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Experimental phasing: best practice

Developments in protein crystal structure determination
by experimental phasing are reviewed, emphasizing the
theoretical continuum between experimental phasing, density
modification, model building and refinement. Traditional
notions of the composition of the substructure and the best
coefficients for map generation are discussed. Pitfalls such as
determining the enantiomorph, identifying centrosymmetry
(or pseudo-symmetry) in the substructure and crystal twinning
are discussed in detail. An appendix introduces combined
real-imaginary log-likelihood gradient map coefficients for
SAD phasing and their use for substructure completion as
implemented in the software Phaser. Supplementary material
includes animated probabilistic Harker diagrams showing how
maximum-likelihood-based phasing methods can be used to
refine parameters in the case of SIR and MIR; it is hoped
that these will be useful for those teaching best practice in
experimental phasing methods.

1. Introduction

Experimental phasing of protein structures is usually (although
not always) a more difficult and time-consuming process
than phasing a protein structure by molecular replacement.
Experimental phasing is required when there is no sufficiently
good template for molecular replacement, which is the case
when studying proteins with no (or low) sequence identity to
proteins for which the structure is known; that is, proteins with
new (or very different) folds. Since these structures tend to
provide a wealth of novel biological information, experimental
phasing remains a key tool in the crystallographer’s toolkit.

The theory and practice of experimental phasing is covered
in all protein crystallography text books (including Blundell &
Johnson, 1976; Drenth, 1994; Blow, 2002), in online resources
(including our website at http://www-structmed.cimr.cam.ac.uk/
Course) and in journal articles (including, in this issue, Taylor,
2010). This paper assumes a basic understanding of experi-
mental phasing and aims to point out the state-of-the-art
methodologies and shed light on some of the more tricky
aspects of the process.

2. Substructures

The phasing process starts with finding a few atoms (or even a
single atom) in the asymmetric unit of one of the crystals from
which data have been collected. The initial set of atoms is
found using Patterson, direct methods or dual-space methods
[implemented in software such as HySS (Grosse-Kunstleve &
Adams, 2003a), Shake-and-Bake (SnB; Miller et al., 1994) and
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Figure 1

SN chapter 14 of Blundell & Johnson, 1976)

or log-likelihood gradient maps (Von-
rhein et al., 2007; Appendix A) are used
to find a substructure for the other
derivatives. Indeed, this is usually the
fastest way of finding a substructure for
the other derivatives, especially if the
anomalous or isomorphous signal in the
other derivatives is not as good as for
the reference derivative.

©

Harker diagrams. (a) SIR Harker diagram where H; is the calculated substructure structure factor

for the single derivative. The black and red circles have radii given by the observed structure-factor
amplitudes for the native and the derivative, respectively. (b) SAD Harker diagram where H" and
H™ are the calculated substructure structure factors and H* — H™ " is the expected vector difference
between the true structure factors F* and F~". (¢) MIR Harker diagram where H; and H, are the
calculated substructure structure factors for the first and second derivatives, respectively. The black,
red and blue circles have radii given by the observed structure-factor amplitude for the native, the
first derivative and the second derivative, respectively. In the absence of measurement errors and
errors in the substructure, the red and blue circles would intersect at one point on the black circle.

SHELXD (Sheldrick, 2008)]. The set of atoms is called a
‘substructure’, simply because it is a subset of the atoms in the
full structure. The substructure is usually thought of as all the
atoms in the molecule that are not carbon, nitrogen, oxygen or
sulfur (or phosphate for nucleic acids), such as anomalously
scattering or heavy atoms deliberately added to the crystals or
fortuitous intrinsic metal ions. However, this concept of the
substructure does not reflect current phasing practice. Any set
of atoms, up to and including the full structure, can be con-
sidered a ‘substructure’. In particular, for a single-wavelength
anomalous dispersion (SAD) experiment the substructure
need not only include atoms that have significant anomalous
scattering and for a single-wavelength anomalous dispersion
(SIR) experiment the substructure need not only include
atoms that are heavy; in both cases C, N and O atoms can also
be part of a substructure. Thus, a partial molecular-replace-
ment solution is also a valid initial substructure. Inclusion of
minor sites improves the phases because the more complete
the substructure, the better the phases; in the limit, the best
phases are calculated from the complete structure. Including
‘minor’ sites in the phasing is important because what they
lack in individual scattering they can make up for in total
scattering as a group. Experimental phasing can be considered
as a process of bootstrapping from a tiny substructure to an
almost complete substructure (raising the question: is the
model ever complete?).

