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In molecular replacement, the quality of models can be

improved by transferring information contained in sequence

alignment to the template structure. A family of algorithms

has been developed that make use of the sequence-similarity

score calculated from residue-substitution scores smoothed

over nearby residues to delete or downweight parts of the

model that are unreliable. These algorithms have been

implemented in the program Sculptor, together with well

established methods that are in common use for model

improvement. An analysis of the new algorithms has been

performed by studying the effect of algorithm parameters on

the quality of models. Benchmarking against existing tech-

niques shows that models from Sculptor compare favourably,

especially if the alignment is unreliable. Carrying out multiple

trials using alternative models created from the same structure

but using different algorithm parameters can significantly

improve the success rate.
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1. Introduction

Molecular replacement may prove difficult for several reasons:

the data quality may be low, the structure may suffer from

translational pseudosymmetry or other pathologies, the model

may be severely incomplete or (more typically) a very distant

homologue. Although some of these difficulties only apply in

certain special cases, preparing the best model for a rigid unit

(be it a monomer in a multimeric protein, a domain in a

multidomain protein or the whole macromolecule in the case

of single-domain single-copy structures) is of basic importance

in all molecular-replacement searches. Usually structures of

homologous proteins are used for this purpose, although ab

initio models have also proved successful (Qian et al., 2007;

Rigden et al., 2008). However, the unedited structure of a

related protein is not necessarily the best model for the target

structure and it is common practice to perform modifications

to improve the similarity. Homology modelling is a very

powerful technique to make improvements (Qian et al., 2007)

but is computationally intensive, and for certain applications

there is a need for simple quick algorithms.

Although many sensible procedures had been in circulation

for a long time, systematic investigations on the topic started

with the seminal paper of Schwarzenbacher et al. (2004).

Based on experience with a large set of structures, they

formulated several simple modifications that were found to

lead to improvements in the majority of cases. These algo-

rithms have since been implemented in the CCP4 (Winn et al.,

2011) programs CHAINSAW (Stein, 2008) and MOLREP

(Vagin & Teplyakov, 2010). Additional possibilities for

improvement were subsequently described by Lebedev et al.
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(2008) and implemented in MOLREP. A common property

of these methods is that they use information present in the

sequence alignment and also in the model structure itself to

make simple modifications.

However, the available information is not yet optimally

exploited with current methods and making use of further

information could potentially improve the rate of success

for molecular replacement. In this paper, we describe novel

algorithms that allow the capture and combination of infor-

mation from different sources and investigate their effects on

molecular-replacement models.

2. Procedures

Sculptor offers three modification options, which can be run in

any combination: main-chain deletion, side-chain pruning and

B-factor modification. Sculptor takes a model structure and

optional alignments to perform its tasks. A procedure has

been developed to distinguish protein chains from all others

(termed hetero chains) in order to allow the input of model

files containing ligands and solvent. Firstly, the chain type is

established based on the residue content. Protein chains are

identified by most residues being common amino acids, but a

small number of unknown residues (typically modified resi-

dues such as selenomethionine and oxidized cysteine) are

allowed. Incidentally, this also helps to minimize structural

gaps in the processed model, since modified residues can be

included as long as their backbone atoms are named consis-

tently. This procedure may therefore be more robust than

making a decision based on a record being ATOM or

HETATM and also leads to slightly higher model complete-

ness. Protein chains are then paired with a corresponding

alignment (or none if only requesting modifications that do not

require alignment information) and undergo the requested

modification steps. Hetero chains are processed by deleting

everything except specifically named compounds, e.g. a haem

can be retained for haem-binding proteins.

2.1. Sequence-similarity calculation

As the available scoring matrices are on different scales,

normalization is performed so that a perfectly matching

alignment would give a score around 1.0, a randomly aligned

sequence (including random matches) a score around 0.0 and

segments containing consecutive residues that align with gap

positions a score around �1.0. These normalized matrices are

used in all subsequent steps. Sculptor currently includes the

identity, PAM250 (Dayhoff et al., 1978), BLOSUM50 and

BLOSUM62 (Henikoff & Henikoff, 1992) matrices.

To calculate sequence-similarity scores, each alignment

position is scored with the selected matrix. Subsequently, these

primary scores are combined into a moving average by taking

into account a certain number of alignment positions (aver-

aging window) on either side of the position in question with

a simple triangular weighting scheme that gives maximum

weight to the central position, linearly decreasing with the

distance of the position from the centre (Fig. 1).

2.2. Accessible surface-area calculation

Sculptor implements a simple algorithm described by

Shrake & Rupley (1973) in which the surface of each atom is

approximated by a spherical mesh and each point in the mesh

is checked for overlap with every other atom in the structure.

Implementation is based on the discussion at http://boscoh.com/

protein/calculating-the-solvent-accessible-surface-area-asa.

