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The Solvent Similarity Index (SSI) is a quantitative parameter we introduce for the comparison of the
solvation properties of any solvent or solvent mixture. The Surface Site Interaction Model for Liquids
at Equilibrium (SSIMPLE) was used to calculate the free energy of solvation of a single Surface Site
Interaction Point (SSIP) on a solute. The SSIP representation of molecular surfaces was used to
calculate the free energy of solvation for all possible solute polarities, generating a unique solvation
profile for any solvent or solvent mixture. Quantitative comparison of the solvation profiles of two
solvents was used as the basis for calculating the Solvation Similarity Index. Values of SSI were
calculated for all pairwise comparisons of 261 pure solvents at 298K, and the results were used to
classify solvents into groups according to their solvation properties. Applications to understanding
the solvation properties of binary solvent mixtures and for identification of alternative solvents are
illustrated.

1 Introduction

Solvent selection is a key issue for a very wide range of chemical
processes1,2. The reaction medium plays a key role in synthe-
sis of pharmaceutics and agrochemicals, and solvent properties
are fundamental to formulation of surface coatings, paints, and
personal care products3–10. There are many considerations in
choosing the best solvent, including cost and environmental ef-
fects, but the fundamental requirement is that the solvent makes
the required interaction with solutes, leading to dissolution, pre-
cipitation, stabilisation or destabilisation. A combination of envi-
ronmental and availability issues have encouraged the search for
new alternative solvents1,2,11–14. A range of scales have been de-
vised to quantify and classify solvent properties. Many are based
on experimental measurement of the strength of interactions with
solutes or more indirectly the effect on the spectroscopic proper-
ties of solutes,4,15 and others are based on more qualitative de-
scriptors such as the environmental impact of the solvent.1,2,11–14

The commonly used Hansen solubility parameter is based on mis-
cibility, which is based on the idea that like dissolves like and so
miscible solvents should also dissolve the same solutes4.

Calculation of solvation free energies has been extensively ex-
plored with multiple different approaches16–18: empirical func-
tions, implicit solvation simulations or explicit solvation simu-
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lations. Empirical methods consist of parameterised functions
that use the correlation of molecular properties to experimental
measurement. These functions either use the summation of in-
formation for individual fragments in the chemical structure in
group contribution type methods19–31, or quantitative structure
property relationships (QSPR) where molecular descriptors are
used32–37. For implicit solvation methods the solvent medium is
treated as a dielectric continuum38–40. Parameterised relation-
ships are then used to convert the activity coefficients generated
from such calculations to free energies41–46. Full atomic simula-
tions are required for explicit solvation models, using molecular
dynamics (MD) or Monte Carlo (MC) frameworks to propagate a
system in phase space. Calculation of free energies requires sum-
mation of the free energy components of interactions between
solute and solvent47–54.

Here we describe a new solvent similarity index, which quan-
tifies the similarity between two solvents based on calculation of
solvation free energies using the Surface Site Interaction Model
for Liquids at Equilibrium (SSIMPLE)55.

Solvent-solute interactions play an important role in dissolu-
tion and solvation of compounds. Solvents are used in several
industries, as a medium for reactions to synthesise compounds
such as in the pharmaceutical and agrochemical industries, or for
the application of surface coatings and paints. Finding the solvent
with the correct properties to solvate the required components is
therefore important. Multiple solvents may possess similar effi-
cacy at solvation, so secondary factors such as cost and environ-
mental effects also play a role in selection. With the increasing
desire to reduce environmental impact and improve efficiency in
processes, the concept of ‘green’ chemistry56 is becoming more
prominent, with scales to assess the environmental impact of sol-
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vents developed11–14. This has led to the use of alternative sol-
vents with lower environmental impact in pharmaceutical com-
panies11,57.

2 The SSIMPLE Approach
The approach is based on description of molecules as a set of
Surface Site Interaction Points (SSIPs), which can be used to
describe all of the non-covalent interactions that the molecule
makes with the environment, e.g. the solvent. Each SSIP is as-
signed an interaction parameter (referred to as an SSIP value in
this work), εi, which is equivalent to the experimentally mea-
sured hydrogen bond donor parameter (α) for positive sites or
the hydrogen bond acceptor parameter (−β) for negative sites58.
These experimental hydrogen bond parameters were originally
derived from the αH

2 and β H
2 scales developed by Taft and Abra-

ham9,59–61, who used experimental measurements of association
constants for formation of a wide variety of 1:1 hydrogen bonded
complexes in non-polar solvents. Murray and Politzer62–64 have
shown that non-covalent interactions can be rationalised based
on the properties of calculated molecular electrostatic potential
surfaces (MEPS). We have shown that the experimentally deter-
mined hydrogen bond parameters correlate rather well with the
calculated MEPS, and this correlation forms the basis for the SSIP
approach described here. The assignment of the calculated SSIP
values is done by footprinting of the ab initio calculated MEPS of
the isolated molecule in the gas phase as described previously65.