Substructure atoms found independently in different deri-
vatives need not have the same hand or be on the same
origin for the space group. If multiple-wavelength isomor-
phous replacement (MIR) or MIR with anomalous scattering
(MIRAS) phasing is undertaken with the sites in different
derivatives having different hands (see section §6 below) or on
different origins then the phasing will fail. To make sure that
the hands and origins of all the sites in all the derivatives are
consistent, one derivative is chosen as the reference (usually
the first derivative for which a substructure has been deter-
mined, unless this derivative has centrosymmetry; see §7
below) and difference Fourier maps (Stryer et al, 1964;

3. Phasing

There is a phase ambiguity in SIR and
SAD which is clearly shown on a
Harker diagram (Figs. la and 1b and
Supplementary Figs. S1a and S1b"). The
correct set of phases gives the true
electron-density map and the incorrect
set gives noise (Wang et al., 2007). It is not possible to generate
and inspect maps for all possible combinations of phases to
resolve the phase ambiguity; the number of combinations is a
‘lifetime-of-the-universe’ size problem. Instead, maps are
calculated with the average of the two possible phases for each
structure factor (Blow & Rossmann, 1961). This is a good
approximation to the correct phase when the two phase
possibilities are close together and becomes poorer as the two
phase possibilities move to being 180° apart. The map calcu-
lated with the average of the two phases is the true electron
density plus noise, i.e. the superposition of the map calculated
with the true phases and the map calculated with the wrong
phases.

The noise can be removed from the map (or at least
reduced) with density-modification methods. Density modifi-
cation has the effect of selecting the correct phase from the
two phase possibilities. Thus, in the case of SAD and SIR the
improvements in the map can be very dramatic. Traditional
density-modification methods include solvent flattening
(Wang, 1985) or flipping (Abrahams & Leslie, 1996), histo-
gram matching (Zhang & Main, 1990) and noncrystallographic
symmetry averaging (Rossmann & Blow, 1963, 1964). More
recently, and, in particular, since the development of auto-
mated model-building algorithms, model building has become
part of the density-modification process; model building can
be thought of as the most drastic type of density modification.

A second experimental source of phase information also
breaks the phase ambiguity inherent in SAD and SIR
(Blundell & Johnson, 1976, p. 160, p. 180 and references
therein). In a purely isomorphous replacement phasing
experiment (MIR) the minimal requirement for a unique
phase determination is two derivatives (and a native). In
a purely anomalous scattering experiment (multiwavelength
anomalous dispersion; MAD) the minimal requirement is data

! Supplementary material has been deposited in the TUCr electronic archive
(Reference: BA5142). Services for accessing this material are described at the
back of the journal.
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SIR probabilistic Harker diagram (notation as in Fig. 1). (¢) Contour plot showing components of
the PDFE. The component arising from the native is shown in black contours and the component
arising from the derivative is shown in red contours centred on H; (the point at the base of the red
arrow). The dashed black and red circles indicate the measured values of the observed structure-
factor amplitudes for the native and the derivative, respectively. (b) The PDF [the product of the
two components in (a)] is shown in dark red contours. The ‘best F’ Fy is shown as a black arrow. (c)
Three-dimensional plot of the value of the PDF. The likelihood is the volume under the PDF
surface. (d) Plot of the likelihood as a function of the occupancy of the substructure (increasing
amplitude of H;). The maximum likelihood is marked with a dot. All other panels in this figure show
the values of the parameters at the point of maximum likelihood. (e) The PDF for the phases of the
true structure factor F is shown in red and the PDF reconstructed from the four Hendrickson—
Lattman (Hendrickson & Lattman, 1970) coefficients (HL) is shown as a black curve. (f) Bar chart
showing the relative values of the four HL coefficients A, B, C and D.
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Figure 3

