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ABSTRACT

The MBT repeat has been recently identified as
a key domain capable of methyl-lysine histone
recognition. Functional work has pointed to a role
for MBT domain-containing proteins in transcrip-
tional repression of developmental control genes
such as Hox genes. In this study, LSMBTL2, a
human homolog of Drosophila Sfmbt critical for
Hox gene silencing, is demonstrated to preferen-
tially recognize lower methylation states of several
histone-derived peptides through its fourth MBT
repeat. High-resolution crystallographic analysis of
the four MBT repeats of this protein reveals its
unique asymmetric rhomboid architecture, as well
as binding mechanism, which preclude the interac-
tion of the first three MBT repeats with methylated
peptides. Structural elucidation of an L3MBTL2-
H4K20me1 complex and comparison with other
MBT-histone peptide complexes also suggests
that an absence of distinct surface contours sur-
rounding the methyl-lysine-binding pocket may
underlie the lack of sequence specificity observed
for members of this protein family.

INTRODUCTION

Chromatin structure is regulated by chromatin remodeling
factors, histone exchange, linker histone association and
histone modification. Histone lysine methylation has

emerged as a key post-translational modification (PTM)
implicated in both gene activation and silencing depending
on the site and methylation degree of PTM, however the
mechanisms involved are complex and not well under-
stood. To date, seven different histone lysine residues
have been identified as functionally relevant sites of
methylation (K4, K9, K27, K36 and K79 of histone H3,
K20 of histone H4 and K26 of histone H1b). Each of
these lysine residues can be mono-, di- or tri-methylated,
often with functional consequences. Histone methylation
at specific lysine residues brings about various down-
stream events, which are mediated by different effector
proteins. For example, in Drosophila, position effect
variegation (PEV) is regulated by Heterochromatin
Protein 1 (HP1) (1) and homeotic gene silencing is
regulated by polycomb (Pc) (2), whose chromodomain
recognizes histone H3 methylated at K9 and K27, respec-
tively (3-6).

To date, several families of protein domains have been
shown to recognize various lysine methylation sites with
selective methylation state preference. The chromodo-
mains of HPI, Pc, CHD1 and Eaf3 preferentially bind
tri-methylated lysine at H3K9, H3K27, H3K4 and
H3K36, respectively (7-9). The double Tudor domain of
JMIJD2A selectively binds tri-methylated H3K4 and
H4K20 (10-12), and that of 53BPI favors mono- or di-
methylated H4K20 (13). The ankyrin repeat domains of
G9a and GLP preferentially bind mono- or di-methylated
H3K09 (14). The PHD finger family of proteins is especially
interesting, because various PHD motifs have been shown
to recognize histones with different selectivity for the
methylation states and sites of lysine (8).
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The malignant brain tumor (MBT) repeat is a structural
motif of ~100 amino acids that is conserved from
C. elegans to humans and often exists as tandem repeats
(15). It was originally identified in the Drosophila tumor-
suppressor protein L(3)MBT and mutations in L(3)MBT
gene cause malignant transformations of the optic neuro-
blasts (16). Based on sequence analysis, the MBT repeat
shows structural similarity with the chromodomain,
Tudor domain and PWWP domain, which are jointly
referred to as the Tudor domain ‘Royal Family’ (17).
Like Tudor and chromodomain domains, the methyl—
lysine-binding ability of the MBT domain was confirmed
by protein-array studies (10).

Recent functional studies have suggested important
connections between MBT domain-containing proteins
and the transcriptional state of chromatin regions. The
3-MBT repeat fragment of human L3MBTLI can com-
pact nucleosomal arrays within the context of mono- and
di-methylated states, but not the tri-methylated state
of H4K20 and HIbK26 (18). The association of
L3MBTLI with chromatin is dependent on the presence
of H4K20mel and is abolished by the knockdown of the
H4K20 mono-methyltranferase PR-SET7 (18,19). Addi-
tionally, the 4-MBT repeats of human SFMBT were
shown to be both necessary and sufficient for nuclear
matrix association and transcriptional repression as well
as binding to histone H3 and H4 (20). In Drosophila, the
2-MBT-repeat protein Scm is a core component in the
PRCI1 complex, and is essential for the repression of
Hox genes (21). Embryos lacking Scm protein show wide-
spread misexpression of Hox genes and die at the end of
embryogenesis (21-23)

Crystal structures of MBT repeats have been reported
for three proteins: human L3MBTL1 (24-26) and SCML2
(27,28), and Drosophila Scm (23). L3MBTLI contains
three MBT repeats, and the structural studies clearly
delineate the specificity of the second MBT repeat towards
mono- or di-methylated lysines (24,25,29). SCML2 and
Scm both contain two MBT repeats and preferentially
bind to mono-methylated lysine residues through their
second MBT repeat (23,27). Based on the structural and
biophysical characterization, these 3-MBT repeat proteins
selectively bind the lower lysine methylation states of his-
tone peptides without obvious sequence selectivity among
the histone peptides measured to date.