2.3. Main-chain deletion

The decision on whether a residue should be kept or deleted

from the model is made based on the sequence-similarity score

that corresponds to the given alignment position. In addition

to the parameters of the sequence-similarity calculation, this

requires a suitably chosen threshold value above which the

residue is kept and below which it is discarded. This algorithm

may not delete residues that are aligned with gaps if they are

surrounded by high-scoring alignment positions (these resi-

dues are named GAP and are numbered using insertion codes

in the generated model) and may discard residues surrounded

by numerous gap positions (irrespective of whether they are

aligned with residues of the target or not).

Sculptor also provides simple functions to polish the

resulting chain trace, e.g. resulting short main-chain fragments

can be deleted and short deletions in regular secondary

structure (which possibly result from incorrect alignment) can

be reinstated. Similar functionality is available in MOLREP,

which imposes secondary-structure constraints onto the

alignment, but in Sculptor these corrections are made by

analysing the resulting trace. Similar results can be obtained

by using a medium-to-long averaging window, as the

smoothing provided by averaging seems to be sufficient to

correct for these errors.

2.4. Side-chain pruning

Sequence similarity can also be employed in determining

whether or not a side chain should be truncated. Sculptor

supports truncations to two separate levels, namely to the C�

atom and also to the C� atoms based on the value of the

sequence similarity. Firstly, equivalent side-chain atoms are

mapped (and optionally renamed) from the residue type

found in the model to that in the target sequence using a

simple two-dimensional graph-matching procedure. Atoms

that have no counterpart are deleted (Lebedev et al., 2008).
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Figure 1
Graphical representation of the parameters used in sequence-similarity
calculations.



The side chain is then truncated to C� if the sequence simi-

larity is below the C� threshold, truncated to C� if the

sequence similarity is between the C� threshold and the full-

length threshold and not truncated otherwise.

The positions of missing side-chain atoms that are deter-

mined by local geometry can be calculated and these atoms

can be added to the structure. Currently, this is implemented

for missing C� atoms if the necessary main-chain atoms are all

present. Coordinate prediction is performed by superimposing

an ideal Ala on the current residue.

2.5. Sequence-similarity and accessible surface area-based
B-factor calculation

Coordinate errors of atoms can be reflected in the model

by replacing atomic B factors with a measure proportional to

the expected error. Potential measures that are available in

Sculptor include sequence-similarity and accessible surface-

area scores. Since the proportionality constant should be

negative for sequence similarity (one would expect highly

homologous segments to be more conserved and therefore to

have a higher weight, which corresponds to a lower B factor),

B factors calculated with a linear combination could be

negative. This is avoided by adding a constant if necessary so

that the minimum B value is 10 Å2. In Phaser (McCoy et al.,

2007), calculated structure factors are normalized so that the

results are not affected by a constant shift in B factors.

2.6. Benchmarking

A benchmark suite was compiled using randomly selected

structures with experimental data available from the PDB

(Berman et al., 2002). Only cases with one molecule in the

asymmetric unit were considered. For diversity, each target

structure was chosen from a different SCOP (Murzin et al.,

1995) protein family in one of the most common SCOP

protein classes (�, �, �/� and �+�). Suitable models for these

targets were selected from a BLAST search (Altschul et al.,

1990). Typically, only models below 40% sequence identity

were kept, although a few higher sequence-identity models

were also included for particular tests. A total of 23 target

structures were selected, with a total of 291 possible models

(Fig. 2). Statistics of the benchmark suite are shown in Table 1.

Sculptor was then used to modify the models according to

several protocols (Table 2). Molecular replacement was

performed using Phaser running in automated mode and using

diffraction data to 2.5 Å resolution. Map correlation coeffi-

cients (MapCC) against the target structure were calculated

for potential solutions using utilities in PHENIX (Adams et al.,

2010) and molecular replacement was deemed to be successful

if the MapCC was above 0.2. The solution was deemed to be

identifiable if the corresponding translation-function Z score

was above 7.0. The quality of solutions was measured in terms

of their log-likelihood gain. These values were compared with

the log-likelihood gains yielded by a reference protocol that

corresponds to the algorithm in Schwarzenbacher et al. (2004)

(protocol 1). Differences were normalized and averaged to a

single quality parameter for a protocol. Cases were only

included in the final average if both the reference and the

protocol being evaluated managed to find a solution. Results

are summarized in Table 3.

2.7. Determination of parameter values

A preliminary study suite containing four target structures

was selected from the benchmark suite (one from each SCOP

class) and used to explore the effect of algorithm parameters
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Figure 2
Sequence-identity distribution of models used in the benchmark suite.
Solution statistics are indicated for ClustalW alignments. Reference,
solved by the reference protocol (protocol 1); cumulative, solved by any
protocols; unsolved, no solutions found.

Table 1
Statistics of the benchmark suite.

Targets marked with asterisks were also included in the preliminary study
suite, with the number of models shown in parentheses.