To describe a liquid, SSIP interactions are treated in a pair-
wise manner, such that the association constant for interaction
between the ith and jth SSIP, Ki j, is given by Equation (1).

Ki j =
1
2

e−
εiε j+EvdW

RT (1)

where EvdW =−5.6 kJ mol−1 66.
The interaction energy is made up of a polar term, εiε j, and a

non-polar term, EvdW , which is the energy of the van der Waals
interaction between two SSIPs. For repulsive interactions (i.e.
εi and ε j have the same sign), it is assumed that a state can
be found where the polar sites are misaligned such that only
non-directional van der Waals interactions are made, and the
polar interaction term, εiε j, is set to zero. As we have shown
previously55,66, Van der Waals interactions between non-polar
molecules are a linear function of surface area, so by choosing
a description that gives all SSIPs the same area footprint on the
Van der Waals surface of a molecule, a constant value can be used
for EV dW . The standard state used to ensure Ki j is dimensionless
is the maximum theoretical density of SSIPs, cmax = 300 M. The
value of cmax is based on the volume an SSIP, 5 Å3, that was de-
fined using the volume enclosed by the van der Waals surface of
a water molecule, which is represented by 4 SSIPs55. The specia-
tion of all SSIP contacts in the liquid phase can then be calculated.

The free energy of solvation of an SSIP that represents a so-
lute, ∆GS, can be calculated by considering the concentration of
this SSIP that is not bonded to a solvent SSIP ([1nb]). ∆GS in
Equation (2) is the free energy of transfer of the solute SSIP from
a reference state, which corresponds to a dilute gas where there
are no SSIP interactions.

∆GS = RT ln
(
[1nb]

[1]

)
−RT ln

(√
1+8θ −1

4θ

)
(2)

where [1] is the total concentration of the solute SSIP in the
phase, and θ is the total SSIP concentration in the phase.

The first term in Equation (2) describes the interactions made
by the solute SSIP with the solvent SSIPs. The second term in
Equation (2) corrects for the increased probability of interaction
between SSIPs when they are confined to a condensed phase55.
The confinement energy is derived by considering a phase with
an SSIP concentration of θ , in which all pairwise SSIP contacts
have an equilibrium constant Ki j of one.

3 Results
The SSIP representation of 261 solvent molecules was described
previously (see ESI† for full list of solvents)67. These representa-
tions were used to calculate solvation free energies for all solute
SSIP values between -10 and +5 in increments of 0.1. Plotting
the results gives a unique solvation profile for each solvent, which
describes the non-covalent interactions the solvent would make
with any solute taking into account the polarity and the concen-
tration of the interaction sites present in the solvent. Note that
the effects of charge-charge interactions between ionic solutes is
not described by SSIMPLE, so dielectric constant would be an im-
portant additional parameter for describing the solvation proper-
ties of ionic or ionisable solutes. The calculation of SSIP values
was parameterised using experimentally determined free energy
changes for formation of 1:1 hydrogen bonded complexes at 298
K, so all of the calculations described here were also carried out
at 298 K.

3.1 Solvation Profiles

Figure 1 shows plots of solvation free energies (∆GS) as a function
of solute SSIP value (ε) for three solvents. Toluene is a non-polar
solvent, so has poor interactions with hydrogen bond donors and
acceptors, leading to low solvation energies for all solutes, and
the solvation profile is a relatively shallow curve. Dimethyl sul-
foxide (DMSO) is a polar aprotic solvent. It has a strong hydrogen
bond acceptor, so it solvates donors very strongly, with large neg-
ative values of ∆GS for positive SSIPs. DMSO is a weak donor,
so it solvates acceptors poorly with small negative values of ∆GS