Drosophila Sfmbt, a 4-MBT repeat-containing protein,
has been reported to bind mono- or di-methylated H3K9
and H4K20 peptides (30). Drosophila Sfmbt knockout
experiments revealed that Drosophila Sfmbt is a novel
PcG protein and is critical for HOX gene silencing (30).
The human genome encodes four proteins containing four
MBT repeats. Among these 4-MBT repeat proteins, the
MBT repeat domain of L3MBTL2 has the highest
sequence homology with that of Drosophila Sfmbt
(Supplementary Figure 1). Despite the nomenclature, the
MBT repeat domain of L3MBTL2 has 48% identity with
that of Drosophila Sfmbt, while both SFMBTI and
SFMBT2 MBT domains have only 30% identity with
that of Drosophila Sfmbt. Therefore, like Drosophila
Sfmbt, L3MBTL2 may potentially bind methylated his-
tones and play a role in transcriptional repression.
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Binding data presented in this work indeed reveals that
L3MBTL?2 selectively binds lower methylation degrees
of histone peptides. In order to gain insight into how
L3MBTL2 binds methyl-lysine histones, we have also
determined the structure of a 4-MBT repeat domain of
human L3MBTL2.

MATERIALS AND METHODS
Protein expression and purification

The human L3MBTL2 protein (residues 170-625) was
subcloned into pET28a-MHL vector and transformed
in Escherichia coli BL21 (DE3) Codon plus RIL
(Stratagene). Cells were grown and harvested as described
in (31) in Luria—Bertanin media. The cell pellets were
resuspended in a buffer solution containing 50 mM Tris
8.0, 250 mM NaCl, 5% glycerol and lysed by sonication.
The supernatant fraction obtained by centrifugation at
16000rpm for 1h was passed through a HiTrap Ni
column (GE Healthcare, Piscataway, NJ), which was
then washed and eluted with 20 column volumes of
buffer in a gradient change to 20mM Tris—HCI (pH
8.0), 250 mM NaCl, 500mM imidazole. HiTrap Q HP
column (GE Healthcare, Piscataway, NJ) and Superdex
75 gelfiltration column (GE Healthcare, Piscataway,
NJ) were used for further purification. The protein
was concentrated to 10mg/ml in a buffer containing
20mM Tris—HCI, pH 8.0, 0.2M NaCl, I mM EDTA
and 1mM DTT.

Isothermal titration calorimetry

Isothermal titration calorimetry measurements were per-
formed in duplicate at 25°C, using a VP-ITC microcalori-
meter (MicroCal Inc.). Experiments were performed
by injecting 10 pul of peptide solution (2-4mM) into a
sample cell containing 30-70 uM L3MBTL2 in 25mM
Tris—=HCI, pH 7.5, 200mM NaCl and 2mM B-mercap-
toethanol. Unmodified, mono-methylated, di-methylated
and tri-methylated peptides were dissolved and dialyzed
into the same buffer as L3MBTL2. Tyrosine-containing
peptide concentrations were estimated with absorbance
spectroscopy using the extinction coefficient, &9 =
1280M 'em™'. Otherwise, peptide concentrations were
estimated from the mass. A total of 25 injections were
performed with a spacing of 180s and a reference power
of 13 pcal/s. Binding isotherms were plotted and analyzed
using Origin Software (MicroCal Inc.). The ITC measure-
ments were fit to a one-site binding model.

Protein crystallization

Crystals of all complexes were obtained at 18°C by vapor
diffusion of hanging drops of 1l of 10mgml~" protein
solution with I mM final concentration of peptides
(which is about 5x molar excess peptide by directly
adding peptide to protein solution) mixed with 1pul of a
reservoir solution. The reservoir solution was 10%—-17%
PEG3350, 0.1 M tri-sodium citrate (pH 5.0-5.9), 0.1 M
ammonium acetate or 0.1 M ammonium phosphate,
10mM DTT. Crystals of the L3AMBTL2 fragment itself
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were also obtained in the same conditions. Before flash-
cooling crystals in liquid nitrogen, crystals were soaked
in a cryoprotectant of paratone.