Target SCOP
family

No. of
residues

Data
resolution
(Å)

No. of
models

Sequence-identity
range (%)

1aa2 a.40.1.1 108 2.01 8 21.3–30.6
1az5 b.50.1.1 99 2.00 14 20.2–36.4
1cm3 d.94.1.1 85 1.60 12 18.8–38.8
1emf d.22.1.1 225 2.40 13 20.9–37.1
1hj9* (15) b.47.1.2 230 0.95 15 24.2–40.8
1hp7 e.1.1.1 376 2.10 20 21.8–47.1
1iom a.103.1.1 374 1.50 11 25.2–47.7
1jdl* (10) a.3.1.1 118 1.70 16 19.0–38.0
1lds b.1.1.2 97 1.80 19 18.0–46.5
1n9n d.110.3.6 108 2.30 13 15.6–37.6
1npl b.78.1.1 109 2.00 5 16.5–28.4
1o4v c.23.8.1 183 1.77 3 15.3–21.3
1phw c.1.10.4 284 2.36 6 20.6–27.9
1r29* (10) d.42.1.1 127 1.30 14 20.5–38.7
1upi b.82.1.1 225 1.70 14 25.3–40.5
1xcd c.10.2.7 329 2.31 11 19.8–32.7
1z45 b.30.5.4 + c.2.1.2 699 1.85 19 20.9–54.0
1zzo c.47.1.10 136 1.60 14 17.6–27.9
2azz a.133.1.2 124 2.20 19 18.2–45.9
2dhq c.23.13.1 146 2.00 8 20.5–36.3
2i5f b.55.1.1 109 1.35 14 17.4–35.8
2iyw* (5) c.37.1.2 184 1.85 12 16.3–37.0
1nqc b.1.18.10 138 2.05 11 22.5–38.3



on the quality of the resulting models. The parameters were

explored on one-dimensional or two-dimensional grids that

were made sufficiently large to see all effects.

In order to separate changes in model quality from other

aspects of the search that may influence whether or not a

solution is found, instead of performing molecular replace-

ment the log-likelihood gain was calculated by substituting the

model for a previously established solution and performing

rigid-body refinement. The Z score was then calculated from a

random sample of 500 translations.

Parameter combinations for models yielding high log-

likelihood gain scores were collected and analysed to see

whether correlations could be found between the score and

model or alignment properties. Optimal parameter combina-

tions and established relationships were used in defining the

protocols investigated in benchmark calculations.

2.8. Effect of alignment accuracy

It has been established by Schwarzenbacher et al. (2004)

that a correct alignment is very important for optimal modi-

fication. However, since different modification algorithms may

vary in their tolerance of alignment inaccuracies, comparisons

were made using alignments generated as follows.

(i) A structural alignment from LSQMAN (Madsen &

Kleywegt, 2002) was taken as the best alignment possible

(macro taken from the OMAC repository). These alignments

were prepared using strict spatial tolerances (3.5 Å) to ensure

that residues are only put in equivalent positions if they are

spatially close when superposed, so that one would model the

other reasonably well.

(ii) A similar structural alignment was prepared with

LSQMAN but with more generous spatial tolerances (8.0 Å).

This results in less fragmented alignments in which moderate

structural deviations (e.g. a loop in a different conformation)

are permitted. This can be regarded as the best alignment that

might be possible using an ideal sequence-alignment tool

without any structural information.

(iii) ClustalW (Larkin et al., 2007) sequence-based align-

ments were used to explore the effect of common alignment

errors. For certain models, FFAS (Jaroszewski et al., 2005)

alignments were also used for comparison with other align-

ments.

3. Results

Sequence-similarity-based model-editing algorithms can be

regarded as generalized versions of the algorithm introduced

by Schwarzenbacher et al. (2004). In the original algorithm,

residues in the model that are aligned with residues in the

target sequence are kept, whereas those that align with a gap

are deleted. This can be thought of as using a simple residue–

gap binary-choice matrix that gives a score of 1.0 if the residue

is aligned with a residue and of �1.0 if it is aligned with a gap.

This concept can be extended by using residue-substitution

matrices to measure the distance between amino-acid substi-

tutions, since certain amino-acid substitutions (e.g. Tyr to Phe)

are less disruptive to the main-chain conformation than others.

Moreover, in the case of amino-acid substitutions involving

highly homologous side chains one can also expect the posi-

tions of side-chain atoms to be fairly conserved, while in the

case of other substitutions this approximation has only proved

to be valid up to the C� atom. These differences can be

captured with an appropriate scoring matrix.

Sequence-based alignments also tend to contain smaller

errors in the form of misalignments. This may have a negative

effect on the resulting molecular-replacement model. One way

of handling the problem is to decrease the ‘resolution’ of the
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Table 2
Protocols used in benchmark calculations.

