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When learning a new motor skill, we benefit from watching others. It has been suggested that observation of others’ actions can
build a motor representation in the observer, and as such, physical and observational learning might share a similar neural basis.
If physical and observational learning share a similar neural basis, then motor cortex stimulation during observational practice
should similarly enhance learning by observation as it does through physical practice. Here, we used transcranial direct-current
stimulation (tDCS) to address whether anodal stimulation to M1 during observational training facilitates skill acquisition.
Participants learned keypress sequences across four consecutive days of observational practice while receiving active or sham
stimulation over M1. The results demonstrated that active stimulation provided no advantage to skill learning over sham
stimulation. Further, Bayesian analyses revealed evidence in favour of the null hypothesis across our dependent measures. Our
findings therefore provide no support for the hypothesis that excitatory M1 stimulation can enhance observational learning in a
similar manner to physical learning. More generally, the results add to a growing literature that suggests that the effects of tDCS
tend to be small, inconsistent, and hard to replicate. Future tDCS research should consider these factors when designing

experimental procedures.

1. Introduction

Learning new motor skills is crucial for successful interac-
tions with one’s environment. However, the neural mecha-
nisms that underlie skill learning in the human brain are
not well known. Most prior neuroscience research has inves-
tigated skill acquisition through physical practice. For exam-
ple, prior studies have shown that motor skill learning can be
facilitated by applying anodal transcranial direct-current
stimulation (tDCS) to the primary motor cortex (M1) during
physical practice of new skills (for reviews, see [1-4]). These
results suggest that M1 plays a functional role when learning
novel motor skills through physical practice. However, motor
learning also occurs when watching others perform actions
in the absence of physical practice [5]. To date, the extent
to which the motor system operates similarly in physical
and observational learning remains unclear. In the present
study, therefore, we use anodal tDCS over M1 to determine

the extent to which stimulation of the motor system may also
facilitate learning via observation.

Motor learning increases excitability of M1 and
strengthens synaptic connections within M1 through
long-term potentiation- (LTP-) like mechanisms [6-8]. Sim-
ilarly, applying an anodal current over M1 via tDCS increases
excitability of cortical neurons under the surface area of the
electrode [9, 10] and the aftereffects of stimulation are
believed to be related to LTP-like changes in synaptic plastic-
ity [11]. In addition, combining anodal tDCS over M1 with a
motor learning task (so-called “online” stimulation) has been
shown to facilitate motor learning [1-4], which suggests that
there may be additive effects of combining stimulation tech-
niques with learning paradigms.

Physical practice of motor movements is not essential to
learn new skills; motor skills can also be learned by watching
others perform actions [5]. Although many studies have
shown that motor skills can be learned via observation, the
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specific neural mechanisms that are required to translate
visual input into motor programs are not well understood
[12, 13]. Several theories suggest that action observation
engages an observer’s own motor system by establishing
internal representations of the motor programs required to
perform the action (for a review, see [14]). Engagement of
premotor and parietal cortices is consistently reported during
both action execution and action observation, and these two
brain regions form the core of the so-called human mirror
system [15, 16].

Although M1 is not part of the premotor-parietal mirror
system, accumulating evidence suggests that it plays an
important role in action observation, as well as learning by
observation. Electrophysiological recordings in monkeys
have shown that cells in M1 exhibit mirror-like properties,
meaning that they respond to both observed and executed
movements [17-19]. In humans, repetitive transcranial
magnetic stimulation (TMS) over M1, which temporarily
disrupts function, effectively inducing a short-lived “virtual
lesion,” reduces the benefits of motor learning by observation
[20]. Further, M1 engagement during observation might be a
critical determinant for the success of motor learning via
observation [21]. If M1 plays a similar functional role in
observational learning as it does in physical learning, increas-
ing M1 excitability during observational learning should
facilitate skill acquisition in a similar manner as that reported
for learning by physical practice.

Here, we investigate whether applying anodal tDCS
over M1 during observational practice facilitates acquisi-
tion and retention of a keypress sequence learning task.
We hypothesise that observational practice coupled with
anodal tDCS should have beneficial effects on learning
compared to observational practice alone, as has been pre-
viously reported for learning by physical practice [1-4].
Such a pattern of findings would support the view that
M1 plays a similar functional role in learning via observa-
tion and physical practice, thus further illuminating the
functional mechanisms supporting action and perception
links in motor learning.

