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Abstract 17 
This contribution discusses the results of an integrated approach of use wear analysis, 18 

spectroscopic analysis and experimental archaeology, applied for the investigation of the actual 19 

use of selected ceramic vessels, taken from domestic Copper Age contexts in the modern Rome 20 

area. 21 

This study is based upon the consideration of a vessel as a tool, used during everyday life and 22 

thus reflecting human activities and social behaviours. To this end, the paper here presented 23 

proposes an interpretation of the actual use activities which led to the modification of 24 

prehistoric vessels. The methodology of this study integrates the traditional approach to 25 

ceramic use wear studies, based on experimental and ethnoarchaeological studies, with 26 

principles of tribology, along with the application of a dedicated experimental framework 27 

which enabled the development of a detailed collection of comparative use wear. Moreover, 28 

the application of spectroscopic analysis provided preliminary data related to the charred 29 

encrustations found inside the archaeological specimens. These data, when combined with use 30 

wear, palaeobotanical remains and archaeological preserved structures, aided interpretation of 31 

the archaeological ceramic vessels as cooking pots. 32 

 33 

Key words: use-wear, tribology, experimental archaeology, spectroscopic analysis, prehistoric 34 

pottery, cooking pots, copper age. 35 

 36 

1. Introduction 37 
Ceramic materials, especially in the form of pottery vessels, represent one of the most recurrent 38 

pieces of evidence related to everyday human life found in archaeological contexts.  39 

The appearance of this technology is associated with important changes in the economy and 40 

social life of prehistoric communities (Barnett and Hoopes, 1995; Matson, 1965; Rice, 1999; 41 

Robb 2007; Sassaman, 1993; Vitelli, 1989). Consequently, its growing presence in the 42 

everyday life of prehistoric groups enables a large variety of inferences regarding its use in 43 

terms of human behaviour, directly and indirectly reflecting choices of production and use. 44 

North American archaeological interpretive traditions encouraged the development of 45 

prehistoric pottery analysis from an anthropological perspective, connecting empirical analyses 46 

of ceramic materials with ethnoarchaeology. This approach led scholars to realise the 47 

importance of focusing their research on the actual use of an object in order to understand 48 

specific human behaviours, which was of paramount importance for the development of use 49 

wear analysis in ceramic studies. 50 
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 1 

Use wear analysis is a method based on the study of traces left on tools during their use. The 2 

lifecycle of a functional object is subject to intentional or unintentional human activities, often 3 

leading to modifications of the object’s original features (Marreiros et al., 2015; Semenov, 4 

1964; Vaughan, 1985).  5 

The first observations of use traces on ceramic vessels focused on surface modifications and/or 6 

features attributed to use activities, defined as abrasions, scratches, spalling and fire traces 7 

(Bradfield, 1931; Braun et al., 1967; Chernela, 1969; Matson, 1965; Perino, 1966). These forms 8 

of evidence were described and localised on the objects, yet they lacked explanations of the 9 

processes involved in the formation of use wear and inferences of actual human behaviour. 10 

Interest in these latter aspects became more pronounced during the following decade, in 11 

relation to the growing processual debate on the theoretical and epistemological approach. In 12 

this period, American scholarship on ceramic use wear developed towards an anthropological 13 

approach to the interpretation of archaeological data, leading researchers to systematically 14 

investigate wear patterns as sources of information for the actual vessel function (De Garmo, 15 

1975; Ericson et al., 1972; Fenner, 1977; Griffith, 1978; Rohn, 1971). These works represent 16 

the first attempt to apply the newly born traceological method to ceramic studies, 17 

contemporaneous to the development of use wear analysis on lithic and bone tools (Hayden, 18 

1979; Semenov, 1964).  19 

Currently, our knowledge concerning use traces affecting ceramic vessels relies on an 20 

archaeological, experimental and ethnoarchaeological dataset developed mainly in the 1980s 21 

and 1990s (Bray, 1982; Bruce, 1989; Hally, 1983, 1986; Lugli and Vidale, 1996; Schiffer and 22 

Skibo, 1989; Skibo and Schiffer, 1987; Skibo, 1992). According to these studies, actions 23 

involved in cooking, storing and cleaning activities can damage the vessels and generate traces 24 

on their internal and external surfaces. While a solid foundation of knowledge regarding the 25 

principal processes of use modification is available, recently the systematic applications of use 26 

wear analyses on archaeological ceramics has remained limited to specific kinds of ceramic 27 

tools (e.g. pottery sherds for scraping activities) (Lopez Varela et al., 2002; Vieugue, 2015), 28 

with few studies focused on pottery (Banducci, 2014; Dugay, 1996; Vieugué, 2014; Vieugué 29 

et al., 2008; Vuković, 2009, 2011). To this end, interpretation of archaeological use wear on 30 

pottery usually relies on the ethnoarchaeological documentation established by Skibo (1992), 31 

which relates to the domestic ceramic assemblages of the Kalingas. Skibo (1992) developed a 32 

nomenclature on the basis of direct observation of use processes in a specific context. This 33 

study still represents a solid base in the field of ceramic use wear, even though the direct 34 

application of these observations on the archaeological materials may lead to generalised 35 

interpretations. Indeed, experimental studies on ceramics (Schiffer and Skibo, 1989; Skibo and 36 

Schiffer, 1987) demonstrated that features such as the compositional characters of raw 37 

materials and the physical properties of ceramics influence the development of wear. These 38 

findings show that dedicated studies of an object’s context and associated materials, along with 39 

experiments and use wear analysis, are essential in order to adequately interpret archaeological 40 

materials and investigate the techno-functional choices that characterise a given community. 41 

Although pioneering studies have defined the basic principles of ceramic alterations and the 42 

variables affecting wear processes, allowing for the distinction between use wear and post-43 

depositional modifications, it is still difficult to define archaeologically the variety of  44 

overlapped processes or actions related to the item’s use. For example, one of the most diffused 45 

and studied forms of wear on ceramic falls within the wide category of abrasive wear. These 46 

alterations, caused by a tribological system, are due to the contact, usually through sliding, of 47 

two surfaces in relative motion, which causes the detachment of materials. Currently, while we 48 

are able to identify abrasive wear on a vessel and define whether it has been more or less 49 

invasive, we are not able to precisely establish the nature of the material with which the vessel 50 
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came in contact during its use1. Indeed, we are able to distinguish mechanical alterations (e.g. 1 

abrasive wear) from chemical ones (e.g. corrosive wear), defining them as separate processes. 2 

However, vessels are frequently involved in both mechanical and chemical processes that are 3 

usually associated with each other; for this reason, future research should focus on these 4 

interactions and the resulting wear. Moreover, systematic experimental frameworks dedicated 5 

to monitoring not just the development processes but also to documenting trace collections 6 

associated with specific variables on vessels, are still not well defined. 7 

This kind of approach is not yet systematically applied in traceological studies on pottery. 8 

Moreover, ethnoarchaeological references primarily concern cooking vessels featuring a 9 

rounded base and which are put on the fire, often on supports, leading to specific context-10 

dependant wear. Their use in wet cooking causes black carbonised areas on the internal base 11 

and in the band immediately above the water level (Skibo, 1992), these being the areas most 12 

exposed to the heat. This contribution aims to investigate whether the archaeological traces 13 

observed as extended internal carbonisation were only accidental, or if it is possible to directly 14 

connect them and other archaeological use wear with culinary habits or specific processed 15 

foods. 16 

 17 

2. Wear processes on pottery  18 
The term ‘wear’ is used herein to refer to all the modifications produced by a reduction of the 19 

surface, regardless of their mechanical or chemical nature; conversely, the word ‘residue’ is 20 

used for all modifications of the original ceramic surface that derived from amorphous 21 

substances, regardless of their physical nature or chemical composition. For this reason, the 22 

study of wear on pottery focuses on the way in which ceramic particles detach from the original 23 

surface. Indeed, ceramic is a mix of clay minerals and inclusions held together by chemical 24 

bonds after firing (at temperatures over 650 °C). As distinct from metals, where minerals are 25 

melted by firing (Radivojević et al., 2010), ceramic, both pre- and post-firing, is an aggregate 26 

of grains of different shape and size, and the way in which it wears is determined by the 27 

structure of this aggregate.  28 

Use wear and post-depositional modifications may affect pottery mechanically and chemically 29 

and in a combination of both, altering the physical bonds between particles. After a bond 30 

breaks, the matrix particles and other mineral inclusions leave the ceramic body2 and the wear 31 

morphology develops through the way in which the material detachment occurs. This concept 32 

derives from a field of engineering named tribology studying interacting surfaces in relative 33 

motion focusing on friction, lubrification and wear (Czichos, 1978; OECD, 1969). 34 

