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ABSTRACT
In many cases (e.g., rescue) agents complete tasks in non-structured

partially observable scenarios, without previous knowledge of oth-

ers. Known as ad-hoc teams, they work even when agents are from

different parties, without prior coordination and communication

protocols. We employ parametrised type-based reasoning, where

a distribution over agents types is estimated, and parameters for

each are learnt. These do not need a large number of observations

and can be used on-line. To increase the performance of such teams,

we introduce OEATA, a novel algorithm for type and parameter

estimation. We show that it converges to perfect estimations, and

obtain significantly better performance than the state-of-the-art,

in terms of type and parameter errors and task completion, in full

and partial observability scenarios.

1 INTRODUCTION
Ad-hoc teamwork is a great model for handling challenging real-

world domains, since it allows agents to dynamically collaborate to

solve tasks without prior coordination rules nor communication

protocols. For instance, consider rescue robots from different or-

ganisations urgently brought together to aid in a natural disaster –

e.g., earthquake. Designing coordination/communication protocols

would take time, and resources; avoiding such delays and funding

usage could save lives.

Instead of learning on-line any policy, a common approach in the

literature is to consider a set of possible agent types and parameters,

reducing the problem to estimating those [4, 7]. This approach is

more applicable than learning models from scratch, as it does not

require such a large number of observations, and can be more

easily applied in an on-line manner. Types could be built based

on previous experiences [8] or may be derived from the domain

[1]. The introduction of parameters for each type allowed more

fine-grained models [2].

However, the previous works were not specifically designed

for decentralised task allocation, missing an opportunity to obtain

better performances in this relevant scenario for multi-agent collab-

oration. Note that individual agents do not need to share the same

representation of the problem, and run algorithms that explicitly

“choose” tasks. They could be developed by different parties, and
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could use different paradigms. All we need are problems that can

be modelled as decentralised task allocation for our ad-hoc agent.
Similarly, a global allocation algorithm is unfeasible in our scenario:

agents developed by others would not necessarily follow commands

from a central entity, and we are not assuming any communication

protocol.

Hence, we present On-line Estimators for Ad-hoc Task Allocation
(OEATA), a novel algorithm for estimating team-mates types and

parameters in decentralised task allocation. We show that our algo-

rithm converges to a perfect estimation when the number of tasks

to be performed gets larger. Additionally, we run experiments in a

collaborative foraging domain, considering (for the first time) both

full and partial observability scenarios, where agents collaborate

to collect “heavy” boxes together. We show that we can obtain a

lower error in parameter and type estimations in comparison with

the state-of-the-art, leading to significantly better performance in

task execution.

2 RELATEDWORK
Ad-hoc teamwork is an important area in multi-agent systems [5].

We consider type-based reasoning, where agents are from a known

set of potential types [1, 4, 7, 8], and parameters allow fine-grained

models. These parameters, however, must also be estimated in

an on-line manner. [2] introduced the AGA and ABU algorithms,

which sample sets of parameters for gradient ascent and Bayesian
estimation. Focusing on decentralised task allocation, we surpass

their parameter and type estimations, leading to better performance.

We also extend for the first time the paradigm of learning types

and parameters to partial observability scenarios.

Another line of work attempts to identify the task being executed

by a team [17]; or an agent’s strategy for solving a repetitive task

[19]. Our work is different since we focus on a set of (known) tasks

which must be completed by the team. Recently, in [10] an ad-hoc

agent infers which tasks its team-mates are pursuing and uses that

to plan its task. However, they consider disjoint tasks and do not

learn team-mates models.

I-POMDP based models [11, 12, 14] allow agents to reason over

others in planning. However, they are computationally complex,

assuming all agents are learning about others recursively, and they

consider agents with individual rewards. We propose a lighter MDP

model, with a single team reward, allowing us to tackle larger task

allocation scenarios.

POMCP is usually employed in problems with partial observ-

ability [18]. However, it is originally designed for a discrete state

space, making it harder to apply POMCP for parameter estimation.
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We apply, however, POMCP in combination with OEATA. We also

evaluate experimentally the performance of plain POMCP for our

problem.

[13] proposed a Bayesian MCTS, sampling different MDPmodels.

Our planning approach (inspired from [2, 8]) is similar, as we sample

different agent models from our estimations. However, instead of

directly working on the complex transition function space, we

learn agents types and parameters, which would then translate to

a certain transition probability.

OEATA is inspired by Genetic Algorithms [15]: we keep an es-
timator population, and new ones are generated either randomly

or using information from previous ones. However, GAs evaluate

all individuals simultaneously at each generation, and usually they

are immediately eliminated according to a fitness function. Our

estimators, on the other hand, are evaluated per agent at task com-

pletion, survive according to success rate, and are also used for

type estimation. They are also generated in different ways than GA

mutation/crossover.