For main-chain deletion, only the identity scoring matrix was employed. ‘Variable’ thresholds were calculated from the respective sequence alignment. Protocol 1
corresponds to the algorithm published by Schwarzenbacher et al. (2004).

Protocol Main-chain
window

Threshold Side-chain
matrix

Window Threshold B factor

1 0 0.0 Identity 0 1.0 Original
2 3 �0.2 Identity 0 1.0 Original
3 5 Variable Identity 0 1.0 Original
4 0 0.0 BLOSUM62 1 0.2 Original
5 5 Variable BLOSUM62 1 0.2 Original
6 0 0.0 Identity 0 1.0 Sequence-similarity based (matrix = BLOSUM62,

window = 5, factor = �80)
7 5 Variable Identity 0 1.0 Sequence-similarity based (matrix = BLOSUM62,

window = 5, factor = �80)
8 0 0.0 Identity 0 1.0 Accessible surface area-based (factor = 12)
9 5 Variable Identity 0 1.0 Accessible surface area-based (factor = 12)
10 0 0.0 Identity 0 1.0 Sequence-similarity based (matrix = BLOSUM62,

window = 5, factor = �60) + accessible surface area-based
(factor = 8)

11 5 Variable Identity 0 1.0 Sequence-similarity based (matrix = BLOSUM62,
window = 5, factor = �60) + accessible surface area-based
(factor = 8)

12 5 Variable BLOSUM62 1 0.2 Sequence-similarity based (matrix = BLOSUM62,
window = 5, factor = �60) + accessible surface area-based
(factor = 8)



alignment and spread information contained in neighbouring

positions. On one hand, this averaging procedure models the

effect the substitution has on the structure, namely it perturbs

neighbouring positions. On the other hand, this may act as

a noise filter that converts the inherently discrete nature of

sequence alignments to a smooth function, reduces large

variations and identifies longer-range tendencies.

3.1. Use of sequence similarity in model editing

Structural differences between homologous proteins

include insertions, deletions and conformational changes. It

was investigated whether sequence similarity could be used to

locate and correct these. A high-precision structure-based

alignment was prepared; sequence-similarity values were

calculated and mapped onto the main chain. This calculation

was repeated using a sequence-based alignment and differ-

ences between the two results were compared visually.

It was found that long insertions corresponding to extra

domains were easily identified from sequence-similarity scores

using both alignments. The results differed more with shorter

(several residue) insertions, but results from sequence-based

alignments still matched those from structural alignments

relatively well. A typical scenario is shown in Fig. 3. When

using an averaging window of zero and the binary scoring

matrix, a structural alignment clearly highlights residues that

deviate spatially (Fig. 3a). When using a sequence-based

alignment, good results can be achieved with the binary

scoring matrix and slightly better results with BLOSUM62

(Figs. 3b and 3c). With both matrices, the accuracy of the

results can be further improved if sequence-similarity scores

are averaged over neighbouring positions (Fig. 3d).

Interestingly, more significant differences were found when

deletions were studied. Structural alignments still clearly

identify deviating residues (Fig. 4a). However, with an aver-

aging window of zero no substitution matrices are able to

identify the same regions (Figs. 4b and 4c). This asymmetry

is caused by the lower precision of non-structure-based

alignment algorithms, which are able to identify the presence

of deletions but not conformational changes in nearby resi-

dues that result from the deletion. In this case, information
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Figure 3
Sequence-similarity scores calculated with various settings for an
insertion in the model (PDB entry 2b9l; Piao et al., 2005). The target
structure (PDB entry 1hj9; Leiros et al., 2001) is shown in grey. Sequence
similarity was calculated using (a) a high-precision structural alignment
(target, HCY– – – – –– – –– –KSGIQVR; model, HCVNSYQSNLDA-
I– –– –KIR) using the binary scoring matrix and a null averaging window,
or an FFAS alignment (target, HCYKS– – –– – –GIQVR; model, HCV-
NSYQSNLDAIKIR) and (b) the binary matrix and a null averaging
window, (c) BLOSUM62 and a null averaging window or (d) BLOSUM62
and an averaging window of five. Blue indicates high sequence similarity,
while red indicates areas in which sequence similarity is low. The figures
were generated using MOLSCRIPT (Kraulis, 1991) and were rendered
with RASTER3D (Merritt & Bacon, 1997).

Table 3
Comparison of results from benchmark jobs.

There are a total of 291 models in the benchmark suite. Protocol descriptions are shown in Table 2. Any, solved by any protocols; All, solved by all protocols.
Solved, a solution with MapCC � 0.2 (with respect to the target structure) has been found. Identifiable, a solution with TFZ � 7.0 has been found. Gain: average
fractional difference in log-likelihood gain with respect to protocol 1.

