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Abstract: As primary producers, plants rely on a large above ground surface area to collect 

carbon dioxide and sunlight and a large underground surface area to collect the water and 

mineral nutrients needed to support their growth and development. Accessibility of the essential 

nutrients nitrogen and phosphorus in the soil is impacted by many factors that create a variable 

spatiotemporal landscape of their availability both at the local and global scale. Plants optimize 

uptake of the nitrogen and phosphorus available through modifications to their growth and 

development and through the engagement with microorganisms that facilitate their capture. The 

sensing of these nutrients, as well as the perception of overall nutrient status shape the plant’s 

response to its nutrient environment, coordinating its development with microbial engagement to 

optimize nitrogen and phosphorus capture and regulate overall plant growth.  

One Sentence Summary: Plants have adapted to survive in a variable landscape of nutrient 

availability through changes in their development and adjustments in microbial engagement, 

controlled by common local and systemic signaling processes. 

Introduction 

While plants are dependent on the capture of a number of elemental nutrients from the soil, the 

principle nutrients that limit plant productivity are nitrogen (N) and phosphorus (P). Acquisition 

of these nutrients is essential for crop performance, but levels of these nutrients in most 

agricultural soils limit productivity. Thus, these nutrients are typically applied at high 

concentrations, in the form of inorganic fertilizers, to support global food production. However, 

the global supply of P, which is sourced from rock mining, is finite and the manufacture of 

reactive N for fertilizer is currently dependent on fossil fuels to drive the energy-intensive Haber-

Bosch process (1). Where farmers can afford fertilizers, their use is often profligate, and while 

this ensures crop productivity it also creates problems due to the environmental release of these 

nutrients (2), which reduces biodiversity and contributes to climate change (3, 4). The opposing 

problem exists for small-holder farmers in developing nations, who generally lack the financial 

resources to utilize inorganic fertilizers, with their crop yields suffering as a consequence (5). A 

more sustainable and equitable agriculture will be less dependent on inorganic fertilizers than the 

current state of play. 

Because of the central importance of N- and P-availability in both natural and agricultural 

ecosystems, we focus this review on plant perception, acquisition and response to these two 

nutrients. Where these nutrients are ample, the ratio of root:shoot biomass allocation can be low 

with minimal root systems capturing sufficient nutrients. Typically, vegetative growth is 

extended, allowing resource accumulation and investment in seed production. In environments 

where these nutrients are limiting overall growth is reduced, but root systems are expanded and 
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colonization by microorganisms is encouraged, to facilitate nutrient capture. We now have a 

detailed knowledge of the processes that control the plant’s response to N and P and in this 

review we attempt to summarize this understanding. Virtually all of the work we describe is 

derived from model plant systems and while there are ample opportunities to use this knowledge 

to improve sustainable productivity in agriculture, this requires extensive research in crops.   

 

Root developmental adaptations to N-availability 

Plants are reliant on reactive forms of N, of which nitrate (NO3-) is the most prevalent in soils, 

although ammonium and amino acids can also be present (6, 7). N-limitation results in biomass 

allocation to the root at the expense of the shoot (Fig. 1). Where N supply is uniformly low, 

lateral root growth is promoted and when N is uniformly high, lateral root growth is suppressed 

(Fig. 1) (8). However, when N supply is uneven, lateral roots proliferate into local patches of 

high N (9) and this N-foraging response has been well studied for NO3- (10). These effects are 

particularly clear in split root experiments (11), in which the root system is divided at an early 

stage in development with different nutrient treatments supplied to the two halves of the root 

system feeding one plant (12). Lateral root growth is promoted when both compartments have 

low N, but is suppressed in the low N-compartment and promoted in the high N-compartment in 

differentially treated plants (Fig. 1). The shoot is essential for mediating these root responses in 

split root systems, since the root response is lost following decapitation (12). These results 

contribute to a growing body of evidence suggesting that the root response to N involves four 

signaling processes: (1) local signaling in the root associated with perception of local N; (2) root-

shoot-root signaling indicating the presence of roots experiencing low [N]; (3) root-shoot-root 

signaling indicating the presence of roots experiencing locally high [N]; and (4) a systemic 

inhibitory signal that suppresses root N-foraging activities when shoot [N] is sufficient.  