SAD probabilistic Harker diagram (adapted from McCoy, 2004 with notation as in Fig. 1). (a)
Contour plot showing components of the PDF. The component P(F~|H ") is shown in blue
contours centred on H™" (blue arrow) and the anomalous component P(Fiu|JF~", HY, H™*) is
shown in red contours centred on H" — H ™", the expected vector difference between F* and F~".
The black and red circles indicate the observed structure-factor amplitudes for F~ and F~,
respectively. (b) The product of the two components in (a) is shown in magenta contours. (c) Three-
dimensional plot of the value of the PDF under the black circle in (). The likelihood is given as the
integral of the height of the surface under the black circle. (d) Plot of the likelihood as a function of
the occupancy of the substructure (increasing value of [H™"| and [H* — H"|). The maximum
likelihood is marked with a dot. All other panels in this figure show the values of the parameters at
the point of maximum likelihood. (¢) The PDF for the phases of F~" is shown in magenta and the
PDF reconstructed from the four HL coefficients is shown as a black curve. (f) Bar chart showing
the relative values of the four HL coefficients A, B, C and D.

that have been collected at two different
wavelengths. Isomorphous replacement
and anomalous scattering can also
be combined in SIR with anomalous
scattering (SIRAS) or MIRAS experi-
ments to give a unique phase.

Some real Harker diagrams from the
phasing of haemoglobin with six deri-
vatives [Cullis et al., 1961; reproduced
on p. 367 of Blundell & Johnson (1976)
and in Fig. 7.22 of Blow (2002)] show
that despite extremely well determined
data the phase circles in these examples
do not cross exactly. Unfortunately,
these sorts of Harker diagrams are not
exceptional and the true phase is often
only poorly indicated even with the
addition of more derivative data.

The problem of non-overlapping
Harker circles in MIR (Fig. 1c and
Supplementary Fig. Slc) was initially
approached by using a parameter for
the geometrical lack of closure of the
phase triangle (Blow & Crick, 1959; see
Blundell & Johnson, 1976, p. 366). A
better approach is to use the probabil-
istic Harker construction and maximum
likelihood to find the phase (for a
review, see McCoy, 2004). Instead of a
single circle for each structure factor
there is a circular probability distribu-
tion obtained by ‘smearing out’ the
Harker circles with a Gaussian distri-
bution. The product (multiplication) of
the individual probability density func-
tions for each data set gives a combined
probability density function (PDF) for
the true structure factor (Figs. 2, 3 and
4).

In the probabilistic approach it is
possible to optimize (refine) the
substructure parameters, which are not
well determined by the initial substruc-
ture-location programs. Although the
positions of the substructure atoms are
relatively well determined, the occu-
pancies are only poorly estimated from
the relative Patterson peak heights
(some algorithms do not even attempt
to make an estimate but simply output
an equal occupancy of 1 for each of the
sites they find). Individual atomic B
factors cannot be estimated, so all B
factors are either set to an arbitrary
constant value (e.g. 20 Az) or to the
Wilson B factor of the data. The scat-
tering factors f and f” can be estimated
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from the values given in the Sasaki tables (Sasaki, 1989), which
tabulate f and f” values for the elements against wavelength.
These values are only good for initial estimates because they
are calculated assuming ‘free’ atoms, while the anomalous
scatterers in the crystal are in chemical bonds which alter the
resonances. Alternatively, f and f” can be determined
experimentally by carrying out a fluorescence scan (Evans &
Pettifer, 2001). There is also another important class of
parameters to refine: the estimates of the errors of the para-
meters (variances) of the PDF. To refine the parameters
(position, occupancy, B factor, scattering factors and
variances), the area under the PDF curve (the integral of the
PDF) is optimized (Figs. 2, 3 and 4, and Supplementary Figs.
S2, S3 and S4).