2. Method

2.1. Participants. Fifty-five participants consented to partici-
pate in the study. Five participants did not finish all sessions,
including the posttraining testing sessions. These five par-
ticipants were thus excluded from analyses as they did not
have posttraining performance measures that were critical
for testing our hypothesis. The final sample comprised
50 participants: 14 males and 36 females, 18 to 30 years
old (M=20.60 years, SD=2.40). All participants were
right-handed (based on self-report) Bangor University stu-
dent volunteers with normal or corrected-to-normal vision
and no history of neurological or psychiatric disorders. Par-
ticipants reported no contraindications to TMS or tDCS
(personal/family history of epilepsy or seizures, metal or
implants in the body, frequent headaches, history of seri-
ous head injury, heart disease, and possibility of being
pregnant) and were not taking any medication that affects
brain function (e.g., antiepileptic medication, tranquilizers,
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or antidepressants). Prior to the first stimulation session,
participants were assigned to the sham (N =24) or active
stimulation (N =26) group (see Section 2.4 for assignment
procedure). No significant differences existed between the
groups in terms of demographics and baseline performance
(summarised in Table 1). Participants provided their written
informed consent prior to beginning all experimental proce-
dures and either received eight course credits or were paid
£30 for their participation following completion. The study
was conducted in accordance with the Declaration of
Helsinki and all procedures were approved by the Ethics
Committee of the School of Psychology at Bangor University
(protocol 2016-15675) and the UK Ministry of Defence
Research Ethics Committee (protocol 735/MODREC/15).

2.2. Stimuli. A keypress sequence learning paradigm was
implemented, based on the task used by Wiestler and Die-
drichsen [22]. A standard QWERTY black computer key-
board had the Q, 3, 4, 5, and Y keys covered with red tape
and all surrounding keys removed. In pre- and posttraining
sessions, participants were required to press the red keys with
the five fingers of their left hand in a specified order. During
the observational training tDCS sessions, participants
watched videos of the experimenter performing the keypress
task. For the video recordings, a similar keyboard was used
with the only difference that the sides of the five keys were
covered in yellow to improve the visibility of the key being
pressed. Stimuli presentation and response recordings were
performed using MATLAB 8.3.0 (The MathWorks, MA,
USA) and Psychophysics Toolbox 3.0.12 [23].

2.2.1. Keypress Sequences. The same set of 12 five-element
keypress sequences was used previously by Wiestler and
Diedrichsen [22]. Each sequence required the five fingers of
the left hand to be pressed once in a sequential order, with
each of the 12 sequences featuring a different order with no
more than three adjacent finger presses in a row. All
sequences were matched for difficulty, based on a previous
work [22]. For each participant, from the set of 12 sequences,
four sequences were randomly allocated to the trained condi-
tion, and four other sequences were allocated to the
untrained condition. The remaining four sequences
remained unused.

2.2.2. Videos. For the observational training sessions, 13-
second videos were created showing the experimenter’s left
hand from a first-person perspective, slightly tilted to the
right (see Figure 1(a) and Supplementary 1). Each video
showed the experimenter executing one sequence five times,
with naturally varying breaks between each sequence
repetition to ensure a more authentic presentation of the
performance. For the same reason, for each sequence, five
different video versions were recorded. This ensured closer
to natural performance variation of the same sequence. An
additional video version for each sequence was created where
one of the five sequence executions was incorrect. This
resulted in 72 videos in total.

Sequences were executed at an intermediate performance
level, which was determined by behavioural pilot test results,
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TaBLE 1: Group characteristics and self-reported sensations during training sessions.

Sham (N =24) Active (N =26) Group difference (p value, effect size)

Demographics

Gender (male/female) 8:16 6:20 0.623

Age (years; M + SD) 20.96 +2.97 20.27+1.71 0.446, d =0.217
Baseline performance

Pretest initiation time (s; M + SD) 0.77 £0.25 0.89 +.30 0.117, d =0.455

Pretest execution time (s; M + SD) 1.92 +£0.57 2.02+0.68 0.590, d =0.153

Pretest error rate (%; M + SD) 25+13 30+ 15 0.203, d =0.366
Sensations

Strongest (M + SD) 1.23+0.49 1.46 £0.79 0.478, d =0.202

Affected (M £ SD) 0.16+0.32 0.30+0.36 0.037, d=0.618

Lasted (M + SD) 1.14+0.48 1.79+0.71 0.001, d=1.04

Items in italics (last two rows) highlight variables that significantly differed between the sham and active stimulation groups. Strongest: the strongest reported
sensation intensity level (0-4); affected: how much did sensations affect performance (0-4); lasted: when did the discomfort stop (0-3).

Was there an error
in any of the last 5

repetitions?