 

Mechanisms of N sensing and response 

Signal 1: Local perception and uptake of NO3- 

Because NO3- is an important N-source, plants have developed processes for NO3- uptake, as 

well as the ability to sense NO3- directly at the plant surface (13). One protein, Nitrate 

Transporter (NRT)1.1, a plasma membrane transceptor, contributes to both high and low affinity 

NO3- uptake and acts as a receptor for the perception of NO3- (14-16). NRT1.1 controls 

responses to different NO3- concentrations (17). A switch in NRT1.1 mode of action, controlled 

by phosphorylation (18), involves a suite of calcium-regulated kinases (14, 19), that dictates the 

dimerization state of the protein (20, 21), which switches this transceptor from a low to a high 

affinity NO3- transporter (18) and affects the modality of signaling (14, 17).   

At least three additional classes of NO3- transporters contribute to low- and high-affinity 

uptake (22, 23). NRT1.1 controls the expression of these additional transporters, especially 

NRT2.1 (24), through a NO3--induced calcium influx into the cytosol and nucleus (Fig. 2) (25, 

26). The calcium transient has two primary modes of action: further regulation of NRT1.1 (14, 

27, 28) and induction of calcium-sensor protein kinases (Fig. 2) that phosphorylate the 

transcription factor NIN-like protein (NLP)7 (26). NLP7 is excluded from the nucleus, but NO3-- 

induced phosphorylation drives NLP7 into the nucleus (26, 29), where it upregulates the MADS 

box transcription factor Arabidopsis Nitrate Response (ANR)1, that promotes lateral root 

proliferation into NO3--rich patches (8) and nitrate transporters to drive further uptake of nitrate 

(29-31). 
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Signal 2: Long distance signaling to indicate local N-depletion 

C-Terminally Encoded Peptides (CEPs) have emerged as regulators of systemic N-signaling 

(32). These peptides are produced in roots experiencing N-limitation and activate NO3- 

transporters, such as NRT2.1, in roots where NO3- is plentiful (Fig. 1) (33). CEP peptides travel 

to the shoot through the xylem, where recognition by CEP receptors (33) leads to production of a 

second class of peptides, CEPDs (34). CEPDs are produced in leaves but function in roots where 

they upregulate NRT2.1 expression in locations where NO3- is ample (34). However, there is no 

preferential transport of CEPDs to roots expressing NRT2.1 (34), suggesting that additional 

signals must integrate with this systemic signal, to drive the local response. We suggest that the 

CEPD signal likely integrates with the local NO3- response (signal 1; Fig. 2) to coordinate root 

growth into nitrate-rich compartments. The transcription factor TCP-domain family protein 20 

(TCP20) has a function in the systemic N-response (35), that interacts with NLP6 and NLP7 (36) 

and is therefore a candidate to integrate the systemic and local N-responses (Fig. 2).  

 

Signal 3: Activating N-foraging in N-rich patches 

Cytokinin biosynthesis is promoted in roots perceiving high NO3- (Fig. 1) (37) and translocated 

to the shoot, where it coordinates growth (38). Deficiency in cytokinin biosynthesis blocks the 

N-foraging response but can be counteracted by addition of cytokinin even in roots under low-N 

(12). This suggests that cytokinin acts as a root-to-shoot signal from patches of high N-

availability and coordinates with the CEP-signal, since the effect of cytokinin only occurs when 

there are roots in low NO3- (12, 39). CEPD production may be directly or indirectly dependent 

on cytokinin (Fig. 1), allowing for integration of signals indicating locally low N-supply with 

signals indicating locally high N-supply.  

 

Signal 4: Coordinating root growth with shoot N-status 

Plants also assess their overall N-status (40) and use the information to modulate growth and 

metabolism as well as to balance carbon (C)- and N-acquisition. Amino acids or NO3- may act as 

proxies for N status (41-43).  Although amino acids and NO3- contribute to N-status sensing (44), 

there is an intrinsic problem with using these alone to signal global N-status. Doing so is 

equivalent to assessing one’s financial situation based only on the current account balance: 

projected income, expenditure and savings all add to the demand for N and must be considered 

when calculating responses to nutrient environments. The N-sufficiency signal (possibly relative 

to C-supply) must integrate with the CEP and cytokinin signals to block N-foraging when shoot 

N is sufficient (8, 44).  

