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Abstract

Glioblastoma (GBM) is the commonest primary malignant brain tumor in adults,

and despite advances in multi-modality therapy, the outlook for patients has

changed little in the last 10 years. Local recurrence is the predominant pattern

of treatment failure, hence improved local therapies (surgery and radiotherapy)

are needed to improve patient outcomes. Currently segmentation of GBM for

surgery or radiotherapy (RT) planning is labor intensive, especially for high-

dimensional MR imaging methods that may provide more sensitive indicators

of tumor phenotype. Automating processing and segmentation of these images

will aid treatment planning. Diffusion tensor magnetic resonance imaging is a

recently developed technique (DTI) that is exquisitely sensitive to the ordered

diffusion of water in white matter tracts. Our group has shown that decom-

position of the tensor information into the isotropic component (p – shown to

represent tumor invasion) and the anisotropic component (q – shown to rep-

resent the tumor bulk) can provide valuable prognostic information regarding

tumour infiltration and patient survival. However, tensor decomposition of DTI

data is not commonly used for neurosurgery or radiotherapy treatment planning

due to difficulties in segmenting the resultant image maps. For this reason, au-

tomated techniques for segmentation of tensor decomposition maps would have
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significant clinical utility. In this paper, we modified a well-established convolu-

tional neural network architecture (CNN) for medical image segmentation and

used it as an automatic multi-sequence GBM segmentation based on both DTI

image maps (p and q maps) and conventional MRI sequences (T2-FLAIR and

T1 weighted post contrast (T1c)). In this proof-of-concept work, we have used

multiple MRI sequences, each with individually defined ground truths for better

understanding of the contribution of each image sequence to the segmentation

performance. The high accuracy and efficiency of our proposed model demon-

strates the potential of utilizing diffusion MR images for target definition in

precision radiation treatment planning and surgery in routine clinical practice.
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1. Introduction

Between 2007-2011, 10,743 new cases of glioblastoma were diagnosed in the

United Kingdom (UK) giving an annual incidence of 4.64/100,000/year (Brod-

belt et al. (2015)). Glioblastoma (GBM) is the commonest malignant brain tu-

mor in adults, accounting for over 50% of all intrinsic brain tumors (Bauer et al.5

(2013)). Despite improvements in surgery, radiotherapy and chemotherapy, the

prognosis remains poor with the patients only having an average survival time

of 14 months (Van Meir et al. (2010); Delgado-Lopez & Corrales-Garcia (2016)).

Consequently, GBM accounts for more years of life lost per patient than any

other common adult cancer (Burnet et al. (2005)). GBM are characterized by10

invasion into the surrounding brain tissue (Hambardzumyan & Bergers (2015)).

As a result, virtually all patients will progress in less than a year at the site

of previous surgery and within the radiotherapy clinical target volume (CTV),

Georges (2014); Mann et al. (2018).

Conventional MR imaging cannot identify the true extent of this infiltrative15

tumor. Several novel MR imaging techniques have been assessed for improved

mapping of tumour infiltration (Bauer et al. (2013)) and comparative studies

suggest that diffusion tensor MRI (DTI), a method sensitive to the directional

2



diffusion of water molecules, may provide the best estimate of the invasive mar-

gin (Sternberg et al. (2014)). By decomposing the tensor into its isotropic com-20

ponent (p) and anisotropic component (q), it is possible to differentiate white

matter tracts invaded by a tumor from those that have been displaced or de-

stroyed by tumor (Price et al. (2004)). This has been confirmed in prospective

image-guided biopsy studies (Price et al. (2006)). Our group has demonstrated

that can predict sites of tumor progression (Price et al. (2007)) and can provide25

spatial maps of tumor infiltration zones (Price et al. (2016b)) which correlate

to progression free survival and location of tumor progression (Mohsen et al.