Yes No

Fixation Precue Sequence 5x Question & answer
04s 26s 13s 2.6s
(a) Observation trial example
Single trial example Feedback example
Start Correct Incorrect
Sequence Seokokonk Stk sk ok
* 14532 #* e execution * * *
—_— Correct 20% faster ~ 20% slower  Incorrect
Fixation Precue /S\O.Ss After each o o
g 28 \—x/ sequence, * Kk * *
0.8s

(b) Pretraining, posttraining, and retention test example

FIGURE 1: Sequence learning and testing elements. (a) Observation trial example. A sequence cue was followed by a video showing a hand
executing the sequence five times, either correctly or incorrectly. Occasionally, a question was asked whether there was an error in any of
the five repetitions, and a response had to be made. (b) Execution trial example. A cued sequence had to be memorised and then executed

five times while receiving performance feedback.

where the average time to complete a correct sequence execu-
tion was 2.29 seconds (pilot: N=17, M=2.29s, and
SE=0.14). Each original video, showing five repetitions of
the same sequence, was slightly sped up or slowed down
(£10%) to make it exactly 13 seconds long. Consequently,
the authenticity of movement performance was somewhat
reduced, but the relative variability within the video
remained intact. The average length of time for a single
sequence execution in the videos was 2.3 seconds. The videos
were presented on a computer monitor in full colour on a
black background. The frame rate was 29 frames per second
with the resolution of 600 x 526 pixels, showing approxi-
mately natural hand size.

2.3. Procedure. Participants were required to watch and learn
four different 5-element keypress sequences performed by a
model with the left (nondominant) hand. Participants

underwent six testing sessions (Figure 2). Consecutive
multiple-day stimulation sessions were administered because
they generally produce higher tDCS effects compared to sin-
gle stimulation sessions [1], showing a cumulative increase in
cortical excitability [24] and improved motor skill consolida-
tion and retention [25, 26]. On the first day of testing (day 1),
participants’ left-hand motor area was localised with TMS
(see below for details). After the localisation procedure, par-
ticipants received task instructions and completed three
single-sequence execution trials to ensure they understand
the task. The familiarisation procedure was followed by a
pretest, which was followed immediately by the first obser-
vational practice session. The observational practice ses-
sions continued for the next three consecutive days (day
2 to day 4). For most participants, sessions were arranged
at the same time of the day as the first practice session
(with 1.5 to 2.5-hour difference for three participants in
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Day 1 | | Day 2, Day 3, Day 4 Day 5 Day 12
Localise Pretest Observational training Posttest Retention test
M1 perform Watch videos perform perform
Trained
Trained |[Untrained
Cathode (7 x 5 cm)
Left supraorbital
?I‘n ¥
Anode (7 x 5 cm)
Right M1
g ii :
. . . Active: 20 min
20 t + act ham tDCS
min training + active/sham Shame 30.s

FIGURE 2: Experimental procedure. The experiment involved pretest, four 20-minute-long training sessions coupled with tDCS, posttest, and
retention test. In the pre-, post-, and retention tests, participants executed eight keypress sequences (four of them to be trained, the other four
untrained) with the left (nondominant) hand. In the training sessions, participants watched videos of a model’s left hand executing four of the
eight sequences. During training, participants received either sham or active (1 mA) 20-minute stimulation over the right motor cortex

(35cm® large area centred on the left-hand motor area M1).

the sham group and 0.5 to 1.5-hour difference for four partic-
ipants in the active stimulation group). The day after com-
pleting the final observational practice session, participants
performed a posttest to assess learning (day 5). One week
later, they returned to the lab one final time to perform a
retention test to assess memory for the different sequences
(day 12).

Stimuli presentation and response recordings were per-
formed using MATLAB 8.3.0 (The MathWorks, MA, USA)
and Psychophysics Toolbox 3.0.12 [23]). All scripts are avail-
able at Github (https://github.com/dcdace/2017_tDCS).

2.3.1. Testing Sessions. In the pre-, post-, and retention per-
formance sessions, participants performed four trained and
four untrained sequence execution trials in a random order
with the left hand. Each trial consisted of five repetitions of
the same sequence. All trial-related information was pre-
sented centrally at the bottom of the screen against a grey
background. A trial started with a black fixation cross
(0.2 5), followed by the sequence cue presented as five digits
(2.75) that indicated from right to left which key to press:
“1”—the right-most key pressed with the thumb and
“5”—the left-most key pressed with the little finger (see
Figure 1(b)). After the cue, the digits were replaced by the fix-
ation cross and five black asterisks above it. This served as a
“go” signal to execute the memorised sequence five times as
quickly and accurately as possible. If the correct key was
pressed, the corresponding asterisk on the screen turned
green, if a wrong key was pressed, the asterisk turned red.
After executing a single sequence, the central fixation cross
changed colour to provide feedback on the performance

(0.8s): green—correct sequence execution, red—incorrect
sequence execution, blue—correct, but executed 20%
slower than the median execution time (ET) in the previ-
ous trials, and three green asterisks—correct and executed
20% faster than the median ET in the previous trials. After
this short feedback, all asterisks turned black signalling the
start of the next execution trial. After five executions of
the same sequence, the trial ended and the next sequence
was cued.