Likelihood methods are good for refining the substructure
because they account for errors in the model and the data.
However, this is only true when the errors are not systematic
errors, i.e. when the error model used in the derivation of the
likelihood function correctly models the sources of error in
the experiment. Errors that derive from, for example, non-
isomorphism and radiation damage are not part of the error
model and will degrade the quality of the phases. Where non-
isomorphism and/or radiation damage is present it is impor-
tant to optimize the set of data sets used in phasing and/or
to exclude data at high resolution (where the errors will be
greatest). An example of this was presented at the 2003 CCP4

Study Weekend on the topic of Experimental Phasing (Evans,
2003).

4. Calculating electron density

Electron density is calculated using the electron-density
equation, which is the Fourier transform of the structure
factors,

1
p. =3 X I, leos(p, — 2k - ) + isinp, —2wh - x)]. (1)
h

where p is the electron density, x represents the spatial co-
ordinates (x, y, z), V is the volume of the unit cell, /# represents
the reciprocal-space indices (h, k, 1), |F,| is the amplitude of
the structure factor and ¢, is the phase of the structure factor
F,. Note that if Friedel’s law applies and |F,| = |F_,| and
@, = —@y, (i.e. the diffraction pattern has a centre of inversion
at the origin) then the sine terms for # and —# cancel and the
imaginary component is zero everywhere; the electron density
is real. If Friedel’s law does not apply then the imaginary term
is not zero. The imaginary component can be represented as a
second real electron-density map. The peaks in this second
map are the positions of the anomalously scattering atoms that
cause Friedel’s law to break down.

What structure factor should be used in the electron-density
equation in the probabilistic approach? We have to pick one
phase and amplitude for substitution
into the electron-density equation. The
best structure factor will usually be the
one that gives the lowest root-mean-
square deviation between the calculated
electron density and the true electron
density. (If there are sources of model
bias, for instance the real scattering
\‘ contribution from the anomalous scat-

terers in SAD phasing, then it may be
preferable to include a bias correction).
Parseval’s theorem (of Fourier trans-
forms) relates the root-mean-square
error in real space to the root-mean-
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Figure 4

likelihood

square error in reciprocal space and vice
versa. Using this theorem, it can be
shown that the best structure factor
(Fpest) 1s the ‘centroid’ structure factor
(the probability-weighted average of all

B C D

MIR probabilistic Harker diagram (notation as in Fig. 1). (¢) Contour plot showing components of
the PDF. The component arising from the native is shown in black contours, the component arising
from the first derivative is shown in red contours centred on H; (the point at the base of the red
arrow) and the component arising from the second derivative is shown in blue contours centred on
H, (the point at the tip of the blue arrow). The dashed black, red and blue circles indicate the
measured values of the observed structure-factor amplitudes for the native, first and second
derivatives, respectively. (b) The PDF [the product of the three components in (a)] is shown in dark
magenta contours. The ‘best F’ Fy is shown as a black arrow. (¢) Three-dimensional plot of the value
of the PDF. The likelihood is given as the volume under the surface. (d) Plot of the likelihood as a
function of the occupancy of the substructure for the second derivative (increasing amplitude of
H,). The maximum likelihood is marked with a dot. All other panels in this figure show the values of
the parameters at the point of maximum likelihood. (¢) The PDF for the phases of the true structure
factor Fis shown in dark magenta and the PDF reconstructed from the four HL coefficients is shown
as a black curve. (f) Bar chart showing the relative values of the four Hendrickson-Lattmanm
coefficients A, B, C and D.