3 METHODOLOGY
As usual in ad-hoc teamwork, we consider one agent 𝜙 , in the same

environment as a set of agents Ω (𝜙 ∉ Ω). 𝜙 must maximise team

performance, but it does not know how agents 𝜔 ∈ Ω may behave

at each state. As in previous works [2], we consider that agents in

Ω can be defined by a type \ ∈ Θ, and by a vector of parameters p,
each in a fixed range. Estimating \ and p allows 𝜙 to estimate 𝜔’s

behaviour, leading to better decision-making.

Note that 𝜔 agents may be using different algorithms than the

ones available in our set of types Θ. Nonetheless, 𝜙 would still be

able to estimate the best type \ and parameter p to approximate𝜔 ’s

behaviour. For each type \ ∈ Θ, we will estimate the probability

P(\ )𝜔 of 𝜔 having type \ .

We consider ad-hoc teamwork in the context of decentralised

task allocation: there is a set of tasks to be completed, and agents

are able to autonomously decide which one to perform, without

being allocated a task through a centralised mechanism [9]. The

decentralised allocation is quite natural in ad-hoc teamwork, as

we cannot assume that other agents would follow a centralised

controller.

We consider that a task may require multiple agents to be per-

formed successfully, and may require multiple time steps to be

completed. For instance, in foraging a certain heavy item could

require two robots to be collected, and the robots would need to

move towards the item.

We formalise the problem as a Markov Decision Process (MDP).

Although we have multiple agents, we use a single agent MDP, as
previous works [2, 20]. Each agent 𝜔 is modelled as a probability

distribution across actions. They are modelled as the environment,
affecting the next state and the reward obtained. This model allows

us to employ single-agent on-line planning techniques (e.g., UCT

[16]).

Hence, we consider a set of states S, a set of actions A, a reward

function R : S×A×S→ [0, 1], and a transition function T : S×A×
S→ [0, 1]. 𝜙 ’s objective is to find the optimal value function, which

maximises the expected sum of discounted rewards 𝐸 [∑∞𝑗=0 𝛾 𝑗𝑟𝑡+𝑗 ],
where 𝑡 is the current time, 𝑟𝑡+𝑗 is the reward 𝜙 receives 𝑗 steps

in the future, and 𝛾 ∈ (0, 1] is a discount factor. We consider that

given a state 𝑠 , an agent 𝜔 has a (unknown) probability distribution

(pdf) across a set of actions A𝜔 , which is given by 𝜔’s internal

algorithm. The actions of all agents define the next state and the

reward obtained, but we do not directly represent that. Instead, the

pdf of each 𝜔 defines the transition function. That is, in the actual
problem the next state depends on the actions of all agents. However,

in the point of view of single-agent MDP, we can see it as the next

state being probabilistic, given 𝜙 ’s action. The uncertainty comes

from the randomness of the actions of 𝜔 , besides any stochasticity

of the environment.

We assume that given a state 𝑠 , a type \ , and parameters p, we
can obtain the pdf of 𝜔 in 𝑠 . E.g., previous works considered an

algorithm “template”, which outputs the pdf given \ and p as input

[2]. Hence, the problem of estimating the pdfs reduces to estimating

types and parameters for each agent. We also consider that the

rewards are obtained by solving tasks 𝜏 from a set T . That is, 𝜙 ’s
reward is

∑
𝑟𝜏 , where 𝑟𝜏 is the reward obtained after completing 𝜏 ,

and the sum goes across all tasks that were completed in a given

state (not only completed by 𝜙). The number of required agents for

a task 𝜏 depends on each specific task, and the set of agents that

are jointly trying to complete it.

We employ UCT for 𝜙 ’s decision-making process, a Monte Carlo

Tree Search based approach, which performs multiple roll-out sim-

ulations in a search tree [16]. At each node, the next child node is

decided by the UCB1 equation [6], and rewards are backpropagated

up the tree to update action statistics at each node.

Given 𝜙 ’s action, the next state depends on the actions of all 𝜔

in Ω. Hence, at each node transition, we sample their actions from

their estimated pdfs. Agents’ true pdfs are unknown (i.e., we do not

know the transition function). As in [2], we sample a \ for each 𝜔

from our estimated type probabilities each time we re-visit the root

during the tree search. We use the current estimated parameters

for the corresponding sampled type. Hence, the higher the quality

of our estimations, the better the result of the tree search.

3.1 On-line Estimators for Ad-hoc Task
Allocation

The main idea of OEATA is to record all tasks that each agent 𝜔

accomplishes, to compare them with the predictions of a set of

estimators. These contain potential parameters p, of a potential

type \ , which are used to predict task selections. The ones that are

not able to make good predictions are removed after a number of

failures, and replaced by estimators that are created using successful
ones as a basis, or purely at random.