The potentials of this approach have been applied in archaeology by Adams (1986, 2014) and 35 

Adams et al. (2009) in relation to the use of macro lithic tools and the main principle has also 36 

been investigated by Schiffer and Skibo (1989) during their first experiments on ceramic use 37 

wear. The application of such principles to understand surface modifications still has 38 

significant potential to analyse use traces on archaeological ceramic and to investigate their 39 

function through experiments and scientific analyses. 40 

Use wear on pottery is usually the result of tribological mechanisms such as fatigue, abrasive, 41 

corrosive and tribochemical wear (Tab. 1) affecting the original topography of pottery surfaces 42 

that can be usually flat, sinuous or uneven. (Adams, 1986; Adams et al., 2009; Skibo and 43 

Schiffer, 1987). 44 

                                                 
1 A traceological investigation to identify the nature of materials interacting with ceramic has been performed by 

van Gijn and Hofman (2008) and by Vieugué (2015) regarding specific ceramic tools (recycled potsherds). 
2 Some tribological systems cause a reinvolvement of ceramic particles (Olofsson, 2011 p.12) but this 

phenomenon has not been yet explored in archaeological ceramic material studies. 
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Fatigue wear occurs during mechanical stress, e.g. pressure or impact (Adams, 2014), and 1 

produces fractures, pits (caused by the pedestalling of inclusions) (Adams et al., 2009 and 2 

references therein; Skibo and Schiffer, 1987) or spall detachments. 3 

Abrasive wear results from a sliding movement between two surfaces of different hardness 4 

(Adams et al., 2009 and references therein; Schiffer and Skibo, 1989; Skibo, 2015). Alterations 5 

on a given ceramic surface appear in the form of striations, scratches, levelling (Adams et al., 6 

2009), rounding, grooves or depressions. Structural and morphological alterations of ceramic 7 

material can also be produced by chemical mechanisms, via corrosive processes that occur 8 

during contact between certain liquid or semiliquid substances and a solid surface, causing 9 

depressions or pits (Adams et al., 2009; Adams, 2014; Arthur 2002, 2003; Skibo 1992; Skibo 10 

2015) (Tab. 1). 11 

Corrosive wear on ceramic can develop when the surface absorbs substances due to paste 12 

porosity, causing a loss of material. This latter type of wear can be also caused by fermentation 13 

mechanisms producing “lactic acid-forming bacteria that reduce the pH resulting in a highly 14 

acidic substance” (Arthur, 2003; Oura et al. 1982). Such alteration generates extended 15 

superficial cracks of varying length and depth, caused by the pressure of the gas resulting from 16 

the fermenting substances 17 

trapped in the pores (Arthur 18 

2002, 2003). Isolated or 19 

multiple depressions can often 20 

develop due to this 21 

phenomenon. In other cases, 22 

the alteration can be caused by 23 

the acidity of mineral bonds in 24 

pH ranges below 4, leading to 25 

matrix dissolution (Purdy and 26 

Clark, 1987), which is visible 27 

as either a levelling or 28 

superficial depressions. 29 

The mechanisms described 30 

above are not mutually 31 

exclusive. Generally, use 32 

alterations occur during the 33 

interaction of tribological and 34 

chemical processes, 35 

observable in the form of 36 

abrasive and corrosive wear, 37 

defined as tribochemical wear 38 

(Adams et al., 2009; Adams, 39 

2014). 40 

Use traces on ceramic surfaces 41 

can also result from thermal 42 

stress. Long exposure to high 43 

temperatures or thermal 44 

shocks influence the 45 

mineralogical structure of 46 

ceramics (Hally, 1983; Skibo, 47 

1992), causing damage in the 48 

form of fractures, cracks 49 

(Adams et al., 2009) or spall 50 
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Table 1 – Relationships between tribological, thermal and chemical 

mechanisms and macro traces on pottery surfaces, considering Skibo’s 

classification (1992, 2015) and main wear mechanisms identified in this 

article. 
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detachments. They can modify the surface colour via soot concentrations (Skibo, 1992), 1 

discolourations (Hally, 1983) or carbon deposits in the form of charred encrustations of food 2 

(Craig, 2004; Hally, 1983; Skibo, 1992; Roffet-Salque et al., 2017) (Tab. 1). 3 

 4 

3.Material and methods  5 
3.1 Sampling 6 

This study focuses on selected ceramic vessels coming from two Copper Age settlements of 7 

the modern Rome area in central Italy. This territory extends to the slopes of the Colli Albani 8 

volcano and was densely populated in prehistoric times. Recent excavations show an intense 9 

occupation of this area between the 4th and 3rd millennia BCE, testified by the presence of 10 

settlements and related burial contexts (Anzidei and Carboni, 2011; Anzidei et al., 2007, 2011; 11 

Carboni and Anzidei, 2013).  12 

Copper Age pottery coming from the domestic contexts located in this area has been subject to 13 

an extended study of the technological and functional choices behind its production (Forte, 14 

2015). Within this study it was possible to identify vessels featuring evident and diffused use 15 

traces; in several specimens evident charred encrustations were also observed. The recurrence 16 

of use wear and amorphous residues led to the development of a specific research framework 17 

aimed at understanding their actual use.  18 

The ceramic vessels analysed come from the settlements of Tor Pagnotta (3090-3000 BCE and 19 

3020-2870 BCE) (Anzidei and Carboni, 2011) and Osteria del Curato-Via Cinquefrondi (2500-20 

2330 BCE and 2490-2290 BCE) (Carboni and Anzidei, 2013) (Fig. 1). 21 

The analyses were performed on a selection of seven ceramic specimens featuring potential 22 

use traces on their internal and external surfaces (Tab.2). 23 

Ceramic samples comprised potsherds of variable size, attributed to open vessels with a flat 24 

base (Fig. 2). An accurate technological study determined that the pottery vessels of these 25 

settlements were modelled via a coiling technique, using ceramic pastes with a semifine or 26 

coarse granulometry, and generally featuring fragments of volcanic rocks and grog (Forte and 27 

Medeghini, 2017). Morever, the external surfaces of the vessels were finished with smoothing 28 

(Rice, 1987) or burnishing (Lepère, 2014) techniques, and the firing procedure, reaching 29 

temperatures up to 850 °C (Forte and Medeghini, 2017), was performed in an oxidizing or 30 

uncontrolled atmosphere (Forte, 2015). 31 

Figure 1 - Location of the Copper Age settlements of Tor Pagnotta (1) and Osteria del Curato-Via Cinquefrondi (2). 
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Archaeological studies of this area, in collaboration with palaeobotanical and 1 

archaeozoological specialists, detail an environment suitable for human habitation. During this 2 

period the modern Rome area was characterised by mixed forests with a prevalence of 3 

deciduous plants (Anzidei et al., 2007; 4 

Follieri et al., 1993; Magri and Follieri, 5 

1992). Some settlements, such as 6 

Osteria del Curato-Via Cinquefrondi, 7 

were located on a fertile plain formed 8 

by lahar flows. This repeated geological 9 

event has affected the economy of 10 

prehistoric groups since the Neolithic 11 

Age, providing fertile sediments and 12 

deforested areas suited to farming 13 

(Anzidei at al., 2007). In particular, 14 

frequent remains of cereals and legumes 15 

(Anzidei et al., 2007 ), numerous 16 

ground stones and silos along with use 17 

wear on lithic tools (Lemorini, 2007) 18 

suggest their intense exploitation for 19 

domestic use (Anzidei at al., 2007). An 20 

important part of the economy was also 21 

fulfilled by animal exploitation: the 22 

analysis of animal bone remains 23 

(including goat, sheep and pig) 24 

suggested their use for meat and 25 

secondary products (Anzidei et al., 26 

2007).  27 

The archaeological investigation 28 

identified a clay structure from the site 29 

of Osteria del Curato-Via Cinquefrondi 30 

interpreted as an oven (Anzidei et al., 31 

2007). This underground structure, dated to the end of the 3rd millennium BCE, was made in 32 

the lahar sediment, 1.20 m deep and 1.60 m wide, and featured a 25cm central mud layer 33 

showing fire traces. One of the vessels considered within this research was found in relation 34 

to this structure along with botanical remains as broad bean (Vicia faba L.), animal bones and 35 

ceramic sherds (Anzidei et al., 2007). 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

