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Abstract Mammalian oocytes are arrested in the dictyate stage of meiotic prophase I for long

periods of time, during which the high concentration of the p53 family member TAp63a sensitizes

them to DNA damage-induced apoptosis. TAp63a is kept in an inactive and exclusively dimeric

state but undergoes rapid phosphorylation-induced tetramerization and concomitant activation

upon detection of DNA damage. Here we show that the TAp63a dimer is a kinetically trapped

state. Activation follows a spring-loaded mechanism not requiring further translation of other

cellular factors in oocytes and is associated with unfolding of the inhibitory structure that blocks

the tetramerization interface. Using a combination of biophysical methods as well as cell and ovary

culture experiments we explain how TAp63a is kept inactive in the absence of DNA damage but

causes rapid oocyte elimination in response to a few DNA double strand breaks thereby acting as

the key quality control factor in maternal reproduction.

DOI: 10.7554/eLife.13909.001

Introduction
The p53 protein family with its three members p53, p63 and p73 plays very important roles in the

surveillance of genetic and cellular stability (Levine et al., 2011). Probably the most ancient function

of this family is the maintenance of genetic quality in germ cells since even short lived eukaryotic ani-

mals express a p63-like protein in their germ cells (Ollmann et al., 2000; Derry et al., 2001;

Brodsky et al., 2000; Suh et al., 2006; Ou et al., 2007). In mammals, up to 10 diverse p63 isoforms

exist with the longest one, TAp63a, being highly expressed in primary oocytes that are arrested in

prophase of meiosis I. After homologous recombination, oocytes are kept in this dictyate arrest

phase until they are recruited for ovulation, a period that can take decades in humans. Once oocytes

reenter the cell cycle, expression of TAp63a is lost (Suh et al., 2006). Since p63 can initiate
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apoptosis the high expression level of TAp63a in oocytes requires that its activity is tightly regu-

lated. Recently we could show that TAp63a assembles into a closed and only dimeric conformation

in which the protein is inactive (Deutsch et al., 2011). Detection of DNA damage leads to activation

of p63 triggered by phosphorylation (Suh et al., 2006; Bolcun-Filas et al., 2014) that results in the

formation of open tetramers with a twentyfold higher DNA binding affinity and the induction of

apoptosis.

This p63-based quality control is unique to oocytes, making them very sensitive to DNA damage.

Irradiation with 0.45 Gy is sufficient to eliminate all p63-expressing oocytes in mice while all sur-

rounding cells of the ovaries survive. To understand the mechanism of inhibition and activation we

have started to characterize the structural requirements for the formation of the closed and dimeric

state of TAp63a. In previous experiments we have shown that the very C-terminus contains a trans-

activation inhibitory domain (TID) that is of central importance for creating the closed dimeric state

(Serber et al., 2002; Straub et al., 2010). We have suggested a model in which both the C-terminal

TID and the N-terminal transactivation domain (TAD) interact with the central tetramerization

domain (TD) thereby preventing the formation of tetramers. This central TD is a dimer of dimers sug-

gesting that blocking the interface by which two dimers form a tetramer is the most likely mecha-

nism of inhibition. In the past we have identified mutations in all three domains – TAD, TD and TID –

that break the inhibitory mechanism, establishing that at least these three domains are involved in

this process. In the absence of a high resolution structure we have now used systematic alanine scan-

ning and charge swap mutagenesis in combination with SAXS (small angle X-ray scattering) experi-

ments to build a model of the closed and dimeric complex. In addition, we show that the inhibited

conformation is a kinetically trapped state and that the oocyte contains all factors necessary to acti-

vate p63 without requirement of further protein expression. Together our data show that activation

of TAp63a follows a spring-loaded mechanism and explains why oocytes are far more sensitive to

DNA damage than the surrounding follicular cells.

eLife digest The irradiation and chemotherapy drugs that are used to destroy cancer cells also

damage healthy cells. Germ cells – from which egg cells and sperm cells develop – are particularly

vulnerable as they contain sensitive quality control mechanisms that kill any cell that contain

damaged DNA. Consequently, after surviving cancer many patients are confronted with infertility.

A protein called p63, which is closely related to another protein that suppresses the formation of

tumors, plays an essential role in detecting and responding to DNA damage. In immature egg cells

(also known as oocytes), p63 mostly exists in an inactive form. The protein then switches to an active

form when DNA damage is detected to trigger the process of cell self-destruction.

Now, Coutandin, Osterburg et al. have performed a range of biochemical, biophysical and cell

culture experiments to study how p63 is kept in its inactive form in the oocytes of mice. The

experiments showed that in the inactive form, the two ends of the protein form a sheet that closes a

key site on the protein and prevents it from changing into its active form. However, this closed form

can be thought of as being like a spring-loaded trap – it doesn’t take much energy to spring the

trap and open the protein into its active form. Once this change has occurred, it is irreversible.

Coutandin, Osterburg et al. also found that the oocytes of mice already contain all the proteins

necessary to activate p63. This means that once the switch to the active form is triggered there is no

delay waiting for other proteins to be made, which makes oocytes extremely sensitive to DNA

damage. Further work is now needed to investigate the exact molecular mechanisms behind the

activation of p63.

DOI: 10.7554/eLife.13909.002
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Figure 1. Mapping of structurally important regions within dimeric TAp63a. (A) Domain organization of TAp63a: transactivation domain (TAD), DNA

binding domain (DBD), tetramerization domain (TD), sterile alpha motif (SAM) domain, transactivation inhibitory domain (TID). The minimal construct of

TAp63a (TAp63amin) lacks the first 9 and the last 27 amino acids as well as linker regions between TAD and DBD (64–119), TD and SAM (417–453; 460–

505) and SAM and TID (571–593). Residues 454–459 were used as a linker between TD and SAM. (B) WB and corresponding bar diagram of pull-down

experiments with constructs lacking either the DBD or the SAM domain using immobilized TID. Ratio of pull-down (P) and input (I) is shown relative to

TAp63a(10–614) (set to 1). Pull-downs were performed in technical triplicates and error bars denote standard deviation. (C,D,F,H) TAp63a(10–614)

constructs were expressed in rabbit reticulocyte lysate (RRL) and subjected to size exclusion chromatography (SEC). SEC profiles were obtained by WB

(using an anti-myc antibody). (C,D) SEC profiles of TAp63a (10–614) DSAM (C; pink) and TAp63a (10–614) R(DBD; sfGFP) (D; green) compared with wild type

(TAp63a(10–614), grey). R(DBD; sfGFP) indicates the replacement of the DBD by sfGFP. (E) Secondary structure prediction and mapping of structural

motifs that stabilize the dimeric TAp63a. Cylinders and arrows represent a-helices and b-strands, respectively. Mutations (color-coded and indicated by

filled circles) were introduced into TAp63a(10–614) on different faces of predicted secondary structure elements. The TAD is subdivided into TA1

(residues 10–26), TA2A (33–41) and TA2B (46–61). The TA1 forms an a-helix and the F16/W20/L23 motif constitutes the single interaction motif of the

TA1. See Figure 1—figure supplement 5 for a thorough mapping of the TA1. (F) The two faces of the b-stranded TA2B were mutated (residues i, i+2, i

Figure 1 continued on next page
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Results

Defining the minimal sequence required for formation of the closed
dimeric conformation
TAp63a contains three folded domains, the DNA binding domain (DBD), the tetramerization domain

(TD) and the SAM domain that are linked by unstructured regions. NMR experiments with a tetra-

meric construct containing all three folded domains showed that these domains behave indepen-

dently as pearls on a string (Figure 1—figure supplement 1). All sequences outside of these folded

domains are not structured in isolation but may be folded when interacting with other segments of

the protein as part of the inhibitory mechanism. To identify the exact sequence elements required to

form the closed state, we systematically deleted sequences in these linker regions. Deletion of

sequences crucial for the formation of the closed state results in the formation of an open conforma-

tion. Previously we have shown that the open state can be detected by a conformation sensitive

pull-down experiment: tetrameric mutants with an intact TAD can be pulled down with a GST-TID

construct (569–616) (Straub et al., 2010). Thus, mutants that cannot be pulled down are assumed to

adopt the closed dimeric state. After several rounds of deletion mutagenesis, a minimal dimeric con-

struct was obtained. Size exclusion chromatography combined with multi angle light scattering