We assume that when 𝜔 completes a task 𝜏 in state 𝑠𝜏 , it chooses

a new task 𝜏 ′. Hence, we call 𝑠𝜏 a choose target state. We keep track of

the history of task selections for each𝜔 :𝐻𝜔 = {(𝑠0𝜔 , 𝜏0), . . . , (𝑠𝑛𝜔 , 𝜏𝑛)},
where 𝑠𝑖 is the choose target state and 𝜏𝑖 is the task that𝜔 completed

afterwards. We also keep a set of estimators E\𝜔 for each type \ ,

and agent 𝜔 . E.g., if there are 2 potential types and 3 agents in the

scenario, there would be 6 sets. E\𝜔 have a fixed size 𝑁 . An estimator
𝑒 is a tuple, (p𝑒 , 𝑠𝑒 , 𝜏𝑒 , 𝑐𝑒 , 𝑓𝑒 ): p𝑒 is a parameter vector; 𝑠𝑒 is the last

choose target state; 𝜏𝑒 is the task that 𝜔 would try to complete when

having parameter p𝑒 and type \ ; 𝑐𝑒 holds the number of times that
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𝑒 was successful in predicting 𝜔’s next task; 𝑓𝑒 holds the number

of consecutive failures.
All 𝑒 are initialised in the first step, and are updated when a task

is completed. We simulate 𝜔 ’s task decision process assuming p𝑒 as
𝜔 ’s parameters and \ as𝜔 ’s type. The estimators are then iteratively
updated depending on their success or failure in estimating the

target tasks. Our algorithm has four steps: (i) Initialisation; (ii)
Evaluation; (iii) Generation; (iv) Estimation. Additionally, an Update
step is executed for all agents in Ω, any time a task is completed.

Initialisation: Firstly 𝜙 creates 𝑁 estimators 𝑒 for each type \ . If

there is a lack of prior information, p𝑒 of each 𝑒 can be initialised

with a random value (e.g., from the uniform distribution). For all

𝑒 , 𝑠𝑒 is set as the initial state of the environment. Since each 𝑒 has

a certain type \ and a certain parameter vector p𝑒 , it allows 𝜙 to

estimate 𝜔 ’s task decision process in the initial state. The estimated

chosen task is assigned as 𝜏𝑒 .

Evaluation: Evaluation of estimators E\𝜔 for a certain agent𝜔 starts

when 𝜔 completes a task 𝜏𝜔 (Algorithm 1). For every 𝑒 in E\𝜔 , we
check if 𝜏𝑒 is equal to 𝜏𝜔 . If they are equal, we save all values 𝑝𝑖
in p𝑒 in a respective bag b𝑖 . Note that 𝑖 refers to a position in the

vector of parameters p, and there is a bag b𝑖 for each 𝑖 . b𝑖 is not
erased between iterations, and hence they may increase in size at

each iteration. There are sets of bags for each E\𝜔 (one b𝑖 for each
position 𝑖), but for a cleaner notation we refer to them as simply

b𝑖 . We update 𝑐𝑒 as the number of successes across the history of

𝜔 and set 𝑓𝑒 to 0. CheckHistory counts the number of correct task

predictions across the history of 𝜔 , assuming type \ and parameter

pe.

Algorithm 1 Evaluating Estimator

1: for all \ ∈ Θ do
2: for each 𝑒 ∈ E\𝜔 do
3: if 𝜏𝜔 = 𝜏𝑒 then ⊲ 𝜏𝜔 is completed task.

4: for each 𝑝𝑖 ∈ p𝑒 do
5: b𝑖 ← b𝑖 ∪ 𝑝𝑖 ⊲ Union (∪) with repetition.

6: 𝑐𝑒 ← 𝐶ℎ𝑒𝑐𝑘𝐻𝑖𝑠𝑡𝑜𝑟𝑦 (𝜔, \𝑖 , p𝑒 ) + 1; 𝑓𝑒 ← 0

7: else
8: 𝑓𝑒 ← 𝑓𝑒 + 1; 𝑐𝑒 ← 𝑐𝑒 − 1
9: if 𝑓𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 b then
10: 𝑟𝑒𝑚𝑜𝑣𝑒 𝑒 𝑓 𝑟𝑜𝑚 E\𝜔
11: 𝑠𝑒 ← 𝑠𝑡𝑎𝑡𝑒; 𝜏𝑒 ← 𝑛𝑒𝑤 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡

If 𝜏𝑒 is not equal to 𝜏𝜔 , we increase 𝑓𝑒 and decrease 𝑐𝑒 . If 𝑓𝑒
is greater than a threshold b , we remove 𝑒 . We also update the

choose target state (𝑠𝑒 ) and 𝜏𝑒 of all 𝑒 . Line 6 of the algorithm is not

𝑐𝑒 ← 𝑐𝑒 + 1, because of the decrease when a failure happens in

line 8: we decrease 𝑐𝑒 when there are consecutive failures, but we

restore it to the number of successes when a correct prediction is

made. This aids in our type estimation.