Figure 2 – Selected examples of the vessels investigated during 

the research: a) ID 475; b) ID 138; c) ID 2; d) ID 11; e) ID 504. 
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ID 
 

Site 

 

Chronology 

Identified use traces  

Analyses 

applied 
Internal surfaces  External surfaces 

      
 

475 TP 
late 4th /early 3rd millennium 

BCE  

charred 
encrustations 

 

 use wear 

analysis + FTIR 

469 

 

 
503 

   TP 

 

 
TP 

late 4th /early 3rd millennium 

BCE 
 

late 4th /early 3rd millennium 

BCE  

charred 
encrustations 

 

charred 
encrustations 

 

 

use wear 

analysis + FTIR 
 

use wear 

analysis + FTIR 

504 TP 
late 4th /early 3rd millennium 

BCE  

charred 
encrustations 

 

 use wear 

analysis + FTIR 

2 

 

OC-
VC 

 

middle/late 3rd millennium 
BCE 

 

use wear + charred 
encrustations 

 

 
use wear + soot 

 

use wear 
analysis + FTIR 

 

138 

 

OC-

VC 

 

middle/late 3rd millennium 

BCE 

 

charred 

encrustations 

 

use wear + soot 

use wear 

analysis + FTIR 

 

11 
OC-
VC 

middle/late 3rd millennium 
BCE 

charred 
encrustations 

use wear 
use wear 

analysis + FTIR 

            

 1 

 2 

 3 

3.2 Methods 4 

Methodology applied in this research combine use wear analysis, spectroscopic analysis and 5 

experimental archaeology. 6 

 7 

 8 
 9 

 10 

 11 

  12 

 13 

Table 2 - Sampling of archaeological materials investigated, use traces identified, and scientific analyses applied. 

Figure 3 - Methodology applied to the study of ceramic vessels.   
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3.2.1 Use wear analysis  1 

Use wear analysis focused on the alterations to pottery surfaces that were generated during the 2 

vessel’s use.  3 

For the purposes of this work, both archaeological and experimental traces were observed and 4 

defined using a low power approach combining naked eye observations and a Nikon SMZ-U 5 

stereo microscope, with 1X objective, 10X eyepiece and magnifications from 0.75X to 7.5X 6 

(Tringham et al., 1974; Van Gijn, 2010; Vieugué, 2015). The study covered both internal and 7 

external ceramic surfaces and pursued a detailed investigation by dividing the vessel into four 8 

compositional zones: base, wall, rim and handles (Forte, 2015).  9 

Within the approach proposed by this paper, ceramic use wear has been categorised according 10 

to surface topography, and texture, shape, frequency, incidence, orientation and edge of traces, 11 

in order to objectively record them and investigate the associated wear mechanisms (Tab. 3; 12 

Fig. 4).  13 

 14 

Wear Variables 

Variables Features 

Surface  

Topography 
flat, sinuous, uneven  

Wear 
fatigue wear/abrasive wear/ thermal alterations/chemical 

alterations/tribochemical wear 

Traces 

striations/ scratches/ grooves/ depressions/ levelling/ rounding/ 

fractures/ cracks/ spall detachment/ pits/ soot/ food residues/ 

discolorations. 

Localisation 
internal / external surface; base / wall (lower - mid - upper) / rim / 

handles  

Shape rounded / oval / linear 

Texture smooth / striated / coarse 

Frequency isolated / closed / connected 

Incidence shallow / deep /mixed 

Cross section u-shaped / v-shaped / mixed 

Orientation vertical / horizontal / oblique / circular /mixed 

Edge 

morphology  
regular / irregular / rounded / sharp 

 15 

Topography variable lead to define the original surface features affected by the wear 16 

mechanisms to understand their development (Adams et al., 2009). On pottery vessels, it refers 17 

to the physical characteristics of surface treatments usually applied during the last 18 

technological process of vessel’s modelling and it can be applicable to each vessel’s zone 19 

analysed (Fig. 4). 20 

Traces left by wear processes were distinguished from each other on the basis of their features, 21 

namely: texture, shape, frequency, incidence, orientation and edge.  22 

 23 

 24 

Table 3 – Relationships between tribological, thermal and chemical mechanisms and traces observed on archaeological 

materials, derived from the hypothesis of Adams et al. (2009) and Vieugué (2014, pp.225). 
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 1 

Texture refers to wear surface variables, being either smooth, striated or coarse. The shape of 2 

the trace evidence can be rounded, oval or linear; its frequence within each of the vessel’s zones 3 

is defined as either isolated, closed or connected. Incidence concerns the depth relative to the 4 

original surface and is recorded depending on the wear amplitude (e.g. a depression is wider 5 

than it is deep, while a pit is deeper than it is wide). Orientation refers to the direction of a 6 

trace’s development according to the vessel’s vertical axis; it can be vertical, horizontal, 7 

oblique and circular. The edge variable describes the morphology of the boundaries of the wear 8 

as being regular or irregular if observed from above, and rounded or sharp if observed in cross-9 

section. 10 

Integrating each of these variables allows for a definition of the physical aspects of wear and 11 

an understanding of whether their morphology is due to a detachment by mechanical, thermal 12 

or chemical processes, or by a combination thereof. 13 

 14 

2.2.3 Spectroscopic Analysis 15 

The recurrence of consistent and localised amorphous dark residues, observed along the 16 

internal and external surfaces of the vessels discussed here, led to the selection of an integrated 17 

analysis of wear distribution, combining ethnoarchaeological and experimental comparison 18 

with a compositional definition of internal encrustations, achieved through a non-invasive 19 

spectroscopic analysis (Lemorini et al., 2014; Lettieri, 2015; Nunziante Cesaro and Lemorini, 20 

2011; Shillito et al., 2009). 21 

The dark residues identified on pottery during the macroscopic observation were selected for 22 

an infrared analysis (FTIR), with the aim of obtaining a preliminary understanding of the 23 

charred encrustations that might support the hypotheses regarding the use activities involving 24 

these vessels. 25 

Figure 4 – Graphic representation of criteria applied during the use traces analysis of archaeological and 

experimental ceramic vessels. 
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Microsamples extracted from areas without extraneous substances and areas with charred 1 

residues were mixed with KBr excess. The FTIR analysis was performed using an Alpha 2 

(Bruker) spectrometer, equipped with the Diffuse Reflectance Infrared Fourier Transform 3 