(2013)). The ability of DTI to better identify occult tumor infiltration may

improve GBM treatment planning for both surgery (Yan et al. (2016a)) and ra-

diotherapy (Jena et al. (2005); Rahmat et al. (2020)). Uptake of the technique30

into routine clinical practice is hampered by the fact that segmentation of the

p and q maps is time consuming and requires a degree of operator expertise.

Due to the widespread use and availability of multimodal MR imaging, seg-

mentation of glioblastoma has been a popular area of research, often with the

aim of using such segmentations as the basis of a radiomic analysis. The most35

successful approaches to date have utilized deep learning and in particular con-

volutional neural networks (CNNs), Bakas et al. (2018). Deep neural networks

(DNN) (LeCun et al. (1989)) have grown in popularity in the recent years due

to their ability to learn complex non-linear representations of input data.

The aim of this study was to develop a tool to automate the segmentation40

of p and q maps, both calculated from low-resolution DTI data, together with

additional contextual information from conventional MRI and perfusion MRI

(or perfusion-weighted imaging (PWI)). Our research work to date confirms the

clinical utility of p and q maps for the assessment of tumour infiltration. Given

that image noise and limited resolution make segmentation of these maps a chal-45

lenging task for a human observer, our main motivation was to assess the fea-

sibility of automating this stage. The segmentation approach in this paper has

been evaluated using DeepMedic (Kamnitsas et al. (2017)), a well-established

3D CNN architecture. Using conventional MR imaging sequences, DeepMedic
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has been demonstrated to perform well in segmentation of the ventricles, CSF,50

white and grey matter (Kamnitsas et al. (2016)).

2. Methods

2.1. Patients

In this study, 136 patients with supratentorial primary glioblastoma were

recruited for GBM surgery from July 2010 to August 2015. Patients who had55

a history of previous brain tumor, cranial surgery, radiotherapy/chemotherapy,

or contraindication for MRI scanning were excluded. For inclusion in the study,

patients had to demonstrate a radiological diagnosis of glioblastoma on conven-

tional MR imaging, and be suitable for surgical debulking with the intention of

achieving a tumour resection of over > 90%. All patients had a world health60

organization (WHO) performance status of 0 or 1 prior to surgery. This study

was approved by the local Research Ethics Committee (10/H0308/23) and pa-

tients provided signed, informed consent. A total of 80 patients (mean age 59.4

years, range 22-76, 58 males) were studied preoperatively, yielding 80 datasets

for this evaluation.65

2.2. Dataset Acquisition

Patients were imaged pre-operatively using a 3.0-T MR Magnetom system

(Siemens Healthcare) with a standard 12-channel head coil. Conventional imag-

ing included a 2D FLAIR sequence (TR/TE/TI 7840–8420/95/2500 ms; flip

angle 150◦; FOV 250 × 200 mm2; 25–27 slices; 1–mm slice gap; and voxel70

size 0.78125 × 0.78125 × 4 mm3) and a 3D T1-weighted scan with fat sup-

pression acquired after intravenous injection of 9 ml of gadolinium (Gadovist;

Bayer Schering Pharma) (TR/TE/TI 2300/2.98/900 ms; flip angle 9◦; FOV

256×240 mm2; 176–192 slices; no slice gap; and voxel size 1×1×1 mm3). DTI

data was acquired using a single-shot echo-planar sequence (TR/TE 8300/9875

ms; flip angle 90◦; FOV 192 × 192 mm2; 63 slices; no slice gap; and voxel

size 2 × 2 × 2 mm3) with multiple b-values (0, 350, 650, 1000, 1300, and 1600
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sec/mm2) scanned in 13 directions. PWI was acquired with a dynamic suscep-

tibility contrast-enhancement (DSC) sequence (TR/TE 1500/30 ms; flip angle

90◦; FOV 192×192 mm2; FOV 192×192 mm2; 19 slices; slice gap 1.5 mm; voxel80

size of 2.0 × 2.0 × 5.0 mm3) with 9 mL gadobutrol (Gadovist 1.0mmol/mL)

followed by a 20 mL saline flush administered via a power injector at 5 mL/s.

