known (Jurassic) ornithischians were small, 

bipedal cursors with long, muscular cantilever tails and a herbivorous diet (Fig. 

25A). They processed food orally using a combination of orthal pulping and 

irregular occlusal shearing; they were also narrow-snouted (selective) feeders 

capable of utilising more readily digested succulent plant material. Their 

enlarged plant-adapted gut could hang beneath the pelvis and between the 

legs because of the retroversion of the pubis; this arrangement did not 

compromise either their bipedal pose or locomotor ability. A large gut is a sine 

qua non for ornithischians even if some were occasional omnivores (as argued 

by Barrett, 2000) because all living herbivorous-omnivorous lizards are 

characterized by their possession of comparatively large guts. Costal 

aspiration was likely to have been their primary respiratory mechanism, but 

might have been supplemented by some form of pelvic kinesis (Carrier & 

Farmer, 2000a). The energetic losses incurred by actively raising and lowering 

the gut, if cuirassal aspiration had been an important component of their 

respiratory strategy, were thereby avoided. 

The subsequent evolutionary history of the ornithischian clade 

demonstrates that opisthopuby was maintained, albeit with elaboration of the 

pelvic bones in particular sub-clades, and several sub-clades independently 

acquired a secondarily quadrupedal style of locomotion (Barrett & Maidment, 

2017 – Figure 25B,C).

<Figure 26 near here> repr prosauropod-sauropod skeletons

2. Sauropodomorpha. Triassic sauropodomorphs (prosauropods) are generally 

small-headed, large-bodied facultative bipeds with large muscular 

cantilevering tails and an essentially herbivorous diet (Fig. 26A) although, as 
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pointed out by Barrett (2000), omnivory cannot be excluded. Cropped 

vegetation was orally pulped after which food was swallowed and then further 

processed in a gastrolith-laden gizzard (Attridge et al., 1985). The enlarged 

herbivore-adapted gut was positioned anterior to the propubic pubes; these 

latter bones meet in the midline and form a curtain-like wall at the back of the 

abdominal cavity (Norman & Weishampel, 1991). The gut and gastrolith-laden 

gizzard, and its forward position relative to the centre of balance at the 

acetabulum, was counterbalanced by the massive tail. The abdominal floor 

was lined by well-developed gastralia (Fig. 26A), implying that cuirassal 

aspiration supplemented costal ventilation and, furthermore, that the raising 

and lowering of the mass of the gut during cuirassal aspiration could not have 

been at an overwhelming energetic cost.

Jurassic and Cretaceous sauropodomorphs (sauropods) are extremely 

large, pillar-limbed quadrupeds with long tails and necks (Fig. 26B). They 

were microcephalous herbivores that raked and/or cropped food into the 

mouth before swallowing after minimal oral treatment (Barrett & Upchurch, 

1994). The pelvis was mesopubic and the pubes formed a bony wall at the 

rear of an abdominal cavity that lay in front of the acetabulum. 

Quadrupedality, an arched dorsal vertebral column and pillar-like limbs 

created bridge-like support for a massive gut. Food passed into a stomach 

that included a substantial gastrolith-filled gizzard and, judged by the space 

available in the torso, a voluminous (probably multi-chambered) gut. No 

gastralia are preserved in sauropods (Claessens, 2004 – Fig. 24) and cuirassal 

aspiration is considered unlikely because it would have involved the raising 

and lowering of an exceptionally massive gut (Carrier & Farmer, 2000a). The 

aspiratory mechanics of sauropods are not well understood, although it has 

been inferred (because of the presence of postcranial pneumatism) that 

sauropods had an avian-style flow-through respiratory system (e.g. Sander et 

al., 2011). Dorsal vertebrae have conventional synovial articulations for their 

ribs, suggesting that costal aspiration was possible.

<Figure 27 near here> repr theropod skeletons.
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3. Theropoda. Triassic and Early Jurassic theropods are generally small to 

medium-sized (2-5 metres long) bipeds with large muscular tails; they are 

considered (by all) to be carnivores and had, as a correlate, much smaller guts 

than typical herbivores of equivalent size (Fig. 27A). The pelvis is propubic but 

the gut would have been positioned anterior to the centre of balance and was 

comparatively small so was unlikely to impair balance or mobility: the tail was 

an effective cantilever. The thoracic rib articulations are mobile and the 

abdomen was floored by gastralia; this implies that early theropods/theropod-

like dinosauromorphs were capable of using both costal and cuirassal forms of 

aspiration. From the mid-Jurassic onward, the size-range and variety of 

theropods increased substantially. 

The larger tetanuran theropods (e.g. Allosaurus – Fig. 27B) retained the 

classical body proportions and carnivorous adaptations (large skull, sharp 

recurved teeth, raptorial forelimbs) of basal dinosaurs, and also retained a 

well-developed set of gastralia. Other sub-clades (see below) diversified their 

body forms: 

The generally lightly-built ornithomimosaurs (Fig. 27C) evolved small 

heads and toothless beaks/bills and resemble living omnivore-carnivore 

derivatives (ratites). In the case of the structurally similar and closely related 

alvarezsaurs, their jaws are lined by very small teeth instead of a beak/bill 

and some authors have speculatively linked their dental features to those in 

animals with a myrmecophagous (ant-based) diet (Longrich & Currie, 2009). 

Both of these groups were scored as herbivores by Macaluso & Tschopp 

(2018), yet both groups have lightly-built cursorially adapted skeletons, have 

long arms and grasping hands, are propubic and have long cantilever-like 

tails. This body configuration is more readily explained if they were 

comparatively small-gutted, pursuit adapted, carnivore/omnivores. Both 

groups retain a well-developed set of gastralia. 

Therizinosaurs (see Fig. 27D) also exhibit comparatively small skulls with 

jaws lined by small leaf-shaped teeth; however, their body proportions include 

a capacious abdominal cavity, broadly flared iliac blades, an opisthopubic 

pelvis and a much-reduced tail (Zanno et al., 2009). Their body form bears a 

passing resemblance to that seen in herbivorous xenarthrans (ground sloths). 

Therizinosaurs were scored, entirely appropriately, given their overall cranial 
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and body form, as herbivores by Macaluso & Tschopp (2018). Gastralia have 

been reported in therizinosaurs. 

Oviraptorosaurs (Fig. 27E) have medium-sized heads equipped with short, 

powerful toothless beaks. The pelvis is mesopubic, so the gut was positioned 

anterior to their centre of balance; they also have comparatively short tails 

and the femur lacks a prominent 4th trochanter. These two latter features are 

strong indicators of a bird-like alteration to their limb mechanics to 

compensate for the reduced cantilever effect of the tail. Furthermore, the 

length and raptorial structure of the forelimbs of oviraptorosaurs (Norell et al., 

2018) represent clear adaptations associated with prey capture (and hence 

carnivory). Oviraptorosaurs have short powerful jaws (indicating a strong bite 

– which could be interpreted either way in relation to diet), and there is a 

report of gastroliths (in Caudipteryx); these animals were scored as 

herbivores by Macaluso & Tschopp (2018). 

The discovery of lizard remains in the body cavity of an Oviraptor, as well 

as those of juvenile troodontid skulls in association with a nest of Citipati, are 

both arguably suggestive of carnivory in these animals (Bever & Norell, 2009). 

Equally, crocodiles also have gizzards with gastroliths and can hardly be 

argued to be herbivores and, in the absence of teeth, gastroliths may have 

been important bone fragment processors in the gut of carnivorous 

oviraptorosaurs. As a general observation, the presence of a gastrolith-laden 

gizzard associated with an expansive and heavy gut (necessary, if these 

animals were indeed herbivores) that would have been positioned anterior to 

the centre of balance is incompatible with the build, mechanics of balance and 

indications of locomotor style seen elsewhere in their bodies. Common sense 

suggests that oviraptorosaurs were carnivores. Oviraptorosaurs also possess 

well-developed gastralia.

Finally, among the paravian-avialian (stem-lineage birds), of which 

Deinonychus (Fig. 27F) is a well-known example, the predatory adaptations 

seen in the skull as well as those of the fore- and hindlimbs are self-evident 

(Ostrom, 1969). The tail is long, but is thin and light, the femur lacks a 4th 

trochanter and the pubis is fully retroverted. The balance and pose of this 

animal would have been bird-like and necessitated a ‘neoacetabular’ knee 

joint; an adequate locomotor stride would have been achieved by lengthening 
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the tibia-fibula and metatarsus. The posture depicted in Figure 27F (a common 

style of reconstruction of this animal) is not accurate to these principles 

because it indicates that the femur swung through a pendulum-like arc, which 

it could not have done because it was ‘suspensory’. Gastralia are well 

developed in dromaeosaurs. This general paravian body pose would have been 

reproduced in Archaeopteryx (the so-called ‘first bird’ – which also exhibits 

gastralia, even though these bones are lost in true, flight-capable 

[ornithothoracine] birds). 

A broader consideration of the morphofunctional organisation and fossil 

evidence that can be applied to a diversity of theropods suggests that the 

dietary assignments that have been proposed in the recent past are, in many 

instances, open to doubt. Furthermore, in each of these theropod taxa 

gastralia are known to be present, indicating that these animals had the 

potential to use cuirassal aspiration as a component of their respiratory 

repertoire. It is only among the more derived avialians that a large thoracic 

keel evolves, gastralia are lost, the ventral pelvic bones separate along the 

midline and the tail becomes so abbreviated that it forms a pygostyle – a suite 

of structural modifications that allow true birds to retain a bipedal pose and 

locomotor capacity in the complete absence of a cantilever tail.

 

[C] Conclusions 

The range of anatomical configurations exhibited by the entire dinosaurian 

clade includes obligate bipedality, facultative bipedality and quadrupedality, 

and obligate quadrupedality. These locomotor postures are co-dependent on 

the positioning of the gut (and its mass) as well as general pelvic construction, 

irrespective of the respiratory system. The structural adaptations associated 

with the feeding apparatus have a direct bearing on diet and gut structure in 

these animals, which in turn influences the balance and pose of the body. 

Inferences about the dietary preferences of these animals require a holistic 

approach that incorporates jaw morphology, tooth shape, skull size, body 

proportions, locomotor mechanics, limb functionality and, rarely, the fortuitous 

discovery of fossilized gut contents. Using this range of criteria there is 
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justification to doubt the scoring of the diets assigned to the various theropod 

sub-clades considered by Macaluso & Tschopp (2018). There is also clear 

anatomical evidence that contradicts the assignment of respiratory 

mechanisms among theropod dinosaurs proposed by Macaluso & Tschopp 

(2018).

<Figure 28 near here> theropod phylogeny with images – website for bird 

silhouette: http://clipart-library.com/bird-silhouette.html

Drawing broad physiological and functional comparisons between such 

disparate body forms as ornithischians, sauropodomorphs and theropods risks 

conflations and/or misunderstandings. Even among closely related and 

persistently bipedal theropod dinosaurs that all possess gastralia (and by 

implication cuirassal aspiration), taxa are variously specialized. Some (e.g. 

ornithomimids) reduce their dentitions, leading to the evolution of a bird-like 

keratinous beak/bill; some (e.g. therizinosaurs) shorten and reduce the mass 

of the tail and consequently partially or completely retrovert the pubis; some 

(e.g. ‘paravialians’) modify the pose of the hindlimb through the evolution of a 

suspension-style femur and alter the musculature that protracts and retracts 

the legs. However, these configurations are not consistent across all taxa and 

instead indicate a suite of adaptive morphologies that require explanation in 

light of the total body plan and a range of additional evidence that enhances 

the interpretation of the putative biology of each sub-clade (Fig. 28). The 

evidence available cannot be used to support the notion that there is a 

consistent, phylogenetically mappable, pattern implying that the aspiratory 

mechanism was the sole “evolutionary driver” of pelvic morphology among 

dinosaurs, as argued by Macaluso & Tschopp (2018).

[A] SCELIDOSAURUS: THE LOCOMOTOR SYSTEM

The biomechanical observations of Alexander (1976) followed by the review by 

Walter Coombs (1978c) prompted interest in the poses and relative 

proportions of dinosaur limbs, their musculature, locomotor capacity and 
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trackway evidence (e.g. Gatesy, 1990; Carrano, 1998, 2000; Hutchinson & 

Gatesy, 2000; Hutchinson, 2000a, b; Carrano & Hutchinson, 2002; Hutchinson 

& Garcia, 2002; Hutchinson, 2004; Sellers & Manning, 2007). Trackway 

evidence does not exist for Scelidosaurus but its appendicular skeleton is now 

known (Norman, 2020b) and provides information concerning locomotor 

musculature, joint anatomy, limb proportions and potential limb excursion 

patterns for this animal.

[B] Pectoral girdle and forelimb myology

The pectoral girdle and forelimb musculature of thyreophorans have rarely 

been considered. Coombs (1978b) attempted a reconstruction of the principal 

forelimb muscles in ankylosaurs. Norman (1986: figs 75-77) provided origin 

and insertion maps and a lines-of-action reconstruction for the musculature of 

the pectoral girdle and forelimb in the ornithischian ornithopod Mantellisaurus. 

These reconstructions were based on comparative myological information 

derived from extant crocodilians. Birds (although extant theropods) were 

considered too specialized in their pectoral anatomy and myology for 

meaningful comparison. Meers (2003) provided a beautifully crafted 

redescription of crocodilian forelimb musculature. Maidment & Barrett (2011) 

reviewed the identification of forelimb musculature in basal ornithischians 

(with occasional reference to the stem thyreophoran Scutellosaurus) and used 

the Extant Phylogenetic Bracket (EPB) protocol advocated by Witmer (1995). 

Using this approach, they created origin and insertion maps for some of the 

shoulder and forelimb muscles of these dinosaurs based on a critical 

evaluation of the evidence of muscle distributions in living crocodilians and 

birds because they phylogenetically ‘bracket’ ornithischian dinosaurs. 

However, the efficacy of this approach is severely compromised by the 

profound differences between such disparate living representatives (Romer, 

1923b; Gatesy, 1990, 1995; Carrano, 2000). The EPB approach offers a 

logical basis for the prediction of some soft-tissue features in fossil animals, 

but its application in this instance requires the exercise of considerable 

caution. The anatomy of the pectoral girdle of Scelidosaurus resembles that 
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described in other basal ornithischians (Fig. 29) and this permits some 

plausible mapping of the origins and insertions of the principal support and 

locomotor muscles. 

[C] Axial muscles

These support and stabilize the pectoral girdle and were considered in 

dinosaurs by both Coombs (1978b) and Norman (1986) – see also Meers 

(2003) for crocodiles. M. trapezius originates from fascia along the dorsal 

midline extending as far forward as the skull in crocodiles. It inserts along the 

anterior edge of the scapular blade and is mapped in this position in 

Scelidosaurus (Fig. 29A, tra-ls). N.B: A ventral slip of this muscle sheet forms 

the m. sternomastoideus (= m. cucullaris – Fig. 30, cuc) that inserts on the 

clavicular region of the pectoral girdle and has its origin on the ventrolateral 

surface (‘mastoid region’) of the braincase at the rear of the skull (Theis, 

2010). The clavicles are preserved in Scelidosaurus and bear surface striations 

that suggest muscle insertions. There is also reason to suspect that the 

tendinous cranial portion of m. cucullaris may be causally linked to the 

presence of the epistyloid bones that have been recorded for the first time in 

Scelidosaurus (Norman, 2020a – see also Figs 19, 20).

M. levator scapulae (Figs 29, 30, tra-ls) and the m. serratus group of 

muscles typically originate on the surfaces of the cervical and dorsal ribs and 

insert on the distal portion of the medial surface and posterior edge of the 

scapular blade in crocodiles (Meers, 2003). 

There is no reliable osteological evidence for the presence of either m. 

rhomboideus (present in extant crocodilians and birds – mostly attached to 

the suprascapula – Meers, 2003), or m. costocoracoideus that inserts on the 

coracoid. The latter bone is not well preserved in Scelidosaurus. The muscle 

typically originates on the sternal plate, sternal bones and sternal ribs and, to 

date, no remains of these latter bones have been reported in Scelidosaurus.

<Figure 29> Mapping of muscle origins/insertions on Scap, cor and hum.

[C] Dorsal muscles of the forelimb

Page 61 of 212 Zoological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Scelidosaurus – Biology & Systematics

62

[D] M. latissimus dorsi and m. teres major. The former is a large and 

extensive muscle that originates across the flanks in the thoracic region and 

inserts via a large tendon on the posterior surface of the humerus (Meers, 

2003). The teres major originates on the distal, external surface of the 

scapular blade and shares a common insertion on the humerus with the m. 

latissimus dorsi (Fig. 29, ld-tm; Fig. 30, tm). Both are important forelimb 

retractors. No origin on the scapula was mapped for m. teres major by 

Maidment & Barrett (2011: fig. 7) although an insertion was indicated for m. 

latissimus dorsi on the posterior surface of the humerus.

[D] M. subscapularis was reconstructed occupying the entire medial surface of 

the scapular blade by Maidment & Barrett (2011: fig. 7B, SBS) and is shown 

inserting on the medial edge of the proximal humerus (Fig. 29B, ssc). The 

scapular origin corresponds to the area occupied by this muscle in crocodilians 

(Meers, 2003) and contrasts with the more restricted origin suggested for 

Mantellisaurus by Norman (1986: fig. 75B).

[D] M. scapulohumeralis caudalis is uncontroversial. In crocodiles it originates 

on the posterior proximal edge of the scapular blade (just distal to the glenoid 

– Meers, 2003) and inserts on the posterior surface of the humerus (Fig. 29, 

sh) adjacent to the subscapularis, just distal to the articular head.

[D] M. deltoideus scapularis (complex). In crocodiles this originates as a sheet 

attached to the anterolateral surface of the scapular blade and inserts on the 

lateral shoulder (tuberosity) of the humerus (Fig. 29, ds). A subdivision of this 

muscle (m. deltoideus clavicularis) has its origin (in the absence of a clavicle) 

on the anterior margin of the scapula (Meers, 2003) and inserts more distally 

on the posterolateral surface of the deltopectoral crest. Given the presence of 

a clavicle in Scelidosaurus, and the fact that it has a striated surface (as if for 

muscle attachment), this muscle probably shared an origin with m. cucullaris 

on the clavicle and adjacent acromial ridge (Figs 29, 30, dc). An area is 

available for the insertion of this muscle immediately distal to the well-

preserved ld-tm muscle scar (sc) on the well-preserved humerus of BRSMG 

LEGL 0005 (Norman, 2020b: fig. 63A).

[D] M. triceps. In crocodiles this muscle is subdivided into a number of slips 

that originate either on the scapula or the posterior surface of the humerus 
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(Meers, 2003). In the absence of an equal number of comparable muscle slips 

in birds the triceps complex was reduced to origins for the ‘brevis’ on the 

posterior surface of the proximal humerus (Maidment & Barrett, 2011: fig. 7E, 

TRIB), and the ‘longus’ on the cuff above the glenoid on the scapula (fig. 7A, 

TRIL). Both of these slips insert via a common tendon on the olecranon 

process of the ulna. A more complex set of slips was identified in ankylosaurs 

by Coombs (1978b: figs 1-7). The organisation of this major limb extensor 

muscle is not clearly resolvable in Scelidosaurus so a simple scapular origin 

(Fig. 29A, tri - represented by a distinct pit on the lateral side of the glenoid 

buttress/cuff – Norman, 2020b: fig. 59A, dep) and a generalized humeral 

origin (Fig. 30, tri) accord with the interpretation of Maidment & Barrett 

(2011).

<Figure 30 near here> lines of actions of principal shoulder muscles.

[C] Ventral muscles of the forelimb 

[D] M. pectoralis can be reconstructed originating on the ventral midline of the 

chest (in accordance with all sauropsid muscle maps), and inserting on the 

muscle-scarred distal portion of the deltopectoral crest on the humerus of 

Scelidosaurus (Figs 29C,D, p; 30, p).

[D] M. supracoracoideus has a radically different structure and function in 

birds and cannot be used for comparison. In crocodiles, this muscle originates 

along the scapulocoracoid suture and a slip also wraps around the anterior 

edge of the coracoid to insert on its medial surface (Meers, 2003). Its insertion 

is on the apex of the deltopectoral crest. Maidment & Barrett (2011) mapped 

the origin of this muscle solely on the tip of the acromial ridge, with an 

insertion adjacent to that for the pectoralis muscle on the deltopectoral crest. 

Both Coombs (1978b) and Norman (1986) indicated more extensive areas of 

origin that encompassed scapula and coracoid and suggested an insertion that 

spread proximally along the deltopectoral crest. The shallowly bowl-shaped 

external surface of the scapula adjacent to the coracoid, and the coracoid itself 

in Scelidosaurus offer a large area for the insertion of the m. supracoracoideus 

(Fig. 29A, sc). There is no evidence to determine whether this muscle wrapped 

around the anteromedial edge of the coracoid; in view of the attachments 
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suggested for the m. cucullaris and m. deltoideus clavicularis as well as the 

undoubted articular contact between the coracoid and sternal cartilages 

ventromedially, this seems less probable.

[D] M. subcoracoideus is absent in crocodiles (Meers, 2003) but present in 

lizards (Romer, 1944) and birds (Sullivan, 1962). Its absence in crocodilians 

could be interpreted as an autapomorphy. In lizards the origin of this muscle 

is broadly across the medial surface of the coracoid and it inserts on the 

medial corner of the proximal humerus. The origin of this muscle is mapped 

(“equivocally”) on the coracoid of Stormbergia (Maidment & Barrett, 2011: fig. 

7B, SBC). The coracoid is not sufficiently well preserved in Scelidosaurus to 

show muscle scars; however, the proximomedial surface of the scapula of the 

lectotype (NHMUK R1111 – Fig. 29B, scc) shows a large curved depressed 

area bordered by an irregular rugose ridge (Norman, 2020b: figs 54B, m.ri; 

59B, med.r). This feature could be interpreted the margin of the attachment 

area for a large subcoracoideus muscle.

[D] M. coracobrachialis is consistently seen as a muscle group having a 

substantial area of origin on the posteroexternal surface of the coracoid and 

inserting on the anterior face of the humerus just below the humeral head and 

along the deltopectoral crest (Meers, 2003). The origin of this muscle is not 

defined on the coracoid of Scelidosaurus as it is in Mantellisaurus (Norman, 

1986) or ankylosaurs (Coombs, 1978b) but a common area of insertion on the 

humerus, conforming to that seen in crocodiles adjacent to that for m. 

scapulohumeralis (Fig. 29, sh) seems probable.

D] M. biceps brachii originates adjacent to the supracoracoideus in crocodiles. 

The muscle is strap-like and inserts on the proximal end of the radius in a 

common tendon shared with the brachialis muscle (Figs 29,30, bi). A 

restricted area of the coracoid was mapped for this muscle in basal 

ornithischians (Maidment & Barrett, 2011: fig. 7A, BIC).

[D] M. brachialis originates on the posterolateral surface of the humeral shaft, 

distal to the deltopectoral crest and inserts on the proximal end of the radius 

(Fig. 29, 30, br). The biceps and brachialis together act as forearm flexors and 

humerus extensors.
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[B] Myological interpretation of forelimb functionality

Judged from the evidence of this muscle-mapping exercise, the musculature in 

the shoulder region of Scelidosaurus is in some respects similar in its 

disposition to that described in extant crocodiles. This accords not only with 

the fact that the source of information about this musculature is the crocodile, 

but also the close similarity in the structure of the scapula and humerus of 

these two taxa. The principal difference lies in the structure of the coracoid: 

elongate and in profile dumbbell-shaped in crocodiles, whereas it is shorter 

and saucer-shaped in Scelidosaurus. This difference influences the 

interpretation of the associated roles of the shoulder muscles and their 

influence on limb movement. 

In the crocodile, the elongate portion of the coracoid offers a strip of 

bone for origin of the coracobrachialis muscle complex that inserts on the 

deltopectoral crest; this muscle augments the adductor function of the 

massive pectoralis muscle and may help to stabilize the shoulder joint (Meers, 

2003). The supracoracoideus complex and m. deltoideus clavicularis act as the 

main limb protractors. The dominant forces acting around the shoulder are 

associated with adduction and retraction during the terrestrial ‘high walk’. 

Retraction is achieved by a combination of the lines of action of the m. teres 

major, m. latissimus dorsi, and to a lesser extent the m. pectoralis and 

coracobrachialis. Repositioning of the pectoral girdle modulates stride length 

and is linked to motion at the sternocoracoid joint (Meers, 2003).

In Scelidosaurus the coracoid is short transversely, the lines of action of 

the associated adductor muscles are short and may have needed to be large 

and powerful, especially if the forelimb was used for locomotion (as suggested 

below). Protraction would have been achieved by the clavicular deltoid 

musculature that was attached to the proximal leading edge of the scapula. 

There is also a large area available for the attachment of the m. 

supracoracoideus in the shallow basin-like area on the proximal surface of the 

scapula and extending medially, across the scapulocoracoid suture. The likely 

insertion on the proximal half of the deltopectoral crest suggests that the 

latter muscle was an important protractor (and part adductor) of the forelimb. 