(DRIFT) module. The spectra were obtained in the 4000-375 cm-1 range with a spectral 4 

resolution of 4 cm-1, collecting 200 scans or more. 5 

 6 

2.2.2 Experimental archaeology 7 

The application of experimental protocols in the study of use traces on pottery vessels enabled 8 

a detailed investigation of the processes underlying the modifications of the ceramic material, 9 

allowing for the distinction between traces caused by use and those attributable to post-10 

depositional events (Skibo, 1992).  11 

In the study here presented, the application of experimental archaeology has been structured 12 

with the intention of producing a dedicated experimental framework, enabling a precise 13 

comparison between the archaeological traces identified on the flat base of the subject vessels 14 

and use wear generated by specific food manipulation processes. The experiments performed 15 

are based upon empirical principles proposed by studies of the 1980s and 1990s and aim to: 1) 16 

produce updated photographic documentation of the more frequent use traces generated by 17 

cooking activities, and 2) test if a dedicated tribological analysis can lead to a more detailed 18 

description of the mechanisms causing such traces, and recognise the possible overlapping of 19 

different wear processes. 20 

The experimental pottery 21 

vessels presented in this 22 

work were built according 23 

to technological (Forte, 24 

2015; Forte and 25 

Medeghini, 2017) and 26 

morphological features 27 

(Anzidei and Carboni, 28 

2011; Anzidei et al., 2007, 29 

2011) of the 30 

archaeological ceramic 31 

materials from the current 32 

Rome area.  33 

A coiling technique was 34 

applied for the modelling 35 

of 4 open vessels with a 36 

flat base, utilising 37 

semifine and coarse clay 38 

pastes collected from the 39 

Rome area and compatible 40 

with the raw materials 41 

used in the archaeological 42 

pottery production (Forte 43 

and Medeghini 2017). 44 

 45 

Subsequently the pots were fired at 46 

800-900 °C. The internal and external surfaces of the vessels were treated with a smoothing 47 

technique and a polishing technique, according to the features observed on the surfaces of 48 

archaeological specimens (Forte, 2015) (Fig. 5).  49 

ID Position Cooking technique 
Food 

Temperature 
Time 

     

1a lateral to the fireplace Dry (toasted cereals) 200 2h 

     

1b lateral to the fireplace Dry (toasted cereals) 200 2h 

     

2a lateral to the fireplace Wet (cereals soup) 100 4h 

     

2b lateral to the fireplace Wet (cereals soup) 200 3h 

     

2c lateral to the fireplace Wet (cereals soup) 500 3h 

     

3a lateral to the fireplace Wet (meat stew) 200 3h 

     

3b lateral to the fireplace Wet (meat stew) 200 3h 

     

3c lateral to the fireplace Wet (meat stew) 200 3h 

     

4a lateral to the fireplace Wet (legume soup) 200 3h 

     

4b lateral to the fireplace Wet (legume soup) 200 3h 

     

4c lateral to the fireplace Wet (legume soup) 300 3h 

Table 4 – Experimental Framework (temperature is in Celsius). 
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In light of the palaeobotanical and archaeozoological remains documented in the 1 

archaeological contexts of the Rome area (see 3.1), cereals, legumes and meat were chosen and 2 

processed, following basic techniques such as dry (toasting of cereals) and wet (soups and 3 

stews of cereals, legumes and meat) cooking. Considering the flat base of the vessels and the 4 

absence of sooting traces on the external base, exception made for one sample (ID138), a lateral 5 

position of the vessels to the fireplace has been hypothesised; For this reason  the experimental 6 

vessels were placed laterally to the fireplace up to 10-15 cm of distance (Tab. 4).  7 

Eleven food processing experiments were performed at high temperatures (three experiments 8 

for each vessel, exception made for toasting repeated twice, see Table 4), during which the 9 

internal and external carbonisation processes were monitored.  10 

 11 

 12 
 13 

 14 

 15 

 16 

The experiments included the intentional reproduction of food carbonisation in order to 17 

understand why the archaeological vessels feature wide carbonised areas in their internal 18 

surfaces, which usually should be free from carbonisation processes (as documented in 19 

ethnoarchaeological studies, see Skibo, 1992), and to determine whether these traces are 20 

associable to specific recurrent use processes or casual events. To this end, surface alteration 21 

was monitored both during direct contact with the flame and during prolonged exposure to 22 

indirect heat. 23 

 24 
Table 5 – Use alterations identified on experimental pottery vessels. 25 
 26 

 27 

 28 

4.Results  29 

                                    Experimental use wear     
Exp. 
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Figure 5 – Experimenetal pottery vessels before the use as cooking pots: a: ID 1; b: ID 2, c: ID 3; d: ID 4. 
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4.1 Experimental use wear and residues  1 

This experiment enabled the creation of a dataset regarding the most recurrent traces deriving 2 

from controlled use activities (Tab. 5), augmenting current available knowledge about wear 3 

processes affecting specific ceramic vessels.  4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

4.1.1 Abrasive wear  40 

In two experiments (ID 3 and 4) the involved tribological mechanisms developed different 41 

kinds of traces. In accordance with the tribological variables recorded during the first studies 42 

on ceramic abrasion (Schiffer and Skibo, 1989, Skibo and Schiffer, 1987; Skibo et al., 1997), 43 

Figure 6 - Abrasive wear and fatigue wear identified on the experimental ceramic vessels n. 3 and n. 4: a) General view of 

the external base of the vessel featuring abrasive processes (Exp. ID 4); b) Striations and scratches (Exp. ID 3) on a flat 

topography; c) Grooves on a sinuous topography (Exp. ID 4); d) Depressions on a sinuous topography (Exp. ID 4); e) 

Depression along limited portions of the vessel rim on a sinuous topography (Exp. ID 4); f) Depression lateral to the vessel 

rim on an uneven topography (Exp. ID 4); g) Spall detachment caused by mechanical stress on an uneven topography  

(Exp. ID 3) (white bar equals to 1cm). 
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it was possible to document the different kinds of wear derived from abrasive processes, both 1 

with and without an intermediate liquid substance working as lubricant. 2 

 3 

Vessels used on hard surfaces (e.g. stone floor) during the first experiments were affected by 4 

abrasive wear in the form of 5 

depressions, striations, scratches and 6 

grooves (Fig. 6a). These traces are 7 

mostly located on the external vessel 8 

surfaces and are characterised by 9 

recurrent distribution patterns.  10 

Abrasive wear typically developed 11 

along the peripheral area of the 12 

external base. Striations, scratches 13 

(Fig. 6b) and grooves (Fig. 6c) recur 14 

with a linear shape, coarse texture, 15 

closed frequency, mixed incidence, 16 

mixed cross section, and irregular-17 

sharp edge morphology. Irregular 18 

depressions, intended as a subsidence 19 

of the original sinuous and uneven 20 

surface with an amplitude greater 21 

than its depth, are particularly 22 

common. These are characterised by 23 

a coarse texture, closed distribution, 24 

shallow incidence, U-shaped cross 25 

section, and irregular-sharp edge 26 

morphology (Fig. 6d-e). 27 

These alterations were produced by 28 

the continued displacement—usually 29 

by dragging—of the vessels before, 30 

during and after the experimental 31 

cooking process. 32 

These wear mechanisms started to 33 

affect the most protruding parts 34 

usually surfacing sinuous and uneven 35 

topographies.  36 

During first experiments, the vessel 37 

was moved across hard or medium-38 

hard surfaces (e.g. stone or ceramic 39 

support). without any intermediate 40 

water working as lubricant. 41 

Furthermore, abrasive wear, 42 

particularly in the form of 43 

depressions, developed also over 44 

limited portions of the rims of vessels 45 

n. 3 and 4. These traces developed 46 

suring non-use periods, when the 47 

vessels were moved and stored upside 48 

down on a hard floor (Fig. 6e).  49 

Figure 7 – Abrasive wear identified on the experimental ceramic 

vessels: a and d correspond respectively to general view of ID 4 and 3 

after use on a smoothed medium/soft hard surface (e.g. ceramic plain), 

opaque areas results by wear processes; polished areas corresponds to 

resisual zones of original surface treatment; b, c, e, f: striations featuring 

ID 4 and 3; (white bar equals to 1cm). 
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In one case, the location of the abrasive wear is lateral to the rim (Fig. 6f) due to the contact 1 

between two adjacent vessels stored upside down on the floor.  2 

Abrasive wear developed after repeated uses on ID 3 and 4 in the form of levelling of too-wide 3 

or too-narrow surface portions, alternate to isolated striations, and largely affected areas that 4 

protruded from the topography (Fig. 7 a-f).  5 

These traces were produced by a tribological system comprising two surfaces with similar 6 

physical and compositional characteristics (medium/soft hard surfaces), as a ceramic plain, 7 

with the presence of water as lubricant. The presence of water between the two surfaces was 8 

due to it’s leaking during the first steps of food preparation or after the vessel cleaning; in both 9 

cases a small amount of water deposited along the external base favoring tribological processes 10 

during the vessel displacements. Activities involving water took usually 10 minutes for each 11 

vessel during the repeated experiments and vessels displacements were made frequently to 12 

observe traces associated to these gestures. 13 

The two vessels used at the same way and for the same period of time developed traces 14 

differently depending on the topography of the base’s surface. The vessel 3 (Fig. 7d) shows an 15 

invasive abrasive wear than vessel 4 (Fig. 7a). In the first case the flat topography has been 16 

involved homogeneously in the abrasive process and was modified without leaving residual 17 

zones of the original surface exception made for the central area of the vessel. In the second 18 

case, in the same amount of time, the alteration affected the protruding parts of the uneven and 19 

sinuous surface. According to the Theory of Ceramic Abrasion defined by Schiffer and Skibo 20 