The acquisition times for the individual sequences were 4 mins and 28 secs for

FLAIR, 9 mins and 26 secs for DTI, 2 mins and 21 secs for DSCI and 68 secs

for the T1-weighted with contrast scan.85

2.3. Preprocessing

DTI maps were processed with the diffusion toolbox (FDT) of FSL by ap-

plying reconstruction of diffusion tensors (FSL-FMRIB (2019); Jbabdi et al.

(2012)), normalization and eddy current correction (Behrens et al. (2003); Smith

et al. (2004)). Maps of fractional anisotropy (FA), mean diffusivity (MD),90

apparent diffusion coefficient (ADC), p and q were calculated using equations

defined below (O’Donnell & Westin (2011); Alexander et al. (2007)).

Diffusion tensors are calculated from a symmetric 3× 3 matrix as a second-

order Cartesian tensor:

Dij =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1)

By determining the diffusion tensors, the main eigenvalues can be calculated95

which indicated the fibre direction, λ1, λ2 and λ3. By applying an eigenvalue

decomposition, the resultant eigenvalues can be calculated easily and have been

used in the construction of the following derivative image maps:

FA =

√
3

2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2√

λ21 + λ22 + λ23
(2)

MD =
1

3
tr(Dij) =

λ1 + λ2 + λ3
3

(3)
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where tr represents trace of the tensor. ADC is computed in very similar

calculation as the same as MD as the sum of the eigenvalues of the diffusion100

tensor, ADC=3×MD (Roberts & Schwartz (2007)).

is defined in a similar fashion to MD and is used to refer to the mean

diffusion in a voxel, sometimes taken as the sum or average value of the tensor’s

diagonal elements.

p =
√

3MD (4)

q =
√

(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2 (5)

p and MD are key representations of tensor magnitude while q and FA rep-105

resent anisotropic diffusion (Pena et al. (2006)). In our previous work, p and q

have been validated clinically as markers of gross tumour and invasion respec-

tively (Price et al. (2006)). For the DSC perfusion data, the relative cerebral

blood volume (rCBV) and MR signal intensity baseline (S0) maps were calcu-

lated using NordicICE (NordicNeuroLab, Bergen, Norway) following application110

of leakage correction (Järnum et al. (2010)). The arterial input function was

automatically defined. The baseline image in the perfusion sequence prior to

contrast administration (S0) was used for image co-registration. Defining re-

gions of low apparent diffusion coefficient, ADC and regions of high diffusion in

GBM patients generates spatially distinct tumor boundaries (Boonzaier et al.115

(2017)). Therefore, in this study, rCBV and S0 were also evaluated in combina-

tion with DTI maps to assess their effect on the predicted output segmentations

(Du et al. (2015)).

Anatomical images, T1 post contrast (T1c), T2-weighted fluid attenuated

inversion recovery (FLAIR), were co-registered to DTI with an affine transfor-120

mation based linear image registration algorithm (FLIRT). Each dataset was

resampled to a voxel size of 0.977× 0.977× 1 mm3, yielding a NIFTI file with

dimensions of 240×330×23 voxels. Output maps were registered to a reference

axial T2 sequence using an affine transformation based rigid registration algo-
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rithm. We the ‘FLIRT’ implementation in the FSL toolbox (Jenkinson et al.125

(2012)). Fig. 1 shows an example of the co-registered dataset used for one

patient.

Fig. 1. Ten different MRI modalities used in this study which consist of anatomical

(T1c, FLAIR and T2), DTI (p, q, FA and MD, ADC) and PWI images (S0 and

rCBV).

All the resulting registered images were normalized by deducting the mean

value from each pixel and dividing by the standard deviation of intensity values.