Evidence for the presence of a pectoralis muscle is indicated by the robust and 

elongate deltopectoral crest; the main role of the muscle would have been 
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adduction of the forelimb and protraction from the fully retracted position. The 

proximomedial anterior surface of the humerus is likely to have served as an 

area for attachment of the large subcoracoideus muscle, which is likely to 

have significantly augmented protraction and adduction of the forelimb. The 

clavicular deltoid muscle is likely to have been involved in repositioning of the 

forelimb during non-support use of the forelimb. The evidence for a sternum 

(or sternal plates) and well-developed sternal ribs, to which m. pectoralis 

would have been anchored, is wanting in Scelidosaurus and this muscle may 

have had a much less significant role in forelimb adduction and retraction 

compared to that needed for the ‘sprawling’ or ‘high-walk’ stances that can be 

adopted by the crocodile. The powerful retractors of the locomotor forelimb 

would undoubtedly have been the m. latissimus dorsi, m. teres major muscle 

complex that were anchored to the dorsal ribcage and scapular blade; these 

would have been augmented by the triceps group during retraction and lower 

limb extension.

One unknown factor is the relationship between the scapulocoracoids and 

the sternal cartilage(s). The rounded and thickened medial edges of the 

coracoids are suggestive of an articular (?synovial) relationship with the chest 

cartilages, perhaps indicating the existence of a sternocoracoid hinge of some 

type, though whether it functioned as it does in squamates and crocodiles 

remains in doubt.

[B] The role of the forelimb: previous interpretations

Only two individuals referable to Scelidosaurus provide measurable dimensions 

of their limb segments: the lectotype NHMUK R1111 (hindlimb only) and the 

referred specimen BRSMG LEGL 0005 (fore and hindlimbs) see Table-Appendix 

1. The estimated total body lengths of these two skeletons are 4.4 metres and 

3.1 metres respectively.

Simple forelimb:hindlimb or individual limb segment ratios have been 

used in the past as a measure of forelimb-hindlimb disparity and a proxy of 

body posture in fossil taxa (Galton, 1970; Norman, 1986; Padian, 2008). Such 

measures are however of limited value because, if used alone, they do not 

take account of the mass distribution (Alexander, 1976, 1985), biomechanical 
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features of the limbs (Coombs, 1978c; Galton, 1970; Norman 1986; Maidment 

& Barrett, 2014) or their associated soft-tissue characteristics (Maidment & 

Barrett, 2011). In their review of the potential osteological correlates 

associated with quadrupedality in ornithischians, Maidment & Barrett (2014) 

proposed that there are five reasonably consistent osteological correlates: (i) 

an anterolateral process on the ulna; (ii) hoof-shaped manus unguals; (iii) a 

femur longer than the tibia; (iv) a reduced 4th trochanter; and (v) a 

transversely broadened ilium. Only two of these features relate to the 

structure of the forelimb. They noted that Scelidosaurus could only be scored 

for three postcranial characters (iii)-(v) and of these the femur had a 

prominent and pendent 4th trochanter. They rationalized that an intermediate 

pose may well be expected given that its ancestry was bipedal (dinosaurs in 

general, Scutellosaurus in particular) and its descendants i.e. stegosaurs and 

ankylosaurs, were quadrupedal. They noted the existence of the small partial 

skeleton (NHMUK R6704) but excluded it from consideration because its 

femoral length is less than 50% of that of the lectotype (NHMUK R1111). It 

was claimed, incorrectly (see Fig. 32), that this small specimen has a straight 

femur (another one of their suspected correlates of quadrupedality) and a low 

iliac width ratio.

Given what is now known of Scelidosaurus, (i) it has a modest lateral 

shelf on the ulna (whether this could be scored as a ‘process’ is dubious); (ii) 

does not have hoof-shaped manus unguals; (iii) its femur is longer than the 

tibia; (iv) it has a pendent 4th trochanter; and (v) there is a modest lateral 

expansion of the iliac blade. This unusual mix of character states (2 

‘quadrupedal’, 2 ‘bipedal’, one of uncertain value) confirms the ‘intermediate’ 

postural-locomotor status of Scelidosaurus that was suspected: Scelidosaurus 

was, plausibly, a facultative quadruped.

[B] Forelimb structure and potential functionality

The dominant pectoral girdle bones are the scapula and coracoid, which 

resemble in shape and proportions those seen in other basal ornithischians 

(e.g. Maidment & Barrett, 2011). No trace of a sternal plate or pair of sternal 

bones has been recovered to date, Owen’s comments (1863: 13) 
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notwithstanding. The identification of small fusiform bony elements attached 

to the proximal leading edge of the scapula (Norman, 2020b: fig. 60) in 

Scelidosaurus is of interest. These bones occupy a position that is anatomically 

homologous with that of clavicles in other archosaur taxa. However, 

Vickaryous & Hall (2010) proposed that the furcula of birds is a homologue of 

the interclavicle of archosaurs and that the clavicles are therefore lost in birds 

(contra Yates & Vasconcelos, 2005; Nesbitt et al., 2009 and many others). 

This new hypothesis has been argued to be more phylogenetically 

parsimonious than the longer established clavicles=furcula homology and has 

been applied to the dinosaurian outgroups of birds (Maidment & Barrett, 2011: 

fig. 5). The argument is critically dependent upon the preservation (presence 

or absence) and identification of bony elements that are small, fragile and 

may be unossified in ontogenetically immature individuals. As a consequence 

they may be unpreserved, potentially lost during fossilization or missed during 

field collection and preparation. The presence of what appear to be a pair of 

discrete articulated clavicles in this basal ornithischian casts doubt on the 

interclavicle=furcula hypothesis with respect to ornithischians, and it 

undermines the general phylogenetic parsimony argument that has been used 

to support this novel proposal.

Within the forelimb, the humerus is more robust than those described in 

basal ornithischians such as Lesothosaurus (Thulborn, 1972), Scutellosaurus 

(Maidment & Barrett, 2011) and Heterodontosaurus (Santa Luca, 1980). The 

deltopectoral crest is both broader and longer, and some muscle scars are 

clearly visible (even in juvenile individuals – Norman, 2020b: fig. 63) so it can 

be inferred that the humerus was mechanically loaded in life; this accords with 

a facultatively quadrupedal pose and locomotor style. The radius and ulna are 

shorter than the humerus, and more robust. The absence of an olecranon on 

the ulna (m. triceps insertion site) is unexpected because quadrupeds are 

generally characterized by the presence of a prominent olecranon process that 

increases the leverage of the limb extensor muscle (m. triceps). However, the 

only well-preserved ulna belongs to a juvenile individual (BRSMG LEGL 0005 – 

Norman, 2020b: fig. 64) and it is possible that tendon-induced metaplastic 

overgrowth of the ulna during ontogeny builds a more prominent olecranon in 

fully adult individuals. Equally, the absence of a well-developed olecranon may 
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reflect the recency (in evolutionary terms) of the adoption of a quadrupedal 

pose. 

The manus forms a compact, spreading structure capable of weight 

support and locomotion, but the three medial digits terminate in asymmetric, 

narrow, short, pointed unguals (Norman, 2020b: fig. 67) reminiscent of the 

pattern seen in Hettangian bipedal ornithischians (Thulborn, 1972; Norman et 

al., 2004); but they cannot be described as ‘raptorial’ as appears to be the 

case in the manus of Heterodontosaurus – Santa Luca, 1980). The overall 

manus morphology suggests that it was ‘unspecialised’ or ‘utilitarian’ – 

capable of weight support, digging and grasping, as necessary. The structure 

and proportions of the manus of Scelidosaurus resemble those of the 

kangaroo (Shoaib, 2009). The latter is known from life observation to use its 

manus for transient weight support while feeding and during slow locomotion, 

as well as for scratching, digging and grasping. A similar set of capabilities is 

envisaged for the manus of Scelidosaurus.

There is now no unequivocal evidence of Late Triassic ornithischians so 

the earliest known ornithischian taxa are regarded as Hettangian (see Baron 

et al., 2017c) and all so far known examples have the characteristically short 

forelimbs and long, distally extended hindlimbs associated with cursorial 

bipeds (Coombs, 1978c; Carrano, 1999). Scelidosaurus is Sinemurian in age 

and therefore the first and earliest known armoured, facultatively quadrupedal 

ornithischian.

[C] The locomotor mode of Scelidosaurus using fore- and hindlimb dimensions

The relative proportions of the forelimb segments (Humerus [H]:Radius [R] 

and Radius:Metacarpal 3 [Mc3]) are known in few individual skeletal examples 

of Scelidosaurus (Table-Appendix 1). A calculation of the ratios of these 

dimensions allows them to be compared directly with the graphical 

summations of these values for a range of dinosaurs presented by Coombs 

(1978c: figs 8,9). Forelimb ratios of the limb segments R/H plotted against 

Mc3/R indicate that these values fall on the borderline between the 

morphospace polygons that encompass values of known subcursorial and 

mediportal quadrupedal mammals.
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Equivalent hindlimb ratios of the Femur [F], Tibia [T] and Metatarsal 3 

[Mt3]: (T/F vs Mt3/T) are also available (Table-Appendix 1) and when plotted 

on a graph of these values for dinosaurs, with a similar overlay of 

morphospace polygons for mammal values, Scelidosaurus was again placed on 

the boundary between the polygons for ‘subcursorial’ and ‘mediportal’ forms. 

Walter Coombs adopted the generalized distinctions between locomotor 

categories between mammals that had been suggested by William King 

Gregory (1912). The categories ‘mediportal’ and ‘subcursorial’ were described 

narratively: 

“Mediportal. A mediportal animal is one with limbs primarily designed to 

meet the problems of bearing weight but with some elements of cursorial 

design, commonly retained from a more cursorial ancestor [my italics]. 

Cursorial features commonly retained included digitigrade stance, loss of 

lateral digits a single epipodium, interlocked or fused metapodials, and loss of 

ventral pectoral elements.

“Subcursorial. A subcursorial animal has moderate development of most 

cursorial adaptations and little or no limb modification for bearing weight. 

Some subcursorial animals are excellent runners, at least for short distances.

Coombs also offered what turned out to be an extremely apposite comment 

with respect to the observed limb-proportion ratios of Scelidosaurus:

“A runner of ‘average’ ability, if such exists, would be on the borderline 

between mediportal and subcursorial.” (Coombs, 1978c: 394-395). This is 

precisely the position occupied by Scelidosaurus judged by the simple 

arithmetical and graphical analysis.

This essentially systematic approach to the categorization and partitioning of 

locomotor styles in vertebrates was reviewed by Carrano (1999), with 

particular respect to the interpretation of dinosaurian styles of locomotion. 

Using a bivariate and multivariate statistical approach applied to the limb bone 

dimensions in a large number of dinosaur taxa, and a greater range of 

anatomical variables measured on the hindlimb alone, Carrano was able to 

demonstrate that the notion of discrete boundaries separating locomotor 
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categories was artificial – as Gregory (1912) clearly understood. Carrano 

argued that it was more appropriate to consider locomotor styles in individual 

taxa along a continuum between the end-points of ‘graviportal’ and ‘cursorial’. 

Dinosaur taxa were simply distributed along a line between these extremes 

and any further subdivision of locomotor mode was arbitrary. When the limb 

dimensions of Scelidosaurus were analysed they produced a result 

‘intermediate’ – precisely midway – between the locomotor end-points 

(Carrano, 1999: fig. 6), a result that is indistinguishable from the estimation 

derived using the Gregory-Coombs approach. 

Scelidosaurus had an ‘intermediate’ (average) locomotor mode – it was 

neither cursorial nor graviportal and, as will be seen later (Phylogenetics 

Section) there is evidence that strongly supports the view that Scelidosaurus 

had evolved in a geological sense ‘recently’ from bipedal, cursorial ancestors.

[B] Pelvic girdle and hindlimb myology

The pelvic-hindlimb musculature of ornithischians has been more intensively 

studied than that of the pectoral-forelimb region. The most influential analysis 

was undertaken by Romer (1927a ) in an attempt to reconstruct the pelvic and 

hindlimb musculature of Thescelosaurus. This was a synthesis derived from 

earlier work on the crocodile (Romer, 1923a), saurischian dinosaurs (Romer, 

1923b) and the thigh musculature of the bird (Romer, 1927b). Galton (1969) 

applied Romer’s analysis to newly prepared material of an ornithischian 

dinosaur Hypsilophodon that is anatomically similar to Thescelosaurus and 

mapped muscle origins and insertions as well as providing a line-of-action 

reconstruction. In similar fashion Norman (1986) applied this approach to 

Mantellisaurus. 

These earlier myological reconstructions were reviewed by Maidment & 

Barrett (2011) using the EPB methodology (Witmer, 1995), but the same 

caveat applies: birds and crocodiles may be phylogenetically related, but are 

separated by >230Ma of evolutionary history and differ profoundly 

anatomically, biomechanically and biologically. The ground-breaking work by 

Hutchinson (2000a,b) incorporated phylogenetic analyses of shape change in 

the pelves and femora of theropods and birds; these, in combination with the 
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origins and insertions of the principal hindlimb muscles were combined in 

order to better understand the locomotor consequences of anatomical changes 

along the theropod-bird phylogenetic tree. Unfortunately, the absence of 

unambiguous living descendants of ornithischians makes this type of coherent 

approach impossible, so the reconstructions that are attempted in the 

following section are dependent upon comparative modelling and a measure of 

applied plausibility.

<Figure 31 near here> pelves of thyreophorans compared

Coombs (1979) used the accounts of Romer and Galton to help model 

the principal pelvic muscles of ankylosaurs. Unfortunately, the anatomy of 

ankylosaur pelves and limbs differs strikingly from those of the ornithopods 

such as Thescelosaurus, Hypsilophodon and Mantellisaurus that had been used 

as the templates for earlier interpretations. To complicate matters a little 

more, pelvic muscle scars in ankylosaurs proved to be poorly defined 

(Coombs, 1979: 667). The anatomical conservatism shown in the pelvis of 

Scelidosaurus, when compared to those of typical stegosaurs and ankylosaurs 

(Fig. 31B,C), means that any attempt to model the musculature of the pelvic 

region of Scelidosaurus is largely dependent on the previously published 

accounts of non-thyreophorans.

[C] Limb extensors

[D] M. iliotibialis (it). This muscle group is present in both birds and crocodiles 

and originates along the dorsal margin of the ilium as three separate slips that 

insert via a common tendon on the cnemial crest of the tibia. In Scelidosaurus 

the dorsolateral edge of the main body of the ilium (supra- and postacetabular 

portion) bears a clear longitudinal rugosity that extends anteriorly to the 

proximal portion of the preacetabular process. There is no surface indication of 

subdivisions within this muscle scar for individual muscle slips (Figs 32, 33, it).

[D] M. iliofemoralis (if). In crocodiles this muscle originates from the lateral 

surface of the ilium dorsal to the acetabulum and inserts on the anterolateral 

surface of the femoral shaft. The homology with avian muscles in this area is 

confusing and it has been argued that a subdivision of this muscle may have 

inserted (bird-like) on the anterior trochanter of the femur (Hutchinson, 
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2000b). In the absence of clear osteological correlates in basal ornithischians 

Maidment & Barrett (2011) opted for a single origin on the lateral wall of the 

ilium and an insertion on the anterior trochanter only. In Scelidosaurus, the 

lateral surface of the iliac blade shows no evidence of muscular subdivisions. 

However if (as seen in birds) the equivalent m. iliotrochantericus had an origin 

on the preacetabular process then this may also have been the case in 

Scelidosaurus; the preacetabular process is long, laterally and ventrally 

deflected and would have provided a mechanically effective line of action if 

this portion of the muscle group inserted on the greater trochanter (Fig. 33, itr 

= the trochanteric crest in birds – Romer, 1927b; Hutchinson, 2000b). An 

anterodorsally positioned position of m. iliofemoralis on the deep part of the 

iliac blade probably inserted on the anterior trochanter (acting as a protractor 

when the femur is fully retracted). Another slip of this muscle group may also 

have inserted on the adjacent lateral surface of the greater trochanter (Fig. 

32, if? – this latter slip serving to stabilise the femoral head by holding it 

against the acetabulum). The remaining bulk of this muscle is likely to have 

inserted on the proximal half of the anterolateral surface of the femoral shaft, 

lateral to the oblique ridge that extends distally from the base of the anterior 

trochanter (Figs 32, 33, if).

[D] M. flexor tibialis externus (fte). In crocodiles this muscle originates from 

the posterior edge of the postacetabular ilium and inserts on the 

posteromedial edge of the head of the tibia along with m. flexor tibialis 

internus (Romer, 1923a). The origin of this muscle can be localised on the 

ilium of Scelidosaurus, but its insertion is not defined on the tibia (Fig. 32, 

fte).

<Figure 32 near here> femora (both – for shape change) with muscle 

scars

[D] M. puboischiofemoralis internus (pifi). In crocodiles there are two parts to 

this muscle. The first originates on the medial surface of the ilium and first 

sacral rib, whereas the second originates as a fan of muscles attached to the 

posterior dorsal vertebrae. These muscles insert on the anterior and medial 

surfaces of the proximal end of the femur and a large tendon derived from 

these muscles also inserts on the femoral shaft dorsomedial to the 4th 

trochanter (Romer, 1923a). As observed by Maidment & Barrett (2011) the 
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preacetabular process of ornithischians is marked by a horizontal medial ridge 

and the area lateral to this ridge defines an area that could be most 

parsimoniously interpreted as the origin this muscle (or a part thereof). A 

medial ridge on the preacetabular process is present on Scelidosaurus ilia, but 

no other clear muscle scars can be identified on the dorsal vertebrae or the 

adjacent sacral rib. Additional components of this muscle group cannot be 

confirmed and it is always possible that the anterior extension and lateral 

expansion of the preacetabular process provided the necessary area for 

attachment of this group; if correctly surmised, this would give these muscle 

groups a more clear-cut femoral protractor and axial rotator function. The 4th 

trochanter is enlarged and bears muscle scarring on its medial surface as well 

as on the adjacent medial surface of the femoral shaft. This region may 

indicate a major insertion site for at least part of this muscle group (Figs 32, 

33, pifi).

[D] M. puboischiofemoralis externus (pife). There has been much discussion 

concerning the homologies of this group of muscles (see Maidment & Barrett 

2011). Their insertion site is, unequivocally, the greater trochanter in 

dinosaurs (Hutchinson, 2000b – see Fig. 32, pife?). However, the origin is 

varied across living taxa and therefore much more equivocal in the absence of 

obvious osteological correlates. Galton (1969), Coombs (1979) and Norman 

(1986) suggested that a slip of this muscle had its origin on the ischial shaft. 

The phylogenetic inference model used by Maidment & Barrett (2011) noted 

that the portion of this muscle group that is attached to the ischium is present 

in extant crocodiles (which have a radically different limb architecture to that 

seen in dinosaurs), but absent in extant birds (which adopt a parasagittal gait, 

as seen in dinosaurs, but deploy a ‘suspensory’ rather than ‘pendulum’ femur). 

On the basis of this inferential form of logic the identification of its area of 

origin on the ornithischian pelvis is not assured.

[D] M. ischiotrochantericus (ist). In crocodiles this muscle arises from the 

posteromedial surface of the ischium and inserts on the proximolateral surface 

of the femur. In birds the equivalent muscle originates on the lateral surface 

of the ischium and the sheet of tissue that spans the gap between the ischium 

and postacetabular ilium, but inserts on the trochanteric crest (roughly 

equivalent to the area of insertion in the crocodile). In Scelidosaurus its area 
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of origin is not clearly defined on the ischium, but the greater trochanter is 

robust and thickened posteriorly and, as argued by Maidment & Barrett 

(2011), this may indicate an insertion site for this muscle (Fig. 32, ist).

[D] M. ambiens (amb). This muscle originates on the proximal lateral and 

medial surfaces of the pubis in crocodiles, and has a generally similar origin on 

the stubby preacetabular portion of the pubis in birds; it inserts on the 

cnemial crest. A similar position was suggested in Thescelosaurus by Romer 

and an illustration of the prepubic blade of Iguanodon was interpreted as 

showing the muscle scar for this muscle (Romer, 1927a: fig. 9). Norman 

(1986: fig. 80) followed the reconstruction suggested by Romer. Maidment & 

Barrett (2011) also concurred and mapped an origin on the lateral surface of 

the prepubic blade in basal ornithischians. The reduction of the pubis to a 

small nubbin that is fused to the ilium in ankylosaurs left Coombs (1979: 672) 

equivocal about the presence of this muscle. There is a substantial area 

available on the lateral face of the prepubic blade in Scelidosaurus and an 

origin in this area can reasonably be inferred (Fig. 33, amb).

<Figure 33 near here> hindlimb muscles and lines of action

[C] Limb flexors

[D] M. iliofibularis (ifib). This muscle originates on the lateral surface of the 

postacetabular iliac blade, deep to m. iliotibialis. There is no clear osteological 

correlate for this muscle in Scelidosaurus, but it has been restored (Fig. 33, 

ifib)

[D] M. caudifemoralis brevis (cfb). As described in crocodilians by Romer 

(1923a) this muscle originates from the ventral portion of the postacetabular 

iliac blade and inserts lateral to the 4th trochanter of the femur. In 

Scelidosaurus, a modest brevis shelf is present and is considered to be the 

osteological correlate of the origin of this muscle (Fig. 33, cfb). The lateral 

surface of the 4th trochanter is bevelled and marked by a long muscle scar that 

is regarded as its insertion (Fig. 32D, cfb).

[D] M. caudifemoralis longus (cfl). In crocodiles this is a long cylindrical 

muscle of the tail that originates on the sides of the caudal vertebrae and the 

edges of the caudal ribs; it inserts on the blunt projection that forms the 4th 
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trochanter of the crocodile femur. Much reduced slip-like remnants of this 

muscle originate on the pygostyle in birds (George & Berger, 1966). In 

Scelidosaurus a similar origin of this muscle cannot be doubted (Fig. 33, cfl) 

and its insertion site would be on the medial surface of the 4th trochanter (Fig. 

32B, cfl). As in other basal ornithischians the 4th trochanter of Scelidosaurus is 

pendent and its distal end probably marked the point of attachment of a 

gastrocnemial ligament (Sutton’s tendon – Dollo, 1888; Norman, 1986). A 

femur of sub-adult size (NHMUK OR41322 – Fig. 34) retains a nearly complete 

fourth trochanter (not preserved in the lectotype) that is large and pendent as 

seen in the juvenile individual (Fig. 32A).

<Figure 34 near here> crushed femur with 4th trochanter 

[D] M. adductor femoralis (add). In crocodiles the adductor complex arises on 

the ischium and inserts on the posterolateral distal half of the femoral shaft 

(Romer, 1923b). In birds this musculature has a generally similar pattern of 

origin (but extends on to the pubis) and insertion. In ornithischians it has 

been argued that the adductor complex (at least one part) originated on the 

lateral surface of the shaft of the ischium and inserted on the posterior face of 

the femur distal to the 4th trochanter (Coombs, 1979; Galton, 1969; Norman, 

1986; Maidment & Barrett, 2011). The ischia of Scelidosaurus do not show 

clear evidence of muscle scars that accord with this general pattern, but there 

is a scarred area on the posterolateral surface of the femoral shaft (Figs 32B, 

33, add).

[D] M. flexor tibialis internus. This muscle complex is present in squamates 

and crocodiles and is regarded as being represented, in part, by m. 

ischioflexorius of birds (George & Berger, 1966). The muscle was restored in 

ankylosaurs (Coombs, 1979) but Norman (1986) failed to recognize correlates 

in Mantellisaurus. Maidment & Barrett (2011) restored an origin near the 

proximal end of the lateral surface of the ischium; it would have inserted on 

the head of the tibia. No attempt has been made to reconstruct this muscle.

[D] M. femorotibialis group (ft). This muscle group may have two 

(crocodilians) or three (birds) slips that originated on the shaft of the femur. 

Maidment & Barrett (2011: fig. 9C-F) were able to identify at least two areas 
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of origin for this muscle group on the femoral shaft. They are separated by a 

low ridge that arises at the base of the anterior trochanter and follows a 

curved course distomedially. In Scelidosaurus a similar femoral ridge is visible 

and may indicate the presence of at least two muscle slips (Fig. 32C,D, ft), 

although several other muscles claim areas of insertion in this region of the 

femoral shaft.

[B] Functional aspects of the pelvic muscle reconstruction

The primary limb retractor muscles are, as in all non-paravian sauropsids, the 

caudifemoralis group, which have a posteromedial line of action (Fig. 35A,B); 

these muscle groups are supplemented in their action by the crural (shin) 

flexors (e.g. m. iliotibialis), which also serve to fold and therefore raise the 

limb clear of the ground during the suspension phase of the locomotor cycle. 

The protractor muscles, principally the m. iliofemoralis group, m. ambiens and 

m. puboischiofemoralis group, attach to the anterodorsal ilium (and the 

prepubic blade) and draw the femur forward during the suspension phase (Fig. 