(1989), the sliding movement, aided by water leaked and deposited on the base led to the 21 

dissolution of the external particles, which levelled progressively during the sliding movement. 22 

Abrasive processes and related fatigue forces started to affect the surface areas where physical 23 

pressure was concentrated (Fig. 7); for example, in the case of a vessel base rotation, holding 24 

the vessel with two hands, the forces were distributed homogeneously and the wear process 25 

affected all protruding parts in the same way (Fig. 7 a, d). During a sliding movement, however, 26 

wear started to develop over the area closer to the direction of movement (Fig. 7 d). These 27 

processes caused a softening of the previous invasive use wear and an obliteration of the 28 

superficial traces (compare Fig. 6a-d with Fig. 7a-f). 29 

 30 

4.1.2 Fatigue wear 31 

In one experimental vessel (Exp. ID 3) a spall detachment occurred along the external base due 32 

to an impact with a hard surface. The alteration affected the articulation base/wall and was 33 

caused by a mechanical stress from the bottom up. This generated a spall detachment with an 34 

oval shape, coarse texture, isolated frequency, deep incidence, mixed cross section, horizontal 35 

orientation and irregular/sharp edge morphology (Fig. 6g). 36 

 37 

4.1.3 Thermal alterations 38 

Thermal stresses such as prolonged exposure to the fire, sudden temperature variations or 39 

shocks can cause wear in the form of spall detachments, cracks and fractures (Hally, 1983; 40 

Skibo, 1992, 2015) (See Fig. 8-11). 41 

Spall detachments caused by thermal stress were reproducible on the experimental vessels’ 42 

internal and external surfaces (Exp. ID 4). These are characterised by a rounded shape, coarse 43 

texture, isolated frequency, deep incidence, U-shaped cross section and irregular-sharp edge 44 

morphology. These types of alterations consist of small superficial cracks in which soot or food 45 

residues can be absorbed (Fig. 8a-d). Experiments confirmed that mechanical processes (e.g. 46 

tools used in contact with the internal surfaces to mix the vessel’s content or by unintentional 47 

hits against the external surface) affecting superficial cracks can stress the surface and lead to 48 

particle detachment. In one case of thermal stress (Exp. ID 2) a long crack developed, extending 49 

from the rim to the lower part of the wall, damaging the pot without breaking it (Fig. 8e). 50 
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During the cooking activity, organic and inorganic substances adhered to the ceramic surface 1 

through molecular interactions, leading to the formation of internal and external carbon 2 

deposits and localised alterations of the surface colour (Hally, 1983; Skibo, 1992, 2015). 3 

During cooking activities the prolonged exposure of a vessel to high temperatures (over 100 4 

°C) can produce a carbonisation of the content due to the total evaporation of the cooking water 5 

and of the moisture present in both the food and the ceramic pores; this results in an area of 6 

high temperature (Kobajashi, 1994; Skibo, 1992, 2013). This procedure consists in the 7 

transformation of organic materials into carbon deposits and features specific patterns of 8 

consistency and distribution corresponding to different cooking techniques (Hally, 1983).  9 

Figure 8 - Thermal and chemical alterations identified on experimental ceramic vessels: a) Superficial cracking prior to a 

thermal spalling on the external surface (Exp. ID 4); b) Detail of a spall detachment along the handle (Exp. ID 4); c) 

Superficial cracking on the internal surface with a spall detachment (Exp. ID 3); d) Isolated superficial crack from the rim 

to the lower part of the vessel (Exp. ID 2); e) Diffused cracking on internal surface wall with isolated spall detachments 

(Exp. ID 4); f) superficial depressions developed on the surface of the internal wall (Exp. ID 4) (white bar equals to 1cm). 
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During dry cooking, namely the toasting of cereals, a temperature of 200 °C was reached (Exp. 1 

ID 1) and caused the carbonisation of the food inside (Fig. 9b). The charring process began at 2 

the point of maximum temperature of the whole vessel, as also attested in ethnoarchaeological 3 

studies (Kobajashi, 1994; Skibo, 1992, 2013). 4 

 5 

During the experiment the vessel was placed laterally to the fireplace (Fig. 9a); at 150-200 °C 6 

the dry contents began to char along the internal surface in the lower part of the wall, 7 

corresponding to the point of highest temperature due to the proximity of the heat source (Fig. 8 

9b).  9 

Carbonisation of waterless content produced an oval, labile and powdery dark deposit along 10 

the internal wall surface, generated by the dehydration and pulverisation of the cereals’ organic 11 

component, resulting in small and closed charred encrustations (Fig. 9c). Wear location 12 

corresponded to the mid-lower part of the wall, in particular along the wall/base articulation, 13 

namely the area covered by the food during cooking (Fig. 9a-b). Moreover, the evaporation of 14 

food particles during the dehydration process caused a slightly closed vertical band of carbon 15 

deposit along the upper wall (Fig. 9c). This latter type of alterations refers to external deposits, 16 

known as soot, which developed along the side of the vessels exposed to the fireplace and are 17 

due to the incomplete carbonisation of wood fuel (Skibo, 1992, 2013) (Fig. 9d-e). 18 

 19 

Figure 9 - Experimental toasting of cereals (Exp. ID 1): a) Location of the vessel near to the fireplace; b) 

Initial cereal charring along the lower part of the internal wall; c) Charring traces on the internal surface of 

the vessel; d/e) Disappearance of the external sooting alterations during the latest experimental framework. 
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 1 

The mid-lower part of the wall features an oval area of oxidation, whereas the internal carbon 2 

deposits were concentrated on the mid-upper part of the wall, extending until the rim (Fig. 9b, 3 

d). This oxidised area was caused by the high temperatures reached by direct contact with the 4 

flame, which resulted in the complete disappearance of the deposits. On the other hand, soot 5 

deposit is present on the upper part of the wall. (Fig. 9f-g).  6 

The external surface of the vessel base, which is in contact with the floor during cooking, 7 

remained free from such alterations, and the internal surface in contact with the content 8 

remained non carbonised as well. 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 
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 24 
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 30 

 31 

 32 
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 34 
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 39 

 40 

 41 

Figure 10 - Thermal alterations identified on experimental ceramic vessels: a) Deposition process of the food 

particles along the hottest spot of the internal wall during the experimental cooking (Exp. ID 4); b) Circular 

half-band of carbon deposit due to the carbonisation of food particles after the experimental cooking (Exp. ID 

4); c) Sooting concentrated along the external middle wall surface deposited during the first experimental 

cooking of Exp. ID 2, positioned far away from and laterally to the fireplace; d) Sooting concentrated over the 

entire external wall deposited during the second experimental cooking of Exp. ID 4, positioned near and laterally 

to the fireplace; e) Sooting concentrated along the upper part of the external wall deposited during the third 

experimental cooking of Exp. ID 3, positioned near and laterally to the fireplace; f) Charring of cereals during 

the third experimental cooking of Exp. ID 2. 
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In the case of the vessels used for wet cooking, which contained a soup of cereals (whole 1 

cereals or cereal flour), legumes or meat stew (Exp. ID 2, 3 and 4), the vessels reached 2 

temperatures of 300-400 °C followed by a carbonisation of their contents (Tab. 4). 3 