(SEC-MALS) confirmed that this minimal construct (TAp63amin) comprising deletions D(1–9; 64–119;

417–453; 460–505; 571–593; 615–641) is a stable dimer in solution (Figure 1A and Figure 1—figure

supplement 2B). In addition, deletion of amino acids 322–342 between DBD and TD does not dis-

rupt the dimeric state (Figure 1—figure supplement 3), but results in quite low expression levels in

E. coli. For the experiments described below we have, therefore, used either TAp63amin, wild type

Figure 1 continued

+4 to alanine). SEC profiles of I50A I52A M54A (orange) and K49A E51A S53A (blue). See Figure 1—figure supplement 6 for a thorough mapping of

the TA2. SEC of I50A I52A M54A was performed in technical triplicates and error bars denote standard deviation. (G) Transcriptional activities of

TAp63a TD mutants on the p21 promoter in SAOS2 cells. Triple and double alanine mutations were introduced on the central hydrophobic interface of

the TD. Bar diagrams show n-fold induction relative to the activity of the empty vector. Experiments were performed in biological triplicates and error

bars denote standard deviation. (H) Mutations were introduced on the two faces of the TID b-strand. SEC profile of R598A I600A (red), E597A V599A

D601A (blue), V603A F605 L607A (green) and R604A R608A (purple), Q609A I611A F613A (green) and R604A R608A (purple). See Figure 1—figure

supplement 7 for SEC profiles of other mutants. (I) Central hydrophobic interface of the dimeric TD, showing the important I378 L382 M385 motif. (J)

Transactivation assay of TAp63a(10–614) mutants that appeared tetrameric in previous experiments (see F, H and Figure 1—figure supplement 7).

Transcriptional activities on the p21 promoter in SAOS2 cells were normalized to the protein level (determined by WB and referenced on GAPDH level).

Experiments were performed in biological triplicates and error bars denote standard deviation.

DOI: 10.7554/eLife.13909.003

The following figure supplements are available for figure 1:

Figure supplement 1. Domains behave as pearls on a string in tetrameric p63.

DOI: 10.7554/eLife.13909.004

Figure supplement 2. SEC-MALS proves the dimeric nature of TAp63amin.

DOI: 10.7554/eLife.13909.005

Figure supplement 3. Deletion of 322–342 does not disrupt the dimeric state.

DOI: 10.7554/eLife.13909.006

Figure supplement 4. DBD is not essential to retain the dimeric state.

DOI: 10.7554/eLife.13909.007

Figure supplement 5. The TA1 forms an a-helix.

DOI: 10.7554/eLife.13909.008

Figure supplement 6. Mapping of structural motifs in the TA2.

DOI: 10.7554/eLife.13909.009

Figure supplement 7. Mapping of structural motifs in the TID.

DOI: 10.7554/eLife.13909.010

Figure supplement 8. Mapping of structural motifs in the TD by measurement of transcriptional activities.

DOI: 10.7554/eLife.13909.011

Figure supplement 9. Validation of structural motifs by pull-down with GST-TID.

DOI: 10.7554/eLife.13909.012

Figure supplement 10. Transcriptional activities of tetrameric TAp63g mutants.

DOI: 10.7554/eLife.13909.013
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TAp63a or a slightly shortened version TAp63a(10–614) lacking unstructured sequences in the N- and

C-terminus (Figure 1—figure supplement 2).

The SAM domain and the DBD are not essential to retain the dimeric
state
In contrast to the TD, an involvement of the SAM domain and DBD in the formation of the closed

dimeric state is not immediately obvious. To investigate whether these domains participate in the

stabilization of the closed conformation we deleted each domain separately in TAp63a(10–614) and

performed pull-down experiments with GST-TID. Interestingly, deletion of the SAM domain did not

show any significant pull-down and size exclusion chromatography confirmed the formation of

closed dimers (Figure 1B and C). On the contrary, deletion of the DBD resulted in a strong pull-

down signal suggesting an open state (Figure 1B). Initially we expected the DBD to participate in

essential domain-domain contacts that stabilize the closed conformation and therefore conducted

an extensive mutagenesis screen of surface residues of the DBD (Supplementary file 1). However,

none of the mutants formed tetramers making this hypothesis unlikely. Alternatively, the DBD may

be important for geometric reasons, acting as a spacer between TAD and TD. To test this hypothe-

sis, we replaced the DBD by superfolder GFP (sfGFP) which is very stable and of similar size as the

DBD. SEC analysis of this chimeric protein expressed in rabbit reticulocyte lysate (RRL) suggested

that it adopts a closed dimeric conformation (Figure 1D). Moreover, mutations F16A W20A L23A

within the TAD and F605A T606A L608A within the TID resulted in the formation of a tetrameric

state similar to experiments with wild type TAp63a (Straub et al., 2010) (Figure 1—figure supple-

ment 4C and E). Similarly, replacement of the DBD by MBP enables the formation of a closed

dimeric state (Figure 1—figure supplement 4F). These results suggest that the DBD does not par-

ticipate in essential domain-domain interactions necessary to form the dimeric state and that the

closed dimeric state of TAp63a is formed by interaction of the N-terminal TAD, the central TD and

the C-terminal TID. Nonetheless, constructs that only contain these three domains did not form

dimers but aggregated, suggesting that the DBD or a domain of similar size is necessary for struc-

tural reasons or for the folding process.

Mapping of the TAD-TD-TID interaction
To build a first model of the closed state we used secondary structure prediction programs to iden-

tify potential secondary structure elements within the TAD and TID and alanine scanning in combina-

tion with SEC analysis to experimentally verify these predictions. The theoretical analysis predicted

the existence of an a-helix in the TA1 region, two b-strands in the TA2A and TA2B regions of the

TAD and a b-strand in the TID (Figure 1E). Alanine scanning of the TA1 confirmed that only muta-

tions of F16, W20 and L23 that have previously been identified as crucial for binding of the TA1 to

the TD (Deutsch et al., 2011), disrupted the closed conformation while mutations on the three

remaining faces of the hypothetical helix had no effect (Figure 1—figure supplement 5).

To test the existence of the various b-sheets we mutated all amino acids on one side of each pre-

dicted b-strand to alanine (i, i+2, i+4). While mutations on both faces of the presumed first beta-

strand (TA2A) did not affect the oligomeric state (Figure 1—figure supplement 6B), the mutations

I50A I52A M54A located on one face of the predicted TA2B b-strand disrupted the dimeric state

(Figure 1F). Alanine scanning of the TID showed that mutations on both sides of the presumed b-

strand disrupt the dimeric state (Figure 1H and Figure 1—figure supplement 7B).

Stabilizing the dimeric state is most likely achieved by blocking the tetramerization interface of

the TD and we also used alanine scanning of the TD to identify essential residues (Figure 1—figure

supplement 8). Since mutations in the tetramerization interface that destabilize the dimeric state

most likely also inhibit the formation of the tetramer, we did not use SEC analysis. Previously, we

have shown that an open dimeric state is transcriptionally more active than the closed dimeric state

(Deutsch et al., 2011). Mutating the hydrophobic amino acids I378, L382 and M385 alongside the

second half of the a-helix of the TD led to high transcriptional activity as expected for an open con-

formation (Figure 1G and I, Figure 1—figure supplement 8).

We also used the measurement of the transcriptional activity as well as pull-down experiments

with GST-TID to validate the results of our SEC analysis with the different alanine mutants (Figure 1J

and Figure 1—figure supplement 9). As expected, all mutants that behaved like open and

Coutandin et al. eLife 2016;5:e13909. DOI: 10.7554/eLife.13909 5 of 22

Research Article Biophysics and structural biology Cell biology

http://dx.doi.org/10.7554/eLife.13909


tetrameric conformations showed high transcriptional activity. The only exception was the F16A

W20A L23A mutant since these mutations compromise the function of the TAD (Figure 1—figure

supplement 9).