Participants’ performance was assessed as the average
sequence initiation time, execution time, and error rate
for the four trained (to-be-trained) and the four untrained
sequences. The error rate was measured as the percentage
of incorrect sequence executions. Incorrectly executed tri-
als were excluded from initiation time and execution time
measurements. The initiation time was measured as the
duration between the “go” signal and the first keypress.
The execution time was measured as the duration between
the first and fifth keypresses.

2.3.2. Observational Training Sessions. During the observa-
tional training sessions, participants received either sham or
active brain stimulation while watching videos of the
model’s left hand executing four sequences. Each video
showed five repetitions of the same sequence. A trial started
with a 5-digit cue (for 2.6s), indicating the sequence to be
executed, followed by a video (13 s) showing five executions
of the cued sequence. Participants were instructed to watch
whether the hand executed the correct sequence all five times.
Occasionally, participants were asked whether there was an
error in any of the five executions—the error question.
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Each practice session was divided into three blocks, sepa-
rated by a one-minute rest period. Within each block, 20
videos were presented in a random order: each sequence
video four times and one “error video” (with at least one
incorrect sequence execution) for each sequence. The error
question was asked randomly 5-7 times per block. At the
end of each block, participants received feedback on how
accurately they spotted the incorrect sequence executions.
During each session, participants saw a correct execution of
each sequence at least 60 times (3 blocks, 4 videos per block,
5 repetitions per video, plus some correct repetitions in the
“error video”). The whole training session lasted approxi-
mately 20 minutes and was coupled with 20 minutes of sham
or active tDCS.

2.4. Motor Cortex Stimulation

2.4.1. Right M1 Localisation. Single-pulse TMS was used to
localise the left-hand motor area. The TMS coil was posi-
tioned on the right hemisphere, slightly anterior and ventral
to the vertex of the skull to induce a muscle twitch in the
relaxed fingers of the left hand. The stimulator output was
started at 45% and increased in steps of 2-5% until a visible
twitch was observed. The stimulator output never exceeded
80% and participants received no more than 20 total pulses
in total, with an interpulse interval kept to at least 5 seconds.
The optimal location at which TMS evoked a just-noticeable
finger twitch was marked on the participant’s scalp with a
surgical marker. For nine participants, a visible twitch was
not observed following this procedure and the motor hand
area was instead marked per position C4 of the EEG 10-20
system (after [27]). The localisation procedure was per-
formed only on the first testing session and the marked M1
location was renewed with the surgical marker before each
stimulation session.

The nine participants whose M1 area could not be local-
ised using TMS were assigned to the sham group as the pre-
cise location of the stimulated area was not critical for sham
stimulation. We acknowledge that random assignment, inde-
pendent of localisation procedure, would have been a better
approach. The reasons why we could not evoke a visible
twitch in some participants may include extent of representa-
tion of the hand area and/or its accessibility via the cortical
surface. To ensure that any group differences are not driven
by the nonrandom assignment to groups, we repeated the
main analyses of observational training and stimulation
effects with the nine non-TMS-localised participants
excluded. The results of this analysis (see Supplementary
Materials 1) suggest that nonrandom group assignment did
not systematically bias our findings.

2.4.2. Stimulation Parameters. We performed a single-
blinded protocol. Participants were semirandomly assigned
to the sham or active stimulation group, keeping gender bal-
anced between the groups and ensuring that the motor hand
area of the active group was localised using the TMS proce-
dure described above. Participants were told that they would
receive stimulation for up to 20 minutes, not specifying the
exact length of the stimulation and not revealing the

existence of two stimulation groups. During each practice
session, the sham group received 30 seconds and the active
group received 20 minutes of tDCS (cf. [28]).

A 1mA constant current was delivered using a battery-
driven DC-Stimulator Plus (neuroConn GmbH, Ilmenau,
Germany) via a pair of conductive rubber electrodes placed
into saline-soaked sponges (7 x 5cm; 0.029 mA/cm? current
density). The electrodes were secured with elastic bands.
The contact impedance was monitored throughout the ses-
sion to ensure it stays below 15 kQ.