The use of different vessels facilitated a better understanding of the traces related to food 4 

charring which develop on the internal and external surfaces of a vessel. It was thus possible 5 

to analyse the various relationships between specific patterns of carbon deposits and the 6 

specific processing of a given kind of food, according to general principles also documented 7 

in ethnoarchaeological works (Arthur, 2002, 2003; Skibo, 1992; Valamoti, 2010).  8 

During the first and second cooking attempts all vessels, which were located laterally to the 9 

fireplace, were used to cook soups or stews at different temperatures (Tab. 4). All the vessels 10 

featured a particular recurrent pattern: a dark half-circular band along the hottest spot of the 11 

internal wall (Fig. 10a), similar to but wider than the circular ring identified by Skibo (1992) 12 

on the kalinga cooking pots. This kind of alteration was produced by the concentration of 13 

carbon deposits along the band immediately above the water level.  14 

Deposition of organic content in this area of significant heat led to the carbonisation of particles 15 

in a more or less evident carbon deposit; the internal wall surface, however, which is in contact 16 

with water and experiences a lower temperature, remained clean (Fig. 10b). From this 17 

experiment it also emerged that the location of such traces coincides with the level of the water 18 

present in the vessel during cooking.  19 

A specific pattern of carbon deposits was observed in all the vessels at their last experimental 20 

use. The trace occurred in vessels with a slightly closed shape and was produced by food 21 

particles that, during evaporation, adhered to the internal surface of the upper wall and rim 22 

(Fig. 9c).  23 

During the final experimental cookings, in two vessels (n. 2 and 4) the exposure to the high 24 

temperature permitted the monitoring of how new use traces can modify and even delete 25 

previously developed ones. 26 

Exposure to temperatures higher than 300 °C led to the evaporation of water and food moisture 27 

and the consequent carbonisation of the organic contents. Depending on the cooking duration, 28 

Figure 11 - Thermal alterations identified on experimental ceramic vessels: a) Discolouration of the external wall 

surface resulting from exposure to high temperatures (Exp. ID 2); b) Internal black half-band, due to a charring 

process of the contents, extended from the level reached by the food to the lower part of the wall (Exp. ID 3); c) 

Charred encrustation developed between the ceramic wall and a layer of cereal flour soup not yet completely 

charred (Exp. ID 4) (black bar equals to 1cm). 
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the experiment led to the development of extended and consistent charred encrustations. 1 

Experiment ID 2 features an intense charred encrustation, extending from the middle to the 2 

upper part of the wall until the rim (Fig. 10f). 3 

A light grey circular area on external surfaces, which obliterated the previous soot deposits 4 

(Fig. 11a), is the result of long exposure to high temperatures, probably above 800 °C. 5 

Exposure to such a high temperature affected the mineralogical structure of the ceramic and 6 

led to a visible localised discolouration (Hally, 1983). 7 

Moreover, the strong thermal stress damaged the vessel itself, producing cracks running from 8 

the rim to the middle section of the wall. However, these cracks did not cause the pot to break 9 

(Fig. 11a). 10 

Experiment ID 3 featured the formation of a dark band affecting half of the vessel’s internal 11 

surface, characterised by a wide charred encrustation extending from the level reached by the 12 

food during the cooking process down to the lower part of the vessel’s wall (Fig. 11b). The 13 

external surface is oxidised and surrounded by traces, as in experiment ID 2, which coincide 14 

with the residues related to the previous soot deposits (Fig. 10e). 15 

Experiment ID 4 featured an incipient charring process of solid content generated during the 16 

cooking of a soup, consisting of cereal flour and water. Between the internal vessel wall and 17 

the cooked substance, a charring process was recorded in its early stage; this latter is not easily 18 

visible but was observed during the scraping of the upper solid layer of soup (Fig. 11 c). The 19 

dark deposit is compact with cracks; its consistency is different from the other experimental 20 

deposits, most likely due to the preserved superficial soup layer which avoided a total 21 

dehydration of the content as recorded in Experiment ID 2 (Fig. 10 f). This latter deposit 22 

featured a powdery charred encrustation with no cracks, as instead were visible in Experiment 23 

ID 4 (Fig. 11c), suggesting that the consistency of a vessel’s content can influence the formation 24 

of charred deposits. 25 

The external surface of the vessel base, in contact with the floor during the cooking phase, and 26 

internal vessel surfaces, in contact with moist contents, both remained free from soot traces 27 

(Fig. 11b).  28 

 29 

4.1.4 Chemical alterations  30 

In one case (Exp. ID 4), in a vessel used for legume soup, small depressions developed on the 31 

surface of the internal wall, precisely along the dark band of charring. These traces feature 32 

rounded and oval shapes, coarse texture, mixed closed and connected frequency, with a shallow 33 

incidence, horizontal orientation and irregular/sharp edge morphology (Fig. 8f). These 34 

alterations only appeared a few months after the final experimental cooking. During the 35 

abandonment stage, the film of carbon deposits cracked and receded, causing the detachment 36 

of the deposit from the attached superficial ceramic material. Acid components of content 37 

permeated within the ceramic through its pores and reacted chemically with the paste 38 

components. This caused an impairment of the chemical and physical ceramic bonds as they 39 

reacted with material wear in conjunction with a detachment of the superficial carbon film. 40 

Moreover, the washing of the vessel with water highlighted the alterations produced by the 41 

combination of tribochemical mechanisms that occurred during both the cooking and washing 42 

phases. This alteration most likely left the ceramic material exposed to the chemical attachment 43 

of the food acids (Arthur, 2003; Oura et al., 1982; Purdy and Clark, 1987). 44 

 45 

 46 

 47 

 48 

 49 

 50 
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4. 2 Archaeological use wear and residues  1 
4.2.1 Abrasive wear 2 

Abrasive wear was identified on the external surfaces of all vessel bases, featuring recurrent 3 

patterns of distribution, which provided information regarding the degree of development of 4 

the wear processes. The traces were highly developed over the entire base surface in the form 5 

of striations, scratches, grooves, depressions, levelling of the whole area and 6 

rounding/levelling of the protruding parts.  7 

From a macroscopic observation, all the analysed vessel bases became levelled and rounded in 8 

proximity to the protruding parts (Fig. 12a). In two cases (ID 2, 11), where the base surface is 9 

characterised by a sinuous topography, there is a distinct contrast between the texture of the 10 

technological depressions, which preserve their original coarse morphology (Fig. 12b), and the 11 

levelling of the protruding parts, characterised by the rounding of the depression edges and the 12 

consequent exposure of the paste inclusions (Fig. 12c-d). 13 

Through a more detailed observation performed using a stereo microscope, it was possible to 14 

identify recurring patterns in striations, scratches and grooves, which featured a linear shape, 15 

coarse texture, closed frequency, shallow incidence, U-shaped cross section and irregular-16 

rounded edge morphology. These alterations were distributed along the protruding parts (Fig. 17 

12e-h) and the external edge of the vessel base (Fig. 12i-l). 18 

In one case (ID 138) abrasive traces led to the levelling of the entire surface originally featured 19 

by a flat/sinuous topography as hypothesised by the analyses of the preserved wall surfaces 20 

(Fig. 12i; 13f).  21 

The wear location, intensity and orientation suggest a concentration of mechanical stress and 22 

likely a repetition over time of these phenomena, producing the rounding of the protruding 23 

parts. This vessel was affected by at least two different abrasive processes. The most invasive 24 

was probably an abrasive wear caused by liquid substances, which acted as a lubricant in the 25 

tribological system, causing small matrix particles to detach during the sliding movement 26 