We also update 𝜔’s history 𝐻𝜔 , in order to use it for future

evaluations. We add (𝑠𝜔 , 𝜏𝜔 ) to the history, where 𝜏𝜔 is the task

just completed and 𝑠𝜔 the corresponding choose target state (i.e.,
when 𝜏𝜔 was chosen as next task). Note, however, that we have no

access to the agent’s true choose target state. Even though when an

agent completes a task, the choose target state of all 𝑒 would be the

same 𝑠𝑒 , these can later change during the execution (as we will

see later). Therefore, we use the estimators in E\𝜔 to estimate 𝑠𝜔 : we

set 𝑠𝜔 to the one stored in the estimator 𝑒 with highest 𝑐𝑒 across all

sets E\𝜔 .
Generation: Let E′\𝜔 be the new set with only the surviving esti-
mators (all 𝑒 that were not removed in Algorithm 1). We generate

𝑁 − |E′\𝜔 | new estimators, in order to again have sets E\𝜔 with size

𝑁 . Let p′ be a new parameter vector associated with a new 𝑒 ′. A
proportion𝑚 of the new estimators is created by randomly sampling

from the uniform distribution in the corresponding parameter’s

range, for all elements 𝑝𝑖 of p′.
For the remaining proportion, we create 𝑒 ′ using the bags b.

Each position 𝑖 is populated by randomly sampling from b𝑖 . Every
time a new 𝑒 ′ is created, we check if p𝑒′ would have at least one

success across the history. If so, 𝑒 ′ is added to E′\𝜔 , otherwise it

is discarded. This decreases the likelihood of wasting an estima-
tor with a parameter that would not be able to make any correct

prediction (estimated from the history). The process repeats until

|E′\𝜔 | = 𝑁 (Algorithm 2).

Algorithm 2 Generate New Estimators

1: [ ← 0; 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ← (𝑁 − |E′\𝜔 |) ×𝑚
2: while |E′\𝜔 | < 𝑁 do
3: if [ < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 then
4: p𝑒 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒 ⊲ 𝑝𝑖 uniformly sampled.

5: else
6: p𝑒 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 𝑟𝑜𝑚 b ⊲ 𝑝𝑖 sampled from bag b.
7: ℎ𝑖𝑠𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐶ℎ𝑒𝑐𝑘𝐻𝑖𝑠𝑡𝑜𝑟𝑦 (𝜔, \, p𝑒 )
8: if ℎ𝑖𝑠𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 > 0 then
9: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝜏𝑒 𝑖𝑛 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒

10: 𝑐𝑒 ← ℎ𝑖𝑠𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ; 𝑠𝑒 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒; 𝑓𝑒 ← 0

11: 𝐴𝑑𝑑 𝑒 𝑡𝑜 E′\𝜔 ; [ ← [ + 1

Estimation: At each iteration, we use the average p𝑒 across all 𝑒
in E\𝜔 as the current estimated parameter for 𝜔 , when assuming

type \ . We also estimate the probabilities P(\ )𝜔 of each agent 𝜔

having type \ . To do so, we use the success rate of all estimators
of the corresponding type. For each \ , we first calculate: 𝑘\𝜔 =

max(0,∑
𝑒∈E\𝜔 𝑐𝑒 ). These are then normalised as: 𝑘 ′\𝜔 =

𝑘\𝜔∑
\′∈Θ 𝑘\

′
𝜔

.

Finally, we update the type estimation: P′(\ )𝜔 ∝ 𝑘 ′\𝜔 ×P(\ )𝜔 , where
P(\ )𝜔 is the previous estimation. In the first iteration, we need prior

probabilities for P(\ ). These would normally be initialised with the

uniform distribution, in the absence of previous information.

Update: A certain 𝜏 may be completed by any subset of agents

(including 𝜙), which was the target of a certain 𝜔 , who was not in
the subset of agents that have just completed the task. 𝜔 would

notice that 𝜏 is done by other agents and would switch to a different

task at that state. Hence, once 𝜏 is completed, we check every 𝜏𝑒 in

E\𝜔 , for all 𝜔 that have not just completed 𝜏 , to see if there is any

𝑒 where 𝜏𝑒 = 𝜏 . If there is any, we set 𝑠𝑒 as the current state, and

update its target task accordingly based on the parameters p𝑒 and
type \ . That is, we simulate 𝜔 choosing a new target task at state

𝑠𝑒 .
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3.2 Analysis
We show that as the number of tasks goes to infinite, we perfectly

identify the type and parameters of all 𝜔 , given some assumptions:

we consider that parameters have a finite number of decimal places.