35A); their action is supplemented later in the swing by the lower limb 

extensors (m. iliotibialis and m. femorotibialis). Various of the shorter muscles 

(e.g. m. ischiotrochantericus and slips of m. iliofemoralis) helped to stabilise 

the femoral head in the acetabulum. Muscles involved in facilitating outward 

long-axis rotation of the limb during protraction and extension, prior to foot 

placement on the substrate, include the m. ischiotrochantericus (ist) and the 

portion of the m. puboischiofemoralis internus that inserts adjacent to the 4th 

trochanter – Fig. 35C, pifi).

[C] Note on possibly co-opted aspiratory pelvic musculature?

Carrier & Farmer (2000a) suggested that the prepubic blades of some 

ornithischians might have acted as mobile ‘paddles’ that were capable of 

alternately compressing and decompressing the posterior abdomen to 

facilitate aspiration. This novel suggestion requires the presence of adductor 

and abductor (“iliopubic”) muscles that ran between the ilium/posterior dorsal 

vertebral area and inserted on the medial and lateral surfaces of the prepubic 
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blade. The principle of pubic kinesis linked to aspiration is well established and 

understood in crocodilians (Gans, 1970; Carrier & Farmer, 2000b), but the 

musculature involved is associated with the ventral pelvis and gastral basket. 

The dorsal location of the prepubic blades in ornithischians renders the use of 

ventral musculature to move the pubis, such as that seen in crocodilians, 

extremely unlikely. 

No living sauropsid taxa that have “iliopubic” muscles (Carrier & Farmer, 

2000a) that originate on the ilium and insert on a kinetic pubis, so the 

application of a phylogenetic inference approach implies that an interpretation 

of this type is “extrapolatory” (sensu Bryant & Russell, 1992) or perhaps a 

“Class III” inference of Witmer (1995). Such interpretations may only be 

supportable in fossils when functional and biomechanical evidence is 

compelling, in preference to conservative phylogenetic inferences. It is 

conceivable that slips of muscle derived from the m. puboischiofemoralis 

muscle complex, which wrap around the pubis and proximate portions of the 

ilium, as well as sacral and posterior dorsal vertebrae, could have been ‘co-

opted’ for the purpose of abducting-adducting the prepubic blades. Carrier & 

Farmer (2000a) noted from the biology and physiology of living sauropsids 

that costal aspiration is invariably supplemented by additional aspiratory 

systems (e.g. gular pumping and cuirassal aspiration). In extant archosaurs 

similar supplementation is observed (e.g. cuirassal aspiration, diaphragmatic 

aspiration and pelvic aspiration). Extinct ornithischians lack the osteological 

correlates associated with extra-costal respiration seen in theropods and 

sauropodomorphs (i.e. gastral baskets and pneumatic skeletal bones) and are 

inferred (not unreasonably, given the presence, in some, of indicators of high 

aerobic exercise capability – Carrano, 1999) to have required some unknown 

aspiratory mechanism to supplement costal respiration – particularly so when 

costal movements appear to have been limited or compromised by rib fusion 

(Gilmore, 1930; Coombs, 1971) or the presence of uncinate plates (Butler & 

Galton, 2008; Norman, 2020b). In the absence of any other alternative 

aspiratory mechanism pubic kinesis may stand for the time being as an 

improbable, yet plausible, hypothesis.

<Figure 35 near here> functionality of the hindlimb in cartoons
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[C] Hindlimb excursions during the step-cycle

The structure and functionality of the archosaur-dinosaur pelvis-hindlimb have 

been a matter of considerable debate (e.g. Charig, 1972; Parrish, 1986; 

Padian, 1986; Padian & Olsen, 1989; Gatesy, 1990, 1995; Carrano, 2000). 

Gatesy (1995) listed the principal types of information that might be obtained 

to build an accurate picture of the locomotor capabilities of any organism: 

skeletal anatomy, limb posture, limb segment orientation, limb kinematics, 

muscular anatomy and neuromuscular control. In fossil organisms most of this 

information is missing and the remainder (skeletal and muscular anatomy) is 

rendered conjectural to varying degrees by the quality of preservation of the 

material in question. In addition, at a more philosophical level, such structure-

function interpretations need to be correlated with the overall complexity of 

the organism’s total biology and rationalized by reference to its phylogenetic 

context (Lauder, 1991). These considerations present the palaeontologist with 

a challenging set of problems. 

Carrano (2000) adopted a structural-interpretative-phylogenetic 

approach to this topic and drew particular attention to a number of anatomical 

features and soft tissue interpretations in the pelves and hindlimbs of 

dinosauromorphs and dinosaurs, and mapped these on to a putative 

phylogenetic framework:

1. Acetabular structure and femoral head orientation. In dinosauromorphs and 

basal dinosaurs the acetabulum forms a deep, ventrally facing cupola that is 

walled medially and, laterally, produces a supra-acetabular crest whose lateral 

rim is downturned (e.g. Padian, 1986: fig. 5.2). The femoral head in these 

taxa is inturned relative to the femoral shaft, but also oriented anteromedially, 

whereas the proximal surface of the greater trochanter appears to have 

articulated with the downturned (pendent) rim of the supra-acetabular crest. 

It was suggested that the supra-acetabular crest may have formed a 

mechanical ‘stop’ that restricted femoral abduction as well as acting as a 

‘guide’ that restricted femoral long-axis rotation. A correspondence in the 

shape of the femora and acetabula of various taxa (including the basal 

ornithischians Lesothosaurus and Heterodontosaurus) was used to support 

these inferences.
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More derived dinosaurs (except stegosaurs and ankylosaurs) have an 

acetabulum that does not have a downturned lateral rim to the supra-

acetabular crest, the femoral head is entirely medially directed, and the 

greater lateral width of the proximal surface of the femur butted up against 

the supra-acetabular crest and prevented undue femoral abduction (similar 

anatomical features have been noted convergently in pseudosuchian 

archosaurs with an erect stance).

2. Muscle re-orientation. Consequent upon the re-orientation of the femoral 

head and parasagittal pose of the limbs it was hypothesized that the 

puboischiofemoralis and iliofemoralis muscles would become femoral 

protractors (rather than abductor-rotators) and the bulk and power of the 

iliofemoralis in the line of action would be enhanced by expansion of the 

preacetabular process.

3. Anteroposterior expansion of the iliac blade. The dinosauromorph ilium is 

generally as long as it is deep, with a short triangular preacetabular process 

and a deeper, rounded postacetabular process. The acetabulum forms a 

laterally shrouded cupola as described above. Scutellosaurus and 

Scelidosaurus appear to be included (incorrectly) in this description of iliac 

morphology even though the acetabulum is open laterally, there is no 

downturned rim to the supracetabular crest, and the postacetabular blade is 

sub-rectangular and deep. Carrano (2000) correctly indicated that both have 

an “expanded anterior iliac blade”. An anterior extension of the preacetabular 

and postacetabular processes of ilium is the condition in derived dinosaurs 

(ornithischians, neotheropods and sauropods).

4. Muscle functionality linked to iliac blade expansion. The preacetabular 

process expansion is considered to be a way of augmenting the area of origin 

and leverage of the principal femoral protractors (and knee extensors): mm. 

iliofemoralis, iliotibialis and puboischiofemoralis. Equally, the postacetabular 

process expansion increases the area for origin of the femoral and knee 

flexors: mm. iliofibularis, flexor tibialis and caudifemoralis brevis, as well as 

increasing their leverage on the limb during retraction. Basal ornithischians 

are claimed (incorrectly) not to benefit from these structural changes to the 

limb retractors.
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5. Morphology of the anterior trochanter. This structure is positioned distal 

(15-20% of femoral length) to the greater trochanter in dinosauromorphs. As 

the possible site of insertion of the iliofemoralis muscle, this position is 

interpreted as one in which the muscle acted as an abductor of the femur. 

Reorientation of the femoral head and the proximal migration of the anterior 

trochanter and expansion of the preacetabular blade in dinosaurs increased 

the potential of this muscle to act as a protractor of the femur. 

Put into a phylogenetic context, the evolution of a dinosaur style of locomotion 

involved a distal-to-proximal suite of changes: ankle and knee joints that 

constrained limb motion to the parasagittal plane (and precluded significant 

abduction-adduction – Novas, 1996), was followed phylogenetically and 

temporally by the evolution of the femoral anterior trochanter and 

anteroposterior expansion of the iliac blade for the attachment of protractor 

and retractor musculature. Distal-to-proximal stabilization of the limb 

segments track in sequence from basal to higher nested nodes. This accords 

with the view that distal limb joints have little stabilizing musculature, so they 

require osteological modification of joint architecture that can be tracked in 

fossil taxa more readily than putative soft-tissue changes associated with the 

hip.

[C] Scelidosaurus hindlimb structure and pose

The pelvis and hindlimb of Scelidosaurus are better understood (Norman, 

2020b) and can be more readily subjected to Carrano’s approach to limb 

structure and functionality. The ilium has a long, laterally-deflected 

preacetabular process and (contrary to previous views) a deep, rectangular 

postacetabular process and a brevis shelf. The acetabulum forms a partial 

cupola with a complete, curtain-like medial wall and a supra-acetabular crest 

with a horizontal rim (unlike the condition in dinosauromorphs and some basal 

dinosaurs).

The femur has an articular head that is medially offset from the shaft and 

not deflected anteromedially (as described to be the condition in 

dinosauromorphs and some basal dinosaurs – Carrano, 2000). The anterior 
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trochanter is proximally placed and prominently positioned on the anterior 

margin of the greater trochanter. The implication from this configuration is 

that the femur could be swung parasagittally and was powered by 

musculature associated with the expanded iliac blade. The femoral shaft is 

slightly bowed (more so in juvenile individuals – see Fig. 32) and is notable for 

the presence of a prominent pendent 4th trochanter. The medium- to large-

sized (~32 cms long) crushed femur of Scelidosaurus (NHMUK OR41322 – Fig. 

34) has a prominent pendent 4th trochanter; however, on closer inspection 

this structure is noticeably thicker and considerably more robust than that of 

NHMUK R6704 (Fig. 32A). The 4th trochanter of the larger femur is thick, yet 

an outline of the slender ‘juvenile’ 4th trochanter morphology remains visible 

on its surface (Fig. 34, 4tr). The original structure has, in effect, been 

shrouded by a thickness of metaplastic bone (Fig. 34, mpb). It is probable that 

this secondary feature expanded and strengthened the anchoring of the 

caudifemoral tendons and reinforced the 4th trochanter. 

A pendent 4th trochanter is consistently associated with ornithischians 

that, judged by their posture and limb proportions, were likely to have been 

cursorial (e.g. Maidment & Barrett, 2014 and references therein). The distal 

femoral condyles are laterally expanded, but show no clear evidence of an 

intercondylar extensor groove (but this is also a feature of the femur of the 

allegedly cursorial ornithischian Hypsilophodon – Galton, 1971, 1974). 

Thick cartilages would have been present that capped the bones at the 

knee joint, and the structure of the preserved bones does not accurately 

reflect the extent to which this joint operated as a uni-axial hinge. The crus 

(shin) comprises a structurally dominant straight tibia and a shorter, but stout 

and bowed, fibula; this gives the impression that a limited amount of axial 

torsion might have been possible between the bones of the lower leg.

The tarsus is conventionally mesotarsal but the evidence, judged by what 

is currently known of the structure of the astragalocalcaneal roller surface, is 

that the ankle joint was not so strongly constrained to rotate in a transverse 

uni-axial plane because it does not display a deeply grooved (trochlear) joint 

surface. The distal tarsals, as preserved, also present an asymmetrical 

arrangement with the central (dT3) and lateral (dT4) tarsals forming well-

ossified articular pads, whereas the medial tarsal (dT2), if present, was 
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probably an unossified fibrocartilage pad or (less likely) entirely absent from 

the ankle joint (Norman, 2020b: figs 86, 87). The pattern of just two distal 

ankle bones (central and lateral) is found reasonably consistently among more 

derived ornithischians (in which this anatomy has been preserved – e.g. 

Norman 1980, 1986). The asymmetrical construction of this ankle joint would 

have left it potentially susceptible to (or able to accommodate) long-axis 

torsion during the limb excursion cycle.

In the context of ankle joint construction and joint mobility, it is 

interesting to note that the early (Hettangian) but unusually specialized 

ornithischian Heterodontosaurus has been reported as having three well-

ossified distal tarsals (Santa Luca, 1980) or just two (Sereno, 2012). In either 

interpretation the distal tarsal structure that is preserved forms an ossified 

articular pad that caps all three weight-bearing metatarsals (2-4) that support 

functional pedal digits. In turn this tarsal structure articulated with a hinge-

like and fused tibiotarsus. This ankle structure suggests that limb excursion 

was parasagittal and that ankle joint mobility was restricted to a single  

transverse plane of rotation.

The pes of Scelidosaurus is functionally tridactyl, being dominated by 

pedal digits 2-4 (Norman, 2020b: fig. 90). Metatarsals 2-4 are sutured 

proximally and form a splayed structure distally. Metatarsal 1 is short, but 

supports two phalanges, the terminal one of which forms a small pointed claw. 

Metatarsal 5 is represented by a splint bone. The three functional toes as 

preserved in the lectotype (NHMUK R1111 – the only currently known example 

that includes articulated feet) curve medially along their lengths, and the 

terminal unguals are pointed, slightly arched, but as with the phalanges are 

twisted medially along their lengths (Norman, 2020b: fig. 95).

[C] Scelidosaurus pelvis and hindlimb: comparative comments

The pelvis of Scelidosaurus (Fig. 31A) bears a much closer structural similarity 

to that of early ornithischians and euornithopods than to those of more 

derived stegosaurian and ankylosaurian thyreophorans (Fig. 31B,C – Carrano, 

2000: figs 6, 7). The ilium has a long, arched (in mature individuals) 

dorsoventrally flattened preacetabular process, but it is not broadly expanded 
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or downcurved to the extent seen in ankylosaurs and stegosaurs. The dorsal 

part of the iliac blade, though out-turned when articulated with the sacrum is 

not laterally flared, and its postacetabular blade is rectangular and has a 

modest brevis shelf. In both stegosaurs and ankylosaurs (Fig. 31B,C) the 

postacetabular blade is short and tilted horizontally. The ischium of 

Scelidosaurus is a Y-shaped thickened blade with a long stem. In stegosaurs 

the ischium is more transversely compressed and tapers distally (Maidment et 

al., 2015), whereas those of ankylosaurs are considerably shorter, bar-shaped 

and decurved (Coombs, 1978a). The pubis of Scelidosaurus has a long, 

slender pubic shaft and a blade-like, laterally deflected prepubic process. The 

pubis of ankylosaurs is diminutive (a small oblong block fused to the ilium) 

from which projects a short, finger-shaped pubic shaft (Coombs, 1978a). In 

stegosaurs the pubis is a large, obtusely V-shaped bone with a parallel-sided 

pubic shaft that was ligamentously bound to the ischium, and a long 

rectangular prepubic blade (Gilmore, 1914).

Stegosaurs and ankylosaurs have much more robust and straight (pillar-

like) femora (Gilmore, 1914; Coombs, 1978a). The femoral head is less clearly 

medially offset on the shaft (this is particularly so in ankylosaurid ankylosaurs, 

where the femoral head is terminal – Coombs, 1978a). The anterior trochanter 

tends to become indistinguishably fused to the greater trochanter. The 4th 

trochanter is represented by either a low mound or a large, depressed muscle 

scar on the lower half of femoral shaft. Their crural (shin) bones of are 

straight and the tibia is massive, with greatly expanded proximal and distal 

ends; the fibula is a comparatively slender, straight bone that had little to do 

with structural support. The ankle comprises a single proximal tarsal that is 

reduced to a flattened, warped plate formed by the astragalus, which is fused 

to the distal surface of the tibia. Distal tarsals have not, so far, been reported. 

The pes comprises short, dumbbell-shaped metatarsals and ‘stubby’ toes; 

these form a divergent ‘spreading’ arrangement that was most likely 

supported by a plantar pad of elasticated fibrous tissue. Their unguals are 

flattened, broad and rounded, distally forming a hoof, rather than a claw.

[B] Functionality of the hindlimb and pes summarised
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1. Acetabulum. The acetabular joint surface is unusually large compared to the 

femoral articular head. It offers the possibility of a wide range of femoral head 

positions and consequential femoral excursions (Norman, 2020b: fig. 98) but 

the extent to which soft-tissues (notably cartilages) influenced the potential 

range of femoral excursions is uncertain (Hutson & Hutson, 2012). 

2. Hindlimb joints. The knee has some of the osteological attributes of a 

simple hinge, but the extent to which this was constrained by soft-tissues to a 

transverse uni-axial plane of rotation is unknowable. The structure of the 

lower leg, which retains a short but stout, bowed fibula indicates that limited 

(modest) axial torsion may have occurred between the tibia and fibula. The 

ankle joint is weakly trochlear, as well as being osteologically asymmetrical. If 

there was a fibrocartilage pad covering the medial portion of the ankle, the 

entire ankle joint may have been susceptible to (or able to accommodate) 

long-axis torsion.

3. Hindlimb retractors. The lines of action of the caudifemoral muscles can be 

reconstructed (compare Figs 33, 35). The origin of the m. caudifemoralis 

brevis lies on the underside of the postacetabular process of the ilium and 

runs anteroventrally to the base of the 4th trochanter and its line of action is 

posteromedial (Fig. 35A, cfb). M. caudifemoralis longus is known to originate 

from the lateral surfaces of the caudal centra and the edges of the caudal ribs 

in all sauropsids (and even the equivalent pygostyle in birds) and inserts on 

the 4th trochanter. The line of action (Fig. 35A, cfl) of this retractor muscle 

runs anterolaterally from close to the caudal midline. In addition, the adductor 

muscle (Fig. 35, add) would both retract the femoral shaft (from its fully 

protracted state) and rotate the femoral shaft outward along its long axis 

(balancing some of the inward rotation imposed by the far more powerful 

caudifemoral muscles).

4. The pendent 4th trochanter is positioned on the posteromedial surface of the 

femoral mid-shaft (Fig. 35C) increasing the axial rotation generated by the 

femoral retractor muscles.

5. Hindlimb protractors. The lines of action of the mm. iliotibialis, iliofemoralis 

and puboischiofemoralis internus can be reconstructed with varying degrees of 

confidence. M. iliotibialis is consistently found to originate along the dorsal 
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edge of the iliac blade in sauropsids (including birds) and inserts on the 

cnemial crest of the tibia (Fig. 33, it). M. iliofemoralis originates on the 

dorsolateral surface of the iliac blade and inserts variously on the shaft of the 

femur and (with personal equivocation) on the anterior trochanter (Fig. 33, if) 

and lateral surface of the greater trochanter. At least one significant portion of 

the puboischiofemoralis complex originates from the proximomedial surface of 

the pubis, the surfaces of the posterior dorsal centra and the first sacral rib (in 

sauropsids). It has been suggested that a slip of this muscle attached to the 

ventral surface of the preacetabular process in ornithischians (Maidment & 

Barrett, 2011 – see also Fig. 33, pifi). This muscle inserts on the medial 

surface of the proximal femoral shaft and a major tendon of this muscle 

inserts adjacent to the 4th trochanter in crocodiles (there is a well-preserved 

muscle scar in this position on the femur of the lectotype – Fig. 32B, pifi). The 

lines of action of the first two muscles can be reconstructed with some 

confidence and vary a little along the length of the iliac blade because the 

preacetabular process swings markedly laterally along its length. M. 

puboischiofemoralis has a line of action that not only serves to protract the 

femur but imposes a torsional force that rotates the femoral shaft outward 

(laterally) in preparation for the next stride (Fig. 35C, E).

6. Dimensions of the abdominal cavity. Scelidosaurus was herbivorous and, 

judged from its teeth and jaw action, would have pulped and partly sheared its 

food prior to swallowing. This style of oral processing is unlikely to have 

prepared plant matter for immediate absorption in the intestine, so it would 

need to be processed further in the gut. A gizzard, lined with gastroliths, 

cannot be dismissed simply because no gastroliths have been recorded with 

any of the skeletons of this animal that have been discovered to date. A 

gizzard is present in living crocodiles and birds so may well have been present 

and used to comminute plant food in the anterior gut. However, further 

enzyme-mediated digestion would be necessary to release plant cell contents 

and can only have been achieved within gut caecae that housed permanent 

populations of microbes capable of secreting enzymes that can break down the 

tough polysaccharide (cellulose-based) cell walls of plants. Gut enlargement to 

accommodate caecae requires a capacious abdomen. The dorsal rib cage is 

indisputably broad (Norman, 2020b: fig. 34; see Figure 35D, E), and the body 
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shape is more similar to that seen in ankylosaurs (e.g. Gaston et al., 2001) 

than stegosaurs (see also Fig. 22), which suggests that Scelidosaurus had a 

barrel-shaped abdomen.

7. Deflection of the prepubic blades. The lateral deflection of the prepubic 

blades that is evident in Scelidosaurus is also suggestive of the physical 

accommodation of a broadly expanded abdomen.

8. Asymmetry of the pes. The medial curvature that is evident when the digits 

of the pes are articulated might be an artefact of preservation in this 

specimen. However, the ungual phalanges of digits 2-4 are well-preserved and 

show comparatively little in the way of crushing plastic distortion, and yet they 

all indicate clear medial curvature. In the tridactyl pes of a ‘normal’ 

parasagittally-gaited dinosaur the axis of support tends to run through digit 3, 

which displays bilateral symmetry. The digits on either side splay: digit 2 

curves medially, whereas digit 4 curves laterally so that the foot as a whole 

exhibits some degree of symmetry on either side of the principal axis of 

support (e.g. Norman, 1980: fig. 71; 1986: fig. 63). The persistent 

asymmetry evident across the digits of the pes of Scelidosaurus implies that 

torsional forces in the long axis of the hindlimb were acting on the foot during 

the support-retraction phase of the locomotor cycle (Fig. 35E).

[B] Conclusions

1. Motion at the hip joint between the femoral head and acetabulum, if 

osteological morphology is interpreted literally, may have been 

comparatively unconstrained, but this ignores major contributions that may 

have been made by the associated soft tissues (Hutson & Hutson, 2012; 

Manafzadeh & Padian, 2018).

2. The lines of action of the principal protractor and retractor muscles are 

likely to have imposed an oblique-to-parasagittal – anterolateral 

(protraction) and posteromedial (retraction) – plane of movement on the 

femur, and by implication the entire hindlimb.

3. A medially directed long-axis rotational force would have been imposed 

upon the body-weight-loaded femoral shaft (and by implication the 
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hindlimb) during caudifemoral muscle powered limb retraction because of 

the medial placement of the 4th trochanter on the shaft of the femur. 

4. A laterally directed long-axis rotational force was imposed on the suspended 

femoral shaft during the limb protraction phase by the action of a 

component of m. puboischiofemoralis internus muscle (a slip of which has 

been inferred to have originated along a medial ledge beneath the 

preacetabular process of the ilium) that inserted adjacent to the 4th 

trochanter.

5. The volume and projected width of the abdomen, if correctly interpreted, 

would have presented a physical obstruction to the in-line parasagittal 

motion of the hindlimb during protraction. In effect the femur would have 

been deflected laterally as a consequence of proximity of the abdominal 

wall.

6. The asymmetry displayed in the distal tarsals of the ankle joint, and in the 

digits of the pes implies that the forces acting on the foot while it was 

placed on the ground involve medially-directed long-axis torsion 

transmitted through the foot via the more proximal hindlimb elements.

The extent of control of mobility exerted by the soft tissues surrounding the 

femoral head when it was in articulation with the acetabulum is currently 

unknowable. Similarly, the knee and ankle joints are ambiguous regarding the 

degree of constraint on their hinging capabilities. The lines of action of the 

principal protractor and retractor muscles of the hindlimb can be estimated 

with reasonable confidence. The torsional force exerted by the caudifemoral 

muscles during limb retraction, resulting from their asymmetrical attachment 

site on the femoral shaft, can be understood. The counter-torsional force 

exerted by the protractor musculature (notably m. puboischiofemoralis) is a 

matter of conjecture because its area(s) of origin exceed the bounds of 

phylogenetic inference. The size and general shape of the abdomen are 

equally conjectural, but can be inferred from the size of the gut in a range of 

living herbivores, the profile of articulated dorsal ribs and the lateral deflection 

of the preacetabular and prepubic blades. The asymmetry observed in the 

digits and ungual phalanges of the foot is an objective fact.
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The hindlimb swung in an oblique-to-parasagittal arc, along an 

anterolateral-posteromedial plane facilitated by the mobility of the femoral 

head in the acetabulum. The retraction phase of limb motion imposed 

torsional forces on the hindlimb and foot, which are reflected in the medial 

curvature and asymmetry seen in the toes.