 

Root developmental adaptations to P-availability 

As for N supply, plants also adjust their root system architecture in response to P (45, 46), 

primarily available in soil as phosphate (PO4-). As with NO3-, there are different responses to 

PO4- whether spatially uniform or supplied heterogeneously. While the roots of PO4- deficient 

plants proliferate into patches of high P (47), in a similar way to N (48), their responses to 

uniformly low P are significantly different. Under uniformly low PO4-, primary root growth is 

repressed, lateral root growth promoted and root hairs elongated, but total root system length 

remains remarkably constant (47). These differences are consistent with PO4- having limited 

mobility in soil, with greatest availability in topsoil, whereas NO3- is freely mobile (49). Dense 

foraging in topsoil improves PO4- capture, while low density exploration of a large soil volume 

improves NO3- capture. Such dynamic root responses are important for P-capture: suppressing 
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lateral root production does not impede competitiveness under N-limitation, but does under P-

limitation (50). PO4- has systemic effects on root development (47), but gene expression in split 

roots suggests root growth is primarily regulated by local PO4-, whereas systemic P-signaling 

regulates genes associated with PO4- uptake and assimilation (51).  

 

Mechanisms of P-sensing and response 

Responses to local sources of PO4- 

P-regulation of root system architecture is driven by the local perception of PO4- at the root tip 

(52) and involves changes in multiple plant hormones (Fig. 3). Primary among these are complex 

patterns of auxin redistribution: increased auxin levels in primary root and young lateral root 

tips, but decreased auxin levels in older lateral root tips (53, 54). These auxin dynamics function 

alongside other P-starvation signals to coordinate root development: strigolactones (55-57), the 

peptide hormones Root Growth Factor (RGF)1 and RGF2 (58); DELLA-domain containing 

proteins that accumulate under the declining concentrations of gibberellins (59) and ethylene, 

which controls root hair elongation (60-63). These hormonal changes must together coordinate 

the root developmental responses to P-availability, but the mechanisms of integration need to be 

established. 

 

Systemic signaling under P-limitation 

Systemic signaling between the root and the shoot is implicated in P-regulation of shoot growth 

and the regulation of PO4- transporters (45). PO4- itself is implicated as a systemic signaling 

molecule (64), but as outlined for N, additional signals are required for the plant to ascertain its 

full P-status and needs. Strigolactones act as systemic P-availability signals (56), coordinating 

shoot growth (65), while cytokinins are downregulated under P-starvation (66), to remove a 

transcriptional repression (67, 68). The systemic P-starvation transcriptional response is induced 

by the transcription factor Phosphate starvation response (PHR)1 and its homologs (69, 70), that 

are regulated by PO4-, through the availability of phytate (71-73) (Fig. 3). PHR1 contributes to 

the systemic regulation of PO4- transporters in roots (74-76) through shoot derived microRNAs 

(77): miR399 (78-80) and miR827 (81, 82), that can be regulated by microRNA mimics (83).  

 

Microbes to the rescue under nutrient deprivation 

Plant engagement with microorganisms can improve nutrient acquisition: mutualistic arbuscular 

mycorrhizal associations increase the surface area for PO4- and NO3- capture, while symbiotic 

nitrogen-fixing bacteria convert N2 into NH4+. The arbuscular mycorrhizal association dates to 

the earliest land plants (84). In these early land plants the fungal association likely provided the 

primary interface for nutrient capture, facilitating the transition from an aquatic to a terrestrial 

lifestyle (84). Because of the early origin for this symbiosis, the arbuscular mycorrhizal 

association is widespread in the plant kingdom and intricately networked with plant nutrient 

capture physiology. The evolutionary processes that underpinned the emergence of arbuscular 

mycorrhizal associations also facilitated the evolution of other intracellular symbioses (85). 

However, independent losses of these symbioses, associated with loss of the underpinning 

genetic networks (86-89), suggests a cost for these symbioses, with negative selection in 

environments or plant lifestyles where microbial nutrient services are no longer advantageous. 

Supporting these microbes’ energy needs (90), as well as the plants’ need to suppress immunity 

to facilitate symbiont colonization (91) may drive selection against these associations when they 



Submitted Manuscript: Confidential 

5 

 

are no longer of value. The molecular components that guide plant developmental responses to 

the nutrient environment also coordinate engagement with microorganisms.  