for negative SSIPs. Water is a polar protic solvent with both hy-
drogen bond donors and acceptors. Thus water solvates hydro-
gen bond donor and hydrogen bond acceptor solutes reasonably
well, leading to large negative values of ∆GS for strong hydrogen
bond donors and acceptors. However, the value of ∆GS is pos-
itive for water when the value of the solute SSIP is zero (+0.8
kJ mol−1). The reason is that solvation of non-polar solutes re-
quires breaking of water-water hydrogen bonds, and the loss of
these polar interactions is not compensated by new polar inter-
actions made with the solute. The solvation of non-polar solutes
is therefore unfavourable for water, but favourable in the other
two solvents, which have non-polar interaction sites available for
interaction with a non-polar solute. We have previously shown
that the solvation energies calculated using the SSIMPLE model
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provide an accurate quantitative description of the hydrophobic
effect as measured by phase transfer free energies55.
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Fig. 1 Free energy of solvation (∆GS in kJ mol−1) of a single solute SSIP
as a function of solute SSIP value (ε) for water (blue), DMSO (black)
and toluene (green) at 298K. The curves correspond to the solvation
profiles of the solvents.

3.2 The Solvent Similarity Index

Comparison of the solvation profiles of different solvents requires
definition of a metric which describes the distance between two
curves for all possible solute SSIP values. The root mean square
deviation (RMSD) between the solvation profiles for two solvents
S1 and S2 is given by equation (3).

RMSD(S1,S2) =

√
∑N (∆GS1−∆GS2)

2

N
(3)

where N is the number of solute SSIP values used.
If the summation were carried out over the full curve then the

RMSD would be dominated by the large solvation energy differ-
ences for the extreme ends of the ε scale and would not capture
the smaller differences in the non-polar region, which represents
the most common hydrocarbon features of organic molecules. To
avoid this issue, the curves were partitioned, and each domain
was given an equal weighting after normalisation. The six do-
mains given by equation (4) were chosen to represent strong,
moderate and weak donors and acceptors.

Domains =



−10.0≤ ε <−5.0

−5.0≤ ε <−2.0

−2.0≤ ε < 0.0

0.0≤ ε < 1.0

1.0≤ ε < 3.0

3.0≤ ε < 5.0

(4)

The values of RMSD for each domain were scaled so that they
carry equal weight. The normalisation factor for the jth domain,
η j, is defined as the maximum RMSD between any two solvents in

the set of all solvents for the domain. This results in scaled values
between 0 and 1 for each domain, where 0 means the domains
are identical, and a value of 1 means the domains are the most
dissimilar of all pairings of solvents. We define the Sovent Simi-
larity Index (SSI) as the mean of the scaled values of all domains
(equation (5)).

SSI(k, l) =
1
6

6

∑
j=1

RMSD(k, l)
η j

(5)

where k and l refer to two different solvents.
The values of SSI depend on the values of η j, which depend on

which set of solvents is used to calculate them. Thus the definition
of SSI provides a qualitative guide to similarity within a collec-
tion of solvent profiles. A quantitative measure can be created by
defining normalisation factors, η j based on a standard reference
set of solvents at a specified temperature. The set of 261 pure
solvent molecules listed in the ESI † were chosen as this reference
set, with solvation calculations undertaken at 298K, and the sol-
vents defining the extreme ranges are shown in Table 1. Hydro-
gen fluoride has the strongest hydrogen bond donor SSIP in the
set of solvents and appears as an extreme solvent for solvation
of strong and moderate hydrogen bond acceptors. Hexamethyl
phosphoramide (HMPA) has the strongest hydrogen bond accep-
tor SSIP in the set of solvents and appears as an extreme solvent
for solvation of strong and moderate hydrogen bond donors. Wa-
ter is an extreme solvent for the solvation of non-polar domains,
due to the hydrophobic effect. REF The solvents at the other ends
of these extremes in Table 1 are a more heterogeneous collec-
tion that represent a complex function of the SSIP composition.
Glycerol appears twice, which suggests that this solvent has some
rather unique properties.

Domain Extreme Solvents
−10.0≤ ε <−5.0 hydrogen fluoride and n-dodecane
−5.0≤ ε <−2.0 hydrogen fluoride and glycerol
−2.0≤ ε < 0.0 thionyl chloride and water
0.0≤ ε < 1.0 glycerol and water
1.0≤ ε < 3.0 HMPA and perfluoromethylcyclohexane
3.0≤ ε < 5.0 HMPA and perfluoromethylcyclohexane

Table 1 Most dissimilar solvents used to calculate the normalisation fac-
tors, η j, for each domain.