It has been suggested elsewhere (Carpenter et al., 2013: 3) that the 

hindlimb of the ankylosaur Mymoorapelta moved in an oblique-to-parasagittal 

manner, judged by the orientation of the articular axis of the acetabulum and 

“the expanded gut.” These considerations probably apply more widely among 

ankylosaurs, particularly those with terminal femoral heads (Coombs, 1978a: 

fig. 15). The cupola-style of the acetabulum in stegosaurs and ceratopsians 

suggests that non-parasagittal hindlimb excursions may also have occurred in 

these groups of herbivorous ornithischian.

[B] Tail flexibility

The observation of a ‘ball-and-socket’ articular relationship between caudal 

vertebrae 1 & 2 in one skeleton of Scelidosaurus, but not in at least two other 

examples, poses questions that are both taxic and functional (Norman, 

2020b).

There is no clear evidence for the presence of ossified tendons posterior 

to the sacrum in the specimens described to date. This observation implies 

that the flexibility of the tail was not constrained by these tendons and it could 

be swung freely laterally and dorsoventrally. The presence of rows of large 

ridged and cap-shaped osteoderms flanking the tail and running along the 

midline dorsally and ventrally may have limited extreme flexure, but they 

would also have provided an important weapon of defence (as commonly 

deployed by extant reptiles). It is probable that caudal osteoderms were 

capped by sharp-edged keratinous sheaths, judged by two recent ankylosaur 

discoveries (Borealopelta – Brown, 2017; Zuul – Arbour & Evans, 2017).

The presence of the equivalent of a ball-and-socket joint at the base of 

the tail in Scelidosaurus suggests that there was a particularly strong and 

stable pivot-point for tail swings. The caudal ribs of the anterior caudal 

vertebrae are also long and strong (Norman, 2020b: fig. 42), indicating that 
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they provided areas for attachment, as well as improving the leverage, for 

flanking muscles (m. caudifemoralis longus) upon the tail. However, the 

articular surfaces of the zygapophyses between caudals 1 and 2 retain the 

‘normal’ oblique angulation seen in proximal caudals generally, rather than the 

more horizontal orientation that might have been expected to correlate with 

increased lateral flexibility between these vertebrae.

For the present, the observation of the specialized articular relations at 

the base of the tail of just one individual of Scelidosaurus (BRSMG LEGL 0004) 

is regarded as a curiosity. It is hoped that future discoveries might clarify its 

significance.

[A] SCELIDOSAURUS: DERMAL SKELETON

The structure (Norman, 2020c), histology and biological role of the 

osteodermal skeleton of Scelidosaurus are topics that will be dealt with 

elsewhere (Norman & Baker, in preparation).

[A] THE SYSTEMATIC AND PHYLOGENETIC POSITION OF SCELIDOSAURUS

[B] Scelidosaurus, early dinosaur classification and relationships

Richard Owen established that Scelidosaurus was a member of his Dinosauria, 

based on the structure of its hindlimb: 

“The internal process [4th trochanter of the femur] is similarly well 

preserved, repeating the character of the herbivorous Dinosauria which is 

exemplified in the Iguanodon [italics]… The medullary or unossified cavity 

of the shaft of the bone has been more considerable, in relation to the 

compact shaft, than in the large femora previously described.

From the foregoing characters it may be concluded that the present femur 

has belonged to a Dinosaur, allied to the Iguanodon [italics], …” (Owen, 

1861: 5).
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Despite the fact that Owen was describing the characteristics of a theropod 

femur (Owen, 1861: tab. I – see Norman, 2020a: fig. 2A), his words were still 

applicable to other genuine scelidosaur remains that he included in this 

preliminary description (Owen, 1861: tab. III – see Fig. 2). Owen was notably 

reticent when it came to expressing views about this new dinosaur’s 

relationship to any of the other, then known, dinosaurs. His clearest remark 

was …

“Upon the whole, I find the closest agreement to be between Scelido- and 

Hylaeo-saurus in the characters of the vertebral column; …” (Owen, 1863: 

12).

And yet, despite Owen’s extended description of parts of the dermal skeleton 

of Scelidosaurus (Owen, 1863: 20-26), there is neither a single mention of the 

osteoderms visible on the slab of Tilgate Stone containing the remains of 

Hylaeosaurus, nor a more detailed consideration of the potential relationship 

between these taxa.

Attempts to systematise and classify known taxa of Dinosauria began in 

the late 1860s, stimulated by the work of Edward Drinker Cope (1866). Cope 

established two groupings or “orders” of dinosaur based on his interpretation 

of their supposed ankle and foot structures: Orthopoda (including 

Scelidosaurus, Hylaeosaurus, Iguanodon and Hadrosaurus); and the 

Goniopoda (Megalosaurus and Laelaps). A year later Cope (1867) added a 

third order: Symphopoda, based upon his interpretation of the shin (crural), 

ankle (tarsal) and foot (pedal) structures in Compsognathus. The latter, he 

pointed out, suggested a resemblance between the feet of some dinosaurs and 

those of living birds. Subsequently, Thomas Henry Huxley (1868) 

demonstrated that the anatomical (“intermediate”) similarities shared between 

the then-known dinosaurs and living reptiles and birds provided evidence that 

strongly supported Darwin’s theory of evolution. Listing the anatomical 

differences between living reptiles and birds Huxley proceeded to fill the 

anatomical ‘gap’ between such distinctly different organisms by demonstrating 

that the fossil bird Archaeopteryx exhibits a number of reptilian features. 

Furthermore, he was able to demonstrate that the larger dinosaurs possessed 

many bird-like features in their sacra, pelves, hindlimbs and feet. The 

discovery of the small, lightly-built dinosaur Compsognathus compounded the 
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similarities between dinosaurs, Archaeopteryx and living birds and allowed him 

to observe that “Dinosauria wonderfully approached … birds in their general 

structure, and therefore that these extinct reptiles were more closely allied to 

birds than any which now live” (Huxley, 1868: 73). This proposition was 

subsequently reinforced in a summary article (Huxley, 1870a) that led him to 

conclude “if the whole hind quarters, from the ilium to the toes, of a half-

hatched chicken could be suddenly enlarged, ossified and fossilized as they 

are, they would furnish us with the last step of the transition between Birds 

and Reptiles; for there would be nothing in their characters to prevent us from 

referring them to the Dinosauria.” (Huxley, 1870a: 30-31). Huxley also began, 

in this same article, to dismantle Cope’s classification of dinosaurs by pointing 

to anomalies in the leg and ankle structure among Cope’s ordinal varieties. 

Subsequently, Huxley (1870b) reviewed and revised the classification of 

Dinosauria and, notwithstanding the primacy of Meyer’s (1832) name 

Pachypoda, grudgingly accepted Owen’s (1842) name Dinosauria: 

“… it may be well to allow justice to give way to expediency, and to retain 

the name of Dinosauria for these reptiles” (Huxley, 1870b: 33). 

Huxley, using an approach that strikes us today as singularly prescient, 

provided a list of twelve diagnostic characters shared by known dinosaurs. The 

dinosaurs, thus diagnosed, were then divided into three “natural groups” 

(given familial ranking): Megalosauridae, Scelidosauridae, Iguanodontidae – 

and he added to these a group differentiated from the previous three by 

referring to it as Compsognatha. Each of these groups was supported by a list 

of diagnostic anatomical characters. However, Huxley stressed that the taxon 

Compsognatha (not given a familial suffix) was distinct anatomically from the 

three other dinosaurian families by virtue of possessing a slender, elongated 

neck and cursorial hindlimb proportions. All these features were demonstrable 

in the nominal taxon Compsognathus. He concluded that it was necessary to 

create a new Order of fossil reptiles that he named Ornithoscelida (because all 

of them exhibited bird-like limbs) and within this Order he identified two sub-

orders that he named Dinosauria (characterized by being short-necked and 

having stout graviportally adapted limbs) and Compsognatha (with long necks 

and slender cursorial limbs). Given that Huxley was dealing with just seven 
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recognised dinosaur taxa, and how little of their anatomy was known, this 

work was remarkable.

[B] Huxley’s (1870b) classification

Order: ORNITHOSCELIDA

Suborder: DINOSAURIA

Family Megalosauridae

Family Scelidosauridae

Family Iguanodontidae

Suborder: COMPSOGNATHA

Nominal taxon Compsognathus

Developing his concept of ornithoscelidans by comparing them to other then-

known reptile groups, Huxley introduced a confusing set of alleged affinities 

(=relationships) that resulted in his creating further higher-level taxonomic 

groupings based upon vertebral column morphology alone. These superordinal 

categories – Suchospondylia, Erpetospondylia, Pleurospondylia and 

Perospondylia – were neither acknowledged nor formally adopted by 

contemporary taxonomists and systematists and – perhaps fortunately – went 

the way of Cope’s ill-fated Orthopoda, Goniopoda and Symphopoda. 

During subsequent decades a greater range and variety of better-

preserved dinosaur fossils were discovered, largely as a result of the 

prodigious efforts of Cope and Othniel Charles Marsh in the United States, as 

well as Louis Dollo in Europe (Colbert, 1968; Desmond, 1975). A clearer but 

more complicated picture of the range and variety of dinosaurian anatomy and 

morphology began slowly to emerge. Marsh (1881, 1884, 1891, 1895) 

assembled, illustrated and defined groupings of dinosaurs whose names and 

general attributes are still recognized today: Theropoda, Sauropoda, 

Ornithopoda, Stegosauria and Ceratopsia. Harry Govier Seeley (1887[1888]) 

also developed a utilitarian classification of dinosaurs that was based primarily 
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upon pelvic morphology (using the term “ischia” to mean pelvis in an 

Aristotelian sense) and the presence of vertebral pneumatism. Seeley’s 

system divided all known dinosaurs into two fundamentally distinct groups 

that he named Saurischia and Ornithischia. The clear-cut anatomical 

differences accommodated Marsh’s groupings consistently and rationally, and 

were taken by Seeley to be so fundamental as to imply that Dinosauria per se 

was not a natural group (clade):

“Dinosauria has no existence as a natural group of animals, but includes 

two distinct types of animal structure with technical characters in common, 

which show their descent from a common ancestry rather than their close 

affinity.” (Seeley, 1887[1888]: 170) 

and a little later (page 171) “I see no ground for associating these two orders 

in one group”.

[B] Seeley’s (1887[1888]) classification

Order: SAURISCHIA

Suborder: Theropoda

Suborder: Sauropoda

Order: ORNITHISCHIA

Suborder: Ornithopoda

Suborder: Ceratopsia 

Suborder: Stegosauria

Although there were fundamental disagreements concerning the monophyly or 

(Seeley’s preference) diphyly and even polyphyly of dinosaurs with respect to 

their origin from archosaurian predecessors (e.g. Romer, 1933, 1968; Charig 

et al., 1965; Bakker & Galton, 1974; Charig, 1982), Seeley’s fundamental 

classificatory scheme proved robust in the face of continuous discoveries of 
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new dinosaur taxa. In a major cladistic review of the Archosauria, Gauthier 

(1986) finally established a consensus over the matter of the monophyly of 

the Dinosauria and one that incorporated Seeley’s two principal taxa as sister-

taxa. It is only comparatively recently that the underlying topology of the 

constituent members of the clade Dinosauria has been challenged (Baron et 

al., 2017b,c). 

[B] Scelidosaur classification and relationships

Scelidosaurus was (and still is) commonly referred to in general classificatory 

schemes of dinosaurs because it has been long recognized as one of the 

earliest known armoured ornithischian dinosaurs (e.g. Nopcsa, 1928; Kuhn, 

1946; Romer, 1933, 1956, 1966). These latter accounts classified 

Scelidosaurus as a primitive (=basal) stegosaur. Romer (1968) revised his 

opinion about its stegosaurian affinities following the examination of freshly 

acid-prepared pelvic bones of the juvenile scelidosaur (NHMUK R6704 – 

Norman, 2020b) and subsequently referred Scelidosaurus to Ankylosauria. The 

authority implicit in this re-assignment was followed thereafter (e.g. White, 

1973; Carroll, 1988).

<Figure 36 near here> Norman cladogram

A non-numerical cladistic revision of Seeley’s Ornithischia (Norman, 

1984b – Fig. 36) suggested that Scelidosaurus was a thyreophoran (=‘shield-

bearer’) and in doing so resurrected the taxonomic category Thyreophora 

(Nopcsa, 1915) but reduced its composition to two primary taxa: Stegosauria 

and Ankylosauria. Nopcsa (1915) had originally applied this name to all the 

then-known quadrupedal armoured ornithischians (Ankylosauria, Stegosauria 

and Ceratopsia); this was based upon the long-held (but incorrect) 

understanding that ceratopsians were also shielded/armoured (see Norman, 

2020a). Within the revived Thyreophora, Norman posited Scelidosaurus as the 

sister-taxon to the clade Ankylosauria (=Nodosauridae + Ankylosauridae). At 

the same meeting Sereno (1984: Fig. 37) also reviewed the systematics of 

Ornithischia (although he did not include the taxon Scelidosaurus). Sereno 

coincidentally sought to revive Nopcsa’s name Thyreophora, but proposed that 

it should comprise Stegosauria, Ankylosauria, Pachycephalosauria and 
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Ceratopsia (closer, in taxonomic content, to the original conception of 

Nopcsa). These preliminary analyses prompted further attempts to rationalize 

ornithischian relationships (Cooper, 1985; Maryańska & Osmólska 1985). 

Subsequently, Sereno (1986 – Fig. 38) tacitly accepted Norman’s restricted 

conception of Thyreophora; he included Scelidosaurus in this revision but 

positioned it as the proximate sister-taxon to a clade that he named Eurypoda 

(=Stegosauria + Ankylosauria) rather than as a sister-taxon to Ankylosauria. 

The clade name Thyreophoroidea was emended to recognize the proposed 

sister-taxon relationship between Scelidosaurus and the clade Eurypoda (Fig. 

38).

<Figure 37 near here> Sereno cladogram 1

The view that Scelidosaurus is a non-eurypodan stem thyreophoran 

(along with Scutellosaurus and Emausaurus) now prevails and has been 

reinforced by almost all subsequent systematic reviews of ornithischian-

thyreophoran relationships (e.g. Coombs & Maryańska, 1990; Sereno, 1999; 

Norman et al., 2004; Butler et al., 2008; Maidment et al,. 2008; Thompson et 

al., 2012; Arbour & Currie, 2016; Baron et al., 2017b; Raven & Maidment, 

2017). The only published exceptions to this consensus are Carpenter (2001), 

whose unconventional analytical approach (see discussion in Thompson et al., 

2012: 303) generated topologies that placed Scelidosaurus as the proximate 

sister-taxon to the Ankylosauria (=basal ankylosauromorph). Parish (2005: 

fig. A7.1) came to a similar conclusion, although Parish’s data were later 

incorporated into a co-authored article (Thompson et al., 2012) that promoted 

the consensus view that Scelidosaurus was a stem-lineage thyreophoran. Most 

recently, Wiersma & Irmis (2018) re-analysed ankylosaur relationships, by 

reference to a character set developed by Mark Loewen and James Kirkland, in 

light of a newly discovered and described ankylosaurid (Akainacephalus). This 

analysis positioned Scelidosaurus as a basal ankylosaur, whereas 

Scutellosaurus and Emausaurus were positioned (more conventionally) as 

successive basal thyreophorans. There was, however, no discussion of the 

implications of their revised positioning of Scelidosaurus but, in fairness, their 

study was solely focused on derived ankylosaur taxa and their 

interrelationships, rather than on basal thyreophoran relationships.
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<Figure 38 near here> Sereno cladogram 2

The more detailed description of the anatomy of Scelidosaurus that is now 

available (Norman, 2020a,b,c) permits a re-evaluation of the anatomical 

characters and the character-scoring used in previous systematic analyses, 

and a consequential reassessment of its phylogenetic position within 

Ornithischia.

[A] SYSTEMATIC ANALYSIS: THE POSITION OF SCELIDOSAURUS

[B] Previous analyses and data sources

1. Walter Coombs’ (1971, 1978a) reviews of Ankylosauria clarified and greatly 

improved our understanding of their anatomy, and offered a logical basis 

(through the listing of sets of anatomical characteristics – effectively 

synapomorphies) that established a classification for the then known 

ankylosaurians. Coombs recognized two distinct ankylosaur families, 

Nodosauridae and Ankylosauridae, and speculated upon their evolutionary 

history. The identity of a common ancestor shared by the two ankylosaur 

families was discussed briefly and declared to be unknown. Equally, the 

potential role of Scelidosaurus in the ancestry of Ankylosauria was considered 

in the light of Romer’s (1968) assessment of it as an ankylosaur rather than a 

stegosaur. Scelidosaurus was dismissed as an ankylosaur ancestor on the 

basis of a number of (what are now known to be) incorrect anatomical 

observations: 

“The type of Scelidosaurus (fide Newman, 1968) has ankylosaur-like 

armour plates, but lacks the diagnostic cervical half-rings. The upper 

temporal fenestrae of Scelidosaurus are open, and there are no armour 

plates fused to the skull roof (Owen, 1863). Scelidosaurus has a single 

supernumerary cranial element above the orbit (Coombs, 1972), whereas 

Pinacosaurus and presumably other Ankylosauridae have three (Maryańska, 

1971). Nodosaurid skull roof composition is unknown. Therefore, 
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Scelidosaurus is not morphologically suitable as an ancestor of the family 

Ankylosauridae, and in so far as no features diagnostic of the Ankylosauria 

have yet been described in Scelidosaurus, I do not accept the genus as an 

ancestor for any ankylosaurs. (See noted added in proof, p. 168)” (Coombs 

1978a: 164)

As a measure of support for his stated position on the matter, Coombs was 

able to refer (using the note added in proof) to an account of Scelidosaurus 

(Thulborn, 1977), in which it was argued (incorrectly) that this dinosaur was 

ornithopodan rather than an ankylosaurian. The extent to which Coombs had 

been misled about the anatomy of Scelidosaurus reflects the want of a 

descriptive revision, rather than any shortcoming of his own. 

Many of the anatomical characters listed by Coombs (1978a) in his 

review of the classification of Ankylosauria have been translated into 

character-state formats in numerous subsequent numerical cladistic analyses.

2. Sereno (1986) summarised ornithischian relationships and provided 

synapomorphy lists to support the clade Thyreophora: Scutellosaurus + 

Scelidosaurus + Eurypoda). Five characters supported a more exclusive clade 

named Thyreophoroidea (Scelidosaurus + Eurypoda – see Fig. 38):

i. A sinuous dentary tooth row in lateral view.

ii. A supraorbital bone forms the dorsal orbital margin.

iii. Enlargement of the medial portion of the mandibular condyle. 

iv. A basisphenoid that is much shorter than the basioccipital. 

v. Median palatal pterygovomerine keel.

3. Tumanova (1987) and Coombs & Maryańska (1990) did the same in 

supporting a cladogram summarising in-group relationships among 

ankylosaurs that reinforced the conclusions reached by Coombs (1978a). 

Sereno & Dong (1992) provided an updated description of the early stegosaur 

Huayangosaurus (Dong, Tang & Zhou, 1982). In this account a discussion of 

the anatomical features found in Huayangosaurus, as well as those shared by 

other known stegosaurs, was provided as a basis for justifying a 

synapomorphy-based cladogram (Sereno & Dong, 1992: fig. 14) that placed 
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Huayangosaurus as the most basal known stegosaur. Several comments 

concerned unpublished comparative observations on the anatomy of 

Scelidosaurus and were used to justify exclusion of Scelidosaurus from the 

Eurypoda and reinforce Sereno’s (1986) topology (Fig. 38).

4. Lee (1996) offered the first matrix-based analysis of ankylosaur 

relationships, but used a limited range of taxa and concentrated only upon 

cranial character-states. Similarly, Kirkland (1998: 273) analysed cranial and 

postcranial characters and doubled the number of taxa considered, but scored 

Scelidosaurus as the default outgroup in his matrix. Carpenter et al., (1998) 

undertook another analysis, but introduced suprageneric taxa (Nodosauridae 

and Ankylosauridae) that were determined prior to the cladistic analysis. The 

value of adopting an approach that makes a priori decisions about 

monophyletic groupings (suprageneric taxa) was criticised methodologically by 

(Wilkinson et al., 1998) who determined that the results were phylogenetically 

uninformative. While strict application of logic renders their determination 

correct, it is the case that many of more recent analyses of thyreophorans 

(and other, sometimes broader-based taxonomic analyses) commonly make 

pragmatic a priori decisions about suprageneric taxa in order reduce data-

processing time and ‘improve’ resolution. A ‘compartmentalized’ suprageneric 

taxon approach was nevertheless also employed by Carpenter (2001) in an 

attempt to manage the high levels of homoplasy that have been reported to 

occur among ankylosaurs (Penkalski, pers. comm. March 2020).

5. Sereno (1999) provided a more comprehensive review of dinosaur 

relationships by offering lists of characters (and their coding protocols) for 

each of the major dinosaur clades and their subordinate taxa. However, there 

were continuing methodological problems with this analysis through his use of 

suprageneric taxa (see Wilkinson et al., 1998): only a limited number of 

ornithischian taxa were included and the monophyly of particular named 

clades was assumed prior to the analysis. The thyreophoran dataset included 

118 characters that were used to code 17 thyreophoran taxa. The clade 

Thyreophoroidea (Scelidosaurus + Eurypoda) was supported by the five 

character-states listed above, but these had been modified in response to the 
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discovery of a new, apparently more basal, taxon Emausaurus (Haubold, 

1990).

6. Subsequent analyses by Vickaryous et al. (2001) and Hill et al. (2003) were 

more narrowly focused upon cranial characters alone and, as can be seen from 

the scores in the matrix produced by Hill et al. (2003: 28), it is not at all 

surprising that Scelidosaurus defaults as an outgroup to Ankylosauria (along 

with Emausaurus and the basal stegosaur Huayangosaurus).

7. Vickaryous et al. (2004) provided what became the default phylogenetic 

analysis for ingroup ankylosaurs because it included cranial and postcranial 

characters, used a wide range of taxa and made no a priori assumptions about 

ingroup relationships. It was used for a number of years, with subtle 

modifications to character-states and the addition of new taxa. Unfortunately, 

this analysis used Lesothosaurus and Huayangosaurus as outgroups, and did 

not include basal thyreophorans such as Scelidosaurus and Emausaurus.

8. Butler et al. (2008) provided a re-assessment and more exhaustive set of 

analyses of the systematics of the clade Ornithischia. These were undertaken 

in the light of many new discoveries and the inconsistencies in the non-

numerical systematic analyses that emerged from this new material (Norman, 

1984b; Sereno, 1984, 1986; Cooper, 1985; Maryańska & Osmólska 1985). 

Butler et al. (2008) again used a number of suprageneric taxa (notably, in this 

instance, Ankylosauria) and generated a larger ornithischian dataset than that 

presented by Sereno (1999). Regarding the placement of Scelidosaurus their 

results were consistent with those published by Sereno (1986, 1999) because 

they used the same characters, apart from one additional character:

 

i. The presence of cortical remodelling on cranial bones (after Carpenter 

(2001) 

It was however noted that Scelidosaurus had not been described (by 

2008), with the implication that characters and character-state codings may 

differ once its anatomy is known in greater detail. It was also admitted that 

the analysis involved the coding of supraspecific operational taxonomic units: 
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e.g. Stegosauria and Ankylosauria, and that a fuller consideration of the 

phylogenetic position of Scelidosaurus would (ideally) require consideration of 

a range of individual eurypodan taxa. This was, however, considered to be 

beyond the scope of their analysis. 

Overall, the analysis cast doubt upon the interpretation of Scelidosaurus 

as a stem ankylosaur (Norman, 1984b; Carpenter, 2001). Constraining the 

resolved tree so that Scelidosaurus is positioned as the sister taxon to 

Ankylosauria increased tree length by 8 steps (among trees of 485 steps), but 

they did note that this was not a significantly worse explanation of the data 

(Templeton Test, p=0.04-0.13).

9. Several more taxonomically restricted analyses of thyreophoran 

ornithischians have been undertaken since the work of Butler et al. (2008). 

The most relevant among these, because they incorporate Scelidosaurus, are 

Thompson et al. (2012), Arbour & Currie (2016 – with a supplementary by 

Arbour & Evans, 2017) and Wiersma & Irmis (2018) for Ankylosauria; and 

Maidment et al. (2008), Mateus et al. (2009), Maidment (2010) and Raven & 

Maidment (2017) for Stegosauria. All of these studies provide taxon lists as 

well as detailed character descriptions and coding. 