(Schiffer and Skibo, 1989). Levelling traces diffused all over the external base are predominant 27 

and resemble the wear observed in the experimental specimens generated by the sliding of two 28 

surfaces with a similar hardness (eg. ceramic or a mud plains). Detachment of material from 29 

the external base could also be caused by an aggressive chemical reaction stemming from the 30 

substance contained in the vessel. However, in the case of ID 138, the observed surface 31 

levelling, characterised by a flat topography, was probably due to a tribological system in the 32 

form of lubricated abrasive processes. 33 

A further abrasive process affecting specimen ID 138, not associated with the presence of water 34 

in the tribological system, is suggested by the striations that feature a coarse texture and an 35 

irregular rounded edge morphology.  36 
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Figure 12 - Abrasive wear 

identified on archaeological 

ceramic vessels: a) Overview of 

an external base surface featuring 

a relevant levelling and rounding 

of the protruding parts (ID 2); b) 

Coarse morphology of 

technological depressions (ID 2); 

c) Levelling detail of the 

protruding parts on the external 

base surface (ID 2); d) Exposure 

of inclusions due to abrasive 

processes (ID 11); e) Striations 

along the external base surface 

(ID 475); f) Scratches along the 

external base surface (ID 2); g) 

Striations and scratches on the 

external base surface (ID 2); h) 

Detail of grooves on the external 

base surface (ID 138); i) 

Overview of an external base 

surface featuring a relevant 

rounding and levelling of the 

protruding parts (ID 138); l) 

Striations and scratches on the 

external base edge (ID 2) (white 

bar in Fig. a and i equals to 1cm). 
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4.2.2  Thermal Alterations 1 

All the analysed vessels feature evident modifications to their internal and external surfaces 2 

(Fig. 13).  3 

 4 

 5 

 6 

These alterations, such as dark bands or concentrations of charred encrustations (Fig. 14b), are 7 

distributed on the internal surfaces along the vertical middle section or the middle-lower walls, 8 

coinciding in the latter case with the base/wall articulation. (Fig. 13a, d, g). 9 

Along the internal and external vessel surfaces, thermal alterations present themselves in two 10 

main variations, distinguished by patterns of localisation and extension. 11 

In three cases (ID 2, 138 and 11) the internal residue occurs with a precise location (Fig. 13a, 12 

d, g). In almost all of the vessels the wear is located along the base/wall articulation. In 13 

particular, one vessel (ID 2) shows a residue concentration along the whole band, coinciding 14 

with the middle/lower part of the wall (Fig. 13a). 15 

In all of the analysed specimens, charred encrustations were found in relation to the dark area 16 

of the internal surface (Fig. 13). Only in one case did the carbon deposit extend uniformly along 17 

all internal wall and base surfaces (Fig. 13 d); specific localised carbonised residues were 18 

sampled for compositional analyses (see 4.2.3).  19 

The internal and external base surfaces of all the vessels analysed appear oxidised (Fig. 13c, 20 

13h), with the exception of only one vessel (ID 138) (Fig. 13f), which featured an internal 21 

carbon deposit extending over all of the internal vessel surfaces. 22 

Figure 13 - Thermal alterations identified on some of the archaeological ceramic vessels analysed: a) Dark band of carbon 

deposit with localised charred encrustations along the lower part of the internal wall surface of ID 2; b) Soot distributed 

along the external wall surface of ID 2; c) External base surface of ID 2; d) Carbon deposit extending along the full internal 

surface of ID 138, featuring localised charred encrustations; e) Soot localised along the articulation wall/base of ID 138; 

f) External base surface of ID 138; g) Carbon deposit with charred encrustation localised along the articulation wall/base 

of ID 11; h) External base surface of ID 11. 
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The external soot traces featuring different localisation patterns are visible in two cases: in the 1 

first case (ID 2) the trace is fleeting, irregular and distributed along the external surface area, 2 

which coincides with the location of the internal carbon deposit; the base, however, is oxidised 3 

(Fig. 13b). In the second case (ID 138) the soot is distributed along the external base up to the 4 

wall/base articulation, coinciding with the area of the internal vessel surface which is covered 5 

by an extended carbon deposit (Fig. 13-f).  6 

 7 
 8 

Figure 14 – Chemical alterations and charred 9 
encrustations identified in archaeological ceramic 10 
vessels: a) Depressions and charred encrustations on the 11 
internal wall surface of ID 2; b) Charred encrustation 12 
along the internal wall surface of ID 475. 13 
 14 
 15 
 16 
 17 
4.2.2   Chemical wear 18 

Only in one case, ID 2, was chemical wear 19 

identified. Evident depressions occurred 20 

along the internal wall surface, 21 

corresponding to the horizontal dark band 22 

and in association with charred 23 

encrustrations. These alterations occur 24 

with a rounded and oval shape, coarse 25 

texture, closed frequency, mixed 26 

incidence, mixed orientation and irregular 27 

sharp edge morphology (Fig. 14a). The 28 

features of these traces, along with their 29 

localisation on the middle portion of the 30 

internal wall, an area usually not affected 31 

by abrasive processes, suggest a chemical 32 

nature to the wear process, leading to the 33 

corrosion of the surface at various stages. 34 

According to the experimental results, the 35 

characteristics of the identified 36 

depressions suggest that the vessel was 37 

subject to a continuous chemical stress, which led to wear away some of the clay component 38 

of the paste, determining a visible in a granular detachment. 39 

 40 

4.2.3    FTIR analysis of archaeological charred encrustations 41 

Small samples taken of excavation earth, clean ceramic and carbonaceous residues were 42 

spectroscopically analysed in the same conditions as archaeological spelt and barley grains 43 

gave similar spectroscopic patterns. For example, Fig. 15 compares the spectral behaviour of 44 

ground (a), ceramic material (b) and carbonaceous residue (c) sampled by the archaeological 45 

vessel ID 504. In all spectra an intense band at 1038 cm-1 can be assigned to the Si-O stretching 46 

mode of the silicate component of the clay, while the less intense peaks at 911 and 471 cm-1, 47 

attributed to Al2OH and Si-O-Al bending modes respectively, suggest traces of kaolinite 48 

(Madejová, 2003). The peak at 530 cm-1 suggests the presence of iron oxide traces (Bikiaris 49 

et al., 2000). The absorption band at 911 cm-1 is absent in the ceramic material spectrum (b), 50 

suggesting a different provenance of the starting clay used in the production or a process of 51 

purification. 52 
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In the figure 15, FTIR spectra of archaeological barley and spelt grains collected from 1 

archaeological contexts are also reported (d and e respectively). Barley and spelt grains 2 

comprise 70-90% carbohydrates, including total carbohydrates (e.g., sugars) and structural 3 

ones (cellulose), 5-25% proteins and 1-10% lipids. 4 

 5 

 6 

 7 

 8 

The spectra of archaeological spelt and barley are similar to those of cereal grains available in 9 

literature (Gholizadeh et al., 2014 and references therein). Therefore, the assignment reported 10 

in the mentioned paper can be adopted: bands at ~ 3300 and ~ 1600 cm-1 belong to O-H 11 

stretching and H-O-H bending modes respectively. The latter band shows weak shoulders at ~ 12 

1700 and ~1100 cm-1 respectively, attributable to C=O and C-O stretching modes of 13 

carbohydrates (Cozzolino et al., 2015; Gholizadeh et al., 2014, Ibrahim et al., 2006). The peak 14 

at 1390 cm-1 is tentatively attributed to aromatic components (Oudemans et al., 2007). 15 

All heretofore mentioned bands are detected in the spectrum of the residue, even if partially 16 

overlapped by the infrared active vibrations due to the ceramic material. 17 

 18 

 19 

3 5. Discussion 20 
The application of an integrated study comprising use wear analysis, spectroscopic analysis 21 

and experimental archaeology made it possible to understand the processes causing significant 22 

alterations to selected pottery vessels from Copper Age settlements of the modern Rome area. 23 

The analysis of these alterations and their development suggest the exploitation of the vessels 24 

for cooking activities. Although archaeological literature on pottery function has explored all 25 

of the activities connected with use, a systematic application of empirical use wear analyses is 26 

not yet diffused. By treating a vessel as a tool (Braun, 1983) it is possible to investigate the 27 

activities in which it was involved and the traces these left; in this perspective, a systematic 28 

integration of use wear and residues analysis can represent a methodological framework with 29 