3.3 Solvent Similarities

SSI values were calculated for all pairwise combinations of all 261
solvents in the reference set. A dendrogram showing the results
is presented in Figure 2. This diagram provides an overview of
the similarities for all solvents in the set. Branch nodes in the
dendrogram can be used to select threshold SSI values for classi-
fying solvents into clusters with similar properties. The numbered
branch nodes highlighted in Figure 2 were used to define 14 dis-
tinct solvent regions (see ESI† for full details).

Many of the solvent similarity clusters in the dendrogram in
Figure 2 coincide with standard functional group classifications.
For example, Figure 3 shows region 12. The alkane solvents are
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Fig. 2 Dendrogram showing solvent similarity indices (SSI) for 261 pure solvents at 298K using UPGMA clustering algorithm to group solvents.
Numbers correspond to nodes used for partitions into smaller subsets. Solvent clusters with a normalised distance between nodes of less than two
fifths of the maximum distance was used as a threshold to colour different clusters (see ESI † for full details of the solvents in each of the 14 nodes).

all clustered together in one branch of this region. The second
branch in region 12 contains the other two very non-polar sol-
vents in the set, tetramethylsilane and carbon disulfide. The re-
maining non-polar solvents are found in regions 10 and 11. Re-
gion 10 has two distinct branches: the aromatic hydrocarbons are
clustered in one group, and aryl ethers and sulfides make up the
other. Region 11 contains the haloalkanes.
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Fig. 3 Dendrogram showing solvent similarity indices (SSI) at 298K for
solvents to the left of node 12 in Figure 2.
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All of the solvents in region 2 are alcohols with the exception of
N-methyl formamide, which has a good hydrogen bond donor and
a good acceptor SSIP with similar values to the most polar alcohol
SSIPs. The ketones, esters and ethers are all clustered together in
region 3, because they have very similar hydrogen bond acceptor
properties and the only hydrogen bond donors are the alkyl CH
groups. Region 5 has two branches: carboxylic acids are clustered
in one group, and the other branch is the only pyrrole in the set
of solvents.

0.00 0.05 0.10 0.15 0.20
SSI

water

formamide

hydrogen peroxide

Fig. 4 Dendrogram showing solvent similarity indices (SSI) at 298K for
solvents to the left of node 13 in Figure 2.

Some regions in the dendrogram in Figure 2 contain mixtures
of solvents with a more diverse set of functional groups. For ex-
ample, Figure 4 shows the solvents in region 13. The feature that
water, hydrogen peroxide and formamide have in common is that
they all have high concentrations of good hydrogen bond donors
and good hydrogen bond acceptors, which means that solvopho-
bic effects are uniquely important for solvation of non-polar so-
lutes in these solvents. Region 14 contains the solvents which
have the strongest hydrogen bond donors. The strongest hydro-
gen bond acceptor, hexamethylphosphoric triamide (HMPA), is
found in region 1. Region 1 has two branches, but HMPA is
unique in that it has the highest value of SSI at which the dendro-
gram branches to a single solvent.

3.4 Distribution of SSI

The distribution of SSI values for all pairwise comparisons of sol-
vents is shown in Figure 5. The maximum theoretical SSI for two
solvents is 1.0, which would be obtained if a pair of solvents have
the greatest dissimilarity in all six domains. The maximum value
of SSI for the set of 261 solvents is 0.79, for hydrogen fluoride and
HMPA. Hydrogen fluoride contains a very good hydrogen bond
donor, but poor hydrogen bond acceptors, so solvates hydrogen
bond acceptors well and hydrogen bond donors poorly, whereas
HMPA has the best hydrogen bond acceptor of any solvent but
poor hydrogen bond donors, so exhibits the opposite solvation
behaviour to hydrogen fluoride.
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Fig. 5 Distribution of solvent similarity indices (SSI) at 298 K for all
pairwise comparisons of 261 solvents plotted as a percentage of the total
number of solvent pairs.

3.5 Solvent Mixtures

By combining different solvents together as a mixture, a new sol-
vent system with different properties is created. These mixtures
possess properties that are a composite of the constituent parts.
Comparison of the similarity of the solvent mixtures to the pure
solvents provides a method to quantitatively measure the change
in behaviour on mixing the solvents. Comparison of solvent mix-
tures with pure solvents can be used to develop a method based
on SSI values for finding mixtures that might be used as substi-
tutes for a specific pure solvent.