This is a light assumption, as any real number 𝑥 can be closely

approximated by a number 𝑥 ′ with finite precision, without much

impact in a real application (e.g., any computer has a finite pre-

cision). Hence, as parameters have a fixed range, there is a finite

number of possible values for every element 𝑝𝑖 . To simplify the ex-

position, we consider 𝑛 possible values per element (in general they

can have different sizes). Let 𝑑 be the dimension of the parameter

space.

We also assume that any parameter estimation in the wrong

type, and any parameter p′ ≠ p∗ (even in the correct type) will not

succeed infinitely often, where p∗ is the correct parameter. That is,

as |T | → ∞ there will be cases where it successfully predicts the

task, but the number of cases is limited by a finite constant 𝑐 . Let

\∗ be the correct type, and \− ≠ \∗.

Proposition 3.1. OEATA estimates the correct parameter and
type for all agents as |T | → ∞.

Proof. Because of the mutation proportion𝑚, we always have

new estimators with random p𝑒 (since wrong parameters eventually

reach the failure threshold, so new ones are generated). As we

sample from the uniform distribution, p∗ will be sampled with

probability 1/𝑛𝑑 > 0. Hence, eventually it will be generated as

|T | → ∞. In fact, as the generation defines a Bernoulli experiment,

from the geometric distribution we have that in expectation we

need 𝑛𝑑 trials. Therefore, eventually, there will be an estimator
with the correct parameter vector p∗, and it will eventually receive

the highest 𝑐𝑒 score across the full history since it has the highest

probability of making correct predictions. Furthermore, all p𝑒 ≠ p∗

will eventually reach the failure threshold b , and will eventually

be discarded. Hence, when |T | → ∞ the average across E\
∗

𝜔 will

be p∗. Concerning type estimation, we have that 𝑐𝑒 → ∞ in the

set E\
∗

𝜔 of the true type \∗. Hence, 𝑘\
∗

𝜔 → ∞, while 𝑐𝑒 < 𝑐 for

\− ≠ \∗ (by assumption). Therefore, 𝑘 ′\
∗

𝜔 =
𝑘\
∗

𝜔∑
\′∈Θ 𝑘\

′
𝜔

→ 1, while

𝑘 ′\
−

𝜔 → 0, as |T | → ∞. Hence, the probability of the correct type

P(\∗) → 1. □

If a parameter estimation in the wrong type does succeed infin-

itely often, then the analysis is more intricate, since we may also

have that 𝑘\
−

𝜔 → ∞. However, we can still show that the correct

type will receive a higher probability:

Proposition 3.2. If a parameter estimation in the wrong type
succeeds infinitely often, OEATA still gives a higher probability to the
correct type, for a sufficiently large 𝑁 .

Proof. We consider that the correct parameter estimation in

the correct type succeeds more frequently than parameter estima-

tions in the wrong type. If that is not true than the wrong type

would be an even better model to be used for planning, leading to

a contradiction (as \∗ would not be the correct type).

Let 𝑘\𝜔 (𝑥) denote 𝑘\𝜔 for 𝑥 tasks. By the Stolz–Cesàro theorem,

the limit of𝑘 ′\𝜔 as |T | → ∞ is: lim |T |→∞
𝑘\𝜔 ( |T |+1)−𝑘\𝜔 ( |T |)∑

\′∈Θ 𝑘\
′

𝜔 ( |T+1 |)−
∑

\′∈Θ 𝑘\
′

𝜔 ( |T |)
.

We also have that the parameter estimation in the correct type will

eventually converge to the true parameter. Hence, as the correct pa-

rameter estimation in \∗ succeeds more frequently than parameter

estimations in \−, there will be 𝑁 such that 𝑘\
∗

𝜔 (𝑥 + 1) − 𝑘\
∗

𝜔 (𝑥) >
𝑘\
−

𝜔 (𝑥+1)−𝑘\
−

𝜔 (𝑥). Therefore: lim |T |→∞ 𝑘 ′\
∗

𝜔 > lim |T |→∞ 𝑘 ′\
−

𝜔 ⇒
P(\∗) > P(\−). □

We saw in Proposition 3.1 that a random search from the mu-

tation proportion takes 𝑛𝑑 trials in expectation. OEATA, however,

finds p∗ much quicker than that, since a proportion of estimators

are sampled from b. To show that formally, we make the following

assumptions: (i) a correct value 𝑝∗
𝑖
in any position 𝑖 may still predict

the task wrongly (since other vector positions may be wrong), but

it will eventually predict at least one task correctly in at most 𝑡

trials, where 𝑡 is a constant; (ii) although each bag could have at

most 𝑛 different values in the worst case, we assume that they have

an expected fixed size 𝔟 as |T | → ∞ (after removing repetitions of

𝑝∗
𝑖
).