 

Regulation of N-fixing associations 

Mutualistic bacterial associations facilitate N-capture through the fixation of N2 by the bacterial 

enzyme nitrogenase. Many such N-fixing bacterial associations have evolved across the plant 

kingdom, ranging from intracellular colonization of specialized root organs, known as nodules 

(92), to bacteria existing outside the root in polysaccharide matrices (93). The most effective 

associations, demonstrated by legumes, involve intimate engagement between intracellular N-

fixing bacteria housed inside membrane-bound compartments within root nodule cells (92). 

Nodules allow a gaseous environment to be created that optimizes N-capture and facilitates 

integration of plant and bacterial metabolism ensuring ammonia released to the plant (94).   

Because of the high energetic costs of bacterial N-fixation, this process generally only 

benefits the plant when it is starved for N but has ample C (95, 96). Thus the association is 

regulated according to both N and C-availability (97). Nodulation is controlled by the CEP 

peptides and their receptors (98-100), suggesting that as plants evolved N-fixing capabilities they 

linked the decision to engage with these symbionts to existing low-N signals. In addition plants 

evolved a second systemic signaling process to regulate the total level of N-fixation, so-called 

autoregulation of nodulation (101) (Fig. 4). This system restricts further engagement with N-

fixing bacteria after a first round of colonization, but also regulates this process according to the 

availability of NO3- (101). Here, CLE peptides are produced in the root following recognition of 

N-fixing bacteria, then transported to the shoot, where receptor recognition leads to the 

suppression of miR2111 expression, that acts as a shoot-root signal to inhibit a negative regulator 

of nodulation (101, 102). Thus high levels of miR2111 create a symbiotically permissive state, 

while inhibition of miR2111 expression switches the plant to a symbiotically restrictive state 

(Fig. 4). This systemic signaling process is linked to local NO3- perception through NIN-like 

proteins that also activate the expression of CLE peptides in the root and can block aspects of 

nodulation signaling (103, 104). Thus regulation of N-fixation has integrated both local and 

systemic processes that control plant responses to N-availability.  

 

Regulation of arbuscular mycorrhizal associations 

Arbuscular mycorrhizal fungi are dependent on their host plant for C (90), making PO4--uptake 

through this association costly and hence regulated according to P-availability (105). Evidence is 

emerging that the mechanisms controlling systemic autoregulation of nodulation also regulate 

mycorrhization (101, 106), implicating miR2111. Indeed, miR2111 is induced under P-starvation 

(82). The role of miR2111 in regulating N-fixation may be another manifestation of the 

recruitment of pre-existing plant-mycorrhizal signaling to nodulation (85). Additional P-

starvation induced components also regulate mycorrhizal colonization: DELLAs, which 

accumulate in the absence of gibberellins (the situation under low-P), are positive regulators of 

mycorrhization (107) and strigolactones act as plant signals to mycorrhizal fungi (108), 

promoting fungal processes necessary for the interaction. A signaling process related to that of 

strigolactones, but involving karrikin-like molecules, is essential for mycorrhizal colonisation 

(109), but there is no evidence yet that karrikin-like signals are associated with plant nutrient 

status. It appears that multiple apocarotenoid molecules, including strigolactones and perhaps 

karrikin-like, coordinate plant development and microbial associations (110) and there may be 

other unknown signaling molecules in this class of small metabolites. Once established the level 
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of PO4- supply by the fungus is monitored and if insufficient PO4- is forthcoming, the plant 

blocks the fungal association (111). Similarly, N supply from N-fixing associations is monitored 

(112). Such constant substantiation of the delivery of nutrients helps limit the emergence of 

microbial cheaters that might colonize the root to gain benefits without providing nutrient 

services.  

 

Coordinating the root microbiome with plant P status 

Plants engage with a diversity of microorganisms in the rhizosphere. Some of these commensal 

associations can facilitate nutrient acquisition. The demonstration that a species of 

Colletotrichum can confer plant fitness (113) highlights the delicate balance between mutualist 

and pathogenic lifestyles, since many closely related species of Colletotrichum are plant 

pathogens. Facilitation of plant acquisition of PO4- can be via direct delivery of PO4-, as in the 

case of Colletotrichum tofeldiae (113), or may be due to the reprogramming of the plant’s PO4- 

uptake machinery upon fungal colonisation, as proposed for Piriformospora indica (114). These 

commensal associations are also regulated by components that control the plants’ broader 

response to its nutrient status: C. tofeldiae infection and rhizosphere bacterial communities are 

regulated by P-status in a manner dependent on PHR1 (113, 115). P-starvation is associated with 

the suppression of immunity in Arabidopsis (115), implying that plants are willing to take risks 

under nutrient starvation in order to facilitate colonization by associative microorganisms to help 

in the capture of nutrients.  