LSQMAN (strict) LSQMAN (tolerant) ClustalW

Protocol Solved Identifiable Gain Solved Identifiable Gain Solved Identifiable Gain

1 183 126 — 173 119 — 159 102 —
2 182 127 �0.042 174 115 �0.003 163 104 �0.001
3 182 124 �0.021 173 112 �0.002 165 102 0.005
4 178 127 0.004 179 123 �0.007 160 99 �0.011
5 182 126 �0.018 173 116 �0.007 160 101 �0.012
6 185 129 0.035 182 127 0.026 164 100 �0.007
7 182 129 0.006 181 118 0.016 162 103 �0.002
8 182 134 0.033 177 123 0.031 158 108 0.050
9 185 129 0.009 173 122 0.028 165 109 0.056
10 188 135 0.093 180 128 0.096 162 113 0.098
11 186 133 0.066 181 130 0.089 162 113 0.100
12 188 136 0.092 178 124 0.114 163 110 0.113
Any 199 146 — 190 137 — 183 123 —
All 165 111 — 155 99 — 134 87 —



about the proximity of deletions needs to be propagated

to neighbouring residues. This can be achieved using longer

averaging windows and the resulting sequence-similarity

scores can indicate the deletions more accurately (Fig. 4d).

Structural alignments also clearly indicate regions that

deviate structurally. In favourable cases, structural deviations

can also be detected using sequence-similarity scores calcu-

lated from sequence-based alignments. In this case, it is

essential to use longer averaging windows in sequence-

similarity calculations and the results are also significantly less

accurate than those that could be calculated from structural

alignments if structural alignments were available prior to

structure solution.

3.2. Main-chain deletion

To employ sequence-similarity scores for deleting residues

that are not present or deviate significantly from their coun-

terparts in the target, a suitable threshold value needs to be

selected. This value was determined by performing calcula-

tions on a small sample and adjusting thresholds to optimize

the log-likelihood gains of the models obtained. The presence

of a correlation could be established between these quantities.

It was found that optimum threshold values yielded models

that contained as many residues (�5%) as there were aligned

positions in the sequence alignment. It is interesting to note

that the algorithm published by Schwarzenbacher et al. (2004)

also arrives at the same number by simply deleting all residues

from the model that align with gaps in the target. Several

exceptions were found when ClustalW alignments were used,

but these could all be attributed to alignment errors. Optimal

models for these cases contained fewer residues than aligned

positions in the sequence alignment. On the other hand,

optimal values for the averaging window parameter used in

sequence-similarity calculation varied unpredictably. Optimal

values are potentially dependent on the spread of structural

perturbations through the main chain, which is dependent on

the individual case. Interestingly, the log-likelihood gains of

the resulting models were not greatly affected by averaging

window choice if correct deletion thresholds were used.

Three protocols were formulated and evaluated with the

benchmark suite to assess performance on a large sample. In

all three cases the identity matrix (1.0 if the residues are

identical, �1.0 if one of them is a gap position and 0.0

otherwise) was used to calculate sequence similarity. For

protocol 1, which corresponds to the algorithm in Schwar-

zenbacher et al. (2004), both the averaging window and the

deletion threshold were set to zero. In protocol 2, the aver-

aging window parameter was set to three and the threshold to

a fixed value corresponding to the average of best parameter

values as determined in the preliminary study over the studied

sequence-identity range. In protocol 3 the averaging window

parameter was set to five and the deletion threshold was

chosen to give a model that contained the number of residues

aligned in the corresponding sequence alignment.

Results indicate that when strict alignments from LSQMAN

are employed a shorter averaging window is more advanta-

geous; models generated by protocol 1 have on average 2–4%

higher log-likelihood gain than those generated by protocols 3

and 2, respectively. This may be attributed to the alignment

being so accurate that smearing out the signal is counter-

productive. With less accurate (but more realistic) alignments

(including that from LSQMAN with more tolerant settings),

the differences are negligible. As expected from preliminary

results, protocol 2 does not perform as well as protocol 3. On

the other hand, all protocols occasionally lead to solutions that

are not located by other protocols.

3.3. Side-chain pruning

To enable the use of sequence-similarity scores in side-chain

pruning similar to the algorithm of Schwarzenbacher et al.

(2004), suitable threshold values need to be found (only

single-level pruning to the C� atom was performed in order to

enable comparisons with the original algorithm). These were

determined from a small-scale study using the identity and

BLOSUM62 matrices. The quality of the best models yielded

by the algorithm with the two different scoring matrices

showed only minor differences. However, short averaging

windows gave better results in sequence-similarity calculations

with BLOSUM62, while on the whole longer averaging
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Figure 4
Sequence-similarity scores calculated with various settings for a deletion
in the model (PDB entry 1hj9). The target structure (PDB entry 2b9l) is
shown in grey. Alignments are identical to those used for Fig. 3, but the
roles of target and model are reversed. Sequence similarity was calculated
using (a) a high-precision structural alignment using the binary scoring
matrix and a null averaging window, or an FFAS alignment and (b) the
binary matrix with a null averaging window, (c) BLOSUM62 and a null
averaging window or (d) BLOSUM62 and an averaging window of five.
Blue indicates high sequence similarity, while red indicates areas in
which sequence similarity is low. The figures were generated using
MOLSCRIPT (Kraulis, 1991) and rendered with RASTER3D (Merritt &
Bacon, 1997).



windows were better with the identity matrix. The optimal

pruning threshold was identical for both matrices.