That is, if one of the vector positions 𝑖 is correct, p will not fail

infinitely, even though other elements may be incorrect. That is

valid in many applications, as in some cases only one element is

enough to make a prediction. E.g., if a task is nearby, for almost

any vision radius it would be predicted as the next one if the vision

angle is correct. On the other hand, wrong values do not succeed

infinitely, and hence the bags have an expected size 𝔟 ≪ 𝑛. That is

also true in many applications: although by the argument above

wrong values may make correct predictions, these are a limited

number of cases in the real world. E.g., eventually all tasks nearby

will be completed, and a correct vision radius estimation becomes

more important to make correct predictions.

Proposition 3.3. OEATA finds p∗ in 𝑂 (𝑑 × 𝑛 × 𝔟𝑑 ).

Proof. By the same argument as above, sampling the correct

value for element 𝑝𝑖 would take 𝑛 trials in expectation. Once a

correct value is sampled, it will be added to b𝑖 if it makes at least

one correct task prediction. It may still make incorrect predictions

because of wrong values in other elements, and it would be removed

if it reaches the failure threshold b . However, for a constant number

of trials 𝑡 × 𝑛, it would be added to b𝑖 . Similarly, sampling at least

one time the correct value for all 𝑑 dimensions would take 𝑑 × 𝑛
trials in expectation, and in at most 𝑡 × 𝑑 × 𝑛 trials all b𝑖 would
have at least one sample of the correct value in position 𝑖 . The

bags store repeated values, but in the worst case there is only one

correct example at each b𝑖 , leading to a 1/𝔟 probability to sample

the correct value per bag. Hence, given the bag sampling operation,

we would find p∗ with 𝑡 × 𝑑 × 𝑛 × 𝔟𝑑 trials in expectation. □

Our complexity is close to𝑂 (𝑛), instead of𝑂 (𝑛𝑑 ) as the random
search (since 𝔟 ≪ 𝑛). A 𝑂 (𝑛) complexity could still be prohibitive

in some real applications if 𝑛 is large. However, 𝑛 can be reduced

arbitrarily: a designer can trade convergence speed with model

precision, reducing the parameter space by aggregation of values

(e.g., reducing the decimals).

3.3 Example
Consider Figure 1: we show one ad-hoc agent 𝜙 , two agents 𝜔0, 𝜔1,

and three tasks 𝜏𝑖 . They do foraging: tasks are defined as collecting
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Figure 1: 𝜙 thinking about 𝜔 ’s behaviour in foraging.

a particular item. We assume two possible types: \1 and \2; two

parameters (𝑝0, 𝑝1), and the following behaviours for 𝜔0: if type is

\1, and 𝑝0 ≥ 0.5,𝜔0 goes towards item 𝜏0. If type is \1, and 𝑝0 < 0.5,

𝜔0 goes towards item 𝜏1. If type is \2, ∀𝑝0 ∈ [0, 1], 𝜔0 goes towards

item 𝜏2.

𝜙 creates sets E\1 and E\2 for all 𝜔 ∈ Ω (hence 4 sets in total).We

start by creating 5 random estimators 𝑒 (𝑁 = 5). 𝜙 simulates 𝜔0’s

task decision-making for each 𝑒 in the sets E\1
0

and E\2
0
, and ob-

tain its predicted target task 𝜏𝑒 . After some iterations 𝜔0 gets the

item that corresponds to task 𝜏1, hence completing that task. 𝜙

then evaluates and updates all 𝑒 : if 𝜏𝑒 equals 𝜏1, success counter 𝑐𝑒
is increased by 1. Otherwise, counter of consecutive failures (𝑓𝑒 )

is increased. Assuming threshold for removing estimators b = 1,

some 𝑒 will survive at E\1
0
, while others will be removed. Let’s as-

sume that the estimators that made a correct prediction had the

parameters (0.4, 0.6), and (0.2, 0.5). Hence, the bags for \1 will be:
b0 = {0.4, 0.2}; b1 = {0.6, 0.5}. Assuming 𝑚 = 1/3, 2 new 𝑒 will

be generated by sampling from these bags, while 1 will be fully

random. Therefore, we may create new 𝑒 with the following p𝑒 :
(0.4, 0.5); (0.2, 0.6); (0.1, 0.7), where the last vector is fully random.

For E\2
0
, since no 𝑒 predicted 𝜏1, they will all be removed, and 5 new

ones will be generated using the uniform distribution.

Hence, at this iteration, 𝜔0’s 𝑝0 parameter will be estimated as

(2 × 0.4 + 2 × 0.2 + 0.1)/5 = 0.26. 𝜔0’s probability of being \1 will

be updated as: 𝑘 ′\1 = 2/(2 + 0) ⇒ P(\1) = 1. Afterwards, given 𝜔0

new position (3, 6) (next to the box it just collected), 𝜙 runs again

a simulation of 𝜔0’s task decision process for each 𝑒 in the sets E\
0
,

updating them accordingly.