 

Integration 

A focus on single nutrient treatments is a key limitation to many of the studies that have led to 

our current understanding of the plant response to its nutrient environment. N- and P-availability 

are not alone in directing the degree of plant performance, other factors such as light, water, 

other nutrients and prevalence of pests and pathogens, all dictate the way in which the plant 

should partition resources to optimize performance. Plants coordinate their developmental and 

microbial responses to N- and P-availability with their capacity to fix C. For example, light 

intensity can be relayed by the phytochrome B-responsive transcription factor Elongated 

Hypocotyl (HY)5, which acts as a mobile shoot-to-root signal that regulates N and P acquisition 

(116, 117). HY5 has functions in both root developmental adaptations and the regulation of 

symbiotic N-fixation (116, 118). Similarly, plant responses to water availability are modulated 

by the availability of N (119) and the water stress signaling system that functions through 

abscisic acid directly affects the local root response to NO3- (19). The plant is reliant and 

responsive to a wide array of nutrients (120) and these must be measured in combination to 

optimize plant performance. N- and P-responses are integrated (121) and affected by the 

availability of a range of additional nutrients (122), but the underlying mechanisms for such 

nutrient coordination are only just beginning to emerge (123-125).  

 

Conclusions 

Plants have adapted to survive spatiotemporally variable environments, including the variable 

landscape of nutrient accessibility. A combination of local nutrient sensing in the root with 

systemic signaling integrated in the shoot creates the response to the nutrient landscape, whether 

low or high in nutrient content, patchy or continuous. Under nutrient deprivation, plants turn to 

microorganisms to help facilitate nutrient capture through processes linked to developmental 

adaptations to nutrient availability. N and P are critical for global food production.  Opportunities 
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exist to adapt crop performance such that N and P-use is improved even as environmental 

sustainability is enhanced. Although our understanding of how plants engage with their nutrients 

has advanced, few examples exist where such knowledge has impacted plant performance and 

this is almost certainly related to the fact that virtually all our understanding described in this 

review derives from studies in model, not crop, plants. Years of plant breeding under high-

nutrient environments have left us with some crop varieties that are poor at optimizing use of 

limited nutrients (126). Nonetheless, many processes exist in plants to ensure productivity under 

poor nutrient conditions, some of which are already accessible in the diversity of crop species 

(127). It is time we applied the deep understanding in model plants to impart improvements of 

crops to wean the global population from its dependency on inorganic fertilizers.  
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Figure 1: N-response and signaling 

(A). A schematic of the root responses of Arabidopsis plants grown in uniform high N (NO3-; 

dark grey), uniform low N (light grey) and differential treatments of high and low N, based on 

knowledge generated from split-root experiments. Note how the root responses are opposite to 

the local treatments in uniform versus differential treatments. Underpinning these responses are 

CEP peptides produced in roots experiencing low N, cytokinins produced in roots experiencing 

high N, and an N-sufficiency in the shoot, that likely all regulate shoot-root signaling, that at 

least involves CEPD. Systemic signaling is integrated with local signaling (indicated by red), 

induced by local perception of NO3- (see Figure 2).  
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Figure 2: Local NO3- perception and signaling 

NO3- is both perceived and transported by the transceptor NRT1.1. Phosphorylation of NRT1.1 

affects both transport and signaling and is controlled by a range of calcium-induced protein 

kinases (CIPK). NRT1.1 signaling results in a calcium (Ca++) induced transient across the plasma 

membrane, that activates a suite of calcium-dependent protein kinases (CPK) that phosphorylate 

NLP7, allowing its transport into the nucleus. NLP7 interacts with a second transcription factor 

TCP, that facilitates the integration of the local NO3- response with the systemic N-status, likely 

through the action of CEPD. At least some of the targets of NLP7 are the transcription factor 

ANR, that coordinates root growth according to N-availability, and high affinity NO3- 

transporters such as NRT2.2.  
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Figure 3: Signaling P-availability 