To assess the performance on a larger benchmark, two

protocols were formulated. Protocols 1 and 3 were modified so

that side-chain pruning is performed using sequence-similarity

scores calculated with the BLOSUM62 matrix, using an

averaging window of one and the optimal pruning threshold

(protocols 4 and 5). These protocols led to solutions with a

slightly higher log-likelihood gain than those provided by

protocol 1 when accurate alignments from LSQMAN were

used (compared with results obtained with the respective basis

protocols), but became progressively worse with decreasing

alignment accuracy.

3.4. B-factor calculation

3.4.1. Sequence similarity. It has been established that low

values of sequence similarity correlate with large structural

differences. This correlation could be exploited to weight the

model structure according to expected coordinate errors. This

was studied by replacing B factors with those calculated from

sequence-similarity scores. It was established from calcula-

tions on a small sample that longer averaging windows were

needed in sequence-similarity calculations for this to work

well. Suitable values of the proportionality factor between

sequence-similarity scores and B factors were also determined

from this sample.

Two protocols were set up to test this method with models

from the benchmark suite. As before, protocols 1 and 3 were

modified to include main-chain weighting using sequence-

similarity scores calculated with the BLOSUM62 matrix and

an averaging window of five. To calculate atomic B factors

from the scores, a proportionality constant of�80 (protocols 6

and 7) was used. The results indicate a strong dependence on

alignment precision. The average log-likelihood gain increases

by around 3% with respect to the corresponding basis

protocol for structure-based alignments, but decreases by

about 0.5% for alignments created with ClustalW. However,

since sequence similarity is a property of alignment position

only one B factor per residue could be used, which is a rela-

tively simple B-factor model and may not be optimal.

3.4.2. Accessible surface area. It has been reported by

Lebedev et al. (2008) that accessible surface area can be used

to improve model quality. However, since in Sculptor the

accessible surface area is calculated using the original struc-

ture, while in MOLREP this is performed after main-chain

deletion, it was expected that optimal values for the propor-

tionality factor between accessible surface area and B factors

would differ between the two programs. The optimum for

Sculptor was determined from calculations performed on a

small sample.

Two protocols were formulated to study the method on a

larger sample. As before, protocols 1 and 3 were modified

to reset atomic B factors to values calculated from accessible

surface-area values with a proportionality factor of 12

(protocols 8 and 9). Generally good results were achieved.

When compared with the respective protocols that they were

based on, both protocols 8 and 9 resulted in a 3–5% increase in

log-likelihood gain. Interestingly, greater improvements were

found with less precise alignments. This may be attributed to

the frequent occurrence of incorrectly aligned residues on the

surface.

It should be noted that inclusion of this procedure may lead

to a worse model than the original in some circumstances (e.g.

multimer models) and because of the selection criteria applied

for the benchmark set the results may be biased. In difficult

cases it is therefore worthwhile to try models generated with

and without this step as well.

3.4.3. Combination of accessible surface area and
sequence similarity. Accessible surface area is an indepen-

dent measure from sequence similarity (although the two will

be correlated) and it was studied whether a combination of

the two would be more powerful. Firstly, optimal values for

proportionality factors were determined for the combination

(sequence similarity was calculated using the BLOSUM62

matrix with an averaging window of five). The obtained

proportionality factors were similar to, although slightly lower

than, the optimal values when the methods were used in

isolation.

To establish the performance of the combined method,

protocols 1 and 3 were modified to replace atomic B factors

with values calculated using a combined protocol (protocols

10 and 11) and calculations were performed on the benchmark

suite. Unexpectedly good results were obtained in terms of the

number of solutions, number of identifiable solutions and log-

likelihood gain. The increase in log-likelihood gain was about

8–9% when compared with the respective basis protocol,

which is approximately twice as much as one would expect

from adding up the gains achieved by the individual methods.

It is likely that the combination is more tolerant to exact

parameter choices and will perform optimally over a wider

parameter range, since the two methods generate B-factor

distributions that are similar and therefore one can compen-

sate for errors in the other.

It should be noted that accessible surface-area values as

calculated in MOLREP may include an indirect contribution

from sequence similarity, since accessible surface area will

increase in low-sequence-similarity regions owing to many

atoms being deleted from the model.