𝜔1’s estimators are also updated, even though it did not collect

any item. Some 𝑒 in E\
1
may have 𝜏1 as the estimated task 𝜏𝑒 , and

that is not a valid task anymore since it was already completed.

For each 𝑒 where 𝜏𝑒 = 𝜏1, 𝜙 simulates 𝜔1’s task decision-making,

assuming p𝑒 , and the current state. For these estimators, both 𝜏𝑒
and the choose target state are updated.

3.4 OEATA in Partial Observability
We define a single agent POMDP (extending our previous MDP),

allowing us to combine the POMCP algorithm [18] with OEATA:

every action 𝑎 produces an observation 𝑜 ∈ O, which represents 𝜙 ’s

visible environment. POMCP uses a particle filter to approximate

the belief state at each node in the UCT tree. Each time we traverse

1.0

0.5

0.3

𝜔2

0.5

𝜔1

0.7

𝜙
0.6

Figure 2: Level-based foraging domain. The number next to
the boxes indicate their “weight”, and the one next to agents
indicate their skill levels.

the tree, a state is sampled from the particle filter of the root. Given

an action𝑎, a simulator samples the next state 𝑠 ′ and the observation
𝑜 . The pair 𝑎𝑜 defines the next node 𝑧 in the search tree. State 𝑠 ′ is
added to 𝑧’s particle filter, and the process repeats recursively down

the tree. We refer to [18] for a detailed explanation. As in UCT, we

do not know the true transition and reward functions (since Ω’s

pdfs are unknown). Therefore, we employ the same strategy: each

time we go through the search tree, we sample a type for each agent

from the estimated type probabilities and use the corresponding

estimated parameters. These remain fixed for the whole traversal

until we re-visit the root node. These sampled types and parameters

are also used in the POMCP simulator, when we sample a next state,

a reward and an observation after choosing an action in a node.

We handle partial observability by sampling a particle from the

POMCP root, which corresponds as sampling a state 𝑠 from the

belief state. 𝑠 is then used as the current state in OEATA. States that

are more likely will be sampled with a higher probability.

4 EXPERIMENTS
4.1 Level-based Foraging Domain
We evaluate our approach in level-based foraging, a common prob-

lem for evaluating ad-hoc teamwork [2, 3, 20]. In this domain, a set

of agents must collect items displaced in the environment (which

corresponds to the “tasks” in our model). Each item has a certain

weight, and each agent has a certain (unknown) skill-level. If the
sum of the skill-levels of the agents (that are trying to collect an

item) surrounding a target is greater than or equal the item’s weight,

the item is “loaded” by the team (Figure 2). Each agent has 5 possible

actions, in a grid-world environment: North, South, East, West, and
Load (which tries to load an item next to the agent, if the agent

is facing that item). We consider two possible agent types, taken

from previous works in this domain: We use the two “leader” types

defined in Albrecht and Stone [2]. Additionally, the visibility re-

gion of each 𝜔 has an angle and a maximum radius, which are

unknown. Therefore, there are 3 parameters to be learned for each

𝜔 : Skill-level, Angle and Radius. According to 𝜔 ’s type and parame-

ters, its target item (task) will be selected. We refer the reader to

Albrecht and Stone [2] for a detailed description of the types and

their respective parameters.
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Figure 3: Parameter and type estimation errors for |Ω| = 5.
Lower is better.

4.2 Results
We will compare our algorithm (OGE) against two state-of-the-art

parameter estimation approaches in ad-hoc teamwork: AGA and

ABU [2]. Both approaches also sample sets of parameters (for a gra-

dient ascent step or a Bayesian estimation), and we use the same set

size as estimator sets (𝑁 ). Additionally, we compare our approach

against using plain POMCP for type and parameter estimations. In

this case we still consider that the agent is able to see the whole

environment; however, agent type and parameters are not observ-

able, and hence are estimated using POMCP’s particle filter. We use

𝑁 × |Ω| × |Θ| particles, matching the total number of estimators
in our approach (since we have 𝑁 per agent, for each type). We

executed 100 runs for each experiment, and plot the average results

and the confidence interval (𝜌 = 0.01). When we say that a result is

significant, we mean statistically significant considering 𝜌 ≤ 0.01.

In plain POMCP, we calculate the type probability of a certain

agent P(\ ) by counting the frequency that the type \ is assigned to

the agent in the root’s particle filter. For the parameter estimation,

we use the average across the particle filter (for each type), allowing

us to calculate the parameter estimation error in our evaluation.

OGE used the following parameters: 𝑁 = 100, 𝑡 = 2,𝑚 = 0.2.