The output of these sets of analysis differ markedly. For ankylosaurs, 

large numbers of equally most parsimonious trees (MPTs) were generated 

from data tables in which the codes assigned to characters were unweighted 

and unordered (4248 MPTs [52 taxa and 170 characters] – Thompson et al., 

2012; 3030 MPTs [44 taxa and 177 characters] – Arbour & Currie, 2016); and 

finally 21 MPTs [35 taxa (31 thyreophorans) and 293 characters – none of 

which were weighted, but 48 were ordered] – Wiersma & Irmis (2018). For 

stegosaurs the datasets were smaller: Maidment et al. (2008) used just 18 

taxa (11 of which were ingroup stegosaurs) and 85 characters, whereas the 

most recent analysis (Raven & Maidment, 2017) used 23 taxa (13 of which 

were ingroup stegosaurs) and 114 characters. In contrast to the ankylosaur 

analyses, some characters were assessed (a priori) and selectively weighted 

or ordered. This procedure generated respectively 5, 41 and finally a single 

MPT seemingly considerably better resolved. Thorough though the analytical 

processing of all these studies has been they are, somewhat paradoxically, 

limited with respect to their consideration of basal taxa (including 
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Scelidosaurus). As a consequence, in all instances but one (Wiersma & Irmis, 

2018) Scelidosaurus occupies an entirely consistent position as the sister 

taxon to Eurypoda.

In each analysis character lists are notable for their choice of codable 

anatomical characters intended to differentiate between a range of derived, 

but anatomically conservative and in many instances fragmentary/incomplete 

in-group taxa (note for example the discussion in Thompson et al., 2012: 308 

et seq. regarding the status of the clade Polacanthinae/Polacanthidae). The 

cumulative effect of scoring large numbers of derived character-states is that 

it introduces substantial statistical bias within the dataset that results in the 

outgroup OTUs and/or ‘basal’ taxa being scored “absent”/“0” for large 

numbers of characters (e.g. Butler et al., 2008; Thompson et al., 2012, et 

seq) despite the fact that these characters enable resolution between more 

derived taxa within the overall analysis; these particular issues are discussed 

in greater detail by Brazeau (2011). Interestingly Wiersma & Irmis (2018) 

compared the results of their analysis with those achieved by Arbour & Currie 

(2016 – and its reworked and heavily pruned iteration: Arbour & Evans, 

2017). They noted a profound lack of resolution among most nodosaurid and 

ankylosaurid taxa in the strict consensus tree, and that a degree of resolution 

was only be achieved by calculating a 50% Majority Rule consensus (which 

should not be used to explore phylogenetic relationships – Sumrall, Brochu & 

Merck, 2001); and a Maximum Agreement subtree which, although it identifies 

consistent phylogenetic structure common among the MPTs, also removes a 

large number of taxa and is inherently unstable (Wiersma & Irmis, 2018). 

Weirsma & Irmis’ trees also lacks resolution although this does not appear to 

be as severe as that evident in Arbour & Currie’s data. Both studies highlight 

weak levels of tree support, which point toward fundamental character-related 

problems (high levels of homoplasy and missing data for many taxa) in 

ankylosaur systematics. 

Scelidosaurus, Emausaurus and Scutellosaurus cluster at the base of 

most trees because they can be scored for only a restricted number of 

anatomical characters, many of which were identified originally by either 

Sereno (1986, 1999) or Butler, et al. (2008). Other factors that have 

influenced the phylogenetic reconstructions based on these analyses (notably 
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the placement of Scelidosaurus but also including Scutellosaurus and 

Emausaurus) are: 

 The comparatively high levels of missing data for all three taxa.

 Anatomical characters were incorrectly identified and/or scored 

because so little detailed anatomy of these taxa was known. 

In the case of Scelidosaurus, despite the skeleton having been cleared of 

matrix, authors have until now been obliged to rely on the monographs of 

Owen (1861, 1863), a small amount of anatomy illustrated by Charig (1972) 

or, on rare occasions, brief examination of material in the collections of the 

Natural History Museum (e.g. Carpenter et al., 2013; Arbour & Currie, 2016). 

An illustrative example of this particular problem can be seen in the matrix 

created by Arbour & Currie (2016) in which ~50 out of a total of 177 

characters were scored incorrectly for Scelidosaurus; this observation has no 

bearing on the competence of these authors but simply reflects how little was 

then known of this important taxon.

[B] New analysis

For the present analysis, the author surveyed, assessed, and sampled 

previously published character lists and their codings, then constructed a 

matrix of 15 taxa and 115 characters (Table-Appendix 2). The approach used 

was to identify characters that could be scored for currently known early (or 

apparently anatomically basal) taxa, as well as some exemplar well-preserved 

and well-described stegosaurs and ankylosaurs (see also Table-Appendix 2). 

This resulted in the production of a near equal split between cranial and 

postcranial characters (cranial 55 : 60 postcranial). A number of characters 

were added, whereas others were redefined, corrected and re-coded. This 

process of winnowing avoided the incorporation of many highly specific 

characters that have no relevance to a consideration of basal taxon 

systematics (Brazeau, 2011).

[B] Analytical protocols
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[C] Taxon sampling 

The primary purpose of a palaeontological systematic assessment of any 

particular taxon is to assess the extent to which its anatomical characteristics 

resemble, in a comparative sense, those of either contemporary taxa or ones 

that span the chronostratigraphic time interval in which it occurs. Equally, 

attempts can be made to enlarge the range of taxa with which it shares some 

of its principal characteristics, irrespective of their chronostratigraphic 

occurrence, so that it can be placed (topologically) and then interpreted in a 

broader phylogenetic and deeper temporal context. The taxa listed below were 

chosen because they are generally well preserved and described, are roughly 

contemporaneous (Early Jurassic), and share anatomical features seen in 

Scelidosaurus. Additional taxa were added because they have been widely 

recognized in the literature as representative of the two principal 

thyreophoran subclades.

Scelidosaurus is exclusively from the Early Jurassic Charmouth Mudstone 

Formation (late Sinemurian) of south-west England. It is a facultatively 

quadrupedal ornithischian with a well-developed dermal cuirass – and is thus 

considered to be de facto thyreophoran (Norman, 2020a,b,c). Exactly 

contemporaneous and taxonomically valid ornithischians have yet to be 

discovered and described.

Lesothosaurus is an Early Jurassic (Hettangian) slender-bodied, bipedal 

and, by consensus, non-thyreophoran ornithischian (but see Butler et al., 

2008) from southern Africa. It is known from abundant skeletal and cranial 

material (Thulborn, 1970, 1972; Santa Luca, 1984; Sereno, 1991; Porro et 

al., 2015; Baron et al., 2017a). This taxon has been regarded as the most 

basal ornithischian and has been used consistently as an outgroup in 

ornithischian/thyreophoran analyses. 

Pisanosaurus from Argentina of Late Triassic (Carnian-Norian) age has 

long been claimed to be ornithischian (Casamiquela, 1967; Sereno, 1991, 

1999, 2012; Martinez et al., 2013) but doubts about the association of the 

skeletal elements and the systematic position of this taxon have been raised in 

the past (Norman et al., 2004; Padian, 2013). In the light of recent 
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suggestions made by Baron et al. (2017c) this taxon (Pisanosaurus) has been 

re-described and re-assessed (Agnolin & Rozadilla, 2018). It is now considered 

probable that this material belongs to a silesaurid dinosauromorph. 

Lesothosaurus can therefore be justly regarded as one of the most basal, and 

earliest, adequately known ornithischians.

Scutellosaurus has been recovered from the Early Jurassic Kayenta 

Formation of North America (Colbert, 1981; Breeden, 2016). The 

chronostratigraphic age of this Formation has been a matter of prolonged 

dispute: ranging from latest Triassic (see the discussion in Colbert, 1981) 

through the Hettangian, Sinemurian and Pliensbachian stages of the Early 

Jurassic (note the discussion in Steiner & Tanner, 2014). Current views 

suggest an early Pliensbachian age. This taxon exhibits similar characteristics 

to those seen in the bipedal/cursorial Lesothosaurus. Scutellosaurus also has 

an extensive cuirass of osteoderms, making it ‘thyreophoran’ in a literal sense, 

and an obvious choice as a comparator for Scelidosaurus. 

Emausaurus is an enigmatic thyreophoran, having been recovered from 

the Early Jurassic (Toarcian) of Europe (Haubold, 1990). It is known from only 

an incomplete, dermally ornamented articulated skull and partial mandible, a 

small number of isolated postcranial bones and a few conical osteoderms that 

indicate the presence of a dermal cuirass. Some features seen in the skull and 

postcranium indicate anatomical affinities to Scelidosaurus and Scutellosaurus.

Looking further afield stratigraphically for other ornithischians that are 

technically thyreophoran because they possess a dermal skeleton, as well as 

being well preserved and described, there are several candidate Jurassic taxa:

Huayangosaurus is a regarded as a basal stegosaur that has been 

recovered from the Middle Jurassic (Bathonian-Callovian) of China (Zhou, 

1983, 1984; Sereno & Dong, 1992, Maidment et al., 2006). The taxon is 

represented by two skulls and a substantial portion of its postcranial skeleton 

(which includes a variety of dermal plates and spikes).

Kentrosaurus is another stegosaur taxon known from abundant 

disarticulated cranial, postcranial and dermal bone material collected from the 
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Late Jurassic (late Kimmeridgian-early Tithonian) of East Africa (Hennig, 

1925; Galton, 1988).

Stegosaurus from the Late Jurassic Morrison Formation of North America 

(Kimmeridgian-Tithonian) is an approximate contemporary of Kentrosaurus, 

and is the eponymous stegosaur. Several skulls and skeletons of this taxon 

have been recovered and these have been described in detail by Gilmore 

(1914) and this work was supplemented more recently by Maidment et al. 

(2015).

Ankylosaurian thyreophorans are predominantly Cretaceous in their 

stratigraphic distribution, although the earliest known example described to 

date are Late Jurassic (Kimmeridgian). Exemplar taxa used in this analysis 

include:

Kunbarrasaurus from the early Late Cretaceous (Albian-?Cenomanian) of 

Australia includes at least one articulated skeleton and skull and several other 

postcranial fragments. Its postcranium was partly described by Molnar (1996) 

and a detailed skull description was completed more recently (Leahey et al., 

2015). The postcranial skeleton preserves parts of its articulated dermal 

skeleton including partial parasagittal rows of conical osteoderms.

Jinyunpelta from the early Late Cretaceous (Albian-Cenomanian) of China 

comprises a substantial portion of a skull and the postcranium of an armoured 

dinosaur that has been described by Zheng et al. (2018). The skull is crushed 

obliquely dorsoventrally, but much of its external anatomy has been 

described, as has its postcranial skeleton and dermal armour. The latter is 

extensive and augmented by the presence of a bony tail club.

Sauropelta is represented by several partial skeletons and skulls collected 

from the Early Cretaceous Cloverly Formation (Aptian) of North America 

(Ostrom, 1970).

Silvisaurus was recovered from the late Early Cretaceous Dakota 

Formation (Aptian-Cenomanian) of North America and includes a skull and 

partial skeleton (Eaton, 1960).
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Pinacosaurus is a Late Cretaceous (Santonian-Campanian) taxon from 

Mongolia and China, represented by a considerable number of skulls and 

skeletons that encompass a size range (from juvenile to adult). First described 

by Gilmore (1933) this work has been added to by Maryańska (1971, 1977), 

Godefroit et al., (1999) and Hill et al. (2003).

Edmontonia is a Late Cretaceous (Campanian) taxon from North America 

represented by several of skulls and a number of postcranial skeletons 

(Gilmore, 1930; Russell, 1940; Coombs, 1971, 1978a).

Euoplocephalus is another well known Late Cretaceous (Campanian-

Maastrichtian) taxon from North America (Lambe, 1902; Coombs, 1971, 

1978a; Vickaryous & Russell, 2003; Vickaryous et al., 2004; Arbour & Currie, 

2013) has been claimed to be represented by numerous specimens. However 

it should be noted that a recent revision of the taxonomic assignment of 

remains attributed to Euoplocephalus tutus (Penkalski, 2018) has considerably 

reduced the number of specimens attributable to Euoplocephalus and assigns 

those excluded from this taxon to a number of other ankylosaurian taxa such 

as Oohkotokia (Penkalski, 2014) and Zuul (Arbour & Evans, 2017).

Struthiosaurus is widely distributed across the Late Cretaceous 

(Campanian-Maastrichtian) of Europe and its remains include both skull and 

postcranial material (Nopcsa, 1915, 1929; Pereda Suberbiola & Galton, 2001).

Outgroup and additional taxa. Silesaurus was specified as an outgroup 

following Baron et al. (2017b,c). Silesaurus (Dzik, 2003) is a Late Triassic 

(late Carnian-early Norian) dinosauriform. Two additional taxa: Hypsilophodon 

(Galton, 1974) and Dryosaurus (Janensch 1955; Galton 1981, 1983), both of 

which are well-described bipedal ornithopod dinosaurs, were included as 

unspecified comparative ornithischian taxa. 

[C] Scoring

Anatomical characters were scored by direct observation of specimens (where 

possible) otherwise scoring was derived from the original descriptive accounts 

and accompanying illustrations. A full list of the taxonomic material and 
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sources is provided in Table-Appendix 2. All characters were unweighted and 

unordered.

[C] Analysis 

The compiled data file (available as a supplementary NEXUS file) comprises 18 

taxa scored for 115 anatomical characters. The matrix was constructed in 

MacClade v4.06 (Maddison & Maddison, 2003) and then exported into TAXEQ3 

(Wilkinson, 2001) in order to check whether there are taxa that lack unique 

character combinations. Any such taxa can be removed without compromising 

the statistical algorithm that generates the cladogram topology, but no taxa 

failed this test so none were deleted.

<Figure 39 near here> Strict Consensus tree with Bremer support

Analyses were performed using PAUP* (Swofford, 2002) using both Heuristic 

with Tree Bisection-Reconnection implemented (22,569 replicates examined), 

and Branch & Bound search algorithms. When parsimony-based analyses 

generate ambiguity (an array of equally most parsimonious solutions) it is 

normal practice to resolve character change by using optimization algorithms 

(Farris, 1970; Swofford, 2002). Analyses were therefore run using both 

ACCTRAN (which, on balance, accelerates character change so that they occur 

as near to the root as possible) and DELTRAN (which delays character change 

as close to the tips as possible) optimizations so that the evolutionary 

implications of character state changes could be compared and evaluated 

(Swofford & Maddison, 1992). It has more often than not been considered 

preferable to favour ACCTRAN optimizations, but this is unfounded – see 

Agnarsson & Miller (2008). 

A Strict Consensus tree (Fig. 39) was generated from the resultant MPTs. 

MacClade offers an option to create a Decay Index (Bremer, 1994) file that 

generates a PAUP* command which can be used to calculate decay indices of 

branch support for individual clades as a measure of overall branch-tree 

stability. The command file can be executed on the active dataset in PAUP* 

which runs a series of calculations on each of the clades generated by the 

dataset. A log file stores the sequence of numerical outputs. The tree length 

attained (before a specified node collapses) can be used to calculate individual 
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decay indices (Fig. 39 – Bremer support numbers on branches). The MPTs 

were also subjected to a bootstrap analysis set to 10,000 replicates (Fig. 40). 

The bootstrap percentage figures offer an assumption-limited, statistical 

measure of confidence in the cladogram’s topology (Sanderson, 1989). 

<Figure 40 near here> Bootstrap results of MPTs

The tree file of MPTs generated in PAUP* was also imported into 

MacClade and then manipulated using its tree editing tools to investigate the 

influence of alternative topologies on tree length and statistical support 

(‘testing’ by mimicry of the topologies generated in recently published 

analyses). 

[B] Results and topological manipulations

Both the Heuristic and Branch & Bound analyses produced 10 MPTs of 226 

steps (min: 164, max: 629) with a consistency index (CI) = 0.73, retention 

index (RI) = 0.87 and homoplasy index (HI) = 0.27. The strict consensus tree 

(Fig. 39) has a topology that conforms in most respects with previous 

analyses. However, a cluster of taxa: Scutellosaurus, Emausaurus  and 

Scelidosaurus are a positioned on the stem of Ankylosauria rather than on the 

stem of Thyreophora.

Ingroup resolution among individual nodosaurid taxa is lacking (Fig. 39), 

which is a result that is entirely consistent with previously published analyses 

that have attempted to resolve nodosaur relationships (see Thompson et al., 

2012, for a discussion of this problem). The uncertainty concerning nodosaurid 

positioning is responsible for the majority of the differences among the 10 

MPTs. There is also a subsidiary ambiguity over the positions occupied by 

Jinyunpelta and Kunbarrasaurus (Fig. 39) that contribute to the differences 

between MPTs. There is a general correspondence between the tree support 

offered by the Bremer indices (Fig. 39) and bootstrap values (Fig. 40). These 

values are as robust as, or more robust, than those published in recent 

analyses (e.g. Thompson et al., 2012: fig. 2; Arbour & Currie, 2016: fig. 11; 

Wiersma & Irmis, 2018). However, these latter analyses had much larger 

ranges of ankylosaurian taxa, many of which are fragmentary (high levels of 
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missing data) and exhibit substantial levels of anatomical conservatism and 

homoplasy, all of which challenge the analytical algorithms (and subsidiary 

statistical manipulations) deployed in an attempt to obtain resolved trees.

<Figure 41 near here> Tree manipulation of Scutellosaurus and 

Jinyunpelta.

Exploration of tree topology (intended to reproduce and investigate the 

topology of previously published cladograms) can be undertaken by importing 

an MPT tree file (.tre) generated in PAUP* into the Tree Window of MacClade. 

Taxon repositioning automatically generates corresponding tree length and 

statistical support data. It is equally possible to use MacClade to explore tree 

topologies that are generated using PAUP* when the original dataset is re-

analysed following the addition or deletion of taxa:

1. When Scelidosaurus (0.9 % missing data) is repositioned so that it occupies 

what might be regarded as a ‘traditional’ thyreophoroidean position (as the 

proximate sister taxon to Eurypoda), tree length increases by 18 steps (244 

steps).

2. Repositioning Emausaurus (56.5% missing data) as the basal sister taxon 

to Scelidosaurus on the eurypodan stem further increases tree length by three 

steps (247 steps). 

3. When Scutellosaurus (28.7% missing data) is repositioned as the basal 

sister taxon to Emausaurus a tree length drops to 231 steps, which is just five 

steps longer than that of the most parsimonious trees. This latter result 

reflects a combination of the ‘gravitational pull’ on the data exerted by the 

basal ornithischian characters exhibited by Scutellosaurus, combined with the 

missing data for this taxon. 

Scutellosaurus possesses several character-states that correlate with a 

cursorial-bipedal style of life (seen in Lesothosaurus, Hypsilophodon and 

Dryosaurus); it also has a less specialised jaw morphology (reminiscent of that 

seen in Lesothosaurus). These basal ornithischian characters conflict with the 

presence of two key ankylosauromorphan characters: cranial exostoses, and 

multiple parasagittal rows of osteoderms on its torso. An indication of the 

latter character conflict is revealed by the fact that reverting the positions of 

Scelidosaurus and Emausaurus as successively more remote 
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ankylosauromorphans to Ankylosauria, while leaving Scutellosaurus as the 

proximate sister taxon to Thyreophora (see Figure 41), produces a tree length 

of 229 which is just three steps longer than that of the fundamental MPTs. 

Statistically, this topology cannot be dismissed from consideration, even if it is 

not favoured by the author.

4. Jinyunpelta (45.2% missing data) can also be repositioned on the 

ankylosaurid stem (see Figure 41); this accords with Coombs (1978a) because 

this taxon exhibits a tail club. It is interesting to note that this tree topology 

increases tree length by just a single step (230 steps, CI: 0.71, RI: 0.86).

5. Kunbarrasaurus (27.8% missing data) appears to be stably positioned as 

the most basal ankylosaurian currently known. All other locations on the tree 

produce substantial increases in tree length.

5. Deleting the comparatively poorly resolved taxa Kunbarrasaurus and 

Jinyunpelta from the original dataset in PAUP* and then re-running the 

analysis using the same parameters results in 6 MPTs (all residual tree conflict 

reflects the lack of resolution within the nodosaurid clade). Tree length is 

reduced to 212 steps (min: 164, max: 585) and these trees have a CI: 0.77 

and RI: 0.89. The Strict Consensus tree is presented as Figure 42. The 

topology of the fundamental consensus tree (Fig. 39) is retained but benefits 

from a substantial (14 step) decrease in tree length.

<Figure 42 near here> Deletion of Kunbarra & Jinyun cladogram

[B] Discussion

The strict consensus tree (Fig. 39) generated by the dataset re-affirms the 

1970s hypothesis concerning the main ankylosaurid-nodosaurid dichotomy 

(Coombs, 1978a) and the 1980s hypothesis concerning the general 

composition of the clade Thyreophora (Norman, 1984b; Sereno, 1986). Both 

general hypotheses have indeed been supported in subsequent studies 

(Coombs & Maryańska, 1990; Sereno, 1999; Butler et al., 2008; Thompson et 

al., 2012; Arbour & Currie, 2016; Raven & Maidment, 2017) and are therefore 

regarded as secure. The decay indices (Fig. 39) and bootstrap support values 

(Fig. 40) add a measure of support for these hypotheses. One result 

generated by this analysis is controversial: the positioning of Scelidosaurus 
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(and related taxa) on the stem of Ankylosauria (Figs 39-42), given the near 

universal support for the clade named Thyreophoroidea (Scelidosaurus + 

Eurypoda – see Fig. 38). Note in particular the discussion in Thompson et al. 

(2012: 306-308). In this new topology Thyreophoroidea and Eurypoda as 

envisioned since Sereno (1986) become meaningless. 

There are several points that arise in the light offered by this new analysis and 

the tree topology that it has generated:

 Anatomical updates. This has been the first opportunity to incorporate 

accurate anatomical information concerning Scelidosaurus into any 

systematic analysis (note the comments in Butler et al., 2008: 20). It is 

worth noting that one of the more recent detailed analyses of thyreophoran 

relationships had a near 30% error rate in its scoring of Scelidosaurus. This 

analysis has benefitted from some preliminary information on 

Scutellosaurus (Breeden, 2016) that supplements that which was available 

in Colbert (1981); the former account is also expected to be updated in the 

near future (Breeden, pers. comm. March 2020). Emausaurus, another key 

taxon, although it is represented by a well-preserved but partial skull lacks 

a great deal of anatomy and would benefit from fresh discoveries of this 

taxon.

 Dataset review. The new data matrix represents a process of addition to, as 

well as culling, editing and scoring/re-scoring of characters listed in 

previously published datamatrices. These were constructed originally in 

attempts to assess either global ornithischian interrelationships (notably 

Butler et al., 2008 and Sereno, 1999); or those found within specific 

ornithischian sub-clades (e.g. Stegosauria and Ankylosauria – notably 

Maidment et al., 2008; Arbour & Currie, 2016; Raven & Maidment, 2017). 

 Character choice. The characters that have been retained, as well as a 

smaller number of novel characters, focus mainly upon the anatomies 

displayed by currently known basal thyreophoran ornithischians. This 

represents a deliberate attempt to redress the balance which, in most 

analyses, has tended to favour ever-increasing numbers of anatomical 
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characters that pertain only to more derived taxa – with the understandable 

aim of increasing the statistical support for the discrimination between, and 

placement of, a substantial number of anatomically more derived, taxa.

 Topological plasticity. Phylogenetic definitions (node-based and stem-

based) are used in some palaeontological systematic analyses following the 

pioneering work of Farris (1976), de Queiroz & Gauthier (1990, 1992) and 

de Queiroz (1992). This style of taxon-clade definition is driven by the 

desire to remove ambiguity in the way that relationships are defined, and 

works well in a framework provided by a stable cladogram topology. 

Unfortunately palaeontology is a research discipline in which the discovery 

of additional material, the re-description of established taxa, and the 

discovery of completely new taxa are commonplace. As a consequence any 

fossil-based cladogram can be little more than an interim hypothesis of 

relationships. 

The fossil record of terrestrial vertebrates (in this particular instance 

that of armoured dinosaurs of the Jurassic and Cretaceous) is logically and 

inescapably incomplete (Darwin, 1859; Retallack, 1984). As a consequence, 

systematic analyses have shown consistently that palaeontologically-based 

cladograms, although they often maintain some degree of large-scale 

coherence (but note Baron et al., 2017b as an exception), are inherently 

internally labile (as demonstrated here). Adopting a preferentially stem-

based (rather than node-based) approach to taxon definitions may prove to 

be a more pragmatic way of maintaining some degree of nomenclatural 

stability (and reducing the rate of propagation of new taxonomic names) in 

the face of changing fossil-based tree topologies.

[C] Thyreophoran clades and apomorphy lists 

Serve as summaries of the character acquisitions in (anatomical) support of 

the topology presented in Figures 39 & 40, and the simplified summary 

cladogram (Fig. 42). The lists generated below represent a summary of the 

apomorphies that were generated in PAUP* and found to be common to both 

ACCTRAN & DELTRAN optimizations. The (larger) total numbers of ACCTRAN 

and DELTRAN characters produced by these analyses are listed in parentheses 
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(for the comparatively unambiguous clades) and are available for scrutiny in 

Table-Appendix 3. 

Phylogenetic definitions are provided for some clades, but these are not 

suggested for taxonomic groupings that are well known but not 

comprehensively surveyed in this analysis, e.g. Stegosauria, Ankylosauridae, 

Nodosauridae.

Clade THYREOPHORA 

Stem-based definition: all taxa more closely related to Euoplocephalus and 

Stegosaurus than to Hypsilophodon. 