TA2B and TID form a b-sheet
The experiments described above support the prediction that TA2B and TID form regular secondary

structure elements, most likely b-strands. In the closed dimer, two TID and two TA2B sequences

must be involved in the stabilization of the closed state. For symmetry reasons, the b-strands proba-

bly adopt an antiparallel orientation. Based on the results of the alanine scanning experiments we

speculated that the two TID strands form the inner pair since mutations on both faces of the pre-

dicted b-sheet show strong effects. Further, we propose that the two TA2B strands form the two

outer strands of a four stranded anti-parallel b-sheet which might be further extended by b-strands

contributed by the TA2A segment. Such an arrangement would create one hydrophobic surface

formed by I50/I52/M54 of TA2B and V603/F605/L607 of TID and a hydrophilic surface with residues

E51/D55 of TA2B and R604/R608 of TID. The arrangement shown in Figure 2B brings charged

amino acids on neighboring strands in close proximity, making it possible to test this hypothetical

model by charge change and charge swap mutagenesis. Exchanging R604 and R608 in the TID to

glutamic acids disrupted the dimeric state (Figure 2C). In our model these mutants created in com-

bination with the negative charges on the TA2B strands a cluster of negatively charged amino acids

that destabilized the dimer. Additional charge reversal of E51R and D55R in TA2B resulted in the

formation of a stable dimer. Similarly, the R595E and R598E mutants are open tetramers and the

additional charge reversal of D61R, D63R in TA2B rescued the dimer (Figure 2D). To refine our

model and to identify the register of the proposed b-strands we used further pairwise charge swap

mutations. The results of these experiments that all support our structural model are summarized in

Figure 2. TA2B and TID form an anti-parallel b-sheet with a polar and a hydrophobic face. (A) Domain organization of TAp63a and secondary structure

elements of TAD and TID. (B) Proposed interaction of TA2 and TID through b-sheet formation. This interaction is thought to be stabilized by

hydrophobic amino acids clustered on one face of the b-sheet (bottom) and electrostatic interactions between charged amino acids on the other face

(top). Extensive charge swap experiments (see Figure 2—figure supplement 1) revealed interactions between TA2B and TID. Interactions are depicted

in green. (C, D) Introduction of negative charges in the TID and charge swaps between TID and TA2B show interaction via b-sheet formation. (C) SEC

profiles of TAp63a R604E R608E (orange) and the charge swap mutant TAp63a E51R D55R R604E R608E (blue). (D) SEC profiles of TAp63a R595E

R598E (orange) and the charge swap mutant TAp63a D61R D63R R595E R598E (blue).

DOI: 10.7554/eLife.13909.014

The following figure supplement is available for figure 2:

Figure supplement 1. TA2B and TID form an anti-parallel b-sheet.

DOI: 10.7554/eLife.13909.015
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Figure 2—figure supplement 1. Since the predicted b-sheet has one hydrophobic face and the

interface used by the TD to form tetramers is also hydrophobic, we propose that the b-sheet covers

the tetramerization interface of the TD, thus inhibiting the formation of tetramers (Figure 3B and C).

In addition, the TA1 helix binds to the TD as well, further stabilizing the closed and compact

conformation.

Figure 3. Model of the closed dimeric conformation of TAp63a . (A) Domain organization of TAp63a. All domains and structural elements are color

coded. (B) The TD of p63 forms a dimer of dimers (colored in dark and light grey). Its two tetrameric interfaces (in light blue and rose) must be blocked

in the inactive dimer to inhibit tetramerization. The TA1 was shown to bind to the upper interface (in rose) (Deutsch et al., 2011). The I378 L382 M385

motif in the central interface (in light blue) must be covered by hydrophobic amino acids. The hydrophobic interface of the proposed 6-stranded b-

sheet is expected to cover this central tetrameric interface of the TD. (C) Model of the intramolecular interactions between TAD, TD and TID. The

angles between structural elements are speculative. The TD was placed on top of the TA2/TID b-sheet so that the hydrophobic amino acids mask each

other. The second helix of the TD is not modelled. (D) Pair distribution function P(r) from inline SEC-SAXS (small-angle X-ray scattering) data of

TAp63amin. Derived function transformed smoothly and appears to indicate globular central part with short extensional component. (E) Average ab-

initio SAXS envelopes of TAp63amin without (left) and with (right) P2 symmetry, calculated using DAMMIF (Franke and Svergun, 2009). The similar

shape suggests the presence of C2 symmetry in TAp63amin. Envelopes were filtered and averaged using DAMFILT and were obtained from inline SEC-

SAXS. (F) Simulated annealing multiphase model from simultaneous curve fits to wild type TAp63amin and l-cro-TAp63amin (N-terminal fusion). Models

constructed using MONSA allowing co-refinement of ab-initio models simultaneously. Blue segments give density differences derivative when refined

against the native dataset. (G) Localization of the N-terminus. Multiphase fits to data sets, wild type TAp63amin in green and l-cro-TAp63amin in blue.

(H) WB and corresponding bar diagram of the pull-down experiments with DNp63a, TAp63a and DNp63a R279H from RRL using either immobilized

GST or GST-ASPP2 fusion. WB signal for input (IP) and pull-down (PD) are shown. The pull-down efficiency of DNp63a was set to 100%. Pull-downs

were performed in technical triplicates and error bars display the standard deviation. (I) Structure of the human p63 DBD alone, bound to DNA and a

model of the p63 DBD bound to ASPP2 based on the co-crystal structure between the p53 DBD and ASPP2. (J) TAD, DBD, TD and TID are placed

manually inside the P2 calculated average SAXS envelope. The DBDs are likely positioned at the outside of the molecule, leaving the center to be

occupied by TAD, TD and TID. The SAM domain is not modelled.

DOI: 10.7554/eLife.13909.016
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Small angle X-ray scattering shows a dimeric structure of TAp63a with
the DBDs at the outside
The mutational analysis described above predicted the formation of a compact structure with C2

symmetry. To verify this prediction, we performed SAXS measurements with TAp63amin. To identify

the localization of the N-termini we also collected SAXS data on a construct containing mutated l-

cro (Q27P, A29S, K32Q) at its N-terminus. Low resolution models derived from unbiased evaluation

of the SAXS data showed indeed a C2 symmetry (Figure 3E) with the N-termini located in the center

of the molecule (Figure 3G). Based on these results and the volumes of the individual domains we

propose that the DBDs are positioned at the outside while the complex formed by the TAD, TD and

TID builds the center of the molecule (Figure 3J). In this model the SAM domain is also located in

the center where the molecule showed the largest volume.

To obtain additional information on the orientation of the DBD we performed binding studies

with the Ankyrin Repeat and SH3 domain of the protein ASPP2. This protein is known to bind to the

DNA binding interface of the DBD (Figure 3I). In pull-down experiments we were not able to detect

interaction of TAp63a with ASPP2 while the open and tetrameric DNp63a isoform showed strong

interaction (Figure 3H). This observation suggests that the DNA binding interface of the DBD is not

freely accessible but points towards the core of the molecule.