The anode was centred over the previously marked
right M1. Due to the electrode size, the stimulation likely
extended into premotor and anterior parietal cortices as
well. The cathode was placed on the left supraorbital ridge
(see photographs in Figure 2). The current was ramped up
to 1mA over 10 seconds, held constant for either 30 sec-
onds (sham) or 20 minutes (active), and then ramped
down over 10 seconds. This method is recommended to
reliably blind participants to stimulation condition and
ensure similar sensations for sham and active stimulation
groups [28].

The observational training task started one minute after
stimulation onset, to allow time for participants to adapt to
the stimulation sensations and to ensure they felt comfort-
able with carrying on with the task. The stimulation ended
about one minute before the end of the task.

2.4.3. Sensation Questionnaire. After each training session,
participants provided information on the intensity of experi-
enced sensations (itching, pain, burning, heat, pinching,
metallic taste, and fatigue), the timing of any discomfort
(when did the discomfort begin and how long did it last?),
and the perceived impact of the stimulation on their perfor-
mance (adapted from [29]). At the end of the experiment
(day 12), participants were debriefed and asked whether they
think they received sham or active stimulation.

2.5. Data Analysis. All statistical analysis was performed
using R (v3.3.2, 2016-10-31) in RStudio (v1.0.136, 2016-12-
21, RStudio Inc., Boston, MA). Graphs were produced in
MS Excel 2016 (Microsoft, Redmond, WA, USA). The Excel
files, raw data, and scripts with all analysis procedures and for
reproducing results are available at https://github.com/
dcdace/2017_tDCS.

Given the total sample size of 50, the study had 80%
power to detect effects of tDCS that are conventionally
considered large (Cohen’s d=0.71; the effect size was esti-
mated with a power.t.test function in R for a two-sample,
one-sided t-test with 25 observations per group). Three
previous multiple stimulation session (3-5 consecutive
days, 20-25min per day, 1-2mA, and ~12.5 participants
per group) M1 anodal-tDCS physical training studies
reported large tDCS effects ranging from 0.95 to 1.33
Cohen’s d [25, 26, 30].

The effect of observational training on sequence-specific
learning was assessed as a posttraining difference between
the trained and untrained sequence initiation time, execution
time, and error rate. For the sequence initiation time and
execution time, we measured a percentage difference
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FIGURE 3: Performance results. Pre-, post-, and retention test differences in initiation time (a), execution time (b), and error rate (c) between
trained (TR) and untrained (UN) sequences for sham (blue) and active (red) stimulation groups. (d) Error detection accuracy during
observational practice sessions. (a—d) Bars and large dots: group averages; small dots: individual participant values; error bars: 95% CI
(one-tailed for (a), (b), and (c); two-tailed for (d)). (e) Regression lines of pretest (predictor) and the posttest differences between trained
and untrained sequence initiation times for the sham (blue) and active (red) stimulation groups. Intercepts of the regression lines
represent the predicted posttest difference if the pretest difference is zero. Vertical bars represent 95% Cls (one-tailed) of intercepts (f).
Same as (e), but posttest difference corrected for error detection accuracy during training sessions.
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TaBLE 2: Frequencies of self-reported sensations during the training sessions.
(a) The strongest intensity of discomforting sensations

. Day 1 Day 2 Day 3 Day 4
Intensitylevel 5 5 5y 0 1 2 3 4 0 1 2 3 4 0o 1 2 3 4
Sham 1 12 10 1 — 4 11 8 1 — 2 15 7 — — 4 5 — —
Active 2 11 8 3 2 2 18 2 3 1 2 15 4 2 3 3 16 5 2 —
0: none; 1: mild; 2: moderate; 3: considerable; 4: strong.

(b) How much did the sensations affect performance?

. Day 1 Day 2 Day 3 Day 4
Intensity level = 757 5 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Sham 9 5 - — — 20 4 — — — 2 2 - — — 21 2 1 - —
Active 8 7 — 1 — 20 6 — — — 18 7 1 - — 20 6 — — —

0: not at all; 1: slightly; 2: considerably; 3: much; 4: very much.
(c) When did the discomfort stop?

. Day 1 Day 2 Day 3 Day 4
Intensity level 12 3 s 1 2 3 s 12 3 s 1 2 3
Sham 1 15 4 4 4 14 19 3 — 5 18 —
Active 2 6 9 9 2 11 7 6 8 9 9 8 6

ns: no sensations; 1: quickly; 2: middle of the block; 3: end of the block.