The possibly node-based definition: the common ancestor of Stegosauria 

(Stegosaurus) and Ankylosauria (Euoplocephalus and Edmontonia) and all of 

its descendants, is exclusive and risks leading to the generation of new 

taxonomic names for stem-lineage thyreophorans when they have been 

discovered – or currently known taxa are re-positioned there following 

revision/updating.]

Total characters under ACCTRAN 17, DELTRAN 12 – (see Table-Appendix 3 for 

details).

 

1. Anterior supraorbital (palpebral) bound to the anterodorsal orbital 

margin

2. Postorbital (and posterodorsal orbit margin) obscured by osteoderm(s)

3. Mandibular condyles of the quadrate: medial condyle larger than the 

lateral

4. Median vomeropterygoid keel is deep (approaching or touching snout 

roof)

5. Dorsal margin of the dentary in occlusal view mildly bowed medially

6. Fourth trochanter positioned at mid-length on the femoral shaft

7. Transverse width of the distal femur greater than the depth of the 

medial condyle

8. Osteoderms form parasagittal rows either side of the dorsal midline

9. Osteoderms extend along the caudal series
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Clade STEGOSAURIA 

Total characters under ACCTRAN 23, DELTRAN 22

1. Quadrate head rectangular

2. Pterygoids partially fused along the midline

3. Maxillary and dentary crown surfaces bear long vertical ridges

4. Scapula blade stout and parallel-sided (homoplastic: also present in 

derived ankylosaurs)

5. Lateral profile of the ilium bowed dorsally (homoplastic: also present in 

derived ankylosaurs)

6. Postacetabular blade less than 30% of the length of the ilium 

(homoplastic: also present in derived ankylosaurs)

7. Supraacetabular crest projecting laterally and creating a partially 

laterally open cupola

8. Pubis, the femoral articular surface forms a laterally facing oval 

depression

9. Pubic shaft stout and bar-shaped

10.Femur tall, narrow and straight-shafted

11.Femoral anterior trochanter exhibits partial fusion with the greater 

trochanter (homoplastic in some nodosaurids)

12.Femoral fourth trochanter forms a raised ridge (homoplastic: present 

also in basal ankylosaurs and nodosaurids)

13.Cnemial crest of tibia robust and curved (homoplastic: present in 

derived ankylosaurs)

14.Fibula stout, but smaller than the tibia (homoplastic: present in derived 

ankylosaurs)

15.Pedal digit 1 lost

16.Parasagittal midline osteoderms form hypertrophied plates or spines

17.Lateral flank osteoderms are absent (except for parascapular spines). 

One row of lateral flank osteoderms has been reported in 

Huayangosaurus (Sereno & Dong, 1992: 340) but they reference an 

indistinct fieldwork photograph (Zhou, 1984:pl. 1) of a partial 
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articulated skeleton. I have been unable to identify these osteoderms, 

and none were mounted on the skeleton in plate 13.

18.Distal caudal osteoderms form tall, paired conical spines

19.Parascapular spine present (secondarily lost in stegosaurines)

Clade: Ankylosauromorpha

Stem-based definition: all taxa more closely related to Euoplocephalus and 

Edmontonia than to Stegosaurus.

Scutellosaurus

1. Cortical remodelling on the external surface of the skull partially 

developed

2. Jugal-quadratojugal exostotic ornamentation present

3. Humerus:femur length ratio greater than 80%

4. Orientation of the principal cross-sectional long-axis of the 

preacetabular process is horizontal (rather than vertical)

5. Osteoderms form multiple parasagittal rows on either side of the dorsal 

midline

6. Parasagittal osteoderms on the torso adjacent to the midline are low, 

and either ridged or roughly conical

7. Caudal osteoderms are oval based and generally low ridged

Emausaurus

1. Dorsal margin of the dentary is sinuous in lateral view

2. Proportions of metacarpal 1 ‘medium’ (neither elongated nor squat)

Scelidosaurus 

1. External antorbital fossa/fenestra is small

2. Skull has some additional (non-supraorbital) osteoderms

3. Partial cortical remodelling of the skull surface present and includes a 

small number of osteoderms

4. Postorbital has a medial wall that partitions the orbit from the adductor 

chamber
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5. Prominent exostosis on the lateral surface of the mandible, but an 

overlying osteoderm may not be present (unless the holotype 

mandibles preserve remnants of a superficially placed osteoderm)

Clade ANKYLOSAURIA 

Stem-based definition: all taxa more closely related to Euoplocephalus and 

Edmontonia than to Scelidosaurus.

Kunbarrasaurus and Jinyunpelta

1. Skull shape in occipital view, long-axis horizontal

2. Premaxilla edentulous (homoplastic: among Nodosauridae, 

Ankylosauridae and Stegosauria)

3. Premaxillary palate wider than long

4. Median marginal premaxillary notch present

5. Postorbital, posterodorsal orbit margin obscured by osteoderms

6. Predentary shape in occlusal view: extreme transverse extension to 

form a horizontal bar

7. Mandibular glenoid ventrally offset relative to the occlusal plane of the 

dentition

8. Long shallow symphyseal ramus of the mandible

9. Premaxillary tooth count reduced to zero (reversed in some 

nodosaurids)

10.Scapula blade shape: stout and parallel-sided (homoplastic: 

Stegosauria)

11.Acetabular medial wall forms an imperforate cupola

12.Femoral shaft shape in anterior view: stout and straight shaft

13.Femoral anterior trochanter: completely fused to the greater trochanter 

(reversed in Kunbarrasaurus and Struthiosaurus)

14.Fourth trochanter has the form of a raised ridge (rather than being 

pendent, or a depression in the femoral shaft) – homoplastic in 

Stegosauria

15.Cnemial crest of tibia is large and curved (homoplastic in Stegosauria)

16.Fibula smaller than tibia, but is a robust bone (homoplastic in 

Stegosauria)
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Clade ANKYLOSAURIA [Traditional node] 

Node-based definition: the common ancestor of Euoplocephalus and 

Edmontonia and all of its descendants. [This node has the potential to become 

the new taxon Euankylosauria but this additional clade name is neither 

essential nor particularly desirable.]

Total characters under ACCTRAN 16, DELTRAN 28) – additional to the previous 

listing.

1. External surface of the skull covered extensively by a ‘carapace’ formed 

by interconnected osteoderms in fully mature individuals.

2. Quadrate shaft anteroventrally inclined

3. Paroccipital processes oriented posteroventrolaterally

4. Discrete and large, ridged osteoderm present on the lateral surface of 

the mandible

5. Lateral profile of the dorsal surface of the ilium long and bowed dorsally

6. Preacetabular process of the ilium expanded distally

7. Shaft of the ischium rod or bar-shaped

8. Obturator foramen/process absent

9. Pubis fused to the ilium (and ischium)

10.Pubic shaft reduced to a small finger-shaped process (or entirely 

absent)

11.Pubic shaft considerably shorter than that of the ischial shaft

12.Pedal ungual phalanges broadly rounded, flattened (hoof-like)

13.Conical lateral flank osteoderms

Clade ANKYLOSAURIDAE (total characters under ACCTRAN 10, DELTRAN 14)

1. Maximum skull width equal to or greater than skull length

2. Presence of paranasal fossae on the premaxilla

3. Number of discrete antorbital osteoderms (caputegulae) greater than 

ten

4. Skull roof osteoderms (caputegulae) have the form of small mostly 

rounded plates

5. Lateral (infra) temporal fenestra occluded by osteoderms
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6. Femoral head terminally positioned on the femoral shaft

7. Fourth trochanter of the femur is low-mound that surrounds a 

depressed muscle scar

8. Fourth trochanter positioned on the distal half of the femoral shaft

9. Distal tibia and proximal tarsals fused together

10.Terminal caudal osteoderms combine to form a bony club

Clade NODOSAURIDAE (total characters under ACCTRAN 11, DELTRAN 10)

1. Skull profile in lateral view arched or domed posterior to the orbit, 

creating the appearance of ventral flexure

2. Occipital condyle hemispherical and separated from the braincase by a 

constricted neck

3. Basisphenoid and pterygoids fused together

4. Quadrate head fused to the squamosal-paroccipital

5. Lateral (infra-) temporal fenestra reduced to a narrow slit

6. Maxillary and dentary crowns possess well-developed cinguli

7. Acromial process of the scapula twisted laterally

8. Ischial shaft with a pronounced bend at mid-length

9. Lateral cervicopectoral osteoderms develop into tall, conical-subconical 

plates or spikes

[A] SYSTEMATIC CLASSIFICATION

Indented hierarchy:

DINOSAURIA Owen, 1842

ORNITHOSCELIDA Huxley, 1870b

ORNITHISCHIA Seeley, 1887[1888]

THYREOPHORA Nopcsa, 1915

ANKYLOSAUROMORPHA Carpenter, 2001

Genus and species: Scelidosaurus harrisonii Owen, 1861
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[A] THE PHYLOGENETIC CONTEXT OF SCELIDOSAURUS

The topology of any palaeontological cladogram derived from a dataset is little 

more than a statistical artefact generated by a combination of the objective 

protocols deployed by the algorithm, and the subjective choice, definition and 

scoring of anatomical characters (Smith, 1994). The challenge for 

palaeontologists has always been to convert such constructs (hypotheses of 

relationship) into evolutionary trees that represent plausible sequences of 

anatomo-biological changes whose coherence implies phylogenetic meaning. 

“There are three kinds of lies: lies, damned lies and statistics.”
                                              Benjamin Disraeli (1804-1881)

One test (using the term figuratively) that can be applied in order to establish 

whether the data contain a phylogenetic signal (beyond simplistic measures of 

statistical support for a particular topology), is to determine to what extent 

the succession of character acquisitions generated by the analytical regime are 

biologically plausible within the context of a transformational ancestor-

descendant (evolutionary) series. The taxon narratives below incorporate 

many of the apomorphies from the lists generated by this analysis, with the 

addition of a few further observations taken from the complete apomorphy 

lists generated under both optimizations (Table-Appendix 3).

 

1. Thyreophora is recognized as a clade of herbivorous ornithischian 

dinosaurs that first appear in the Early Jurassic (Hettangian-Sinemurian). 

Their teeth are comparatively small, ‘beech leaf shaped’ and arranged en 

echelon in the dentition. Two of the most basal thyreophoran taxa known: 

Scutellosaurus (Colbert, 1981) and the stegosaur Huayangosaurus (Sereno & 

Dong, 1992) retain straight dentitions (as seen in the basal ornithischian 

Lesothosaurus). In contrast, more derived thyreophorans develop lingual 

bowing of their dentitions. The curvature of opposing dentitions creates 

structural guides that prevented fore-aft translation of the mandible during 
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(orthal) jaw closure; this system promoted oral food processing through a 

combination of orthal pulping and intermittent shearing. The mandibular 

symphysis was probably flexible, and permitted limited long-axis mandibular 

torsion (and wishboning) to occur during the chewing cycle. The mandibular 

joint is expanded transversely and represents a structural adaptation to limit 

or control mandibular torsion. A deep internasal partition in the snout (formed 

by the vomers and pterygoids) may be linked to the posterior extension, from 

the premaxillary hard palate, of a soft palate that separated the nasal and oral 

cavities; this latter feature would have allowed respiration while food was 

being processed in the mouth (and was probably the case for most, if not all, 

ornithischians).

The dermis in thyreophorans was imbued with the capacity to grow large 

osteoderms. This ability probably reflect either the retention (or re-

expression) of the archosaur trait (or it could have evolved de novo). 

Osteoderm development was expressed in the skull through the evolution of a 

row of three supraorbital bones that arc around the dorsal orbital margin and 

create a prominent brow ridge. Postcranially, parasagittal osteoderm rows 

evolved. 

The postcranial skeleton displays a general shift away from cursoriality 

(seen among all basal dinosaurs) and toward the adoption of a quadrupedal 

stance. Their limbs start to evolve the proportions (femur > tibia) and 

comparative robustness seen in graviportally-adapted animals; and their 

forelimbs develop a non-raptorial and more ‘utilitarian’ morphology that would 

have permitted weight support as well as grasping suggestive of a trend 

toward quadrupedality within this clade. Remnant features linked to an 

evidently bipedal-cursorial ancestry are shown in some of the earliest known 

thyreophorans. For example, Scutellosaurus shows features associated with 

bipedality and cursoriality in the construction of its hindlimb.

2. Stegosauria represent a distinct branch of thyreophorans currently 

recognized first in the Bathonian-Callovian. They evolved characteristics that 

differentiate them from all other (ankylosauromorph) thyreophorans. 

However, they adopt a broadly similar quadrupedal-graviportal body form and 
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consequently evolved a number of morphofunctional features in their girdle 

and limb construction that converge, to varying degrees, upon those seen in 

derived ankylosaurians. 

Among thyreophorans, stegosaurs developed a distinctive morphology: 

long, narrow skull and low snout. This character suite was not used in the 

dataset because it is only clearly expressed in Stegosaurus (many 

reconstructions of stegosaur taxa tend to follow the cranial proportions of the 

eponymous taxon). It should be noted that the most basal stegosaur so far 

described (Huayangosaurus) exhibits a long, low snout (Sereno & Dong, 1992: 

fig. 1B) even though the skull reconstructions provided in this account do not 

really reflect this peculiarity. The quadrate head is rectangular rather than 

hemispherical/condylar, so the quadrate is fixed in position and stabilizes the 

mandibular joint; this may be an adaptation that is functionally linked to the 

long, slender snout (and mandible). The dentition is characterized by large 

numbers of small, laterally-flattened, low, broadly leaf-shaped crowns with 

apical abrasion facets. The sides of the crowns bear distinctive radiating 

patterns of ridges confluent with the apical cusps, and there are basal cinguli. 

Jaw mechanics in these animals is poorly understood. Richard Swann Lull 

(1910: 367) suggested that stegosaurs ate “food of a yielding character which 

did not require [del] forcible mastication”. 

Postcranially, the dorsal vertebral column is characterized by the 

dorsoventral ‘stretching’ of the neural arches and transverse expansion of the 

apices of the neural spines (Gilmore, 1914; Maidment et al., 2006). In the 

shoulder girdle the scapula becomes stout and reinforced, eventually fusing 

along its suture with the coracoid. The humerus is stout and has a massive 

deltopectoral crest; these changes reflect the adoption of a quadrupedal gait. 

Modifications are also seen in the pelvis and hindlimb with the lengthening and 

vertical deepening of the preacetabular process and the flexure (dorsal 

bowing) of the ilium. The postacetabular iliac blade becomes abbreviated and 

this may be associated with increasing lateral tail flexibility. The acetabulum 

becomes more cupola-like and the pubis evolves a large, oval and laterally 

facing facet for articulation against the anteromedial surface of the femoral 

head. The femur is long, narrow and straight (particularly so when compared 

to the stout, but squat, morphology seen in derived ankylosaurians), whereas 
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the tibia is short and very stout. Although the tibia is the dominant bone of the 

shin the fibula is still stout and dumbbell shaped rather than reduced to a 

narrow splint. The foot structure is essentially ‘elephantine’ with short, robust, 

oblique-to-vertically arranged metatarsals and short digits that terminate in 

bluntly truncated unguals (rather than the broadly rounded, more ‘hoof-

shaped’ unguals that are seen in the generally similarly constructed feet of 

ankylosaurs). The loss of the 1st digit of the pes (Sereno, 1986) may be an 

apomorphy among derived stegosaurs, but the point at which this loss 

occurred within this lineage is uncertain.

In their early evolutionary history stegosaurs establish a very 

characteristic body form; this is most notable in the distribution of their torso 

and tail osteoderms, which form two paramedian rows of tall plates and/or 

spines that appear to have been anchored to the laterally expanded apices of 

adjacent neural spines. The restricted osteoderm distribution may be linked 

causally to the pronounced narrowing and deepening of the thoracic and 

abdominal region (see Fig. 22), which conforms structurally with the 

lengthening of the femur in the hindlimb. The distal end of the tail is ‘armed’ 

with pairs of tall, sharp spines and the ability to swing this defensive structure 

laterally may account for the restructuring of the postacetabular blade of the 

ilium and the dorsoventral expansion of proximal caudal ribs. The distal 

portion of the blade of the scapula is also commonly adorned with a sharply-

pointed parascapular spine, although this feature appears to have been lost 

secondarily in stegosaurines (Raven & Maidment, 2017).

3. Ankylosauromorpha (=Ankylosauroidea [Norman, 1984b] – the latter 

taxonomic name was created for the exclusive clade (Scelidosauridae 

(Ankylosauridae + Nodosauridae)). In contrast to its sister-clade Stegosauria, 

Ankylosauromorpha is represented by a succession of stem taxa that 

accumulate anatomical characters in a near step-like manner as they ‘evolve’ 

toward Ankylosauria sensu stricto. 

The skull becomes progressively strengthened externally through the 

evolution of exostoses that overgrow intracranial sutures (and anchored a 

keratinous carapace). In this analysis Scutellosaurus represents the earliest 
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member of this branch. Unlike the stegosaur lineage, and more closely 

resembling derived ankylosauromorphs, Scutellosaurus has a shorter, more 

box-like skull (Breeden, 2016); and the skull surface is ornamented by 

exostotic growth, notably on portions of the preserved skull roof and jugal 

arch. However, the jaws and teeth (so far as they are currently known) 

suggest that the dentition was straight (rather than bowed) and the mandible 

was slender (e.g. Colbert, 1981: fig.10) and reminiscent of that seen in the 

basal ornithischian Lesothosaurus (Sereno, 1991). 

Postcranially, the forelimb:hindlimb proportions indicate that the limbs 

are more comparable in length, suggestive of facultative quadrupedality 

(Colbert, 1981: 42-46) in spite of the presence of several anatomical features 

in the hindlimb (pendent fourth trochanter, femur shorter then tibia and a long 

slender pes) that are more often associated with cursoriality (Galton, 1971; 

Coombs, 1978c). The holotype of Scutellosaurus is preserved with a large 

number of low-ridged osteoderms that can best be restored as multiple 

parasagittal rows along its torso and tail (Colbert, 1981); this general pattern 

differentiates members of Ankylosauromorpha from Stegosauria.

4. Emausaurus. Although this taxon is far from complete (Haubold, 1990), it 

includes a partial articulated skull that is box-shaped and exostotic (rather 

than being low, long snouted and unornamented). Its jaw profile, unlike the 

rectilinear morphology seen in Scutellosaurus, is sinuous as in all more 

derived ankylosauromorphans. The alteration in the morphology of the jaw is 

suggestive of modifications linked to the diet and jaw mechanics in these 

dinosaurs. 

The remainder of the skeleton is poorly represented. The vertebrae show 

no evidence of the proportional changes in the height of the neural arches and 

spines that characterize stegosaurs. A few conical osteoderms are preserved 

but these give no indication of how extensively they were distributed across 

the torso. It is clear from the proportions of the preserved metacarpals that 

the forelimb is adapted for weight support rather than grasping and the 

ungual phalanges are conical and only slightly decurved. Equally, the few 

known proximal pedal phalanges are short and block-like, and have 
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proportions very similar to those seen in the pes of Scelidosaurus. All these 

features are suggestive of graviportality and quadrupedality. 

5. Scelidosaurus. Now that this taxon is known more completely, it can be 

seen to be undergoing consolidation of its cranial structure. The antorbital 

fossa/fenestra is much reduced compared to that of Emausaurus, reinforcing 

the snout. Exostoses are also far more widespread across the skull surface, 

and additional osteoderms are present posterior to the orbit. The mandible 

also shows the onset of the development of posterolateral dermal 

reinforcement reminiscent of that seen in more derived ankylosaurs. 

Postcranially, the trunk is broad, rather than narrow and deep as seen in 

stegosaurs; its limb proportions indicate that this taxon was facultatively 

quadrupedal, judged by its limb proportions and the ‘utilitarian’ adaptations 

seen in the manus. Anomalously, the femur retains a pendent fourth 

trochanter similar to that seen in Scutellosaurus (and reminiscent of those 

seen in cursorially-adapted bipeds such as Lesothosaurus, Hypsilophodon and 

Dryosaurus) but positioned mid-shaft, rather than proximally as it is in these 

latter cursors. The femur is also a little longer than the tibia, indicative of a 

‘sub-cursorial’ (less fleet-footed) locomotor mode. In this context, it is 

unfortunate that so little is known of the structure of the femur and hindlimb 

of Emausaurus. Nevertheless, it is considered likely that remnant features 

associated with a bipedal ornithischian ancestry persist among these 

ankylosauromorphs as they shifted (in an evolutionary sense) toward the 

obligate quadrupedality seen in more derived ankylosaurs. 

The dermal skeleton is well developed with multiple parasagittal rows 

across the body of this taxon. In the cervical region there is a set of four 

partial bony collars (five, if the tricorn plates immediately behind the skull are 

included) comprising transverse bands of baseplates that anchor arrays of 

osteoderms; this arrangement is anatomically similar to the reduced number 

of osteoderm-bearing collars seen in nodosaurids and ankylosaurids.

6. Stem-based Ankylosauria (Kunbarrasaurus and Jinyunpelta). Insofar as 

their anatomy is currently known, these two taxa apparently demonstrate the 
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onset of a shift in the morphology of their skulls: becoming lower and broader 

and more consolidated (approaching the form seen in the more derived 

ankyosaurids and nodosaurids). These taxa also show a continuation of the 

development of an osteodermal covering (carapace) over the skull surface. 

The snout also develops a substantially broader beak (approaching, again, the 

condition seen in more derived ankylosaur taxa). There is loss of premaxillary 

teeth and their replacement by a more extensive keratinous 

beak/rhamphotheca, notably in Jinyunpelta (although the condition in 

Kunbarrasaurus is uncertain). The transition from dentulous to edentulous 

premaxillae occurs homoplastically among ankylosaurids, nodosaurids and 

stegosaurs. The mandible evolves a ventrally-offset glenoid to increase 

adductor muscle leverage and improve food-processing efficiency. 

Postcranially, the breadth of the trunk region is shown in the articulated 

skeleton of Kunbarrasaurus. Some changes associated with graviportality 

include the development of an imperforate acetabulum and a femur that is 

straight, stout and its anterior trochanter becomes fused against the greater 

trochanter. The fourth trochanter is ridged (rather than pendent) and 

positioned midway down the femoral shaft. The tibia is robust and there is a 

shorter, but still stout, fibula. 

Jinyunpelta. The presence of a tail club in Jinyunpelta (Zheng et al., 

2018) is of interest because this anatomical character has been regarded as a 

marker of taxa that are members of the Ankylosauridae (Coombs, 1978a). The 

systematic analysis undertaken by Zheng et al., (2018: figs 9, 10) suggested 

that this taxon was an ankylosaurine; however, their analysis was based upon 

the dataset of Arbour & Currie (2016) with the addition of their new taxon and 

some additional nodosaurid taxa. The strict consensus of their MPTs 

demonstrates no resolution at all – perhaps not surprising because it repeats 

the original outcome. Selective manipulation of their MPTs allowed them to 

position Jinyunpelta as an ankylosaurine ankylosaurid. However, their 

adjusted topology contains a fundamental but unremarked inconsistency: 

Hylaeosaurus, a taxon universally accepted as a nodosaurid ankylosaur is 

shown as a basal member of Ankylosauridae.
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7. Node-based Ankylosauria are recognised by the total consolidation of the 

skull through the evolution of a substantial cranial ‘carapace’ formed by either 

fused osteoderms or a combination of osteoderms and exostoses. The 

quadrate shaft is anteroventrally inclined and the paroccipital processes are 

posteroventrolaterally oriented. A discrete, large ridged osteoderm covers the 

external surface of the mandible (and there may be osteoderm plates that 

reinforced the fleshy cheek, lateral to the dentition). 

Postcranially, the preacetabular process of the ilium is broadly expanded 

distally and the role of the pubis, which is considerably diminished in size (as, 

to some extent, is that of the ischium), are usurped by the expansion of the 

ilium. The acetabulum is completely imperforate and forms a cup-like 

enclosure for the femoral head. The limbs are stout and there is in general 

less extreme disparity between fore- and hindlimb length; this can range from 

approximate equality in Hungarosaurus to 75% in Sauropelta (in comparison 

to that seen particularly in more derived stegosaurs). The feet are short and 

convergently ‘elephantine’ in their general proportions (as seen 

homoplastically in stegosaurs) with splayed toes forming a semi-vertical cone 

(which would have been supported in life by a wedge-shaped fibrous heel-pad) 

and the toes are stubby; however, unlike stegosaurs their toes terminate in 

broad, rounded and flattened, genuinely hoof-shaped unguals.

8. Ankylosauridae have compact skulls that tend to be wider than long. 

Rostrally there are paranasal fossae on the premaxillae (and the latter remain 

free of dermal ossifications). The antorbital region of the skull is covered by a 

large number of relatively small (polygonal-to-subcircular) osteoderms (rather 

than the smaller number of large polygonal elements seen in nodosaurids). 

The lateral (infra-) temporal fenestra is occluded by osteoderms. 