The dimeric conformation of TAp63a constitutes a kinetically trapped
state
Activation of TAp63a entails breaking of the interactions described above to expose the tetrameri-

zation interface leading to the formation of active tetramers. In oocytes this transition is triggered by

phosphorylation. In principle phosphorylation could provide a new interface contributing interactions

that stabilize the tetrameric state, making it thermodynamically more stable while the dimeric state

would be thermodynamically favored in the absence of phosphorylation. However, the observation

that dephosphorylation of the open tetrameric state using l-phosphatase does not result in convert-

ing TAp63a back to a dimer argues against this model (Deutsch et al., 2011). An alternative expla-

nation would be that the tetrameric state is always the thermodynamically most stable one and the

dimeric state is a kinetically trapped conformation. Phosphorylation would then function as a trigger

to overcome a kinetic barrier and convert p63 into the thermodynamically preferred tetramer. Such

spring-loaded mechanisms have been observed for example in the activation of influenza hemagglu-

tinin (Carr et al., 1997; Carr and Kim, 1993). Characteristic for this type of activation mechanism is

that perturbing the kinetically trapped conformation by moderate amounts of denaturants, changes

in pH or an increase in temperature initiates the transition to the thermodynamically more stable

conformation even without the natural trigger. Since the stability towards chemical denaturants of

the three folded domains of TAp63a is quite high (Klein et al., 2001; Sathyamurthy et al., 2011)

(Figure 4—figure supplement 1) we hypothesized that using low to moderate amounts of urea

might disrupt the inhibitory structure, thus triggering the formation of the tetramer without affecting

the folding of the DBD, the SAM or the TD. To investigate if activation of TAp63a follows a spring-

loaded mechanism we equilibrated a SEC column with different concentrations of urea, incubated

TAp63amin in buffer containing the same urea concentration and analyzed the percentage of dimer

and tetramer. Figure 4A shows that a concentration of 1.75 M urea leads to an approximately 1:1

ratio of dimer and tetramer and at concentrations above 3 M no dimer was detected. Higher urea

concentrations resulted in further shifts on the SEC column probably representing partially dena-

tured conformations (Figure 4—figure supplement 2). To validate the data we performed SEC-

MALS measurements at concentrations of 2 M and 2.5 M urea (Figure 4F and G). The first SEC peak

had a mass of 197.9 ± 12.7 kDa (at 2.5 M urea) and the second peak a mass of 96.3 ± 6.4 kDa (at

2 M urea), consistent with the first one representing a tetrameric (202.8 kDa) and the second one a

dimeric (101.4 kDa) conformation.

If the interpretation of the spring-loaded activation is correct, removal of urea would not allow

the formation of a p63 dimer. To test this hypothesis, we separated the dimer and the tetramer frac-

tion at a urea concentration of 1.75 M on the SEC column (Figure 4C) and dialyzed both fractions

against buffer without urea. Re-analysis of these samples by SEC revealed that the dimeric fraction

remained dimeric (Figure 4D) and the tetrameric fraction tetrameric with a tendency to aggregate
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Figure 4. The closed dimeric conformation of TAp63a constitutes a kinetically trapped state. (A) TAp63amin samples were incubated for 1 hr at

different urea concentrations and subjected to size exclusion chromatography (SEC) at corresponding urea concentrations. (B) TAp63amin samples were

incubated in 1.75 M urea and injected into a Superose 6 3.2/300 column equilibrated with 1.75 M urea at different time points. (C) SEC profiles of

TAp63amin injected after incubation for 50 min in 1.75 M urea. Fractions of tetrameric and dimeric protein are highlighted in orange and blue,

respectively. (D,E) SEC profiles of reinjected tetrameric (E) and dimeric (D) fractions (originating from SEC shown in C) after dialysis to 0 M urea for

13 hr. (F,G) SEC-MALS of TAp63amin at different urea concentrations to proof the tetrameric nature of the early eluting peak in A. a, t and d denote

aggregate, tetramer and dimer respectively. Colored areas where used to calculate the mean molecular weight and standard deviation. (F) SEC-MALS

of TAp63amin in 2 M urea (preincubated in 2 M urea for 14 min at RT). (G) SEC-MALS of TAp63amin in 2.5 M urea (preincubated in 2.5 M urea for 25 min

at RT). (H) WB and corresponding bar diagram of pull-down experiments with DNp63a, TAp63a R604E R608E and TAp63a incubated either during or

after expression in RRL at 30˚C for 1.5 hr with His6-tagged p73 TD or a mutant that is not able to form hetero-tetramers (His6-p73 TDHOMO). Pull-down

is achieved by hetero-tetramerization of His6-tagged p73 TD with specified p63a constructs. Quotient of pull-down (P) and input (I) is shown relative

to TAp63a incubated after expression with p73 TD (set to 1). Pulldowns were performed in technical triplicates and error bars denote standard

deviation.

DOI: 10.7554/eLife.13909.017

The following figure supplements are available for figure 4:

Figure supplement 1. Urea treatment of p63 structured domains.

DOI: 10.7554/eLife.13909.018

Figure supplement 2. Urea unfolding experiments with TAp63amin.

DOI: 10.7554/eLife.13909.019
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(Figure 4E). These experiments strongly suggest that the dimeric state of TAp63a is a kinetically

trapped conformation that is activated by a spring-loaded mechanism.

Formation of the TAp63a dimer can only be prevented co-
translationally
A spring-loaded activation requires that the protein is trapped in a high energy state during protein

synthesis. From p53 it is known that this protein forms dimers co-translationally (Nicholls et al.,

2002), which in the case of TAp63a would enable the protein to fold into its closed conformation.

To probe this hypothesis, we expressed TAp63a in RRL in the presence or absence of a high concen-

tration (20 mM) of the isolated TD of p73. The rationale behind this experiment was that a high con-

centration of a domain that can interact with the TD of TAp63a during the translation would result in

the formation of open tetramers. The TD of p73 was used since the isolated p63 and p73 TDs form

hetero-tetramers that are thermodynamically even more stable than homo-tetramers

(Coutandin et al., 2009). As a control we stopped the translation of TAp63a in RRL by adding cyclo-

heximide (CHX) and then added the p73 TD to the same concentration as before and incubated for

the same amount of time. Interaction between TAp63a and the p73 TD was monitored by pull-down

experiments via the His-tag of the p73 TD. As shown in Figure 4H, expression in the presence of

the p73 TD resulted in a strong pull-down while incubation post-translationally showed virtually no

Figure 5. Unlike TID, secession of TAD induces the transformation of dimeric TAp63a to tetramers. (A) A cleavage site is introduced C-terminal to the

TAD (between residues 66 and 67) allowing its secession by TEV protease cleavage. For comparison a TAp63a construct is created that lacks the TAD

(TAp63a D(1–66)) and resembles the cleavage product. (B) A cleavage site is introduced N-terminal to the TID (between residues 591 and 592) allowing

its secession by TEV protease cleavage. For comparison a TAp63a construct is created that lacks the TID (TAp63a D(593–641)) and resembles the

cleavage product. (C) Schematic depiction of TAp63a (66-TEVsite-67) and secession of TAD by TEV protease cleavage. (D) Schematic depiction of

TAp63a (591-TEVsite-592) and secession of TID by TEV protease cleavage. (E) Secession of TAD and TID from TAp63a derivatives using TEV protease.

Cycloheximide (CHX) and TEV protease were added to the RRL expressed TAp63a derivative at 37˚C and samples were taken after indicated time

points and analyzed by western blotting. Both constructs are cleaved nearly completely within approximately 10 min. (F,G,H,I) TAp63a constructs were

expressed in reticulocyte lysate (RRL), treated with CHX and optionally with TEV protease (G,I) at 37˚C for denoted time, cooled to 4˚C and subjected

to SEC. SEC profiles were obtained by WB. (F) SEC profiles of TAp63a (66-TEVsite-67) and of TAp63a D(1–66). (G) SEC profiles of TAp63a (66-TEVsite-67)

after treatment with CHX and TEV protease for either 15 min or 1 hr at 37˚C. (H) SEC profiles of TAp63a (591-TEVsite-592) and of TAp63a D(593–641). (I)

SEC profiles of TAp63a (591-TEVsite-592) after treatment with CHX and TEV protease for either 4 or 12 hr at 37˚C.
DOI: 10.7554/eLife.13909.020
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interaction with the p73 TD, even at elevated temperatures of 37oC. Replacing TAp63a in these

experiments with open and tetrameric DNp63a or a tetrameric mutant TAp63a R604E R608E

resulted in strong pull-downs both in the co-translational as well as in the post-translational setup.

Performing the same experiments with a mutated TD that is not capable of forming hetero-tet-

ramers showed no interaction. These results suggested that the kinetically trapped state of TAp63a

is formed during or immediately after protein synthesis.