([(untrained/trained) — 1]*100), but for the error rate (to
avoid dividing by zero), we calculated an absolute difference
(untrained-trained) between the trained and untrained
sequences. Results for all of these measures are plotted in
Figures 3(a)-3(c) (raw performance measures are provided
in Supplementary Materials 2). To correct for possible
pretraining differences, we performed a linear regression
between the pretraining difference (predictor) and the
posttraining difference (outcome; see Figure 3(e) for an
example plot). The intercept of the regression line was
used as a measure of the posttraining difference between
trained and untrained sequences, controlling for possible
pretraining differences. This method reduces the noise of
unwanted differences in the difficulty of trained and
untrained sequences and thus allows a more accurate mea-
surement of the training effect.

For the assessment of tDCS effects, we complemented
null hypothesis significance testing with a Bayesian analysis
to provide evidence for the null result. We used the general-
TestBF function of the R package BayesFactor v0.9.12-2
[31] with its default parameters. The Bayesian test produced
a Bayes factor to allow quantification of evidence in favour of
either the alternative (BF,,) or null (BE,,;) hypothesis based
on prior beliefs and the present data. To describe the Bayes
factor results, we used Jeffreys’ [32] classification scheme
and reported both BF,, and BE,,. Jeffreys proposed
benchmarks for evaluating the strength of evidence as anec-
dotal (BF,, 0-3), substantial (BF,, 3-10), and strong (BF,,
10-30). These Bayes Factors can be readily interpreted as a
ratio of evidence in favour of the experimental effect com-
pared to the null effect. For example, a BF,, of 3 would

represent that the experimental effect is three times more
likely than the null, given the data.

The significance threshold for all statistical compari-
sons was p<0.05. If not specified otherwise, all sample
means are reported with their 95% confidence intervals
in square brackets. Confidence intervals for two-tailed tests
were calculated as SE * 2.07 for the sham group (df 23)
and SE * 2.06 for the active group (df 25), whereas confi-
dence intervals for one-sided tests were calculated as SE *
1.71 for df 23 and df 25 [33].

3. Results

3.1. Group Characteristics and Sensations during Training
Sessions. Gender proportion between the sham and active
stimulation groups was compared using a chi-square test.
Mann-Whitney U tests were used to compare group age
and experienced sensations during the training sessions. Par-
ticipants’ baseline performance (pretraining average of
trained and untrained sequences) was compared using a
two-tailed independent-measures ¢-test. Results are sum-
marised in Table 1. The reported sensations for each training
day are summarised in Table 2 and averages of all training
days are plotted in Figure 4.

There were no differences in gender, age, and baseline
performance between the groups. On average, both groups
reported mild to moderate levels of discomfort during stim-
ulation with no significant difference between the groups
(Table 1; Figure 4(a)). Although the active stimulation
group did report a small but significantly larger impact
of stimulation on performance than the sham group, the



perceived impact for both groups was closest to zero (“no
impact”) (Table 1; Figure 4(b)). Finally, sensations lasted
significantly longer for the active compared to the sham
group (Figure 4(c)), with average sensations stopping
between “quickly” and “in the middle of the block”
across both groups.

The reported sensation data, therefore, shows that there
were small but significant sensation differences between the
sham and active stimulation groups. The sham protocol
should provide comparable sensations to the active stimula-
tion protocol [28]. However, small but significant sensation
differences between the stimulation groups, using compara-
ble protocols to ours, have been reported before [29], raising
an issue that the widely accepted sham stimulation procedure
may not be sufficiently effective.

Following the recommendation of Fertonani et al. [29], at
the end of the experiment, we asked participants whether
they think they received sham or active stimulation. In total,
54% thought they received active stimulation, 32% thought
they received sham stimulation, and 14% did not know.
There was no significant difference between the two groups
in terms of which kind of stimulation they thought they
received (x°=1.24, p =0.538), thus confirming the success
of the blinding procedure.

3.2. Accuracy during Training Sessions. During the observa-
tional practice sessions, attention to the task was assessed
by accurate responses to the error question (spotting
incorrectly executed sequences). The overall accuracy was
83%, significantly higher than a 50% chance level (yes/no
answers; t,o=24.61, p <0.001, two-tailed), confirming that
participants paid attention to the task. The average accura-
cies for each group and day are plotted in Figure 3(d). On
average, across the four training days, the sham group per-
formed better (M =286% (82%, 90%)) than the active group
(M=81% (77%, 85%)), with a marginally significant differ-
ence between the two groups (Welch two-sample t-test for
nonequal variance: t,,,,=1.99, p=0.052, two-tailed, d =
0.56).