Structure determination

X-ray diffraction data were collected at 100K at APS
BEAMLINE 19-ID at Argonne National Laboratory.
Data were processed using the HKL software package.
The apo-structure of L3IMBT MBT repeat domain has
been solved by molecular replacement in Phaser (32)
using the L3AMBTL1 3MBT structure [10Z2 (26)] as a
search model. Models were placed for two copies each
of repeats 3 and 4, then the structure was completed by
using ARP/wWARP (33) and phenix.autobuild (34) to build
automatically into maps averaged in DM (35). The graph-
ics program COOT (36) was used for manual model build-
ing and visualization. Crystal diffraction data and
refinement statistics for both the apo-form and complex
structures are displayed in Table 1. The atomic coordi-
nates of the refined models have been deposited into the
PDB, and the entries have been assigned the accession
codes 3CEY and 3F70.

RESULTS AND DISCUSSION

L3MBTL2, like L3MBTLI1, selectively binds histone
peptides with mono- or di-methylated lysine

The human L3MBTL2 protein comprises 705 amino
acids, and contains one atypical zinc finger of unknown
function in the N-terminus, and 4-MBT repeats which
could potentially bind lysine-methylated histones,
like human L3MBTLI, SCML2 and Drosophila Scm.
Structural studies of these proteins in complex with his-
tone peptides showed that all these 3 MBT repeat proteins
use a semi-aromatic pocket to recognize mono- or di-
methylated lysine. This semi-aromatic binding pocket is
formed by three aromatic residues and a negatively
charged residue. Sequence alignment results show that
the fourth MBT repeat of L3MBTL2 also contains these
four conserved residues, which we predicted would form
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the potential binding pocket to accommodate methyl-
lysine histones (Supplementary Figure 2). To investigate
if L3AMBTL2 is also able to recognize methyl-lysine
histone peptides, we purified a fragment of human
L3MBTL2 encompassing all four MBT repeats (residues
170625, hereafter referred to as 4MBT), and measured its
binding affinity for histone H4K20 bearing various lysine
methylation states using isothermal titration calorimetry
(ITC). We confirmed that the 4 MBT protein selectively
binds mono- and di-methylated histone peptides in a
monovalent mode, and does not exhibit detectable binding
to any unmodified or tri-methylated peptides (Figure 1).
Furthermore, the ITC-binding data also show that
4MBT binds mono-methylated or di-methylated H3K4,
H3K9 and H3K27 containing peptides with similar affi-
nities (Supplementary Figure 3). Based on the 4MBT-
histone-binding studies, it appears that L3MBTL2, like
L3MBTLI, selectively binds lower-methylated lysine his-
tones and does not have sequence selectivity among
the four sequences tested. Nevertheless, 4MBT binds
mono- and di-methylated lysine centrally located in a pep-
tide more tightly than free mono-methylated lysine
(Supplementary Figure 3). To shed light onto the struc-
tural basis for the selectivity for mono- or di-methylated
lysines over unmodified or tri-methylated lysine histones,
we determined the crystal structure of 4MBT in complex
with a histone H4 peptide with K20 mono-methylated
(H4K20mel).

Overall structure of L3MBTL2

The crystal structure of the 4MBT domain of L3MBTL2
was solved by molecular replacement using L3MBTLI1
[10Z2 (26)] as a search model. The structure of the
L3MBTL2-H4K20mel complex was solved using the
apo-L3MBTL2 structure as a search model. The crystal
diffraction data and refinement statistics for both struc-
tures are summarized in Table 1. These two structures are
almost identical except for extra electron density for the
bound peptide in the L3MBTL2-H4K20mel complex
structure. The overall structure of 4MBT is shown
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Figure 1. Isothermal titration calorimetry data for binding of unmodified and different methylated H4K20 peptides (AKRHRK,,VLRDN in

sequence) to the 4-MBT-repeat domain (4MBT) of L3MBTL2. ND: No detectable binding.



Table 1. Crystallography data and refinement statistics of L3MBTL2

4MBT 4MBT-H4K20mel

Data collection

Space group P2,2,2, P2,2,2,

Cell dimensions

a, b, ¢ (A) 55.64, 55.94, 329.09, 55.93, 56.31, 331.09

a By (), 90, 90, 90 90, 90, 90
Resolution (A) 2.20 2.15

Rinerge 7.4 (30.6) 8.0 (65.8)

I/l 10.5 (1.4) 8.9 (1.5)
Completeness (%) 87.6 (46.2) 98.7 (90.4)

Redundancy 5.9 (1.8) 6.7 (3.8)
Refinement

Number of reflections 44600 54054

Ryori/ Riree 21.0/25.2 20.9/27.1
Number of atoms/B factor (Az)