Type and parameters of agents in Ω are chosen uniformly randomly,

and the weight of each item is chosen uniformly randomly (between

0 and 1). Each scenario is also randomly generated. Agent 𝜙 ’s skill-

level is fixed at 1, so every generated instance is solvable. We ran

UCT for 100 iterations per time step, and maximum depth 100. We

fix the scenario size as 20 × 20, and ran experiments for a varying

number of team-mates (|Ω|). We first show results when 𝜙 has full

observability of the scenario, and later we will show with partial

observability. When running experiments in partial observability,

we consider a circular visibility region centered on 𝜙 , with radius 5.

We first show examples of the parameter and type error for

|Ω| = 5 (Figure 3). We evaluate the mean absolute error for the

parameters, and 1 − P(\∗) for type; and we show here the average

error across all parameters. As we can see, our parameter estimation

error is consistently significantly lower than the other algorithms

from the second iteration, and it monotonically decreases as the

number of iterations increases (asmay be expected fromProposition

3.1). AGA, ABU, and POMCP, on the other hand, do not show

any sign of converging to a low error as the number of iterations

increases. We can also see that our type estimation becomes quickly

better than the other algorithms, significantly overcoming them

after a few iterations.

We now study the error for different |Ω| sizes, and the execution
time to complete all tasks (in terms of number of iterations), in
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Figure 4: Parameter, type estimation errors, and perfor-
mance for a varying number of agents in full observability.
The graph in the bottom shows results with more than 3
agents in greater detail.
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Figure 5: Parameter, type estimation errors, and perfor-
mance for a varying number of agents with partial observ-
ability. The graph in the bottom shows results with more
than 3 agents in greater detail.

Figure 4. Since we are aggregating several results, we plot in Figure

4 (a) and (b) the average error across all iterations. As we can

see, OGE has consistently lower error than the other algorithms,

both in terms of parameters and type estimation. In fact, OGE

is significantly better than AGA, ABU and POMCP in terms of

parameter and type error for all number of agents. Similarly, in

Figure 4 (c) we see that OGE is able to complete all tasks faster for

all team sizes, and is significantly better in almost all cases (except

for POMCP with 3 agents, where 𝜌 ≤ 0.2; and with 1 agent we

are significantly better than ABU and POMCP with 𝜌 ≤ 0.022, and

AGA with 𝜌 ≤ 0.12). Note that the performance changes drastically

when the number of team-mates is greater than 1. Therefore, we

also show a second plot in the same figure with a more detailed

view with 3 or more agents, for better visualisation.

We show our results for partial observability scenarios in Figure

5. Here all approaches (AGA/ABU/OGE) are now employing the

modified POMCP for handling the partial observability, as described

in Section 3.4. Again, we obtain significantly lower parameter and
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Figure 6: Parameter, type estimation errors, and perfor-
mance, for a varying number of agents when correct agent
type is not available, in full observability scenarios.

type error than previous approaches (Figure 5 (a) and (b)), except

only for type error with 7 agents. This happens because the number

of items is fixed, hence the higher the number of agents the lower

the number of observations that we get for each agent for parameter

and type learning. Similarly, in Figure 5 (c) we see that we obtain a

better performance than previous approaches, although the impact

is smaller than in full observability case: results are significantly

better with 1 team-mate; with 3 it holds with 𝜌 ≤ 0.06; while with

5 agents we are significantly better than AGA with 𝜌 ≤ 0.013. With

7 agents are still significantly better than AGA with 𝜌 ≤ 0.03. As

before, we show a detailed view with 3 or more agents in the figure

on the bottom, for better visualisation, because of the big decrease

in the number of iterations with more than 1 agent.

Finally, we study the impact of using these algorithms when 𝜙

does not have full knowledge on the possible types of the other

agents. That is, we run experiments where all agents in Ω have a

type which is not in Θ. In these experiments, all agents𝜔 follow one

of the “follower” agent types (F1) from Albrecht and Stone [2]. Since

this type looks at others to decide its target, we run experiments

with 3 or more team-mates. We can see our results in Figure 6. As

we can see, in this case all algorithms have similar results, and the

parameter error is not significantly different across the algorithms.

Finally, the overall task performance is not significantly different

across all algorithms in most cases (except for AGA with 5 agents,

and ABU with 7 agents, which are better than us in these cases).

Therefore, we show that we are able to obtain significantly better

results than the state-of-the-art when there is a good model of the

possible team-mates types. When such models are not available,

our performance is similar to previous works in most cases.

5 CONCLUSION
We study ad-hoc teamwork for decentralised task allocation. One

ad-hoc agent learns its team-mates, in order to better decisions

concerning overall team performance. We propose a novel algo-

rithm that obtains better estimations than previous works in ad-hoc

teamwork, leading to better performance. OEATA converges to zero

error, and in our experiments the error decreases with the number

of iterations. We also show estimations with partial observability

for the first time in ad-hoc teamwork, and still outperform previous

works in this challenging scenario.
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