The TAD defines the height of the kinetic barrier of trapped TAp63a
Oocytes survive the high concentration of TAp63a only when the inactivation mechanism is very

effective. However, thermodynamics predicts that the closed conformation is always in equilibrium

Figure 6. The cellular machinery for TAp63a activation in murine oocytes is always present and ready to act upon genotoxic insults. (A) WB of CHX

treatment of nonirradiated (NIRR) and g-irradiated (IRR) murine ovary samples. The signals of p63, the oocyte marker Msy2 and b-actin are displayed for

each time point after NIRR/IRR. The asterisk marks phosphorylated p63. (B) WB of SDS-PAGE loaded with the ovary samples of the Native PAGE in (C).

The asterisk marks phosphorylated p63. (C) WB of Native PAGE from (un-)treated and either NIRR or IRR murine ovaries. The p63 signal in the range

from 20 kDa to 1,236 kDa is shown. (D) Intensity projection of the Native PAGE p63 signal from (C). The molecular weight range of the p63 dimer and

tetramer is colored in green and red, respectively. (E) Quantitative Real-Time PCR of isolated murine oocytes. The bar diagram shows the fold induction

of p21, Puma, Mdm2 and Msy2 mRNA after g-irradiation. Error bars show the standard deviation of the biological duplicates. Brackets above the bars

display the p-test results showing no significance (n.s.) between untreated and CHX treated oocytes for all targets. (F) Inhibition of Chk2 suppresses the

DNA-damage induced phosphorylation of TAp63a in g-irradiated ovaries. Chk2 inhibitor II at concentrations of 5 and 25 mM was added 2 hr before

irradiation with 1.5 Gy. Ovaries were harvested 4 hr after irradiation and analyzed by SDS PAGE and Western Blot. Activated TAp63a gets degraded

fast while preventing activation via inhibition of Chk2 preserves the original cellular concentration. (G) Native PAGE analysis of the same samples used

as in (F). Inhibition of Chk2 prevents tetramerization and keeps TAp63a in a closed and dimeric state.

DOI: 10.7554/eLife.13909.021

The following figure supplement is available for figure 6:

Figure supplement 1. p63 is responsible for inducing apoptosis in oocytes.

DOI: 10.7554/eLife.13909.022
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with more open conformations in which the inhibitory network of the TAD, TD and TID is at least

partially broken. If during this partial unfolding no thermodynamically more stable tetramer is

formed the dimer might be able to refold in its closed conformation. To obtain an estimation of the

rate of unfolding of the TID and of the TAD we introduced TEV protease cleavage sites either C-ter-

minal to the TAD or N-terminal to the TID. The rationale of this experiment was that after proteolytic

cleavage the cleaved peptides (either the TAD or the TID) would diffuse away as soon as the p63

adopts an open conformation, therefore not allowing the protein to refold into its compact dimeric

state and forcing it to form open tetramers. From this experiment the off rate of the corresponding

domain can be estimated and thus the overall stability of the inhibitory lock mechanism. We incu-

bated RRL expressed TAp63a with TEV protease for 15 min at 37˚C which was sufficient to obtain

close to 100% cleavage (Figure 5). The cleaved protein was then analyzed either immediately via

SEC or further incubated for up to 12 hr at 37oC. Interestingly, cleavage near the TAD leads to the

immediate formation of tetramers (Figure 5G). Unlike the TAD, the TID was bound with remarkable

stability and cleaved p63 showed no tendency to assemble into tetramers even after long incubation

times (Figure 5I). These results demonstrated that the N-terminus is the least stable part involved in

keeping TAp63a dimeric and that its off rate determines the overall stability of the inhibited confor-

mation. In addition, this interpretation further supports our model assuming that the TID forms the

core of the central b-sheet.

The oocyte contains the necessary machinery for the activation of p63
without protein expression
The experiments described above have demonstrated that TAp63a exists in a kinetically trapped

state, poised to become activated upon the detection of DNA damage. Such a mechanism allows

the cell to build an apoptotic switch with a sharp transition between survival and cell death. Indeed,

measurements of the dose dependence of oocyte death have shown such a sharp transition with

fewer than 10 double strand breaks per cell leading to oocyte death. To make such a system effi-

cient the cell would need to be able to activate TAp63a fast which is best achieved when the activa-

tion machinery, i.e. the kinases required are already present and do not have to be expressed first.

To investigate if oocytes have established such a pre-existing machinery, we harvested ovaries from

Figure 7. Spring-loaded activation mechanism of TAp63a on the molecular and cellular level. (A) Schematic energy landscape of TAp63a. The

kinetically trapped closed dimer is opened by phosphorylation or artificially by moderate concentrations of urea (Figure 4). The resulting open dimer is

less stable and forms tetramers with a dissociation constant of 12 ± 1 nM (Brandt et al., 2009). (B) Schematic representation of TAp63a activation.

Oocytes express high levels of dimeric TAp63a and harbor normally inactive kinases ready to be activated and to phosphorylate TAp63a upon

genotoxic stress leading to active tetramers and, consequently, cell death.

DOI: 10.7554/eLife.13909.023
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eight day old mice and g-irradiated them with or without prior incubation with cycloheximide. Activa-

tion of TAp63a was followed by native geleletrophoresis. Addition of cycloheximide did neither pre-

vent phosphorylation (Figure 6A) nor the formation of a tetrameric state (Figure 6B–D), suggesting

that the kinases involved in detecting DNA damage and activating TAp63a are already present in

resting oocytes. As a control to verify the effectiveness of the translation inhibitor cycloheximide we

investigated the level of polyubiquitination (Figure 6—figure supplement 1A). Adding a protea-

some inhibitor results in a strong accumulation of polyubiquitinated proteins that is suppressed by

the addition of cycloheximide, as previously shown (Mimnaugh et al., 2004).

Induction of apoptosis requires the transcriptional activity of TAp63a and the translation of pro-

apoptotic factors such as PUMA and NOXA (Kerr et al., 2012). To test whether the treatment with

cycloheximide affects the transcriptional activity of TAp63a we used qPCR to detect mRNA levels of

the three p63 targets p21, Puma and Mdm2 (Figure 6E). As a control we used the oocyte specific

marker Msy2. The data showed that both with and without cycloheximide treatment significant

induction of the target genes occurred while the level of Msy2 was unaffected. We could not detect

the presence of p53 before or eight hours after irradiation by immunohistochemistry, suggesting

that p53 is not involved in the apoptosis of oocytes (Figure 6—figure supplement 1B). This inter-

pretation is also consistent with the observation that oocytes only from the TAp63 but not the p53

knock out mouse are protected from irradiation induced apoptosis (Suh et al., 2006). For p73 we

could detect a weak, diffuse staining consistent with earlier reports of low levels of cytoplasmic p73

in oocytes (Livera et al., 2008). The very low level compared to p63 and the strong induction of tar-

get genes such as PUMA or p21 in the presence of the translational inhibitor cycloheximide, how-

ever, argue against a significant role of p73 for the irradiation induced cell death of oocytes.

Our results suggest that oocytes contain all kinases necessary to initiate tetramerization of

TAp63a and all factors essential for p63’s transcriptional function (Figure 7B). One of the kinases

that has been identified in the activation process is Chk2 that phosphorylates TAp63a on Ser 582

(numbering according to the TA-isoform of p63) (Bolcun-Filas et al., 2014). To investigate if phos-

phorylation by Chk2 is required for tetramerization we treated mouse ovaries with increasing

amounts of the Chk2 inhibitor II BML-277 and irradiated them with a dose of 1.5 Gy two hours after

adding the inhibitor. At a concentration of 25 mM phosphorylation of TAp63a was almost completely

suppressed and almost no tetramer was formed (Figure 6F). These data confirm the essential role of

Chk2 in the activation process and demonstrate that phosphorylation by Chk2 is also a prerequisite

for the formation of tetramers. Interestingly, these data also show that activation of TAp63a leads to

a very significant drop of the intracellular concentration and inhibition of the activation by the Chk2

inhibitor to a preservation of the original level. This effect is due to fast proteasomal degradation of

activated TAp63a and is consistent with other observations showing that the cellular concentration

of active isoforms of p63 is low while inactive isoforms can accumulate to high concentrations

(Serber et al., 2002). Interestingly, it has been shown that the N-terminal TAD is involved in this

degradation process and that degradation is linked to DNA-binding competent and transactivating

p63 isoforms (Ying et al., 2005). This observation is also consistent with our model in which the TAD

is involved in the formation of the inhibitory lock structure that covers the tetramerizatoin interface

and is therefore protected from ubiquitination. After the formation of the open and active state,

however, the TAD is accessible, leading to fast degradation. This competition between activation

and degradation probably constitutes an intracellular threshold that protect oocytes from apoptosis

by low levels of activated TAp63a.