3.5. All-methods combination

The existence of further correlations between main-chain

deletion, side-chain pruning and B-factor calculation was

revealed when a protocol based on protocol 11 but also

containing side-chain pruning as in protocols 4 or 5 (protocol

12) was formulated and calculations were performed using

the full benchmark suite. Minor or no improvements were

expected based on the established performances of protocols 4

and 5, but significant improvements were observed. This may

indicate a synergistic effect between side-chain pruning

(performed using sequence-similarity scores) and B-factor

calculation, potentially the part that is based on accessible

surface area. The exact mechanism of this is not clear,
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although it is likely to emerge as a consequence of pruning

being an extreme form of B-factor modification.

3.6. Multi-protocol strategies

The number of test cases that could be solved by any

protocol was determined and was found to be significantly

higher than the number of solutions obtained with any single

protocol for all three alignments. Improvements in the number

of solved cases were around 10% of the solutions found by

the best protocol, while up to 20% more solutions could be

identified from search statistics. This improvement is even

more impressive when compared with the number of border-

line cases, which is estimated by the number of cases that were

not solved by all protocols: the multi-protocol strategy leads to

50–100% more borderline cases being solved.

It was found that a subset of all protocols would lead to the

same number of solved cases. These were protocols 1, 6, 9, 10,

11 and 12 for strict LSQMAN alignments, protocols 2, 6, 7, 8

and 11 or 2, 6, 7, 10 and 11 for tolerant LSQMAN alignments

and protocols 2, 6, 7, 10, 11 and 12 or 2, 7, 5, 10, 11 and 12

for ClustalW. There are several common features in these

combinations, as follows.

(i) All combinations contain at least one protocol with a

short averaging window and one protocol with a long aver-

aging window. Protocols with a short averaging window tend

to perform better with a more accurate alignment, indicated

by their share dropping from 3/6 with strict LSQMAN align-

ments to 2/5 with tolerant LSQMAN alignments to 1/6–2/6

with ClustalW alignments.

(ii) There are usually several B-factor models used. In

almost all combinations, identical models (in terms of atoms

contained) are tested with three different B-factor protocols.

(iii) In every combination, there is at least one protocol that

is among the best performers in terms of the average log-

likelihood gain of models. However, certain protocols also

appear in many combinations despite their seemingly low

performance (e.g. protocols 6 and 7).

4. Discussion

There are several quality indicators for the success of mole-

cular replacement. However, when using Phaser the single

value that has so far been found to be the most informative is

the Z score for the translation search for the last component,

for which a value above 7.0 (in the absence of certain data

pathologies, e.g. translational pseudosymmetry) usually indi-

cates a correct solution. On the other hand, low values of the Z

score do not exclude success and typically one has to make a

judgement taking several parameters into account, such as

the number of distinct solutions with similar quality and

the absolute value of the log-likelihood gain. It frequently

happens that a solution has been found but it is not possible to

identify it from the search statistics. In such a case, automated

rebuilding calculations may identify one of the candidates as

a true solution (Keegan & Winn, 2007; Long et al., 2008;

Schwarzenbacher et al., 2008). Visual inspection of the model

in the electron density is rarely helpful, as nonsolutions can

also give very clear (but incorrect) maps. However, it can be

useful to look for features in the map that are missing from the

model.

Unfortunately, the translation-function Z score is depen-

dent on many factors and is not an absolute measure of model

quality. However, the log-likelihood gain is a semi-absolute

quantity that can be compared between models if calculations

were made using the same reflection data. There were also

very strong correlations (>0.9) observed between the Z score

and the log-likelihood gain in preliminary studies; notable

exceptions were models that contained large incorrect

segments owing to alignment errors. We could therefore

assume that models that yield higher log-likelihood gains will

also give better Z scores and would be more suitable for

molecular replacement.

Analysis of Table 2 shows that there is generally a weak

correlation between fractional log-likelihood gain and number

of solutions found (0.78, 0.50 and 0.13 for strict and tolerant

LSQMAN and ClustalW, respectively). On the other hand,

there is a relatively strong correlation between fractional log-

likelihood gain and number of identifiable solutions (0.90, 0.72

and 0.95, respectively). Therefore, protocols that yield models

with higher log-likelihood gains are more likely to provide

solutions that can be identified from search statistics.

Exploring a range of protocols can be instrumental in covering

model space and finding unique solutions.

4.1. B-factor calculations

There are multiple criteria that optimal B factors should

conform to: they have to match the B-factor distribution of the

target structure and at the same time downweight structural

regions that potentially differ between the target and the

model. The original B factors of the model are therefore a

good default choice since they provide a B-factor distribution

that resembles a real protein structure. However, they are

influenced by crystal packing, which is not a transferable

property from one protein model onto another. It may

therefore be advantageous to replace the original B factors

with those calculated from other sources. It was found that a

combination of B factors calculated from accessible surface-

area and sequence-similarity values performs favourably and

may be used as a default choice. An alternative method would

be the combination of the original B factors with those

calculated from sequence-similarity scores, in which case the

original model B factors would be responsible for matching

the B-factor distribution of the target, while those calculated

from sequence similarity would downweight potentially

different regions.