Protein 6182/35.7 6423/32.5

Peptide NA 20/58.1

Water 166/55.1 366/45.1
R.m.s. deviations |

Bond lengths (A) 0.027 0.021

Bond angles () 1.85 1.88

Figure 2. Only the fourth MBT repeat of L3MBTL2 binds H4K20mel.
(A) Overall structure of 4MBT bound to an H4K20mel peptide
(AKRHRK,,VLRDN). MBTI, MBT2, MBT3 and MBT4 are shown
in blue, yellow, green and purple, respectively. The K20mel lysine is
shown in a stick model. (B) K20mel recognition by the fourth repeat
MBT4. The lysine-binding pocket residues and K20mel are shown in
a stick model. The electron density map 2Fo—Fc is contoured at 1.
The electron density map is calculated with the peptide omitted.

in Figure 2A. The crystal structure of 4MBT shows that
4AMBT exhibits an irregular rhombus architecture
(Figure 2A and Supplementary Figure 4). Consistent
with previously reported structures, each MBT repeat con-
sists of an extended ‘arm’ and a globular 3 subunit core
with the N-terminal arm of each MBT repeat packing
against the B subunit core of its preceding repeat. A
model of the assembly of 4-MBT repeats had been pro-
posed based on the 2-MBT protein SCML2, which pre-
dicted that 4-MBT repeats would form a ring-like
structure with the N-terminal arm packing against the
C-terminal barrel and the other arm packing against
the preceding barrel (28). Surprisingly, the 4-MBT repeats
do not assume a four-blade propeller architecture.
Instead, the last 3-MBT repeats form a three-blade pro-
peller-shaped architecture similar to the packing of

Nucleic Acids Research, 2009, Vol. 37, No.7 2207

L3MBTL2
L3MBTL1

Figure 3. Superposition of the crystal structures of L3MBTLI
and L3MBTL2 MBT domains. L3MBTLI is colored in blue and
L3MBTL?2 is colored in red.

L3MBTLI (Figure 3), and a narrow channel runs through
the middle of the propeller-like structure, which is filled
with water molecules. Nonetheless, the arm of the first
repeat packs against the core of the fourth repeat, as pre-
dicted (28).

Structural basis for binding of the fourth MBT repeat to
H4K20me1 and its preference for lower lysine
methylation marks

The 4MBT-H4K20mel(AKRHRK,,VLRDN) complex
shows that only the fourth MBT repeat (MBT4) bound
to the methyl-lysine histone, confirming our prediction
based on sequence alignments. In the complex, only resi-
due K20mel has well-defined electron density and poor
and discontinued electron density is observed for the
main chain of some flanking residues of the bound histone
H4K20mel peptide. Thus, among the 11 residues of the
peptide, only mono-methylated lysine forms extensive
interactions with 4MBT. As seen for other MBT—peptide
complexes, K20mel is accommodated in a semi-aromatic
‘cage’. Residues Phe570, TrpS573, Tyr577, Leu552, form
hydrophobic walls surrounding the methylated lysine
side chain (Figure 2B). The aromatic rings of Phe570,
Trp573, Tyr577 are approximately perpendicular to one
another as seen in other methyl lysine-binding pockets
(23-25,27). Phe570 forms the floor of the hydrophobic
cage and Trp573, Tyr577 and Leu552 form the other
three sides interacting with the mono-methylated lysine
primarily via van der Waals’ and cation-rt interactions.
The fifth side of the cage harbors negatively charged
Asp546, which interacts with the mono-methylammonium
group of K20mel via a salt bridge mediated by a hydrogen
bond. Similar or identical residues are found in the bind-
ing pockets of other MBT family members with reported
structures. L3AMBTL1, Scm and SCML?2 all use the same
mechanism to selectively recognize lower methylation
states of lysine histones. That is, tri-methylated lysine is
too bulky to fit into the pocket and lacks the ability to
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A L3MBTL1+H4K20me2

B L3MBTL2+H4K20me1

HP1+H3K9me3

Figure 4. L3MBTL?2 uses a cavity insertion recognition mode to recognize methyl-lysine histones. (A) Surface representation of the L3MBTLI
and H4K20me2 complex structure (PDB 2PQW). (B) Surface representation of the L3MBTL2 and H4K20mel complex structure (PDB 3F70).
(C) Surface representation of the HP1 and H3K9me3 complex structure (PDB 1KNE). (D) Surface representation of the Pc and H3K27me3 complex

structure (PDB 1PFB). Peptides are shown in a stick model.

form a hydrogen bond with the negatively charged aspar-
tic acid; unmodified lysine would have much weaker
van der Waals’ and cation-n interactions with the hydro-
phobic cage (13,23-25,27).