Discussion
Oocytes are very special cells that have developed a unique quality control system. In humans the

approximately seven million oocytes that are created during embryogenesis are diminished to one

to two million at the time of birth (Tilly, 2001). A large drop in numbers is also seen for mouse

oocytes. Of the original roughly 25,000 cells only 10,000 remain at the time of birth (Di Giacomo

et al., 2005). During the late embryonic stage, the sensitivity of oocytes to DNA double strand

breaks changes dramatically. While oocytes in the leptotene stage of prophase I (around E14) toler-

ate hundreds of Spo11 induced double strand breaks as part of the process of homologous recombi-

nation, postnatal oocytes are killed by fewer than 10 DNA double strand breaks per cell. This

dramatic shift in sensitivity is correlated with the expression of TAp63a which starts to get expressed
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in the diplotene stage beginning around E18.5 when chromosomes have been repaired after homol-

ogous recombination (Livera et al., 2008). Most likely, the p63 system developed as a safeguard to

ensure that cells that still contain chromosome damage do not survive. The finding that the p63

expression level is kept high during the long dictyate arrest in mammals, however, shows that p63 is

not only used as a short term quality control check point but also as a factor that guarantees the

long term genetic stability of germ cells. In particular, this long term quality control function requires

a tightly controlled activity of p63. A basal activity that is too high would lead to premature loss of

the oocyte pool and ovary failure while a low activity bears the risk that oocytes acquire a high level

of chromosomal defects. Our extensive mutagenesis study and biophysical characterization now pro-

vides a first model how interaction of N-terminal and C-terminal sequences blocks the tetrameriza-

tion interface of the TD and therefore prevents tetramerization.

Our biochemical analysis has also revealed that neither the SAM domain nor the DBD are essen-

tial for formation of the closed state. However, unlike the SAM domain the DBD cannot be

completely removed but must be replaced with a domain of similar size. At the same time, the

ASPP2 binding assays in combination with the SAXS analysis predicts that the DBD has a defined ori-

entation within the dimeric structure which makes the DNA binding interface inaccessible. This orien-

tation, however, seems to be stabilized by interactions that are not essential for the formation of the

core inhibitory structure consisting of the TAD, TD and TID. At the same time, this finding explains

why both in cells as well as in in vitro fluorescence anisotropy measurements the DNA binding affin-

ity of TAp63a is roughly 20-fold lower than the affinity of open and tetrameric isoforms or mutants

(Deutsch et al., 2011; Suh et al., 2006).

Mutations in the SAM domain as well as in the TID cause the Ankyloblepharon-ectodermal

defects-cleft lip/palate syndrome (AEC) syndrome (McGrath et al., 2001). Two mutations identified

in human patients, R598L and D601V (Rinne et al., 2009), are located in a region of the TID that is

responsible for stabilizing the dimeric state. According to our model both R598 and D601 are

involved in charge-charge interactions with the TA2B b-strand and their mutation likely destabilizes

the closed dimeric state which might cause in addition to the severe skin phenotype of the patients

further ovary related problems. Mutations found in other domains of p63 such as the DBD that cause

ectrodactyly–ectodermal dysplasia–cleft (EEC) syndrome (Celli et al., 1999; Kouwenhoven et al.,

2015) might also affect the stability of the closed dimer in oocytes.

While effective inhibition is a prerequisite for a stable long term quality control with a minimal

protein turnover rate, an effective activation mechanism is also of paramount importance. Our results

show that the closed conformation of TAp63a is a metastable state and that activation follows a

spring-loaded mechanism (Figure 7A). In oocytes, phosphorylation is used as the natural trigger to

initiate the transition from the closed dimeric state to the thermodynamically more stable tetrameric

state. Once the active tetramer is formed, the phosphate groups can be removed without affecting

the oligomeric state of the protein (Deutsch et al., 2011). Spring loaded activation mechanisms are

known from other proteins as well. One prominent example is the Influenza virus hemagglutinin A

(HA). This membrane protein is trapped in a metastable native pre-fusion state in which the fusion

peptide is buried inside the trimeric structure (Carr and Kim, 1993). Following endocytosis of the

virus and a pH drop in the endosome, the protein changes its conformation resulting in the exposure

of the fusion peptides that are subsequently inserted into the host membrane (Lin et al., 2014).

While the drop in pH is the natural trigger, activation can also be initiated by high temperatures or

urea (Carr et al., 1997). Another example is a-lytic protease, a secreted serine protease that is

expressed with an N-terminal pro-region that catalyzes folding from a stable molten globule-like

intermediate. Proteolytic degradation of the pro-region results in release of the native and active

protease, which is thermodynamically less stable than the partially unfolded state but remains folded

due to a large barrier to unfolding (Sohl et al., 1998; Baker, 1998).

The kinetically trapped state of dimeric TAp63a raises the question how and when this state is

formed during protein synthesis. Interestingly, it was shown that p53 forms dimers co-translationally

and tetramers post-translationally (Nicholls et al., 2002). Our expression experiments in the pres-

ence of high concentrations of the p73 TD in principle support a co-translational folding of TAp63a.

However, our deletion mutagenesis also implicates that the last amino acid of TAp63amin, P614, has

to emerge from the ribosomal exit tunnel before the closed dimeric state can be formed. As a model

we propose that open dimers form co-translationally via the TD that acts as the interaction platform
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for the TAD and the TID to fold into the trapped conformation after completion of translation. The

exact mechanism of folding and a potential role for chaperones remains to be investigated.

Not only the metastable state of TAp63a sensitizes oocytes for DNA damage induced cell death,

the entire machinery that detects DNA damage and activates TAp63a is present in resting oocytes

without the need for further protein expression. So far, ATM/ATR as upstream kinases and Chk2 as a

direct phosphorylating kinase have been shown to be involved in this process (Bolcun-Filas et al.,

2014; Kim et al., 2011). Other factors might contribute as well (Gonfloni et al., 2009) in stabilizing

the tetrameric state and forming active transcriptional complexes on promotor sites. The special

metabolic state that oocytes reside in during dictyate arrest requires them to express a limited num-

ber of genes, essential for keeping the cells stable. Proteins involved in the surveillance of DNA dam-

age as well as transmitting the signal to the central integrator, p63, are part of this cellular

repertoire. Quality control in oocytes by TAp63a is therefore based on a spring-loaded activation

mechanism on the molecular and the cellular level.

Materials and methods

Expression and purification in E. coli
TAp63a was codon-optimized for expression in E. coli and ordered from Genscript (Piscataway, NJ,

USA). Deletions were introduced using the QuikChange II Site-Directed Mutagenesis Kit (Agilent

Technologies). TAp63amin comprising deletions D(1–9; 64–119; 417–453; 460–505; 571–593; 615–

641) was cloned into pNIC28-Bsa4 (SGC Oxford) by ligation independent cloning (Gileadi et al.,

2008). The protein, bearing a N-terminal His6-tag and a TEV (tobacco etch virus) protease cleavage

site was expressed in BL-21(DE3)-R3-Rosetta (SGC Oxford) and initially purified using Ni-Sepharose

Fast Flow and HiTrap Q HP (GE Healthcare) according to standard protocols. After His6-tag removal

using TEV protease the protein was further purified using a HiTrap Q HP and a HiLoad 16/600

Superdex 200 prep grade column. TAp63amin was stored concentrated (100 mg/mL) at -80˚C.