the structure factors); it is not the ‘most
probable’ structure factor (Fig. 5). The
amplitude of Fy. is always less than
Fo,s (always inside the circle of the
Harker diagram; Figs. 2, 3 and 4, and
Supplementary Figs. S2, S3 and S4). The
reduction in Fg,y to give |Fpeyl is
expressed as the figure of merit
(m, where 0 < m < 1; m = 1 implies
perfect phases and m = 0 implies no
phase information). The probabilistic
approach puts the approximation of
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taking the average of the two phases for map calculation in the
case of SAD and SIR onto a firm theoretical footing. It has the
added advantage of showing how to up-weight the structure
factors (high figure of merit) when the two possible phases are
close together and down-weight the structure factors (low
figure of merit) when the phases are further apart.

The probabilistic approach thus shows that maps with co-
efficients mF,,, have the lowest noise. When the model is
‘nearly complete’, that is, the calculated structure factors are
good approximations to the true structure factors and the
phase error is low, then the map with coefficients mF,,, shows
electron-density features that are present in the true structure
but missing from the model at half-weight. To boost the peaks
of the electron density at the places where the model is
incomplete, crystallographers and model-building algorithms
usually look at maps with coefficients 2mF ., — DF_,. (Where
D is a value between 0 and 1; Read, 1986) during refinement.
These coefficients double the mF,,s map (thus bringing the
unmodelled features up to full weight) and subtract one copy
of the model, but at the expense of doubling the noise. In cases
where the real scattering of the substructure is a significant
fraction of the true structure factor, 2mF,,, — DF,,. maps may
also be useful in experimental phasing before model building
starts.

5. Handedness

Compounds such as proteins that are not superimposable on
their mirror images are chiral compounds. The chiral
arrangement of atoms is also known as the ‘absolute config-
uration’, the ‘enantiomer’ and, more colloquially, the ‘hand’ of
the compound. Naturally occurring proteins consist of L-
amino acids (i.e. left-handed amino acids) and right-handed a-

Figure 5

The difference between the ‘centroid’” and ‘most probable’ structure
factors. (@) Cut the centre out of a paper plate. (b) Balance the disc on a
pen. The centre of mass is at the centre. (c) Now clip two unequal weights
to the edge of the plate. (d) The balancing point is between the two
weights (analogous to the ‘centroid’ structure factor) and not on the
heaviest weight (analogous to the ‘most probable’ structure factor).

helices, but a small number of proteins consisting of p-amino
acids and left-handed «-helices have successfully been
synthesized and their structures solved (Pentelute et al., 2008).
The handedness of amino acids can be remembered using the
‘CORN law’ (Blundell & Johnson, 1976, pp. 18-19). The
amino acid can be thought of as a tetrahedron placed on a
horizontal surface with the C* atom at the body centre and its
H atom pointing upwards. Then, for L-amino acids the o-
carbonyl CO group, the side chain R group and the a-amino N
group are located clockwise around the base of the tetra-
hedron; for p-amino acids the CO-R-N groups are located
anticlockwise.

The handedness of the protein can be determined from the
diffraction pattern when there is significant anomalous scat-
tering and thus Friedel’s law is broken (Bijvoet, 1949, 1954). If
there is only normal scattering and the intensity of reflection
(h, k, 1) is equal to the intensity of reflection (—4, —k, —I) then
the diffraction cannot show the hand: a structure and its
mirror image fit the data identically.

Tracking the hand of the protein through the diffraction
experiment is nontrivial. The diffraction from either hand can
be worked out from first principles using the Laue equations
and the 90° phase lag of the anomalous scattering with respect
to the incoming wave (Blundell & Johnson, 1976, p. 167;
James, 1957, pp. 35-36). This anomalous scattering is thus 90°
phase-advanced with respect to the normally scattered wave

Figure 6

Phasing in both hands. The anomalous scattering component is always
advanced. For example, data collected at a wavelength of 1.7 A from an
iron-containing protein will have a significant anomalous signal from both
the Fe atoms and the S atoms in methionine and cysteine. Non-anomalous
contributions to the scattering come from C, N and O atoms. The total
structure factor has an anomalous component that is not perpendicular to
the normal scattering component, leading to an anomalous difference in
the structure factors for F* and F~. Only in one hand will the observed
direction of the anomalous difference match the calculated direction of
the difference ([F*| > [F7)).