2.4. Ground Truth130

The ground truth segmentations for this dataset were manually delineated on

four modalities: enhancing tumor (T1c, FLAIR, p and q), non-enhancing tumor

(FLAIR), abnormal isotropic (p) and anisotropic diffusion (q). The manual

regions of interest (ROIs) were independently contoured by three observers:

a neurosurgeon with > 8 years of experience (CL), a neurosurgeon with > 9135

years of experience (JLY), and a researcher with > 4 years of brain tumor

image analysis experience (NRB). Segmentations and masks were generated
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using 3D Slicer (v4.6.2) (Pieper et al. (2004)). The observers performing manual

segmentation were blinded to the model construction and validation phases.

Majority voting was used to develop consensus of the ground truth where140

there was significant disagreement. Previous studies have shown excellent agree-

ment using this method (Price et al. (2016a)). Fig. 2 demonstrates four different

contours delineated for the same slice position on four image sequences.

Fig. 2. Four different MRI modalities and their relevant ground truth segmentations

from the same patient. The images demonstrate distinct tumor compartments visu-

alised by each MRI sequence. The q-map has been shown previously to show areas of

high tumor cell density and the p-map shows invasive regions. The T1c and FLAIR

regions demonstrate the enhancing, necrotic, and non-enhancing tumor components

respectively

2.5. Segmentation Methodology

For automatic segmentation, we used DeepMedic, an 11-layer multi-scaled145

3D CNN architecture that has been used for medical image segmentation and

demonstrated to be robust in similar applications (Kamnitsas et al. (2016,

2017)). The architecture of DeepMedic is shown in Fig. 3. Briefly, it con-

sists of two parallel convolutional pathways, four feature extraction layers with

53 kernels for feature extraction, two fully connected layers and a final classi-150

fication layer. The dual pathway architecture allows for multi-scale processing

of the input images to achieve a large receptive field for the final classification,

while keeping the computational cost low. The first pathway operates on the

8



original image, and the second one operates on a down-sampled version.

Fig. 3. The DeepMedic convolutional neural network architecture includes a multi-

scale 3D CNN with two convolutional pathways of 11-layers. Feature extraction layers

consist of size 53 kernels (Adapted from Fig 5 in Kamnitsas et al. (2016)).

DeepMedic was extended with residual connections (He et al. (2016)) to155

improve performance. These additional connections facilitate preservation of the

flowing signal, thus enabling training of very deep neural networks, (summarized

in Fig. 4), Kamnitsas et al. (2017).

Fig. 4. The DeepMedic architecture extended with residual connections. In this

architecture residual connections are added between the outputs of every two layers,

except for the first two layers of each pathway to direct the network away from raw

intensity values (Adapted from Fig.1 in Kamnitsas et al. (2017)).

Data augmentation was performed via reflection with respect to the mid-

sagittal plane.160

2.5.1. Extension of DeepMedic

In this study, each ground truth is considered individually with its own

image channel and not merged as in most implementations of the network.
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This is because each labelled region is evaluated in the absence of other regions.

The study dataset included 10 distinct image sequences derived from diffusion165

and perfusion imaging as well as standard anatomical sequences. We therefore

modified the input layers of DeepMedic, to utilize a multi-pathway architecture,

assessing different combinations of image sequences in turn. The motivation for

this approach was to determine the optimum set of input channels to provide

segmentation of p and q abnormalities. Fig. 5 demonstrates the framework of170

our extension to DeepMedic. Regardless of the number of paths utilised, the

final segmentations were merged to show the multi-class segmentation results

on a single image.

Fig. 5. The framework of our architecture extension to DeepMedic (Kamnitsas et al.

(2017)), each ground truth is considered separately from other ground truths. De-

pending on the number of inputs to the network, this number of pathways can be

adjusted (we have shown this extension to four inputs here for illustration).
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2.5.2. Experiment Setup

Table 1 shows the chosen combination of segmentation models used at train-175

ing time. Training was performed using an implementation of Deepmedic on

Tensorflow, using an NVIDIA Titan Xp graphics card (Abadi et al. (2016)).

Training time for each model varied from 4-8 hours.