Postcranially, the femur is stout and has a terminally positioned femoral 

head. The fourth trochanter has the form of a low crater-like rim that 

surrounds a depressed muscle scar, and is also positioned on the distal half of 

the femoral shaft. The tibia is also stout and the proximal tarsal (astragalus) is 

little more than a thin warped plate that is fused to its distal articular surface. 

The osteoderms at the distal end of the tail are modified to create a bony club.
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9. Nodosauridae have long skulls with a ventrally flexed, domed postorbital 

portion of the skull; this effect is augmented by an occipital condyle that 

projects posteroventrally from the occiput on a distinct neck. The 

anteroventral rotation of the braincase may also be linked to the fusion that 

occurs between the basisphenoid and posterior palate (pterygoids). The lateral 

(infra-) temporal fenestra is reduced to a narrow slit (visible posterolaterally), 

and the quadrate becomes fused to the squamosal/paroccipital process. 

Postcranially, there is a highly distinctive prominent posterolaterally 

everted acromial process on the scapula. A mid-length bend in the shaft of the 

ischium is also characteristic of this clade. 

The osteodermal skeleton is also distinctive because in most nodosaurid 

taxa, there is a ‘protective’ fringe of prominently spiked osteoderms formed by 

the most laterally positioned cervicopectoral and anterior flank osteoderms.

[D] Commentary. The anatomo-biological character changes that have been 

listed (and subsequently described in the narrative account) in the 

successional arrangement of taxa established by the topology of the new 

cladogram (Figs 39, 42) are largely consistent and biologically plausible. In 

marked contrast, the stratigraphic occurrences (particularly those of the basal 

ankylosauromorphs that are the primary focus of this article) are incongruent 

with the topology of the cladogram; they occur in the fossil record in the 

following chronological order: Scelidosaurus (Sinemurian) – Scutellosaurus 

(Pliensbachian) – Emausaurus (Toarcian). Stratigraphic incongruence is a 

common feature of cladograms and prompts debates concerning the veracity 

of morphological-only parsimony-based analyses, and the incompleteness of 

the (vertebrate) fossil record (e.g. Norell & Novacek, 1992; Norell, 1993; Zou 

& Zhang, 2016; Marshall, 2019). 

Taken at face value, the present analysis implies that scutellosaurs existed 

(but are currently unrecorded) in the late Hettangian, and that emausaurs 

should similarly be present in the early-middle Sinemurian. These predictions 

provide a rationale for future exploration of Early Jurassic continental deposits. 

It should also be noted that the positioning of the tail-club-bearing Jinyunpelta 
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may be anomalous, if it is a genuine ankylosaurid (Zheng et al., 2018 – as 

implied by the branch re-positioning shown in Figure 41 and its minimal (one 

step) increase in tree length); this suggests either the need to identify more 

critical anatomical characters in new specimens attributable to this genus, or a 

requirement to supplement the current dataset with a greater range of 

ankylosaurian anatomical characters.

Despite these latter caveats the general coherence of the character 

changes implicit in the cladogram topology offers a measure of credence to 

the hypothesis that this analysis and its cladogram depicts a series of 

morphological stages by which the evolution of Thyreophora might be 

understood.

“Nothing occurs contrary to Nature except the impossible, and that never occurs.”
                                                           Galileo Galilei (1564-1642)

However, this hypothesis of relationships will be supported, improved and/or 

modified with the discovery of more complete material of currently known 

taxa, the discovery and description of new taxa, or the generation of new (or 

revised) anatomical characters and their associated coding.

[A] CONCLUSIONS

Scelidosaurus harrisonii Owen, 1861 was a facultatively-quadrupedal, 

dermally-armoured ankylosauromorph ornithischian dinosaur from the Early 

Jurassic (Sinemurian) of England. It is currently the earliest known 

representative of the clade Thyreophora (Nopcsa, 1915). 

The skull and lower jaw of Scelidosaurus were encased in a protective 

(and ornamental) layer of tough keratinous scutes. A curiously unornamented 

portion of the skull surface anterior to the eye, and immediately above the 

antorbital fossa, might reflect the existence of an inflatable(?) diverticulum of 

the cranial sinus system; this may have had some role in the behavioural 

repertoire of this animal. The sensory systems of this dinosaur are only 

indirectly understood. Some individual sclerotic ossicles are preserved but not 
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as a complete ring, so the size of the orbit and the acuity of the eye are 

unknown. The ossified proximal portion of the stapes and adjacent braincase 

structure permits a tentative reconstruction of the external and middle ear. 

The structure and general anatomy of the neurocranium and its associated 

soft tissues (brain, cranial nerves and vasculature) have been described as far 

as possible. The epistyloid bones that project obliquely from either side of the 

posterior of the skull are interpreted as metaplastic ossifications of tendinous 

portions of the cucullaris muscle (a cranioclavicular subdivision of the 

trapezius musculature) that was involved in the control of neck flexure and 

head movement. Parts of the cranial musculature are described and the 

relationship among these muscles and the osteological evidence pertaining to 

jaw action in this animal are summarised. A limited capacity for oral food 

processing suggests that food was swallowed in a partially comminuted state. 

The abdominal cavity needed to be capacious to accommodate the gut and its 

associated caecae necessary to adequately digest and then absorb the 

nutrients from this fodder. The transverse width of the torso in this dinosaur 

revealed by the span of the ribcage and modifications to the pelvis means that 

the body profile is most similar to that seen in more derived 

ankylosauromorphs. 

The epivomers may have been involved in the support of nasal 

turbinates. The respiratory system and its functionality in diapsids is reviewed 

and these findings are applied to Scelidosaurus. It is probable that this 

dinosaur used a combination of costal and abdominal aspiration. A previous 

analysis (Macaluso & Tschopp, 2018) attempted to identify the “evolutionary 

driver” of opisthopuby across Dinosauria and concluded that respiratory 

constraints were of primary importance, rather than those associated with 

herbivory. Reviewing this analysis has revealed that a number of factors have 

been either misrepresented or avoided and that such “drivers” of opisthopuby 

were considerably more complex than they suggest.

Locomotor musculature and the functionality of the locomotor system in 

Scelidosaurus indicate that this dinosaur was a facultative quadruped (having 

evolved comparatively recently – during the earliest Jurassic – from ancestors 

that were bipedal cursors). The locomotor capacity of Scelidosaurus is best 

described as ‘average’ (midway on the scale between the extremes 
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represented by graviportal and cursorial). The hindlimb was constrained, by 

the girth of the abdomen, to undertake oblique-to-parasagittal excursions; 

this is reflected in the structure of the pelvis, the limb joints and structure of 

the toes of the feet. A curious ball-and-socket articular structure reported 

between the vertebrae at the base of the tail in one near-adult specimen 

(BRSMG LEGL 0004) may reflect a marked degree of controlled tail flexibility, 

which could be interpreted as a defensive adaptation (being able to powerfully 

swing the sharply-bladed osteoderm-bearing tail); whether this feature might 

also be linked to reproductive behaviour and the adoption of a specific mating 

position is inevitably more subjective.

The recently-published anatomy of Scelidosaurus permits a better-

informed assessment of its systematic position. Following on from a critical 

review of several datasets published in recent years, aimed at resolving 

relationships between a wide range of known ornithischian taxa or more 

specifically within the ornithischian clade Thyreophora, a revised and updated 

dataset has been prepared. Analysis of this new dataset produces a strict 

consensus cladogram (well-supported statistically) that conforms in most 

respects with previous analyses. However, the topology of the cladogram 

indicates that Scelidosaurus as well as the closely related taxa Emausaurus 

and Scutellosaurus, occupy positions on the stem of the clade Ankylosauria, 

rather than as sister-taxa to the clade Thyreophora. There is a plausible case 

for removal of the taxonomic category Eurypoda (and perhaps 

Thyreophoroidea – contingent upon the emergence of an agreed position for 

Scutellosaurus) from the thyreophoran classificatory hierarchy. 

Palaeontologically-derived cladograms are inherently less stable than 

those created using data from extant taxa. Fossil data are degraded by loss 

and absences, creating a profound epistomological gap: an incomplete range 

of morphological characters are available, and taxon representation is very far 

from complete. As a consequence fossil-based cladograms are labile and 

phylogenetic definitions based upon such topologies ought to be used 

parsimoniously (with a greater emphasis being placed on more inclusive stem-

based definitions); this latter approach may be beneficial if it reduces clade 

name proliferation that otherwise generates a legacy of nomenclatural 

confusion.
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FIGURE LEGENDS

Figure 1. Charmouth is a coastal village located about one kilometre due east 

of Lyme Regis. The Spittles-Black Ven is an eroding cliff from which the 

remains of Scelidosaurus have been recovered since the late 1850s. Fresh 

slips and cliff falls continue to expose the remains of individual bones or in 

some cases articulated skeletons belonging to this dinosaur.

Figure 2. Scelidosaurus harrisonii Owen, 1861 (LYMPH 1998 6.1-6.7). The 

small (‘foetal’) specimen from Charmouth. Part of the paratype series 

belonging to the name S. harrisonii. These specimens belong to a small 

individual and appear to be associated. They were illustrated in Richard 

Owen’s first monograph (Owen 1861: tab. III).

Figure 3. Scelidosaurus harrisonii Owen, 1861 (The lectotype – NHMUK 

R1111). The encased skeleton restored as it might have appeared when first 

discovered, exposed on a series of more or less contiguous blocks of areno-

argillaceous limestone (marlstone). The majority of the neck and both 

forelimbs may have been present originally but were not recovered by the 

quarrymen who excavated the skeleton.

Figure 4. Scelidosaurus harrisonii Owen, 1861. Cranial anatomy reconstructed 

in A, lateral and B, dorsal views (modified from Norman, 2020a: figs 8, 9). 

Figure 5. Chelonia mydas (Linnaeus, 1758) – the Green Turtle. External skull 

anatomy. A, lateral and B, dorsal view, illustrating the superficial cranial 

osteology. C, lateral and D, dorsal views showing the distribution of keratinous 

scutes. Norman, pers. colln (ex-University of Cambridge Zoology Department 

teaching collection). Scale bar indicated.

Abbreviations: au – auditory recess, au.sc – auditory recess scute covering, 

tom – the chelonian tomium (= rhamphotheca of Scelidosaurus).
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Figure 6. Scelidosaurus. An interpretation of the cranial keratinous scute 

pattern on the skull and mandible in A - lateral and B - dorsal views. 

Abbreviations: asc – angular scute, fsc – frontal scute, dsc – dentary scute or 

sheath, hsc – occipital horn scute, itsc – infratemporal scutes, jsc – jugal arch 

scutes, lsc – lacrimal scute, msc – maxillary scute (there may have been 

several), nmsc – nasal median scute, nsc - nasal scutes restored as 

overlapping plates, pdsc – predentary scute (rhamphotheca), posc – 

postorbital crater-like scute, qjsc – quadratojugal-quadrate scute, rsc – 

rhamphothecal scute of the premaxilla, sosc – supraorbital (brow-ridge) scute 

(there may have been several), stsc – supratemporal scutes, tym – tympanic 

membrane, ? – area on the surface of the lacrimal lamina that is devoid of 

exostoses and may mark the location of a diverticulum of a cranial sinus.

Figure 7. Ovis aries Linnaeus, 1758. A. lateral view of cranial osteology 

showing the horn core. B. The horn core with its keratinous horn 

superimposed, showing the lack of correspondence in shape between the horn 

core and its overlying keratinous casque (horn). Norman, pers. colln (Rough 

Fell sheep, Sedbergh, Cumbria).

Abbreviations: hc – horn core, kh – keratinous horn. Scale bar indicated.

Figure 8. Scelidosaurus harrisonii Owen, 1861. The lectotype NHMUK R1111. 

A. Jugal showing sclerotic plate. B, Stapes.

Abbreviations: do – dermal ossification, ec.s – ectopterygoid suture, est – 

surface for the extrastapes, ftp – footplate, ls – lacrimal suture, pal.s – 

palatine suture, Po – postorbital, Qj – quadratojugal, sc.os – sclerotic ossicle. 

Scale bar indicated.

Figure 9. Scelidosaurus. Attempted reconstruction of the posterodorsal region 

of the skull showing the general disposition of the stapes-extrastapes, middle 

ear cavity and tympanum,.
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Abbreviations: bo – basioccipital condyle, cnVII – foramen for cranial nerve 

VII, est – extrastapes (reconstructed), pap – paroccipital process, Pro – 

proötic, Q – quadrate, Qj – quadratojugal, rw – round window (fenestra 

rotunda), Sq – squamosal, st – stapes, tym – tympanic annulus and 

membrane (reconstructed). Shaded area: reconstruction of the middle ear 

cavity and a ventral branch leading to the throat (eustachian tube).

Figure 10. Scelidosaurus. Diagrammatic longitudinal section through the skull 

showing an attempted reconstruction of the nasal passage. The latter is shown 

floored anteriorly by a connective tissue sheet that forms a soft secondary 

palate that spans the gap between opposing maxillae and was probably 

attached sagittally to the ventral margin of the vomers. The epivomers are 

interpreted as sheet-like ossifications that form within the connective tissue 

that roofs the nasal passage; these bones are sutured to the dorsal edges of 

the vomers (Norman, 2020a).

Abbreviations: Epi – epivomers, Mx – maxilla, np – nasal passage, ol.b – 

olfactory bulb, Pt – pterygoid, sp – soft palate. Arrows indicate air flow. Dark 

tone – bones in section. Pale tone approximate shape of the nasal passage.

Figure 11. Scelidosaurus harrisonii Owen, 1861. The lectotype (NHMUK 

R1111). What remains of the formerly fully articulated skull: the skull roof, 

neurocranium, part of the right suspensorium and cheek, as preserved 

(sketched in 2018).

Abbreviations: bo – basioccipital condyle, bot – basioccipital tuberosity, bpt – 

basipterygoid process (right), J – jugal, La – lacrimal, Ls – laterosphenoid 

(left), Mx – maxilla (right), N – nasal bones, pap – paroccipital process (left), 

Q – quadrate (right).

Figure 12. Scelidosaurus. Diagrammatic lateral view of the neurocranium, 

showing the identifiable cranial nerve foramina and fossae.

Abbreviations: Bo – basioccipital, bot – basioccipital tuberosity, bpt – 

basipterygoid process, Bs – basisphenoid, cart – cartilage, cn.[Roman] – 
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cranial nerves, fo – fenestra ovalis, fr – fenestra rotunda, Ls – laterosphenoid, 

Op – opisthotic, Os – orbitosphenoid, P – parietal, Pro – proötic, Ps – 

parasphenoid (cultriform process), vag-jug – foramen occupied by cranial 

nerves (vagus) and venous blood vessels (jugular vein), vcd – fissure for 

passage of the vena capitis dorsalis, vid – vidian [=carotid artery] canal.

Figure 13. Partially transparent neurocranium to show the approximate 

structure of the brain, the principal cranial nerves and blood vessels. 

Abbreviations: c.art – carotid artery, Cbl – cerebellum, Ce – cerebral lobes, 

cn. [roman] – cranial nerve, jug.v – jugular vein, med – medulla (brain stem), 

p – pituitary body. Dotted outline – approximate profile of the endocranial 

cavity.

Figure 14. Varanus exanthematicus (Bosc, 1792). Mapping the areas of origin 

and insertion of the principal jaw closing muscles in a living sauropsid. A, 

lateral. B, oblique dorsolateral. C. lower jaw in oblique dorsolateral aspect 

(redrawn from Holliday, 2009: fig. 1).

Abbreviations: MAMEM – m. adductor mandibulae externus medialis. MAMEP – 

profundus, MAMES – superficialis, MAMP – posterior, MLPt – levator 

pterygoideus, MPPt – protractor pterygoideus, MPST – pseudotemporalis, MPT 

– pterygoideus.

Figure 15. Scelidosaurus. The principal jaw adductor muscles identified. A, 

dorsal muscle origin map. B-D, muscle reconstructions.

Abbreviations: AN.OR – m. anguli oris, bod – bodenaponeurosis, MAMEM – m. 

adductor mandibulae externus medialis, MAMEP – profundus, MAMES – 

superficialis, MAMP – posterior, MLPt – levator pterygoideus, MPST – 

pseudotemporalis, MPT – pterygoideus.

Figure 16. Scelidosaurus. The matching of the curvature of opposing 

dentitions. A. Right mandible in dorsal view (NHMUK R1111). B. 
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Reconstruction of the left half of the skull in ventral view (after Norman, 

2020a: fig. 10). 

Figure 17. Scelidosaurus. Occlusal views of maxillary and dentary dentitions. 

A, separated dentitions. B, alignment of dentitions during occlusion – the 

bowing of each dentition match to permit orthal pulping or intermittent tooth-

tooth occlusion. C, malocclusion modelled by the propalinal displacement of 

the dentary, creating a zone where the dentitions cross over (starred). D, two 

modes of jaw closure: Di, represents the non-occlusal orthal pulping of 

vegetation; Dii shows high-angle occlusion between opposing crowns that 

creates shear to cut vegetable fibres and generates steep wear facets on 

adjacent crown surfaces. Both modes of occlusion occur at intervals along the 

dentitions.

Abbreviations: Dent – dentary dentition, Max – maxillary dentition, Malocc – 

malocclusion created by propalinal displacement of the dentary, Occ – normal 

occlusal relationship of the dentitions. Arrows indicate direction of movement. 

Starred symbol indicates region where dentitions cross, creating the potential 

for damage to the teeth caught in opposition.

Figure 18. Scelidosaurus. Skull diagrammatics. A, pivot point between the 

squamosal and quadrate head viewed laterally, joint (q-sq.j) highlighted in 

black. B. Posterior view of the quadrate pivoting transversely (small arrows) 

against the squamosal. The structure of mandibular joint shows that the 

quadrate is cupped by the articular-surangular articular surfaces. C. The 

principal lines of action of the jaw closing muscles in cross-sectional view to 

show imposed medial torsion exerted by the adductor mandibulae (AM) 

complex, as well as the counter-torsion effected by the sling-like m. 

pterygoideus complex (MPT).

Abbreviations: AM – mm. adductor mandibulae (overall direction of force), An 

– angular bone, Ar – articular bone, MPT – m. pterygoideus (overall direction 

of force), q-sq.j – articular joint between the head of the quadrate and the 

squamosal cotylus, Sa – surangular bone, Sp – splenial bone.
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Figure 19. Scelidosaurus. A. Epistyloids as preserved in the large articulated 

referred skeleton (BRSMG LEGL 0004 – after Norman, 2020a). B. An isolated 

epistyloid as preserved in lateral view in the considerably smaller referred 

individual (CAMSM X39256). Scale bars in centimetres.

Abbreviations: at – atlas, at.r – atlas rib, ba – baseplate, ep (l,r) – epistyloids, 

ost – osteoderm, pap – paroccipital process, Q – quadrate. Scale bars in cms. 

Pale tone – sediment.

Figure 20. Scelidosaurus. A reconstruction of the head-neck and shoulder 

girdle based on Norman (2020a,b). Highlighting the m. cucullaris (= m. 

sternocleidomastoideus) muscle that has been hypothesized to be associated 

with the presence of epistyloid bones.

Abbreviations: Cor – coracoid, Sca – scapula.

Figure 21. Scelidosaurus (BRSMG LEGL 0004). The left side of the facial region 

showing a discrete patch of smooth bone just dorsal to the antorbital fossa 

(also smooth surfaced). All the surrounding bone surfaces are roughened by 

exostoses. After Norman (2020a: fig. 14).

Abbreviation: aof – antorbital fossa.

Figure 22. Cartoons approximating pelvic region cross-sectional body profiles 

of A, an ankylosaur and B, a stegosaur.

Figure 23. A theoretical model of pelvic aspiration in ornithopod ornithischians 

(based on a hadrosaur pelvis). A, B. Dorsal views of the pelvic region showing 

the transverse motion suggested for the pubes that serially compressed and 

decompressed the abdominal cavity. Note: the ischia should meet distally on 

the midline, rather than remaining separate as shown here. C. Lateral view of 

the pelvis showing a reconstruction of a hypothetical pubic abductor muscle. 

After Carrier & Farmer (2000a: fig. 10B).
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Abbreviations: Exp – expiration (pubes adducted), Insp – inspiration (pubes 

abducted), il – ilium, ipm – (hypothetical) iliopubic muscle, is – ischium, pu – 

pubis.

Figure 24. A simplified phylogeny of dinosaurs (after Baron et al., 2017b). 

Note that gastralia are lost independently in sauropods and ornithischians but 

retained in all other clades (being also lost independently in the derived, 

powered flight-capable, Theropoda [=birds]).

Figure 25. Ornithischian skeletal forms. A. Eocursor. B. Edmontonia. C. 

Stegosaurus. No gastralia are present in these or any other known 

ornithischians. 

Images kindly provided by Scott Hartman who retains the copyright of each. 

Scale bars in centimetres.

Figure 26. Sauropodomorph skeletal forms. A. Plateosaurus (a prosauropod). 

B. Nigersaurus (a sauropod). Gastralia are present in the prosauropod, but no 

sauropods possess gastralia. 

Images kindly provided by Scott Hartman who retains the copyright of each. 

Scale bars in centimetres.

Figure 27. Theropod skeletal forms. A. Herrerasaurus (a dinosauriform, stem-

dinosaur or a basal theropod – according to various analyses). B. Allosaurus a 

tetanuran theropod – see Figure 28). C. Ornithomimus a coelurosaur. D. 

Nothronychus, a coelurosaur. E. Oviraptor, a maniraptoran. F. Deinonychus, a 

paravian. Herrerasaurus and all other theropods possess gastralia. 

Images kindly provided by Scott Hartman who retains the copyright of each. 

Scale bars in centimetres.

Figure 28. Simplified theropod phylogeny. All tetanuran theropods have 

gastralia; these are only lost in true birds (n.gast). The orientation of the 

pubis varies across these clades and is dependent upon multiple factors: 
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dietary preference (herbivory, omnivory, carnivory); body proportions 

(notably the reduction in length and mass of the tail); and more specific 

locomotor adaptations and habits of individual theropods within each subclade. 

There is no simple and unambiguous correspondence between pelvic structure 

and posture, habit, locomotor style, or putative diet and respiratory 

mechanics. 

Dinosaur images kindly provided by Scott Hartman, who retains the copyright 

of each. The raptor silhouette was made available through the following 

website: http://clipart-library.com/bird-silhouette.html

Figure 29. Scelidosaurus. Myological mapping. Scapula and Coracoid, based on 

the lectotype NHMUK R1111 (A, lateral. B, medial). Humerus, based on the 

referred specimen BRSMG LEGL 0005 (C, posterior. D, anterior). After Norman 

(2020b: figs 56, 58, 63).

Abbreviations: bi – m. biceps, cuc – m. cucullaris, br – m. brachialis, dc – 

clavicular deltoid, ds, scapular deltoid, ld-tm – mm. latissimus dorsi-teres 

major, p – m. pectoralis, sbs – m. subscapularis, sh – m. scapulohumeralis, sc 

– m. supracoracoideus, scc – m. subcoracoideus, tra-ls – mm. trapezius-

levator scapulae. Scale bars in centimetres.

Figure 30. Scelidosaurus. Pectoral girdle and forelimb elements associated 

with the posterior skull and neck (after Norman, 2020b), showing the 

distribution of some of the principal girdle and forelimb muscles and providing 

an indication of their lines of action.

Abbreviations: bi – m. biceps, br – m. brachialis, cuc – m. cucullaris (derived  

as a slip of the trapezius muscle – often referred to as the sternocleidomastoid 

muscle), dc – clavicular deltoid, ds – scapular deltoid, p – m. pectoralis, sc – 

m. supracoracoideus, tm – m. teres major, tra-ls – mm. trapezius-levator 

scapulae, tri – m. triceps. 
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Figure 31. Pelvic reconstructions in left lateral view. A. Scelidosaurus (after 

Norman 2020b: fig. 77). B. Euoplocephalus (after Coombs 1978a). C. 

Stegosaurus (after Gilmore 1914).

Figure 32. Scelidosaurus. Femoral muscle maps. Includes small and large 

femora to show the change of curvature of shaft that occurs during ontogeny. 

A. ‘Juvenile’ (NHMUK R6704 – after Norman, 2020b: fig. 79). B-D. ‘Adult’ 

(NHMUK R1111 – the lectotype, after Norman, 2020b: fig. 78) in medial (B), 

anterior (C) and lateral (D).

Abbreviations: add – adductor, cfb – m. caudifemoralis brevis, cfl – m. 

caudifemoralis longus, ft – m. femorotibialis, if – m. iliofemoralis, if? – 

possible area for attachment of a slip of the m. iliofemoralis; itr-pife? – area 

available for insertion of the m. iliotrochantericus (m. iliofemoralis) and 

perhaps the m. puboischiofemoralis externus (site of origin uncertain), ist – 

m. ischiotrochantericus, pifi – m. puboischiofemoralis internus.

Figure 33. Scelidosaurus. Myology of the principal pelvis and hindlimb 

reconstructed as lines of action. 