462 McCoy & Read - Experimental phasing
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Table 1

Changing the hand of substructure sites.

For nonchiral space groups the other hand of the heavy-atom sites is found by
the operation (x, y, z)—(—x, —y, —z), except for three space groups (14, 14,22
and /4,32) where there is also a change of origin. For the chiral space
groups the change of hand of the heavy-atom sites with the operation
(x, y, 2)=>(—x, —y, —z) is accompanied by a change of space group to the
other chiral form.

System Chiral Nonchiral
Triclinic P1
Monoclinic P2, P2, C2
Orthorhombic P222, P222,, P2,2,2, P2,22, C222,
C222,, 1222, 12,2,2,, F222
Tetragonal P4,:P4; P4, P4,, 14, 14,
P4,22:P4;22 P422, P42,2, P422, P42,2, 1422,
14,22%
Trigonal P3,:P3, P3, R3
P3,12:P3,12 P312, P321, R32
P3,22:P3,22
Hexagonal P6,:P6s P6, P6;
P6,:P6,
P6,22:P6522 P622, P6522
P6,22:P6,22
Cubic P23, F23, 123, P2,3, 12,3
P4,32:P4532 P432, P4,32, FA32, [432, 14,328

+ For 14, the origin is shifted to (%, 0, 0). % For [4,22 the origin is shifted to
(4,0,4. § For 14,32 the origin is shifted to (3, 1, 1

L,
(which is 180° out of phase with the incoming wave); the
anomalous structure factor is thus drawn 90° anticlockwise (i.e
advanced) from the normally scattering component on a
Harker diagram (Fig. 6). The coordinate system for the atoms
(x, y, z) and the coordinate system for the reciprocal lattice
(h, k, I) are both conventionally right-handed. There is a tricky
step at the stage of the Fourier transform used to generate the
electron density. Crystallographers use the forward Fourier
transform to calculate structure factors and the inverse
Fourier transform to calculate electron density. The inverse
Fourier transform uses (—x, —y, —z), which is a change-of-
hand operation. If all these operations are kept track of
correctly, then the Friedel differences will show L-amino acids
for naturally occurring proteins.

Unfortunately, the Friedel diffraction information that can
determine the hand is lost when initially determining the
substructure by Patterson methods or so-called ‘direct
methods’. These methods only use the magnitude of the
anomalous difference |F* — F7|. As we shall see, it is the
direction of the anomalous difference that is important in
determining the hand, i.e. whether F* > F~ or vice versa. In
addition, initial substructures found by substructure-location
programs contain only one type of atom and so the calculated
structure factors do not have a Friedel difference (see
discussion below). Therefore, the hand of the initial
substructure is arbitrary; both sets of sites satisfy the anom-
alous differences (whether through Patterson or ‘direct
methods’) equally well. Part of the process of the diffraction
experiment is to find which hand of the substructure is correct,
i.e. is consistent with L-amino acids. (Note that if a partial
molecular-replacement solution is used as the initial
substructure then the hand is correct by virtue of the mole-
cular-replacement model having the correct hand.)