GST-ASPP2 expression and purification
ASPP2 (891–1128) was cloned into pGEX 6p2 (GE Healthcare) with an additional C-Terminal His6-

tag. The resulting GST-fusion of ASPP2 was expressed in BL-21(DE3)-R3-Rosetta (SGC Oxford) and

purified by Ni-Sepharose Fast Flow and Gluthation-Sepharose Fast Flow (GE Healthcare) using stan-

dard protocols followed by size-exclusion chromatography with a HiLoad 16/600 Superdex 200 prep

grade column.

Multi-angle light scattering (MALS)
SEC-MALS experiments were performed at room temperature using a Superose 6 3.2/300 column

(GE Healthcare) in phosphate buffer containing 0, 2 or 2.5 M urea on an Agilent 1200 Series HPLC

system at a flow rate of 0.05 ml/min. Prior to injection the protein was incubated in phosphate buffer

containing 2 M urea for 14 min or 2.5 M urea for 25 min. Elution of 10 mL of purified proteins of 6.4

mg/ml concentration was detected using Dawn Heleos II (11 angles were used) and an Optilab rEX

Refractive Index Detector at a Laser wavelength of 658 nm (Wyatt Technology) to determine the

weight average molar mass MW of peak locations. Data were processed using ASTRA software

package 6.1.2.84 (Wyatt Technology).

Native PAGE
For Native PAGE analysis of the oligomeric state of p63 two ovaries per indicated condition were

harvested in 20 ml of ice-cold lysis buffer A (50 mM Tris pH 8.0, 100 mM NaCl, 1 mM DTT, 2 mM

MgCl2, supplemented with 1x cOmplete and PhosSTOP (Roche)). Lysis was performed by mechani-

cal force using a pestle, pipetting and two cycles of freeze and thaw. After addition of 20 ml lysis

buffer B (lysis buffer A containing 40 mM CHAPS) and 1 ml benzonase, samples were incubated for

1 hr on ice and subsequently centrifuged for 10 min at 4˚C and 13.2 krpm to remove cell debris. 20

ml of supernatant were supplemented with 5 ml of 5x Native PAGE sample buffer (60% glycerol,

25 mM coomassie G250) for Native PAGE analysis. The remaining lysate was used for analysis of

p63 level and phosphorylation-induced mobility shift via SDS-PAGE.
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The separation of ovary lysate by Native PAGE followed by detection of p63 via subsequent

Western Blot analysis was performed with the Native PAGE Novex 3–12% Bis-Tris protein gel system

(Life Technology) according to the manufacturer’s instructions. The cathode buffer was supple-

mented with 0.002% coomassie G250 and the separation was performed at 4˚C for 60 min at 150 V

and 90 min at 250 V.

NMR spectroscopy
For NMR spectroscopy [u-15N]-labeled human p63 DBD-TD-SAM, DBD, TD and SAM were measured

at concentrations between 0.1–0.3 mM in a total volume of 350 mL in shigemi NMR tubes. Complete

Protease Inhibitor (Roche) and 6% of a D2O/DSS (3 mM DSS) solution was added. NMR-Experiments

were performed on a Bruker Avance spectrometer equipped with 1H triple resonance, z-gradient

cryogenic probes at a proton frequency of 900 MHz. All experiments were performed at 303 K. DSS

(4, 4-dimethyl-4-silapentane-1-sulphonate) was used as an internal chemical shift reference. Spectra

were processed with Bruker Topspin 2.1 and analyzed with UCSF SPARKY 3.114 (Kneller and Kuntz,

1993).

Ovary culture
Animal care and handling were performed according to the guidelines set by the World Health

Organization (Geneva, Switzerland). Eight-day-old (P8) female CD-1 mice were purchased from

Charles River Laboratories. Ovaries were harvested, transferred in sterile flat-bottom 96-well plates

with 100 ml MEM (+ L-Glu, Gibco) supplemented with 5% FBS, 0,4% BSA (w/v), Pen/Strep and 70

mM Br-cAMP and cultured in an incubator at 37˚C with 5% CO2.

Ovaries were treated overnight with either DMSO or CHX (50 mg/mL) prior following experi-

ments. IRR ovaries were exposed to 1.5 Gy of g-irradiation on a rotating turntable in a 137Cs irradia-

tor, at a dose rate of 2.387 Gy/min. For inhibition of Chk2 in ovary culture the inhibitor BLM-277

(Merck Millipore, 220486) was used 2 hr prior g-irradiation in indicated concentrations.

The following antibodies were used for detection of endogenous protein of ovary samples by

Western Blotting: Msy2 (Santa Cruz, N-13), Ubiquitin (Santa Cruz, P4D1), p63 (Santa Cruz, H-129)

and b-Actin (Santa Cruz, C4).

Immunohistochemistry (IHC)
Dissected ovaries were cultured overnight and subsequently treated with g-irradiation as indicated.

Ovaries were fixed in formalin, embedded in paraffin and sectioned into 6 mm thickness (Morphisto

GmbH, Frankfurt, Germany). For 3,3’-Diaminobenzidine (DAB) IHC staining sections were deparaffi-

nised and rehydrated followed by 30 min antigen retrival in boiling 0.1 M citrate buffer. Sections

were blocked for 1 hr at room temperature in 5% donkey normal serum (Santa Cruz, sc-2044) in TBS

and incubated with primary antibody raised either against the oocyte marker Msy (Santa Cruz, N-13,

1:200), p53 (Santa Cruz, DO-1, 1:100), p63 (Santa Cruz, H-129, 1:200) or p73 (Merck Millipore, ER-

15, 1:100) in 1% BSA in TBS overnight. Sections were developed after incubation with biotin-conju-

gated secondary antibodies for 1 hr at room temperature in 1% BSA in TBS (Vector Labs) with the

ABC DAB Peroxidase System (Vector Labs). Nuclei were stained for 5 min in Mayer’s hematoxylin

followed by dehydration and mounting of the stained sections.

Protein expression in rabbit reticulocyte lysate (RRL)
N-terminally myc-tagged human TAp63a, TAp63a(10–614), TAp63g , DNp63a and all mutants that

base on these constructs were expressed from pcDNA3.1 vector in RRL as described (Straub et al.,

2010). Proteins were used for SEC analysis and pull-down experiments.

Pull-down experiments
GST pull-down experiments were performed with RRL expressed proteins and immobilized GST-TID

(aa 569–616) as described previously (Straub et al., 2010).

Pull-down experiments with His6-tagged p73-TD
For His6 pull-down experiments, DNp63a, TAp63a and TAp63a R604E R608E were expressed in

presence or absence of His6-tagged p73 TD (20 mM) in 50 mL RRL for 90 min at 30˚C. In the latter

Coutandin et al. eLife 2016;5:e13909. DOI: 10.7554/eLife.13909 16 of 22

Research Article Biophysics and structural biology Cell biology

http://dx.doi.org/10.7554/eLife.13909


case, cycloheximide (50 mg/mL final) and His6-tagged p73 TD (20 mM final) were added after expres-

sion and incubated for another 90 min at 30˚C. Afterwards 5 mL samples were removed as input con-

trols (I). For each pull-down 50 mL Ni-IDA beads were washed inside an Ultrafree centrifugal filter

unit (Durapore PVDF 0.65 mm, Millipore) with binding buffer (500 mM NaCl, 50 mM Tris pH 7.8,

5 mM imidazole, 5% (v/v) glycerol). The remaining 45 mL of the RRL expression was added to the

beads and incubated for 1 hr at 4˚C. Subsequently the beads were washed 5 times with ice-cold

wash buffer (500 mM NaCl, 50 mM Tris pH 7.8, 30 mM imidazole, 5% (v/v) glycerol) and the proteins

were eluted with 40 mL of 80˚C hot SDS-PAGE buffer (P). After SDS-PAGE and western blotting the

quotient of pull-down (P) and input (I) band intensity was normalized to TAp63a incubated after

expression with His6-tagged p73 TD (set to 1).