A summation of signaling processes activated under P-starvation (light grey), versus presence of 

ample P (dark grey). Multiple hormones are affected by P-availability, as indicated. Auxin levels 

are also affected in complex ways, not demonstrated in the figure. Systemic signals associated 

with P-availability are strigolactones, outputs from PHR1 transcriptional regulation and 

microRNAs, that control the levels of phosphate transporters PHT1 and PHO1. Under P-

sufficiency PHR1 action is blocked by SPX through its interaction with phytate (IP6) and this 

suppression is released upon P-starvation. 
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Figure 4: Regulation of symbiotic associations 

Plants that enter intracellular symbioses have a symbiotically permissive state under low N or 

low P environments, regulated by CEP peptides, the absence of gibberellins (GA) and the 

induction of miR2111. The target for miR2111 is Too much love (TML), that is a negative 

regulator of nodulation. Plants that are permissive to symbiosis perceive lipochitooligosaccharide 

(LCO) elicitors produced by arbuscular mycorrhizal fungi and N-fixing rhizobial bacteria. 

Strigolactones, produced under P-starvation, and flavonoids act as plant signals to mycorrhizal 

fungi or rhizobial bacteria respectively. Symbiotically restrictive conditions are generated either 

as a result of high nutrients or previous colonization by symbiotic microorganisms leading to the 

accumulation of CLE peptides, that suppress miR2111 expression via the SUNN/HAR1 receptor.    
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One page summary 

Background 

While plants are dependent on the capture of a number of elemental nutrients from the soil, the 

principle nutrients that limit plant productivity are nitrogen (N) and phosphorus (P). Acquisition 

of these nutrients is essential for crop performance, but levels of these nutrients in most 

agricultural soils limit productivity. Thus, these nutrients are typically applied at high 

concentrations, in the form of inorganic fertilizers, to support global food production. However, 

their use causes environmental nutrient release, which reduces biodiversity and contributes to 

climate change and many poor farmers around the world lack the financial resources to recognize 

the improved crop productivity that fertilizers provide. A more sustainable and equitable 

agriculture will be less dependent on inorganic fertilizers than the current state of play. 

Advances 

Where N and P are ample, the ratio of root:shoot biomass allocation can be low with minimal 

root systems capturing sufficient nutrients. Typically, vegetative growth is extended, allowing 

resource accumulation and investment in seed production. In environments where these nutrients 

are limiting overall growth is reduced, but root systems are expanded and colonization by 

microorganisms is encouraged, to facilitate nutrient capture. Plants can recognize a patchwork of 

nutrient availability and activate root growth within this patchwork to optimize nutrient capture.  

Plant are able to measure multiple facets of nutrient availability: local sensing of nutrients in the 

soil; roots experiencing nutrient deprivation; roots experiencing high nutrient availability and the 

total nutrient requirements of the plant. Such sensing involves an integration of root and shoot 

signaling, with a variety of hormones moving between the root and the shoot to both signal 

nutrient availability and coordinate plant development. Such root-shoot-root signaling is 

essential to allow plants to grow into local nutrient patches, but to do so only when there is 

sufficient need for that nutrient.  

A number of microorganisms have unique capabilities for the capture of N and P from the 

environment, for instance N-fixing bacteria can access nitrogen from the atmosphere, something 

plants are unable to do, while arbuscular mycorrhizal fungi can access insoluble forms of 

phosphate in the soil, that are mostly inaccessible to plants. Under situations where plants are 

unable to access N and P from their immediate environment, they turn to these microorganisms 

to allow new sources of these limiting nutrients. It is now apparent that many of the processes 

that coordinate the plants’ developmental response to nutrient availability, also regulate the 

plants’ interaction with microorganisms. These processes regulate the plants receptiveness to its 

microbial communities, promoting symbiotic associations and restricting immunogenic 

processes.  

Outlook 

Although our understanding of how plants engage with nutrients has advanced, few examples 

exist where such knowledge has impacted plant performance and this is almost certainly related 

to the fact that much of our understanding derives from studies in model, not crop, plants. Years 

of plant breeding under high-nutrient environments have left us with some crop varieties that are 

poor at optimizing use of limited nutrients. Nonetheless, many processes exist in plants to ensure 

productivity under poor nutrient conditions, some of which are already accessible in the diversity 



Submitted Manuscript: Confidential 

19 

 

of crop species. There are now many opportunities to utilize the knowledge generated in model 

systems to optimize the performance of crop plants under nutrient limitation.  
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