Segmentation performance was evaluated on the same combinations shown

in Table 1. For each individual model, a single ground truth was chosen to train180

the network, and as the output prediction. Finally, the segmentation outcome

of all models with the same training sequences were merged to visualize differ-

ent tumour compartments. For instance, Models 1-4 use ten different sequences

as their inputs (8 different data types), which contain all the anatomical, DTI

and PWI images in the dataset. It is self-evident from their definitions that185

MD, ADC and p sequences all represent the isotropic component of the dif-

fusion tensor, but with different output scaling (Roberts & Schwartz (2007)).

We elected to include them as separate input sequences. This had the effect of

increasing the training data size at the cost of potential biased, as there is a

threefold weighting towards the mean diffusion signal. The motivation for this190

‘hold-out’ technique was to assess the incremental benefit of different forms of

MR image sequence on segmentation performance. Models 5-8 use only four

related sequences to the four ROIs in the absence of other DTIs or PWI im-

ages. Models 9-12 pairs the DTI and anatomical ones to evaluate their relevant

ROIs, and Models 13-16 evaluates them as individual image sequences in the195

absence of any other image data. The evaluation of the obtained segmentations

is demonstrated in qualitative and quantitative form. The qualitative analysis

has been performed by expert. The dataset for all modules were divided into

40 patients for training, 10 for validation and 30 patients for testing. In each

model the number of images varies due to the number of modalities involved in200

the analysis.
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Table 1

Different models in the experiment setup for evaluating the multi-scale segmentation

of GBM.

Model MR-Sequence(s) Ground-Truth

1 p-q-FLAIR-T1c-T2-FA-MD-ADC-S0-rCBV p-mask

2 p-q-FLAIR-T1c-T2-FA-MD-ADC-S0-rCBV q-mask

3 p-q-FLAIR-T1c-T2-FA-MD-ADC-S0-rCBV FLAIR-mask

4 p-q-FLAIR-T1c-T2-FA-MD-ADC-S0-rCBV T1c-mask

5 p-q-FLAIR-T1c p-mask

6 p-q-FLAIR-T1c q-mask

7 p-q-FLAIR-T1c FLAIR-mask

8 p-q-FLAIR-T1c T1c-mask

9 p-q p-mask

10 p-q q-mask

11 FLAIR-T1c FLAIR-mask

12 FLAIR-T1c T1c-mask

13 p p-mask

14 q q-mask

15 FLAIR FLAIR-mask

16 T1c T1c-mask

2.5.3. Evaluation of segmentation

The segmentation results were evaluated using Dice coefficient (DC), Dice

(1945).

3. Results205

3.1. Quantitative Analysis

The overall results output by each model are shown in Table 2. In this table,

the number of patients used in training, validation and test sets has been listed.

The difference in the number of images available for training and testing in each

experiment affects the DC for the testing sets. The average DC for the training210

and test sets in each model are shown highlighting poor DC performance for

the smaller datasets.
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Table 2

Dice coefficient performance of modified DeepMedic for different models listed in Table

1.

Model # Training set # Validation set # Test set Average train DC Average test DC (± SD)

1 8280 Slices (40 patients) 2070 Slices (10 patients) 6210 Slices (30 patients) 0.67 0.71(± 0.13)

2 8280 Slices (40 patients) 2070 Slices (10 patients) 6210 Slices (30 patients) 0.68 0.66(± 0.21)

3 8280 Slices (40 patients) 2070 Slices (10 patients) 6210 Slices (30 patients) 0.73 0.78(± 0.11)

4 8280 Slices (40 patients) 2070 Slices (10 patients) 6210 Slices (30 patients) 0.82 0.82(± 0.17)

5 3680 Slices (40 patients) 920 Slices (10 patients) 2760 Slices (30 patients) 0.63 0.69(± 0.11)

6 3680 Slices (40 patients) 920 Slices (10 patients) 2760 Slices (30 patients) 0.65 0.65(± 0.21)