Real-time quantitative PCR
Real-time quantitative PCR was performed with two independent sets of samples. For each condi-

tion per set four dissected ovaries were pooled. Oocytes were isolated by trypsin-digestion and mul-

tiple centrifugation steps. Total RNA was extracted applying the PicoPure RNA Isolation Kit (Applied

Biosystems) with on-column DNAseI (Qiagen) digestion and subsequently subjected to reverse tran-

scription with random primers using the RETROscript Kit (Ambion) followed by cDNA amplification

with the TaqMan PreAmp Kit (ThermoFisher Scientific).

Real-time quantitative PCR to determine the fold-induction of p63 target genes was performed

with the TaqMan Gene Expression System (ThermoFisher Scientific) using a LightCycler 480 (Roche).

For one biological set, each sample and TaqMan assay probe combination was measured in

duplicates.

All Kits were used according to the manufacturer’s instruction. The following TaqMan assays

(ThermoFisher Scientific) were purchased for the preamplification step and the gene expression anal-

ysis: TBP (Mm00446971_m1), Msy (Mm01250826_g), p21 (Mm04205640_g1), PUMA

(Mm00519268_m1) and Mdm2 (Mm01233136_m1).

Target gene signals were referenced to the house keeping gene TBP and mean fold-induction

upon irradiation was calculated for the biological duplicates including error propagation. The signifi-

cance levels were determined by the student’s t-test.

Permission for the experiments with mouse ovaries was obtained from the “Tierschutzbeauf-

tragte” of the Goethe University.

Size exclusion chromatography (SEC)
Analytical SEC was performed in phosphate buffer (50 mM sodium phosphate pH 7.8, 100 mM

NaCl) at 4˚C using a Superose 3.2/300 column (GE Healthcare) (injection volume 50 mL; flow rate

50 mL/min; fraction size 50 mL). SEC fractions were quantified by western blotting. Analytical SEC of

TAp63amin in urea was performed as described detailed in Supplemental Experimental Procedures.

Analytical SEC of TAp63amin in presence of urea
SEC experiments were performed on an ÄKTApurifier system at 4˚C using a Superpose 6 3.2/300

column (GE Healthcare), monitoring absorption at 280 nm.

Analytical SEC of TAp63amin at different urea concentrations
The column was equilibrated in a phosphate buffer containing urea at a variable concentration X.

5 mL of TAp63amin (102 mg/mL) were diluted with 75 mL of buffer X (to a final concentration of 6.4

mg/mL) and incubated for one hour at 4˚C before being injected on the column. This experiment

was performed at different urea concentrations X [M]: 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3, 3.5, 4, 4.5, 5,

6, and 7.

Analytical SEC of TAp63amin at constant urea concentration
The column was equilibrated in a phosphate buffer containing 1.75 M urea. TAp63amin was diluted

to a final concentration of 6.4 mg/mL in a buffer with a final urea concentration of 1.75 M (first

TAp63amin was diluted with x mL of buffer X and then with additional y mL of buffer Y, whereby cy =

cx + 1 M, so that the final concentration was exactly 1.75 M). Injections were performed at different

time points [hours:minutes]: 0:01, 0:53, 1:45, 2:43, 3:36, 4:30, 5:29, 6:20, 7:17, 8:14, 9:06, 24 hr.
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Analytical SEC followed by dialysis and reinjection
The column was equilibrated in a phosphate buffer containing 1.75 M urea. TAp63amin (32 mg/mL

final concentration) was incubated in phosphate buffer with 1.75 M urea for one hour and then

injected on the column. The dimer and tetramer peak (two fractions each) was dialyzed back to 0 M

urea using D-tube Dialyzer Mini (MWCO 12–14 kDa) in a 50 mL falcon filled with phosphate buffer

under continuous stirring. After 13 hr of dialysis the samples were reinjected on the column equili-

brated with phosphate buffer.

Biomolecular structures
We used the crystal structure of the p63 tetramerization domain (PDB: 4A9Z) (Muniz et al., 2011) to

highlight interactions relevant in context of dimeric TAp63a. The crystal structure of the p63 DNA

binding domain (DBD) in complex with DNA (PDB: 3QYN) (Chen et al., 2011; Chen and Herzberg,

2011) was used to model the interaction with ASPP2 by structural alignment with the p53-ASPP2

complex (PDB: 1YCS) (Gorina and Pavletich, 1996; 1997).

All structures and models were illustrated using PyMOL 1.7.6.6.

TAD/TID dissociation assay
To obtain a qualitative measure of TAD and TID dissociation, constructs with a TEVsite (ENLYFQGS)

between residues 66 and 67 (591 and 592) and with a C-terminal (N-terminal) myc-tag were created.

After RRL expression cycloheximide (50 mg/mL final) and TEV protease (10 mg) were added. The

sample was incubated for either 15 min, 1 hr, 4 hr or 12 hr at 37˚C before being cooled to 4˚C and

subsequently analyzed by SEC.

Transactivation assays
Transcriptional activities of TAp63a and TAp63a(10–614) mutants were measured in triplicates as

described previously (Luh et al., 2013).

Western blotting
Western blot (WB) analysis was performed as described previously (Straub et al., 2010).

Small-angle X-ray scattering
In-line size exclusion chromatography small-angle X-ray scattering of TAp63amin was performed at

bending magnet beamline B21 at Diamond Light Source (Harwell, UK). The output from an Agilent

HPLC was connected to an in-vacuum quartz flow cell. The SAXS detector was triggered by the 280

nm UV sensor in the Agilent HPLC, and allowed the collection of data in 1 s time bins across the

peak of interest. A Shodex KW404 column was utilised for these experiments. At the end of each

experimental run, SAXS data were integrated using beamline software and the background sub-

tracted using running buffer. The integration procedure ensured that only SAXS data from the peak

of interest were abstracted and subjected to further analysis. Data were inspected for radiation dam-

age and aggregation by inspection of Guinier plots. This method ensured that SAXS data were

unperturbed by any other oligomers which may have formed or been present in the analysis

solution.

The beamline was also used to collect data in batch mode, whereby protein and corresponding

buffer solutions were exposed to the beam using an Arinax (Grenoble, France) BioSAXS automated

sample changer robot, consisting of temperature controlled storage and exposure units. The expo-

sure unit contained a 1.6 mm diameter quartz capillary in which the samples were illuminated with

the x-ray beam; the exposure unit temperature was set to 15˚C. The sample capillary was held in

vacuum and subjected to a cleaning cycle between each measurement. Samples were stored in 96

well plates at 5˚C. A Pilatus 2M two-dimensional detector was used to collect 10 frame exposures of

10 s from each sample and the corresponding buffer. The detector was placed at 3.9 m from the

sample, giving a useful q-range of 0.008 Å-1 < 0.4 Å-1, where q = 4p sin q / l, 2q is the scattering

angle and l is the wavelength, which was set to 1 Å. Two dimensional data reduction consisted of

normalization for beam current and sample transmission, radial sector integration, background

buffer subtraction and averaging. Each frame was inspected for the presence of radiation induced

protein damage; if this was found to be the case, the frames were not reduced and processed.
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Further data analysis, such as scaling, merging and Guinier analysis were performed in Scatter

(Forster et al., 2010). Three concentrations were measured of each mutant with each experimental

data frame being inspected for signs of radiation damage. Frames which appeared to demonstrate

radiation damage were excluded from averaging.

Ab-initio shape reconstruction of the wild type was performed by averaging and filtering 13 runs

of DAMMIF (Franke and Svergun, 2009), with a final refinement in DAMMIN (Svergun, 1999), utiliz-

ing slow mode. The wild type was found to have Rg of 38.6 Å, with Dmax of 132 Å. l-cro-TAp63amin

was analyzed using MONSA, allowing a simultaneous bead modelling from the wild type and the N-

terminal fusion. A relative volume difference for MONSA was derived from Porod analysis of the

wild type and derivative scattering curves.

Secondary structure prediction
Secondary structure and disorder were predicted with Phyre2 (Kelley et al., 2015) and the Protein

Crystal Structure Propensity Prediction Server (Price II et al., 2009) which uses PredictProtein

(Rost et al., 2004).
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