Abbreviations: add – adductor, amb – m. ambiens, cfb – m. caudifemoralis 

brevis, cfl – m. caudifemoralis longus, ft – m. femorotibialis, fte – m. flexor 

tibialis externus, if – m. iliofemoralis, ifib – m. iliofibularis, ist – m. 

ischiotrochantericus, it – m. iliotibialis, itr – m. iliotrochantericus (avian-

equivalent subdivision of the iliofemoralis), pifi – m. puboischiofemoralis 

internus.

Figure 34. Scelidosaurus cf. harrisonii. Femur (NHMUK OR41322) crushed 

proximally, but showing a well-developed 4th trochanter that is secondarily 

thickened by the addition of a layer of metaplastic bone over its surface. The 

metaplastic bone derives from calcification of the caudifemoral tendons where 

they attach to the trochanter. 

Abbreviations: 4tr – fourth trochanter, fc – fibular condyle, mpb – metaplastic 

bone, tc – tibial condyle. Scale bar in centimetres.

Page 141 of 212 Zoological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Scelidosaurus – Biology & Systematics

142

Figure 35. Scelidosaurus. Femur and hindlimb motion examined. The principal 

lines of action of retractor muscles and their influence upon the femur and 

hindlimb poses have been reconstructed as a series of cartoons. A. Dorsal 

view of the femur in ‘neutral’ pose with lines of action of main muscles: note 

in particular the lateral or medial attachment of these muscles on the femoral 

shaft. B. Vertical pose of the femur with an indication of the posteromedial 

lines of action of the powerful limb retractors (m. caudifemoralis – cfb/l, and 

m. adductor – add). C. Cross-section through the femoral shaft at the level of 

the fourth trochanter showing the torsion inducing lines of action of the 

principal protractors (pifi, ist) and retractors (if, cfb, cfl). D. Mechanical 

influence on hindlimb protraction resulting from the breadth of the gut. E. 

Oblique-to-parasagittal hindlimb excursion during the protraction-retraction 

cycle.

Figure 36. Early (non-numerical) cladistics-based attempt to establish a 

topology for armoured dinosaurs within the clade Ornithischia. The topology 

was created by Norman (1984b: fig. 2). 

Figure 37. Early (non-numerical) cladistics-based attempt to establish a 

topology for armoured dinosaurs within the clade Ornithischia. This topology is 

derived from Sereno (1984: fig. 1). 

Figure 38. Early (non-numerical) cladistics-based attempt to establish a 

topology for armoured (thyreophoran) dinosaurs within the clade Ornithischia. 

This topology is derived from Sereno (1986: fig. 3). 

Figure 39. Strict Consensus Tree based on the 10 equally most parsimonious 

trees (MPTs) generated by the new analysis. The lack of resolution lies in the 

topographic ambiguity of Kunbarrasaurus, Jinyunpelta and that of the four 

nodosaurid taxa. Overall, the topology supports many aspects of previously 

published cladograms. However, and controversially, Scutellosaurus, 

Emausaurus and Scelidosaurus are positioned as successive out-groups on the 

branch leading to Ankylosauria. Convention places these taxa on the branch 

leading to Thyreophora. Kunbarrasaurus may well prove to be a stem 
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ankylosaur once it has been fully described; furthermore, Jinyunpelta is 

positioned as a basal ankylosaurian. However, Zheng et al., (2018) propose 

that it is an ankylosaurine ankylosaur (despite the lack of resolution in their 

strict consensus tree) – see also Figure 41. 

Numerical Decay Indices (Bremer support) for the individual clades are 

indicated in italics adjacent to the relevant branches.

Figure 40. A bootstrap analysis (Heuristic) of the dataset using 10,000 

replicates. Bootstrap support percentages are indicated on individual 

branches.

Figure 41. Cladogram manipulation using MacClade. In this example 

Scutellosaurus* has been positioned as the proximate sister taxon to the clade 

Thyreophora. Tree length is calculated to be 229 steps, which is three steps 

longer than the most parsimonious trees obtained by the analysis of this 

dataset. The re-positioning of Scutellosaurus, if it could be supported by 

additional data, might justify a redefinition of the taxon Thyreophoroidea, as 

indicated on this branch. Note: an additional adjustment, which involves a 

single step increase (230 steps) positions Jinyunpelta (albeit tentatively = ?) 

as a basal ankylosaurid on the basis of its possession of a tail club (in 

conformity with Coombs, 1978a).

Figure 42. Taxon deletion tree. Kunbarrasaurus and Jinyunpelta have been 

deleted. Tree length (of the 6 MPTs) is 212 steps, 14 steps fewer than found in 

the MPTs of the original dataset (Fig. 39). The principal clades: 

THYREOPHORA, STEGOSAURIA, ANKYLOSAURIA, Nodosauridae and 

Ankylosauridae conform topographically with those established by previous 

analyses. However, the ankylosauromorph branch and its composition, if 

confirmed in subsequent analyses, implies that the way Sereno (1986, et 

seq.) envisioned Eurypoda and Thyreophoroidea are meaningless.
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Figure 1. Charmouth is a village about 1 km due east of Lyme Regis. Black Ven is an eroding cliff from which 
the remains of Scelidosaurus have been recovered since the late 1850s. Fresh slips and cliff falls continue to 

expose the remains of individual bones or in some cases articulated skeletons belonging to this dinosaur 
taxon. 
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Figure 2. Scelidosaurus harrisonii Owen, 1861 (LYMPH 1998 6.1-6.7). The small (‘foetal’) specimen from 
Charmouth. Part of the paratype series belonging to the name S. harrisonii. These specimens belong to a 

small individual and appear to be associated. They were illustrated in Richard Owen’s first monograph (Owen 
1861: tab. III). 
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Figure 3. Scelidosaurus harrisonii Owen, 1861 (The lectotype – NHMUK R1111). The skeleton restored as it 
might have appeared when first discovered, exposed on a series of more or less contiguous blocks of 

argillaceous limestone (marlstone). Most of the neck and both forelimbs were not recovered. 
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Figure 4. Scelidosaurus harrisonii Owen, 1861. Cranial anatomy reconstructed in A, lateral and B, dorsal 
views (modified from Norman, 2019a: figs 8, 9). 
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Figure 5. Chelonia mydas (Linnaeus, 1758) – the Green Turtle. External skull anatomy. A, lateral and B, 
dorsal view, illustrating the superficial cranial osteology. C, lateral and D, dorsal views showing the 

distribution of keratinous scutes. DBN personal collection (ex-University of Cambridge Zoology Department 
teaching collection). Scale bar indicated. 

Abbreviations: au – auditory recess, au.sc – auditory recess scute covering, tom – the chelonian tomium (= 
rhamphotheca of Scelidosaurus). 
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Figure 6. Scelidosaurus. Interpretative scute pattern on skull and lower jaw in A - lateral and B - dorsal 
view. 

Abbreviations: asc – angular scute, fsc – frontal scute, dsc – dentary scute or sheath, hsc – occipital horn 
scute, itsc – infratemporal scutes, jsc – jugal arch scutes, lsc – lacrimal scute, msc – maxillary scute, nmsc 

– nasal median scute, nsc - nasal scutes restored as overlapping plates, pdsc – predentary scute 
(rhamphotheca), posc – postorbital crater-like scute, qjsc – quadratojugal-quadrate scute, rsc – 

rhamphothecal scute of the premaxilla, sosc – supraorbital (brow-ridge) scute(s), stsc – supratemporal 
scutes, tym – tympanic membrane, ? – area on the lacrimal lamina devoid of exostoses. 
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Figure 7. Ovis aries Linnaeus, 1758. A. lateral view of cranial osteology showing horn core. B. Horn core with 
superimposed keratinous horn showing the lack of correspondence in shape between the horn core and its 

overlying keratinous casque (horn). DBN personal collection (Rough Fell sheep, Sedbergh, Cumbria). 

Abbreviations: hc – horn core, kh – keratinous horn. Scale bar indicated. 
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Figure 8. Scelidosaurus harrisonii Owen, 1861. The lectotype NHMUK R1111. A. Jugal showing sclerotic 
plate. B, Stapes. 

Abbreviations: do – dermal ossification, ec.s – ectopterygoid suture, est – surface for the extrastapes, ftp – 
footplate, ls – lacrimal suture, pal.s – palatine suture, Po – postorbital, Qj – quadratojugal, sc.os – sclerotic 

ossicle. Scale bar indicated. 
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Figure 9. Scelidosaurus. Reconstruction of the posterodorsal region of the skull showing the location of the 
tympanum, stapes-extrastapes and middle ear cavity. 

Abbreviations: bo – basioccipital condyle, cnVII – foramen for cranial nerve VII, est – extrastapes 
(reconstructed), pap – paroccipital process, Pro – proötic, Q – quadrate, Qj – quadratojugal, rw – round 

window (fenestra rotunda), Sq – squamosal, st – stapes, tym – tympanic annulus and membrane 
(reconstructed). Shaded area: reconstruction of the middle ear cavity and a ventral branch leading to the 

throat (eustachian tube). 
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Figure 10. Scelidosaurus. Diagrammatic longitudinal section through the skull to show the approximate 
position of the nasal passage and presence of the soft palate spanning the maxillae and ventral edge of the 

vomers. 

Abbreviations: Epi – epivomers, Mx – maxilla, np – nasal passage, ol.b – olfactory bulb, Pt – pterygoid, sp – 
soft palate. Arrows indicate air flow. Dark tone – bones in section. Pale tone approximate shape of the nasal 

passage. 
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Figure 11. Scelidosaurus harrisonii Owen, 1861. The lectotype (NHMUK R1111). The skull roof, 
neurocranium, part of the right suspensorium and cheek, as currently preserved (sketched in 2018). 

Abbreviations: bo – basioccipital condyle, bot – basioccipital tuberosity, bpt – basipterygoid process (right), 
J – jugal, La – lacrimal, Ls – laterosphenoid (left), Mx – maxilla (right), N – nasal bones, pap – paroccipital 

process (left), Q – quadrate (right). 
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Figure 12. Scelidosaurus. Lateral view of the restored neurocranium, showing the identifiable cranial nerve 
foramina and fossae. 

Abbreviations: Bo – basioccipital, bot – basioccipital tuberosity, bpt – basipterygoid process, Bs – 
basisphenoid, cart – cartilage, cn.[Roman] – cranial nerves, fo – fenestra ovalis, fr – fenestra rotunda, Ls – 

laterosphenoid, Op – opisthotic, Os – orbitosphenoid, P – parietal, Pro – proötic, Ps – parasphenoid 
(cultriform process), vag-jug – shared foramen occupied by cranial nerves and venous blood vessels, vcd – 

fissure for the vena capitis dorsalis, vid –vidian [=carotid] canal. 
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Figure 13. Partially transparent neurocranium to show the approximate structure of the brain, the principal 
cranial nerves and blood vessels. 

Abbreviations: c.art – carotid artery, Cbl – cerebellum, Ce – cerebral lobes, cn. [roman] – cranial nerve, 
jug.v – jugular vein, med – medulla (brain stem), p – pituitary body. Dotted outline – approximate profile of 

the endocranial cavity. 
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Figure 14. Varanus exanthematicus (Bosc, 1792). Mapping the areas of origin and insertion of the principal 
jaw closing muscles in a living sauropsid. A, lateral. B, oblique dorsolateral. C. lower jaw in oblique 

dorsolateral aspect (redrawn from Holliday, 2009: fig. 1). 

Abbreviations: MAMEM – m. adductor mandibulae externus medialis. MAMEP – profundus, MAMES – 
superficialis, MAMP – posterior, MLPt – levator pterygoideus, MPPt – protractor pterygoideus, MPST – 

pseudotemporalis, MPT – pterygoideus. 
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Figure 15. Scelidosaurus. The principal jaw muscles identified. A, dorsal muscle origin map. B-D, muscle 
reconstructions. 

Abbreviations: AN.OR – m. anguli oris, bod – bodenaponeurosis, MAMEM – m. adductor mandibulae 
externus medialis, MAMEP – profundus, MAMES – superficialis, MAMP – posterior, MLPt – levator 

pterygoideus, MPST – pseudotemporalis, MPT – pterygoideus. 
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Figure 16. Scelidosaurus. The mutual matching of the curvature of the opposing dentitions. A. Right 
mandible in dorsal view (NHMUK R1111). B. Reconstruction of the left half of the skull in ventral view (after 

Norman, 2019a: fig. 10). 
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Figure 17. Scelidosaurus. Occlusal views of maxillary and dentary dentitions. A, unoccluded dentitions. B, 
normal aligned occlusion – the bowing of each dentition match to permit orthal pulping or occlusion. C, 

malocclusion created by propalinal displacement of the dentary, creating a zone where the dentitions cross 
over (starred). D, two modes of jaw closure: Di, represents the non-occlusal orthal pulping of vegetation; Dii 

shows high-angle occlusion between opposing crowns that creates shear to cut vegetable fibres and 
generates steep wear facets on adjacent crown surfaces. Both modes of occlusion occur at intervals along 

the dentitions. 

Abbreviations: Dent – dentary dentition, Max – maxillary dentition, Malocc – malocclusion created by 
propalinal displacement of the dentary, Occ – normal occlusal relationship of the dentitions. Arrows indicate 
direction of movement. Starred symbol indicates region where dentitions cross, creating the potential for 

damage to the teeth caught in opposition. 
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Figure 18. Scelidosaurus. Skull diagrammatics. A, pivot point between the squamosal and quadrate head 
viewed laterally, joint (q-sq.j) highlighted in black. B. Posterior view of the quadrate pivoting transversely 
(small arrows) against the squamosal. The structure of mandibular joint shows that the quadrate is cupped 
by the articular-surangular articular surfaces. C. The principal lines of action of the jaw closing muscles in 

cross-sectional view to show imposed medial torsion exerted by the adductor mandibulae (AM) complex, as 
well as the counter-torsion effected by the sling-like m. pterygoideus complex (MPT). 

Abbreviations: AM – mm. adductor mandibulae (overall direction of force), An – angular bone, Ar – articular 
bone, MPT – m. pterygoideus (overall direction of force), q-sq.j – articular joint between the head of the 

quadrate and the squamosal cotylus, Sa – surangular bone, Sp – splenial bone. 
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Figure 19. Scelidosaurus. A. Epistyloids as preserved in the large articulated referred skeleton (BRSMG LEGL 
0004 – after Norman, 2019a). B. An isolated epistyloid as preserved in lateral view in the considerably 

smaller referred individual (CAMSM X39256). Scale bars in centimetres. 

Abbreviations: at – atlas, at.r – atlas rib, ba – baseplate, ep (l,r) – epistyloids, ost – osteoderm, pap – 
paroccipital process, Q – quadrate. Scale bars in cms. Pale tone – sediment. 
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Figure 20. Scelidosaurus. A reconstruction of the head-neck and shoulder girdle based on Norman 
(2019a,b). Highlighting the m. cucullaris (= m. sternocleidomastoideus) muscle that has been hypothesized 

to be associated with the presence of epistyloid bones. 

Abbreviations: Cor – coracoid, Sca – scapula. 
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Figure 21. Scelidosaurus (BRSMG LEGL 0004). The left side of the facial region showing a discrete patch of 
smooth bone just dorsal to the antorbital fossa (also smooth surfaced). All the surrounding bone surfaces 

are roughened by exostoses. After Norman (2019a: fig. 14). 

Abbreviation: aof – antorbital fossa. 
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Figure 22. Cartoons approximating pelvic region cross-sectional body shapes of A, an ankylosaur. B, a 
stegosaur. 
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Figure 23. A theoretical model of pelvic aspiration in ornithopod ornithischians (based on a hadrosaur 
pelvis). A, B. Dorsal views of the pelvic region showing the transverse motion suggested for the pubes that 
serially compressed and decompressed the abdominal cavity. Note: the ischia should meet distally on the 

midline, rather than remaining separate as shown here. C. Lateral view of the pelvis showing a 
reconstruction of a hypothetical pubic abductor muscle. After Carrier & Farmer (2000a: fig. 10B). 

Abbreviations: Exp – expiration (pubes adducted), Insp – inspiration (pubes abducted), il – ilium, ipm – 
(hypothetical) iliopubic muscle, is – ischium, pu – pubis. 
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Figure 24. Highly simplified phylogeny of dinosaurs. Note that gastralia are lost independently in sauropods 
and ornithischians but retained in all other clades (being also lost independently in the derivative avialan 

Theropoda [=birds]). 

297x209mm (200 x 200 DPI) 

Page 197 of 212 Zoological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 

Figure 25. Ornithischian skeletal forms. A. Eocursor. B. Edmontonia. C. Stegosaurus. No gastralia are 
present in these or any other known ornithischians. 

Images kindly provided by Scott Hartman who retains the copyright of each. Scale bars in centimetres. 
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Figure 26. Sauropodomorph skeletal forms. A. Plateosaurus (a prosauropod). B. Nigersaurus (a sauropod). 
Gastralia are present in the prosauropod, but no sauropods possess gastralia. 

Images kindly provided by Scott Hartman who retains the copyright of each. Scale bars in centimetres. 
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Figure 27. Theropod skeletal forms. A. Herrerasaurus (either a stem lineage pre-dinosaurian, a basal 
dinosaurian or a basal theropod, according to various analyses). B. Allosaurus a tetanuran theropod – see 
Figure 28). C. Ornithomimus a coelurosaur. D. Nothronychus, a coelurosaur. E. Oviraptor, a maniraptoran. 

F. Deinonychus, a paravian. Herrerasaurus and all other theropods possess gastralia. 

Images kindly provided by Scott Hartman who retains the copyright of each. Scale bars in centimetres. 
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Figure 28. Simplified theropod phylogeny. All tetanuran theropods have gastralia; these are only lost in true 
birds (n.gast). The orientation of the pubis varies across these clades and is dependent upon multiple 

factors: dietary preference (herbivory, omnivory, carnivory); body proportions (notably the reduction in 
length and mass of the tail); and more specific locomotor adaptations and habits of individual theropods 
within each subclade. There is no simple and unambiguous correspondence between pelvic structure and 

posture, habit, locomotor style, or putative diet and respiratory mechanics. 

Dinosaur images kindly provided by Scott Hartman, who retains the copyright of each. The raptor silhouette 
was made available through the following website: http://clipart-library.com/bird-silhouette.html 
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Figure 29. Scelidosaurus. Myological mapping of scapula and coracoid based on the lectotype NHMUK R1111 
(A, lateral. B, medial) and humerus, based on the referred specimen BRSMG LEGL 0005 (C, posterior. D, 

anterior). After Norman (2019b: figs 56, 58, 63). 

Abbreviations: bi – m. biceps, cuc – m. cucullaris, br – m. brachialis, dc – clavicular deltoid, ds, scapular 
deltoid, ld-tm – mm. latissimus dorsi-teres major, p – m. pectoralis, sbs – m. subscapularis, sh – m. 
scapulohumeralis, sc – m. supracoracoideus, scc – m. subcoracoideus, tra-ls – mm. trapezius-levator 

scapulae. Scale bars in centimetres. 
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Figure 31. Pelvic reconstructions in left lateral view. A. Scelidosaurus (after Norman 2019b: fig. 77). B. 
Euoplocephalus (after Coombs 1978a). C. Stegosaurus (after Gilmore 1914). 
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Figure 32. Scelidosaurus. Femoral muscle maps. Includes small and large femora to show the change of 
curvature of shaft that occurs during ontogeny. A. ‘Juvenile’ (NHMUK R6704 – after Norman, 2019b: fig. 

79). B-D. ‘Adult’ (NHMUK R1111 – the lectotype, after Norman, 2019b: fig. 78) in medial (B), anterior (C) 
and lateral (D). 

Abbreviations: add – adductor, cfb – m. caudifemoralis brevis, cfl – m. caudifemoralis longus, ft – m. 
femorotibialis, if – m. iliofemoralis, if? – possible area for attachment of a slip of the m. iliofemoralis; itr-

pife? – area available for insertion of the m. iliotrochantericus (m. iliofemoralis) and perhaps the m. 
puboischiofemoralis externus (site of origin uncertain), ist – m. ischiotrochantericus, pifi – m. 

puboischiofemoralis internus. 
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Figure 33. Scelidosaurus. Myology of the principal pelvis and hindlimb reconstructed as lines of action. 

Abbreviations: add – adductor, amb – m. ambiens, cfb – m. caudifemoralis brevis, cfl – m. caudifemoralis 
longus, ft – m. femorotibialis, fte – m. flexor tibialis externus, if – m. iliofemoralis, ifib – m. iliofibularis, ist – 

m. ischiotrochantericus, it – m. iliotibialis, itr – m. iliotrochantericus (avian-equivalent subdivision of the 
iliofemoralis), pifi – m. puboischiofemoralis internus. 
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Figure 34. Scelidosaurus cf. harrisonii. Femur (NHMUK OR41322) crushed proximally, but showing a well-
developed 4th trochanter that is secondarily thickened by the addition of a layer of metaplastic bone over its 

surface. The metaplastic bone derives from calcification of the caudifemoral tendons where they attach to 
the trochanter. 

Abbreviations: 4tr – fourth trochanter, fc – fibular condyle, mpb – metaplastic bone, tc – tibial condyle. 
Scale bar in centimetres. 
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Figure 35. Scelidosaurus. Femur and hindlimb motion examined. The principal lines of action of retractor 
muscles and their influence upon the femur and hindlimb poses have been reconstructed as a series of 

cartoons. A. Dorsal view of the femur in ‘neutral’ pose with lines of action of main muscles: note in particular 
the lateral or medial attachment of these muscles on the femoral shaft. B. Vertical pose of the femur with an 
indication of the posteromedial lines of action of the powerful limb retractors (m. caudifemoralis – cfb/l, and 
m. adductor – add). C. Cross-section through the femoral shaft at the level of the fourth trochanter showing 

the torsion inducing lines of action of the principal protractors (pifi, ist) and retractors (if, cfb, cfl). D. 
Mechanical influence on hindlimb protraction resulting from the breadth of the gut. E. Oblique-to-

parasagittal hindlimb excursion during the protraction-retraction cycle. 

209x297mm (200 x 200 DPI) 

Page 208 of 212Zoological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 

Figure 36. Early cladistics-based attempts to establish a topology for armoured dinosaurs within the clade 
Ornithischia. The topology created by Norman (1984b: fig. 2). 
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Figure 37. Early cladistics-based attempts to establish a topology for armoured dinosaurs within the clade 
Ornithischia. The topology derived from Sereno (1984: fig. 1). 
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Figure 38. Early cladistics-based attempts to establish a topology for armoured (thyreophoran) dinosaurs 
within the clade Ornithischia. The topology is derived from Sereno (1986: fig. 3). 
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Figure 39. Strict Consensus Tree based on the 10 equally most parsimonious trees (MPTs) generated by the 
new analysis. The lack of resolution lies in the topographic ambiguity of Kunbarrasaurus, Jinyunpelta and 

that of the four nodosaurid taxa. Overall, the topology supports many aspects of previously published 
cladograms. However, and controversially, Scutellosaurus, Emausaurus and Scelidosaurus are positioned as 
successive out-groups on the branch leading to Ankylosauria. Convention places these taxa on the branch 

leading to Thyreophora. Kunbarrasaurus may well prove to be a stem ankylosaur once it has been fully 
described; furthermore, Jinyunpelta is positioned as a basal ankylosaurian. However, Zheng et al., (2018) 

propose that it is an ankylosaurine ankylosaur (despite the lack of resolution in their strict consensus tree) – 
see also Figure 41. 

Numerical Decay Indices (Bremer support) for the individual clades are indicated in italics adjacent to the 
relevant branches. 
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Figure 40. A bootstrap analysis (Heuristic) of the dataset using 10,000 replicates. Bootstrap support 
percentages are indicated on individual branches. 
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Figure 41. Cladogram manipulation using MacClade. In this example Scutellosaurus* has been positioned as 
the proximate sister taxon to the clade Thyreophora. Tree length is calculated to be 229 steps, which is 
three steps longer than the most parsimonious trees obtained by the analysis of this dataset. The re-

positioning of Scutellosaurus, if it could be supported by additional data, might justify a redefinition of the 
taxon Thyreophoroidea, as indicated on this branch. Note: an additional adjustment, which involves a single 
step increase (230 steps) positions Jinyunpelta (albeit tentatively = ?) as a basal ankylosaurid on the basis 

of its possession of a tail club (in conformity with Coombs, 1978a). 
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Figure 42. Taxon deletion tree. Kunbarrasaurus and Jinyunpelta have been deleted. Tree length (of the 6 
MPTs) is 212 steps, 14 steps fewer than found in the MPTs of the original dataset (Fig. 39). The principal 

clades: THYREOPHORA, STEGOSAURIA, ANKYLOSAURIA, Nodosauridae and Ankylosauridae conform 
topographically with those established by previous analyses. However, the ankylosauromorph branch and its 

composition, if confirmed in subsequent analyses, implies that the way Sereno (1986, et seq.) envisioned 
Eurypoda and Thyreophoroidea are meaningless. 
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