7 3680 Slices (40 patients) 920 Slices (10 patients) 2760 Slices (30 patients) 0.77 0.77(± 0.15)

8 3680 Slices (40 patients) 920 Slices (10 patients) 2760 Slices (30 patients) 0.83 0.81(± 0.17)

9 1840 Slices (40 patients) 460 Slices (10 patients) 1380 Slices (30 patients) 0.51 0.49(± 0.25)

10 1840 Slices (40 patients) 460 Slices (10 patients) 1380 Slices (30 patients) 0.37 0.38(± 0.27)

11 1840 Slices (40 patients) 460 Slices (10 patients) 1380 Slices (30 patients) 0.80 0.75(± 0.16)

12 1840 Slices (40 patients) 460 Slices (10 patients) 1380 Slices (30 patients) 0.80 0.76(± 0.23)

13 920 Slices (40 patients) 230 Slices (10 patients) 690 Slices (30 patients) 0.42 0.37(± 0.23)

14 920 Slices (40 patients) 230 Slices (10 patients) 690 Slices (30 patients) 0.46 0.36(± 0.28)

15 920 Slices (40 patients) 230 Slices (10 patients) 690 Slices (30 patients) 0.69 0.67(± 0.19)

16 920 Slices (40 patients) 230 Slices (10 patients) 690 Slices (30 patients) 0.58 0.56(± 0.24)

Table 2 shows the ratio of training, validation and testing sets for each model

in Table 1 as well as their relevant DC. In all models the same patients were

chosen to set up the experiments while the number of input images were different215

due to using different modalities per patient. For instance, Model 1 consists of

10 training channels which are equivalent to 8280 Slices of 40 patients from 10

different MRI modalities (10×23×40). The DeepMedic architecture used in this

work, incorporates a data shuffle at the start of each epoch to avoid overfitting,

which can be seen from the close behavior of DC for training and test sets in220

Table 2.

Fig. 6 illustrates the DC values for the output segmentation results for the

test sets for each combination in Table 1. The results demonstrate good perfor-

mance of the DeepMedic architecture on the available dataset. Encouragingly,

the performance for the DTI segmentation improves greatly when it is combined225

with the conventional MR images such as FLAIR and T1c. It is interesting to

observe the performance of Models 1-4, as they utilise additional input infor-

mation from 10 channels (8 data types) to train the network, though it should

be borne in mind there may be a bias towards diffusion signal information in

these models.230
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Models 5-8, which make use of contrast enhanced T1, FLAIR and two ten-

sor decomposition sequences, appeared to demonstrate the best segmentation

performance among all evaluated models, suggesting that the p and q maps

encapsulate most of the image information that is added by diffusion imaging.

Models 13-16 have lower performance due to limited availability of training data.235

The results of models 9, 10, 13 and 14 demonstrate poor segmentation perfor-

mance for p and q maps. This illustrates that spatial context from other image

sequences is needed to segmentation of DTI maps.

Fig. 6. Box plots of the similarity scores (DC) between the image segmentation

output by all models and the reference ground truth for each ROI. Different colored

boxes refer to the number of inputs in the extended DeepMedic shown in Fig. 5.

Across all model runs, we observe an increase in DC as the number of input

channels is increased. Non-parametric Wilcoxon sign rank testing was per-240

formed by pairwise comparison of Models 5-8 with Models 9-12 and Models

13-16 (Woolson (2007)). The test shows a significant difference (p < 0.01) in

model performance as measured by DC values.

Also, a general point should be made about the performance drop observed

when training the network with DTI p and q maps only (Models 9-10 and245

Models 13-14) in comparison to training them along anatomical data. This can

14



be improved as part of future work by adding more data augmentation methods

using generative models.