The small difference in error detection accuracy between
the groups was an unexpected finding. It cannot be ruled out
that anodal tDCS of M1 had some negative effects on the
error detection accuracy. However, we do not have any a
priori or theoretical grounds to support this suggestion.
Another possibility is that the error detection accuracy was
influenced by the discomforting sensations during the train-
ing sessions that, as reported above, affected the stimulation
group more than the sham group. This possibility is sup-
ported by a significant negative correlation between the aver-
age error detection accuracy and the average self-report on
how much performance was affected by the discomforting
sensations (Kendall’s tau-b=-0.296, p=0.008, two-tailed;
across both groups).

The lower error detection accuracy for the active stimula-
tion group raises a possibility that the active group may not
have been able to learn from the videos as well as the sham
group due to stimulation-related discomfort and consequent
impact on attention. To account for this possibility, we com-
plement the planned analysis with an exploratory analysis
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that includes mean error detection accuracy as a covariate
when assessing the stimulation effect.

3.3. Observational Training Effects on Sequence-Specific
Learning. Both groups showed significant observational
training effects at both posttest and retention test on all three
performance measures, with medium to large effect sizes
for the performance difference between trained and
untrained sequences (d,=0.52-1.02; comparable to previ-
ous reports on keypress sequence learning by observation,
e.g., [34-36]). The only exception to this pattern of results
was that the active stimulation group demonstrated no
effect on error rates at the retention test. Detailed results
are provided in Table 3, columns I and II, where B, repre-
sents the percentage performance improvement from pretest.
All tests in Table 3 are one-tailed as we were testing a direc-
tional prediction for the difference between trained and
untrained sequences. Furthermore, Supplementary Materials
3 document the extent to which the training manipulation
generalised to the untrained sequences, comparing the active
and sham stimulation groups.

3.4. tDCS Effects on Sequence-Specific
Learning by Observation

3.4.1. Primary Analysis. The effect of stimulation on sequence-
specific learning was assessed by comparing observational
training effects (the posttraining~pretraining regression line
intercepts) between the sham and active stimulation groups.
The performed analysis of covariance (ANCOVA) did not
reveal any significant difference between the two groups on
any of the three measures either at posttest or retention test
(Figure 3(e) plots posttest initiation time results; see
Supplementary Materials 4 for ANCOVA results of the raw
means). The Bayes factor analyses yielded anecdotal to sub-
stantial evidence against the stimulation effect. Detailed results
are provided in Table 3, column III (reporting significance of
the group as a predictor variable for the training effect).

3.4.2. Secondary Analysis: Accounting for Error Detection
Accuracy. Due to error detection differences between the
groups, in an exploratory analysis, we added mean error
detection accuracy as a covariate to the previous ANCOVA
model and repeated the group comparison analysis. This
exploratory analysis revealed evidence for the stimulation
effect on the percentage difference between trained and
untrained sequence initiation times at posttest. Compared
to the sham group, the active stimulation group showed
greater difference on this measure (see Figure 3(f)). The error
detection accuracy significantly predicted the outcome (8 =
0.431, p = 0.003; the better the accuracy during training, the
faster initiation time of trained relative to untrained
sequences at posttest). All other measures showed substantial
to strong evidence against the stimulation effect when
accounting for the error detection accuracy. Detailed results
are provided in Table 3, column IV (reporting significance
of the group as a predictor variable for the training effect
accounting for the error detection accuracy).
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FI1GURE 4: The 4-day average values of self-reported sensations during the training sessions. Large dots: group averages; small dots: individual
participant values; red: active; blue: sham; error bars: 95% CI, two-tailed; *p < 0.05, **p < 0.01, two-tailed.

4. Discussion

We investigated the extent to which anodal tDCS over
M1 facilitates motor sequence learning by observation,
as previously reported for learning by physical practice
[1-4]. Both the active and sham stimulation groups
benefited from observational practice, replicating previous
findings that motor skills can be learned by observation
without overt physical practice [5, 34-39]. However,
active stimulation over M1 did not provide an advantage
to learning the motor sequences through observation

over and above sham stimulation. Furthermore, Bayesian
analyses revealed anecdotal to substantial evidence in
favour of the null hypothesis across our dependent mea-
sures. Our findings therefore do not provide strong
support for the hypothesis that excitatory M1 stimula-
tion can enhance observational learning in a similar
manner to physical learning.

4.1. Understanding the Role of the Motor System during
Observational Learning. Although there is a consensus that
shared mechanisms exist between action observation and
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execution [14], the role played by the motor system in obser-
vational learning is not clear [12, 13]. Indeed, several studies
have questioned the notion of motor-driven learning by
observation, arguing instead that it is driven by perceptual
and cognitive processes [40-42]. It is possible, therefore, that
primary motor areas might be engaged during action obser-
vation [43-45], but their involvement might not be critical
in shaping observational learning.