4.2. Diversity of resulting models

By combining the results of all protocols used in benchmark

runs, a significantly larger number of cases could be solved

than with any single model alone. This indicates that by

changing algorithm parameters or enabling/disabling modifi-

cation techniques such as B-factor adjustment, the structures
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obtained are sufficiently diverse that they could be employed

in molecular replacement as unique models although they are

based on the same structural template. Similar behaviour can

be observed on a set of ensemble models truncated to various

r.m.s.d. cutoffs (Konagurthu et al., 2010). Exploring all

homologues first would possibly still be a more efficient

approach.

4.3. Multisolution approach

It is tempting to speculate on how the best coverage of

accessible model space could be achieved. Based on obser-

vations made on best-performing protocol combinations, the

following may be beneficial.

(i) Varying the averaging-window parameter for main-chain

deletion can have a large effect on the resulting trace. Good

results could be obtained when a combination of one short

and one longer averaging window was used. This may be

improved slightly by trying additional values. Longer aver-

aging windows perform better for less accurate alignments.

(ii) Calculating atomic B factors according to simple

B-factor models (sequence similarity, accessible surface area)

works surprisingly well. It may therefore be beneficial to

explore additional B-factor models. One possibility would be

to employ original model B factors to estimate the B-factor

distribution of the target in combination with predicted co-

ordinate error weighting calculated from sequence-similarity

and accessible surface-area values.

To some extent, the powerful but computationally intensive

combinatorial trimming technique described by Schwarzen-

bacher et al. (2008) can be approximated by this approach. It is

not clear how many different protocols are necessary to obtain

optimal performance, but a moderate number seems to give

good results.

4.4. Effect of alignment accuracy

Benchmark results indicate that accurate alignments would

enable more models to be successfully used in molecular

replacement (Schwarzenbacher et al., 2004). Interestingly,

there even seem to be differences in success rate between

high-precision LSQMAN and more tolerant LSQMAN

alignments. ClustalW alignments are significantly less

successful, although one has to note that ClustalW has not

been optimized for the studied sequence-similarity range.

Limited calculations performed using FFAS alignments

suggest that their success rate is fairly close to that of struc-

tural alignments.

When cumulative results with models generated from a

single template using several protocols are compared the

differences are minute and ClustalW performs almost as well

(at least in terms of the number of solved structures) as a

structural alignment prepared using tolerant settings, which

approximates the best that might be achieved by sequence-

based alignments. This may indicate that smaller errors can be

compensated efficiently by using a number of protocols. More

accurate alignments still seem to be important in helping

solutions stand out from the noise, as indicated by the number

of identifiable solutions being higher for structure-based

alignments.

4.5. Visual editing functionality

Sculptor has many options and their effects on the resulting

structure are somewhat obscure. Therefore, an interface

between Sculptor and Coot (Emsley et al., 2010) has been

developed, originally to visualize the effect of algorithm

parameters on main-chain and side-chain atoms. When a

protocol is set up, the interface provides visual feedback

indicating residues that will be deleted and makes it easy to

visually optimize parameters to obtain plausible models that

are not fragmented but have likely flexible parts deleted.

Inability to obtain such models may indicate alignment errors.

Manual main-chain editing is also supported to enable the

user to make smaller modifications to the resulting trace. The

interface allows quick model generation, so that a series of

models can be created and tried in molecular replacement

straight away.

5. Conclusions

The model-editing program Sculptor has been written to

prepare and correct models for molecular replacement and

offers a selection of editing algorithms with a flexible interface

to define processing protocols. Implementing several algo-

rithms in one program has the additional benefit that available

algorithms can also be used in combination, increasing the

number of possibilities even further. In addition, novel algo-

rithms have been developed that can utilize the information

contained in sequence alignments (including multiple

sequence alignments) to a larger extent. The combination of

all these features makes Sculptor a powerful tool. A visual

interface (utilizing the Coot toolkit) has also been developed

to help users experiment with available options and define

optimal protocols.

Benchmarks performed with Sculptor confirm that it can

generate a diverse set of molecular-replacement models from

a single template structure. Although some of these models

may perform better than those that are in current use,

significantly better results can be obtained if these are

employed as alternatives in a molecular-replacement search.

This strategy can increase the success rate by up to 30% in the

20–30% sequence-identity region and can also compensate for

alignment inaccuracies. A selection of protocols that maxi-

mizes diversity would therefore enhance the success rate in

molecular-replacement pipelines.

Sculptor (including the Sculptor–Coot interface) is currently

available in the PHENIX suite (http://www.phenix-online.org).

Work is ongoing on incorporating it into the CCP4 suite and

the development of a ccp4i GUI is also in progress.

The authors would like to thank Robert Oeffner for

compiling a database of molecular-replacement trials and for

testing Sculptor, Airlie McCoy for discussions, Paul Emsley

and Bernhard Lohkamp for their help with Coot scripting
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