Although L3MBTL2 has a distorted rhombus architec-
ture, the 4-MBT repeats of L3MBTL2 have similar 3D
structures, and their globular § subunit cores can be well
superimposed (Supplementary Figure 5). Comparison of
the 4 MBT repeats (denoted MBT1-MBT4) also con-
firmed why the other 3 MBT repeats did not bind to
methyl-lysine histones. In MBT1, a cage is formed by
four residues Trp231, Tyr247, Phe250 and I1e286 from
the globular beta core (Supplementary Figure 6), but
this potential binding pocket is blocked by a loop span-
ning from Asn276 to Trp293 (colored in purple)
(Supplementary Figure 6). Interestingly, a proline residue

Pro283 from the loop occupies the cage, reminiscent of
proline recognition by the L3MBTLI pocket 1 (25). The
MBT2 and MBT3 repeats lack corresponding aromatic
residues identified in MBT4, which are essential for the
methyl-lysine pocket formation. Therefore, although
4MBT contains 4 MBT repeats, only the fourth MBT
repeat binds methyl-lysine histones.

Prediction of methyl-lysine histone-binding ability of other
human MBT repeat proteins

The human genome encodes at least nine MBT repeat
proteins and the binding specificities of three members
have been reported, all of which selectively bind lower
lysine methylation states of histones and do not exhibit
sequence selectivity (23-25,27). On the basis of the
sequence alignment of the MBT repeats of these nine
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Figure 5. Superposition of the structures of all solved peptide-bound MBT repeats viewed from two different directions

(5A and 5B).

L3MBTLI1-H4K20me2 complex is colored in red (PDB 2PQW); L3MBTLI1-H1.5 complex is colored in yellow (PDB 2RHI); Scm and RKmeS
peptide complex is colored in blue (PDB 2R5M); and L3AMBTL2-H4K20mel complex is colored in green (this study). Lysine residues are shown in a

stick model in (A).

MBT repeat proteins (Supplementary Figure 2), it is
predicted that SCMHI, like SCML2, has a lower-
methyl-lysine-binding pocket in its C-terminal MBT
repeat. Interestingly, each of the first two MBT repeats
of L3MBTL3 and L3MBTL4 contains the entire semi-
aromatic pocket forming residues. Therefore, potentially
each L3MBTL3 or L3MBTL4 molecule is able to recog-
nize two mono- or di-methylated lysine marks from either
the same nucleosome or neighboring nucleosomes in a
chromatin context. In addition to L3MBTL2, there are
three other four-MBT repeat proteins. MBTDI1 is highly
homologous to L3MBTL2 and is predicted to bind lower
lysine methylation states of histones using the fourth
MBT repeat. Surprisingly, none of the MBT repeats of
SFMBTI1 or SFMBT2 contains all the required residues
to form an open semi-aromatic pocket to accommodate
methyl-lysine peptides, although it is reported that
SFMBT1 binds histone H3 and H4 through the four
MBT repeat domain (20). Therefore, further structural
and biochemical studies are warranted to delineate the
binding specificities of the other MBT members.

Why does L3AMBTL2 not have sequence selectivity?

All structures of MBT-peptide complexes to date adopt
a ‘cavity insertion recognition mode’ (8), in which the
methyl-lysine forms extensive interactions with a deep
pocket in the protein, and the residues surrounding the
methyl-lysine form few interactions with the protein
(Figure 4A and B). In contrast, for proteins that use the
surface groove recognition mode to bind histones, a well-
defined and complementary binding groove is formed
in the surface of the histone binders (Figure 4C and D).
This complementary binding groove determines the bind-
ing sequence selectivity. This lack of a conserved peptide-
binding surface is illustrated by a superimposition of the
structures of all solved peptide-bound MBT repeats
(Figure 5). While the structures of the MBT repeats are
highly conserved and well superimposed, the orientation

of the flanking peptide is highly variable. These MBT
repeats do not form complementary binding grooves to
constrain the surrounding binding sequence, and therefore
the peptides bind in different orientations. While the cur-
rently published in vitro binding data of MBT domains
with short histone peptides exhibit a broad range of bind-
ing, the limited reports from cell-based studies suggest that
MBT protein function is dependent on modification of
specific histone lysine sites in certain cases. For instance,
the transcription repression activity of LAMBTLI1 appears
to be dependent on H4K20 mono-methylation during
the cell cycle (18,19). Because MBT proteins often exist
within multiprotein complexes, such as L3MBTLI1 and
Scm, in vivo sequence selectivity may potentially be con-
ferred by other components in complexes such as HP1ly
in L3MBTLI1 complex (18), and Pc in the Scm-containing
PRCI complex.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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