Alternatively, it is possible that the effect of anodal
tDCS over M1 during observational learning is smaller
than during physical learning and subtler than we could
detect in the current study. The current study had 80%
power to detect an effect size that is typically considered
large (0.71 Cohen’s d). Therefore, we have reasonable con-
fidence that we could detect large effects of stimulation,
similar to what were reported previously during physical
learning, should they exist. In addition, we followed recom-
mended stimulation protocols by stimulating on consecutive
days to enhance effects of stimulation [1] and skill learning
[25, 26] (although, see work by Monte-Silva and colleagues
[46] that demonstrates the abolishment of LTP-like plasticity
in motor cortex when follow-up stimulation occurs 24 hours
after initial stimulation). As such, we designed the experi-
ment to increase the likely impact of tDCS on skill learning,
but nonetheless report a null result. We suggest that future
studies wishing to further explore the role of M1 in observa-
tional learning use a similar protocol, but with larger sample
sizes, in order to increase statistical power to detect smaller
effects.

The null result we report here adds to a growing set of
null results using tDCS in tasks ranging from working mem-
ory [47, 48] to language [49, 50]. In addition, several recent
meta-analyses document conflicting evidence regarding the
efficacy of tDCS in a variety of paradigms where effects have
previously been reported, as well as growing scepticism
regarding a causal role of tDCS in performance enhancement
[48, 50]. Given concerns over publication bias in general [51]
and in the domain of tDCS in particular [52], it is important
to report null results in order to provide a less biased estimate
of the likely effect sizes that tDCS may have on behaviour.
Therefore, balanced reporting of null results (in addition to
positive results, such as those observed with tDCS over pre-
motor cortex facilitating observational learning of a motor
sequence [53]) will help to build a cumulative science of
observational learning and tDCS. For instance, based on the
details of the current study, researchers who wish to further
explore the relationship between primary motor cortex activ-
ity and observational learning will have a more accurate esti-
mate of the likely effect sizes that they might be targeting,
which will directly inform power calculations and study
design decisions.

The current study also provides a platform for future
tDCS studies to build upon in other ways. Indeed, there
are many avenues that future work could pursue in
order to probe the relationship between the motor sys-
tem and observational learning. For example, the effects
of tDCS on observational learning may be task depen-
dent. Aridan and Mukamel [21] reported a positive
relationship between M1 activity during action observation
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and the success of motor skill learning via observation only if
the observed model’s performance was faster than the
observer’s performance at baseline. The current study used
an intermediate model, which may not have been challenging
enough to engage the motor system sufficiently. Future stud-
ies could use an expert model whose performance consis-
tently exceeds the observer’s baseline performance to test
this possibility directly.

Follow-up work could also investigate the impact of
different stimulation protocols. For example, several reports
demonstrate a powerful effect of dual-M1 stimulation on
motor learning [30, 54], which outperforms unilateral M1
stimulation montages [55-58]. Another possibility to explore
with future work is the impact of tDCS intensity on motor
learning effects. Recent work demonstrates that 1.5mA, but
not 1.0 mA, anodal tDCS over M1 reliably facilitates motor
learning [59], which raises the possibility that our stimula-
tion intensity was not optimised to induce reliable results.
A further consideration is that small differences were
observed in the sensations associated with active compared
to sham stimulation, which is consistent with prior research
[29]. The impact that such sensation differences have on task
performance are worth studying in order to more effectively
design sham protocols. Moreover, due to the electrode size
(7x5cm), the focality of tDCS stimulation is necessarily
imprecise, and stimulation in our study may have extended
beyond M1 into nearby premotor and anterior parietal brain
regions as well. The modulation of cortical excitability
under and between the electrodes is still under debate
and investigation [10, 60]. As these suggestions demon-
strate, many different lines of inquiry will be needed to
better understand the relationship between motor system
engagement and observational learning.

5. Conclusions

Our results do not support the hypothesis that anodal tDCS
over M1 facilitates skill learning through observation to a
large degree. The null finding does not necessarily imply that
the motor system is not involved in sequence learning by
observation. Rather, the results suggest that using the param-
eters employed in the current study, anodal tDCS over M1
does not reliably enhance observational learning. Given that
no prior study has used tDCS over M1 in an attempt to
enhance observational learning, this finding makes an
important contribution to the literature by informing future
brain stimulation studies and offering a platform upon which
to base further investigation into the role of primary motor
cortex in observational learning.
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