3.2. Qualitative Analysis

Fig. 7 shows three representative slices from the same patient, with as-250

sociated ground truth and automatic segmentations. Qualitative analysis of

the output segmentation results confirms that segmentation performance is en-

hanced by combining information from DTI p and q maps with conventional

FLAIR and T1c. We found that the architecture is capable of precise segmen-

tation of both small and large lesions on each image modality.255

Fig. 7. Three example slices of the same patient, with associated ground truth

and automatic segmentations. Blue shows the ground truth delineated by the expert

clinician and the red contours represent the outcome of our segmentations.

Fig. 8 illustrates all four segmentations generated by models 5-8 on top

of each image sequence. The contours are colour coded in blue for p map,

red for q map, green for FLAIR and yellow for T1c. Provision all of these

segmentations automatically could assist clinicians in appreciating the different
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tumor compartments observed in a typical GBM.260

Fig. 8. Demonstrating all four segmentations obtained from different models (Models

5-8), where the segmentation in blue is for p, red (DC=80%) for q, green (DC=85%)

for FLAIR (DC=89%) and yellow for T1c (DC=80%).

These initial results suggest that the discriminative power of the learned

features to segment p and q DTI-maps could match human expert observer

performance. However, this proof of concept has been implemented on a highly

complex framework with a large computational burden. As part of future work,

we will attempt to limit the number of trainable parameters by sharing weights265

across layers. We will also assess other deep learning frameworks for large

scale data such as the U-net implementation of Ronneberger et al. (2015) and

assess the role of supervised machine learning models for smaller datasets as

implemented in Soltaninejad et al. (2014, 2017, 2018).

4. Discussion270

This proof-of-concept study shows that automatic segmentation of subcom-

ponents of GBM can be performed through a novel application of an existing

CNN architecture that has been optimised for medical image segmentation.

Furthermore, we have established that integrating DTI based p and q with con-

ventional MR image sequences produces results with potential clinical utility.275

Since our goal was to optimize segmentation of p and q maps from different

combinations of image sequences, we did not individualize the architecture for
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each image sequence, employing instead the default architecture of DeepMedic

(Kamnitsas (2018)).

Signal changes seen with conventional anatomical MRI (T1-weighted and280

T2-weighted/FLAIR images) are not specific to the pathological changes seen

with tumors. They lack sensitivity to the occult invasive growth of gliomas. DTI

provides more a sensitive and specific biomarker for the disruption of white mat-

ter tracts caused by tumor invasion. Our previous image-guided biopsy study

has shown that DTI p and q maps achieved a sensitivity of 98% and specificity285

of 81% in differentiating gross tumor and tumor infiltration (Price et al. (2006);

Li et al. (2019)). Furthermore, DTI p and q maps were subsequently used to

predict tumor recurrence patterns (Alexander et al. (2007)) and have been cor-

related with IDH-1 mutation status, a driver mutation of gliomas (Price et al.

(2016a)). A higher extent of resection of the DTI p and q abnormalities has also290

been shown to correlate with better patient prognosis (Yan et al. (2016a,b)).

This supports the importance of integrating DTI derived parametric maps into

clinical decision-making process. With this simple, multi-sequence framework

constructed in DeepMedic, the results obtained provides proof of concept that

automatic segmentation of p and q abnormalities could speed up the image295

processing workflow and has the potential to assist clinicians with interpreta-

tion of DTI data. Current clinical management of GBM relies heavily on MRI

images. Yet more advanced MR (DTI and PWI) are rarely used for routine

management. The difficulty in automating their segmentation have prevented

use in routine clinical care. The limited studies in this field have included DTI300

alone or in combination with few other imaging modalities. In this study we

provide initial evidence that these low-resolution sequences can be segmented

automatically when combined with other imaging modalities. This will allow

automatic GBM segmentation of the DTI to allow interventional studies that

change surgical and radiotherapy planning volumes.305
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5. Conclusions

We have demonstrated that a multi-channel architecture provides the best

segmentation of DTI based p and q maps. The network used in this proof of

concept study has been trained and tested on a small clinical dataset. Validation

of the network on an independent dataset would be required to confirm the310

utility and generalisability of this approach.
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