Journal Name, [year], [vol.], 1–9 | 5



0.0 0.2 0.4 0.6 0.8 1.0
Ethanol Volume Fraction

0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
D

η j

Fig. 6 Pairwise comparison of water-ethanol solvent mixtures with each
of the pure components plotted as a function of the solvent composition
of the mixture. Contribution to the total solvent similarity index (SSI) by
domain, plotted as the normalised RMSD between the solvation profile
of the mixture and the pure solvent, RMSD/ηi j as defined in Equ (3) and
(4): strong acceptors (red solid line), moderate acceptors (red dashed
line), weak acceptors (red dotted line), weak donors (blue dotted line),
moderate donors (blue dashed line) and strong donors (blue solid line).

Table 2 shows the closest solvent for different water-ethanol
compositions. As might be expected from the dendrogram in
Figure 4, hydrogen peroxide and formamide are the closest sol-
vents to the water-rich mixtures, due to the solvophobic proper-
ties. However, the minimum value of SSI for pure water is rela-
tively high compared with the distribution in Figure 5 (0.2 for hy-
drogen peroxide), highlighting the unique properties of aqueous
solutions. For ethanol-rich mixtures, other short chain alcohols
most closely resemble the mixed solvent, because there are sim-
ilar concentrations of hydroxyl and alkyl SSIPs. Figure 6 shows
how the contributions from the 6 domains, which make up the
value of SSI, vary with composition. The difference between the
solvents is dominated by solvation of the non-polar SSIPs and
varies uniformly with composition. Ethanol solvates non-polar
functional groups well, due to preferential interactions with the
solvent ethyl group. Water has no non-polar SSIPs, so the value
of ∆Gs for non-polar groups is positive for water.

Table 3 and Figure 7 show a similar analysis for mixtures of
tetrahydrofuran (THF) and chloroform. In this case, a more di-
verse range of pure solvents give the closest match to the solva-
tion properties of the mixtures. THF has a moderate hydrogen
bond acceptor and no strong hydrogen bond donors, whereas
chloroform has a moderate hydrogen bond donor and no strong
hydrogen bond acceptors. Thus the THF-rich mixtures are most
similar to solvents with a moderate hydrogen bond acceptor and
no hydrogen bond donors, whereas the chloroform-rich mixtures
are most similar to solvents that also have polar CH groups. The
contributions from each of the 6 domains used to calculate the
SSI values for THF-chloroform mixtures are shown in Figure 7.

Ethanol % volume Closest solvent SSI
0 hydrogen peroxide 0.194
5 hydrogen peroxide 0.171
10 hydrogen peroxide 0.152
15 hydrogen peroxide 0.137
20 hydrogen peroxide 0.126
25 hydrogen peroxide 0.119
30 formamide 0.111
35 formamide 0.096
40 formamide 0.083
45 formamide 0.071
50 formamide 0.060
55 formamide 0.052
60 formamide 0.047
65 formamide 0.048
70 formamide 0.055
75 formamide 0.065
80 aminoethanol 0.053
85 aminoethanol 0.039
90 aminoethanol 0.033
95 allyl alcohol 0.017
100 1-propanol 0.015

Table 2 Most similar solvents to water-ethanol mixtures ranked in order
of decreasing solvent similarity index (SSI) calculated at 298 K.

The major difference between the solvents is due to the way in
which they solvate hydrogen bond donors.
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Fig. 7 Pairwise comparison of THF-chloroform solvent mixtures with
each of the pure components plotted as a function of the solvent com-
position of the mixture. Contribution to the total solvent similarity index
(SSI) by domain, plotted as the normalised RMSD between the solvation
profile of the mixture and the pure solvent, RMSD/ηi j as defined in Equ
(3) and (4): strong acceptors (red solid line), moderate acceptors (red
dashed line), weak acceptors (red dotted line), weak donors (blue dotted
line), moderate donors (blue dashed line) and strong donors (blue solid
line).
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Chloroform %
volume

Closest solvent SSI

0 morpholine 0.028
5 morpholine 0.021
10 morpholine 0.016
15 morpholine 0.018
20 morpholine 0.024
25 cyclohexanone 0.023
30 cyclohexanone 0.017
35 cyclohexanone 0.022
40 quinoline 0.024
45 3,3-dimethyl-2-butanone 0.024
50 benzyl methyl ketone 0.026
55 2-bromopyridine 0.024
60 2-bromopyridine 0.022
65 3-bromopyridine 0.029
70 3-bromopyridine 0.035
75 benzonitrile 0.037
80 phenylacetonitrile 0.039
85 phenylacetonitrile 0.045
90 aniline 0.047
95 1,1,2-trichloroethane 0.046
100 pentachloroethane 0.017

Table 3 Most similar solvents to THF-chloroform mixtures ranked in order
of decreasing solvent similarity index (SSI) calculated at 298 K.