Figure 15. Comparison of DRIFT spectra of ground (a) ceramic of sample ID 504 (b), residue of sample ID 504 (c). 

archaeological barley (d) and archaeological spelt (e). 
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great potential. The case study presented here is an explanatory example highlighting that, as 1 

shown by ethnoarchaeological cases, use wear on archaeological ceramic has still not been 2 

entirely explored (Lopez Varela et al., 2002). This contribution suggests that alterations usually 3 

attributed to casual events or post-depositional modifications are actually related to a 4 

combination of mechanical and chemical processes. These processes generate specific wear 5 

through various tribological mechanisms, which affect the ceramic surfaces and involve liquids 6 

or damaging acids. Comparing the forms of wear identified on the archaeological vessels, there 7 

is a clearly identifiable difference between wear affecting the external vessel base and wear 8 

which affects the more preserved surfaces of vessels that were probably used for storage or for 9 

dry activities related to food.  10 

The recurrence of evident dark encrustations connected with varying extended powder deposits 11 

consistently localised on the vessels’ internal surfaces suggests their use in activities involving 12 

heat. In a domestic context, cooking is the primary activity connected with fire, yet casual 13 

burning can produce fire alterations; in the same way, post-depositional modifications can lead 14 

to surface degradation that is often similar to intentional use wear. Traditional use wear studies 15 

stressed that wear localisation must be the first variable to consider for a functional 16 

interpretation of ceramic material (Lugli and Vidale, 1996; Skibo, 1992; Vieugué, 2014). 17 

However, trace morphology is able to identify the related mechanisms and interpret the use 18 

activities in which a vessel was involved. Although the sample selected for this article is 19 

limited, the recurrence of some of the most diffused traces connected with use facilitated an 20 

experimental approach to the investigation of the associated domestic activities. Moreover, this 21 

concentrated study contributed to a greater knowledge regarding cooking techniques utilised 22 

by peoples settled in the modern Rome area during the Copper Age. 23 

The entire sample of analysed vessels features fire exposure as the cause of most recurrent 24 

alterations. Localisation of internal and external carbon deposits, characterised by evident 25 

internal charred encrustations, suggest that the vessels were used to cook. Various evidence 26 

suggests the way in which pots were used: the most preserved vessels show an internal carbon 27 

deposit along the wall, while the internal and external base are free from any colour alterations. 28 

This should indicate a placement of the pots laterally to the fire. Along with the thermal 29 

principles extant in ethnoarchaeological literature (Skibo, 1992), the experimental program 30 

documented the relationship between a vessel’s proximity to the fireplace and resulting specific 31 

fire alterations. The recurrent localisation of charring and powder carbon deposits along the 32 

middle-lower part of the vessel, excluding the base, suggest that the vessel reached high 33 

temperatures for an extended time, leading to charring. These pots received heat from a 34 

lateral/downwards direction, suggesting that the vessels were most likely placed higher than 35 

the fire level. Recurrence of internal carbonisation traces could be caused by repeated 36 

accidental charring events or, more probably, by partial cleaning events, which left residues of 37 

the processed substance inside the pot, depending also on the diligence of the people involved 38 

in the cleaning activity (Arthur, 2002). The positioning of the vessels laterally to the fire is also 39 

suggested by evident tribological wear on the external vessel base. Recurrent levelled surfaces 40 

were favoured by continued exposure of the vessel to liquid and semi-liquid components of 41 

food, absorbed through the pores. Liquids, such as water used to clean the vessels or for 42 

cooking, often moistened the external base. Here, the concentrated abrasive wear begins when 43 

the vessel is put on the floor or near the fire, leading to abrasive processes in the presence of 44 

liquid. Traces were different, however, for vessels of the same shape but involved in domestic 45 

dry activities. The observed traces, according to the principles of abrasive processes (Schiffer 46 

and Skibo, 1989) and a dedicated experimental use wear framework, hint towards processes 47 

involving a moisturised ceramic surface sliding against a surface with a similar (medium) 48 

hardness; this would support the hypothesis that one of the vessels, unearthed from a domestic 49 
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oven (Anzidei et al., 2007) in the site of Osteria del Curato, was exploited for food processing 1 

within that specific structure until it was discarded. 2 

Just one vessel (ID 138) from the considered samples exhibited different traces of fire 3 

exposure, suggesting a position on top of the fire. Internal and external fire traces (the vessel 4 

is the only one which also features carbonisation traces along the internal vessel base) indicate 5 

that the heat came from the bottom and affected the external base of the vessel; the localisation 6 

of the external soot hints towards a position of the vessel either directly on top of the coals or 7 

on a specific cooking structure used to support the vessel. Moreover, the wear localised on the 8 

external vessel base and affecting the surface, leading to the obliteration of the previous black 9 

deposit, suggests that the last active use of the vessel (e.g. storing) did not involve contact with 10 

fire; this latter trace was alterated by an invasive abrasive wear (Beck et al., 2002). 11 

The consistency of charred residues, according to experimental protocols focusing on dry and 12 

wet cooking techniques, led to an interpretation of these vessels as having been used for wet 13 

cooking activities. This techique, which aims to produce soups or stews containing liquid or 14 

semi-liquid food that can be prepared in a variety of ways, involves placing pots near the fire 15 

for an indirect processing of the meal.  16 

Moreover, the physical features of charred encrustations point towards a use of these vessels 17 

to process cereal soups or meals possibly containing cereal flour, as supported by FTIR results. 18 

The processing of foods vulnerable to fermentation, as those based on cereals can be, could 19 

lead to the development of specific wear localised on the internal wall, represented by 20 

depressions caused by chemical damage. These alterations occur earlier than the final carbon 21 

deposit event, which clearly covered a wide part of the area affected by chemical wear. This 22 

indicates that the vessel was used periodically for the processing of acidic foods, which led to 23 

a damaging of the ceramic paste. These traces form a strong parallel with the traces recorded 24 

by Arthur (2002) during his ethnoarchaeological studies in Ethiopia on the indicators of 25 

socioeconomic status found on pottery vessels. 26 

On the basis of spectroscopic analyses, allowed to identify spelt and barley as archaeological 27 

residues highlighting the support of this technique in the study of organic residues alone, we 28 

cannot exclude that these vessels might have also been used to cook meat or other vegetable-29 

based meals. Moreover, the consistency of the experimental encrustation suggests that the 30 

preparation of almost solid meals was easily affected by carbonisation of dense products, 31 

obtained by the mixing of rough flour with water. Other archaeological evidence, such as the 32 

palaeobotanical remains of cereals in various areas of the domestic contexts and diffused use 33 

wear on lithic tools, attributable to cereal cutting, suggest an impact of cereals in the domestic 34 

economy, in which the vessels investigated were repeatedly used as pots to process foods 35 

utilising wet cooking techniques and indirect heat exposure.    36 

 37 

Conclusions 38 
The application of an integrated approach, comprising use wear analyses, spectroscopic 39 

analyses and experimental archaeology, facilitated exploration of the actual function of specific 40 

prehistoric ceramic vessels used as cooking pots. Experimental protocols were instrumental in 41 

monitoring the invasive charred encrustations and the overlapping wear mechanisms 42 

associated with specific activities related to food processing; this approach produced a specific 43 

comparative collection of experimental wear as a useful resource for future food processing 44 

studies. While the results of the experiments confirmed some of the patterns of wear 45 

distribution and development observed in previous ethnoarchaeological studies, the 46 

experiments performed during this research also highlighted how charring can vary depending 47 

on the meal processed (e.g. whole cereals or raw flours).  48 

The preliminary investigation of charred encrustations through spectroscopic analysis avoided 49 

irredeemably altering archaeological vessels suitable for future residues investigations. This 50 
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methodology was applied for hypothesising the organic nature of the processed substances and 1 

support an interpretation of the analysed vessels as cooking pots.  2 

For these reasons, future research should focus on a multianalytical approach to the 3 

investigation of ceramic fuction in order to provide new data regarding culinary habits and, 4 

more broadly, vessel and ceramic tool use in daily life or ritual activities.  5 

 6 
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