For nonchiral space groups (except for /4, [4,22 and 14,32),
the substructure is converted to its other hand by the inversion
operation through the origin (x, y, z)—(—x, —y, —z). For
chiral space groups, in addition to inverting the coordinates of
the substructure through the origin, the space group must also
be changed to its chiral partner (Table 1). For the three non-
chiral space groups /44, 14,22 and 14,32 the other hand of sites
is not obtained using simple inversion through the origin.
These space groups are exceptions because they ‘should’ have
chiral pairs (145, 14522 and 14532, respectively); however, the
crystallographic symmetry of these space groups (in particular,
the body centring) generates a 43 screw from the 4; screw
operation (and vice versa). Thus, the chiral partners for these
three space groups that ‘should’ exist are not distinct space
groups. By convention (International Tables for Crystallo-
graphy, 2002), the space groups are defined with a 4, screw
axis and so only space groups I4,, 14,22 and 14,32 ‘exist’.
Because of this convention, inverting the substructure requires
the inversion operation through the origin (x, y, z)—(—x, —y,
—z) followed by shifting the sites in the unit cell to position
them around the alternate screw symmetry axis. Alternatively,
in these three space groups the change-of-hand operation can
be considered to be an inversion through a point that is not the
origin.

The inverse hand of the substructure gives different Harker
diagrams for SAD and SIR phasing (see Figs. 2 and 4 in Wang
et al., 2007) and electron density with different features. For
SIR, the other hand gives a Harker diagram reflected through
the real axis of the Argand diagram. The other phase gives the
mirror-image density. Density-modification methods that do
not involve model building give equally good statistics in both
hands; only by model building can the correct hand be iden-
tified. For SAD, the other hand gives a Harker diagram
reflected through the imaginary axis of the Argand diagram. If
the contribution from the real scattering from the substructure
is neglected, the other phase gives the mirror-image density in
negative (peaks become holes). Density modification is better
in the correct hand and the hand can be determined before
model building from the density-modification statistics.

Under certain circumstances (that is, if the substructure has
special properties) the hand can be found with anomalous
differences even without density modification. To understand
this, consider the case at the end of refinement when there is a
good model for the structure (the ‘substructure’ is almost the
‘true’ structure). If there are anomalous differences, then
there are anomalously scattering atoms in the model and the
calculated structure factors have a Friedel difference between
Fic and F gy, i.e. Féy. 7 F e (Fig. 6). For example, in a case
with a perfect model and perfect data, if hand A has Fg,. = 42
and F . = 39 so that F,. > F 1., then hand B will have F,. =
39 and F . = 42 so that F,. < Fg Only in one hand will
F,c and F . match the observed values, e.g. if Fops = 42 and
Fops = 39 then hand A would be correct. In the ideal case, the
matching of the Friedel difference would be true for all
reflections. With imperfect data and an imperfect model, one
hand will be more successful in predicting the direction of the
observed anomalous difference (Fps > F oy OT Vice versa) over
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all the reflections and this statistical bias will indicate the
correct hand. Therefore, it is possible to discover the hand
from the anomalous differences alone (i.e. without inspecting
the electron density) whenever the structure factors calculated
from the substructure have Friedel differences. Unfortunately,
this is not the case if the substructure consists of only one type
of anomalous scatterer. For example, if the substructure
consists of only the selenium sites of a selenomethionine
protein then the substructure cannot predict the hand. (As an
aside, a real crystal consisting of a single type of anomalous
scatterer also has no Friedel difference; diffraction from
crystals of mineral selenium does not have a Friedel differ-
ence.) For the calculated structure factors to have a Friedel
difference, the substructure must have more than one scat-
tering type, at least one of which must be a significant
anomalous scatterer (Fig. 6). (More exactly, the ratio of the
normal and the anomalous components of all the structure
factors of the atoms in the substructure must not all be the
same, so that the anomalous component of the calculated
structure factor is not perpendicular to the normal scattering.)

Thus, with SIR and MIR, and any number of scatterers, the
parameters of the model need only be refined with the sub-
structure in one hand; the other hand can be phased using the
refined parameters. The correct hand is found by inspecting
the density (i.e. by model building, finding which hand of
the peptide or nucleotide fits the electron density). For any
experimental phasing method that includes an anomalous
difference (e.g. SAD, SIRAS, MAD and MIRAS), if there
is only one type of (anomalous) scatterer in the substructure
then only one hand need be refined (however, if both hands
are refined it is unlikely that the phasing statistic