3.6 New Solvents

The SSI analysis provides a method for predicting the properties
and potential utility of new solvents. Dihydrolevoglucosenone
( (1R)-7,8-dioxabicyclo[3.2.1]octan-2-one, commercially known
as cyrene) has been suggested as a green replacement for
dimethyl formamide (DMF) and N-methyl pyrrolidine (NMP)68.
Cyrene is produced from cellulose69 so the feedstock required can
be supplied from a sustainable source of plant biomass. At the end
of the lifecycle, the solvent can be incinerated without the release
of NOx or SOx. Cyrene has been shown to be a useable solvent for
Sonogashira cross-coupling, Cacchi-type annulation70 and urea
synthesis71 but has some sensitivity to basic conditions70.

Cyrene was included in the dendrogram of pure solvents and
appears in region 4 (Figure 2). DMF and NMP appear in region
6, and Figure 8 shows a comparison of the solvation profiles. It
is clear that solvation of hydrogen bond donors is not as good in
cyrene compared with NMP or DMF. Table 4 shows the closest sol-
vents to cyrene in rank order of SSI value. The SSI values in Table
4 are all significantly lower than the SSI to DMF (0.089) and to
NMP (0.138). Cyrene, most closely matches 2,4-pentanedione.
Figure 8 illustrates the match between the solvation profiles for
cyrene and acetone, which is one of the more common solvents
in Table 4. Obviously, there are factors in addition to solvation
properties that will come into play in solvent selection for a spe-
cific application: for example, the boiling points of cyrene and
acetone are quite different.
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Fig. 8 Solvation profiles (∆GS in kJ mol−1 plotted as a function of solute
SSIP value, ε) for dimethyl formamide (DMF) in blue, N-methyl pyrroli-
dine (NMP) in green, acetone in magenta, and cyrene (black circles) at
298K.

Solvent SSI
2,4-pentanedione 0.018
methyl formate 0.020
ethyl formate 0.023
4-methoxybenzaldehyde 0.025
pyrimidine 0.027
1-methyl-2-pyrrolidinethione 0.027
dimethylcyanamide 0.029
ethyl acetoacetate 0.029
dimethyl carbonate 0.031
cinnamaldehyde 0.031
methyl acetate 0.032
acetophenone 0.033
dimethylphthalate 0.033
2-bromopyridine 0.034
acetone 0.036
diethyl malonate 0.036
benzyl methyl ketone 0.037
4-methyl-2-pentanone 0.040
diethyl sulfite 0.040
propionaldehyde 0.040
diethyl carbonate 0.040
ethyl acetate 0.040
ethyl phenyl ketone 0.041
2,3-butanedione 0.043
3-bromopyridine 0.043

Table 4 Closest solvents to cyrene ranked in order of decreasing solvent
similarity index (SSI) calculated at 298 K

4 Conclusion
A key property in the selection of a solvent for a chemical trans-
formation or formulation is the strength of the interactions with
solute molecules, which in turn determines how the solutes will
behave. The Surface Site Interaction Model for Liquids at Equi-
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librium (SSIMPLE) provides a method for calculating the free en-
ergy of solvation of a specific interaction site on the surface of a
solute. The solvent is described as a set of Surface Site Interaction
Points (SSIP), which describe the non-covalent interactions that
can be made at any point on the molecular surface, and the so-
lute is described as one SSIP, which would correspond to a single
hydrogen bond donor or acceptor site on the surface of a polar
solute. This representation can be used to calculate the free en-
ergy of solvation for all possible solute polarities, generating a
unique solvation profile for any solvent or solvent mixture. These
solvation profiles provide a quantitative tool for comparison of
the solvation properties of two solvents, which we define as the
Solvation Similarity Index. Values of SSI were calculated for all
pairwise comparisons of 261 pure solvents at 298K, and the re-
sults were used to classify solvents into groups according to their
solvation properties. Application of the SSI for understanding the
solvation properties of binary solvent mixtures and for identifica-
tion of alternative solvents are demonstrated. The SSI represents
a new quantitative parameter that can be applied to complex sol-
vent environments of arbitrary complexity and should have appli-
cations in assessing the expected properties of candidates for new
solvents from sustainable sources.
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