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Abstract—Data access control in a cloud storage system is
regarded as a promising technique for enhanced efficiency and
security utilizing ciphertext-policy attribute-based encryption
(CP-ABE) approach. However, due to large number of data
users as well as limited resources and heterogeneity of data
devices in Internet of Things (IoT), existing access control
schemes for the cloud storage are not effectively applicable to
IoT applications. In this paper, we construct a new CP-ABE
based storage model for data storing and secure access in a
cloud for IoT applications. Our new framework introduces an
attribute authority management (AAM) module in the cloud
storage system functioned as an agent that provides a user-
friendly access control and highly reduces the storage overhead of
public keys. Then, we propose a novel secure and efficient multi-
authority access control scheme of the cloud storage system for
IoT, namely SEM-ACSIT, which obtains both backward security
and forward security when an attribute of a user is revoked.
By exploiting encryption outsourcing, simplified key structuring
and the AAM module, computational overhead of a user is
immensely decreased. Moreover, a user access control list (UACL)
in the cloud server is constructed newly to support authorization
access for a specific user. The analysis and simulation results
demonstrate that our SEM-ACSIT scheme achieves powerful
security with less computational overhead and lower storage cost
than existing schemes.

Index Terms—Cloud storage, access control, multi-authority,
attribute-based encryption, Internet of Things (IoT).

I. INTRODUCTION

The Internet of Things (IoT) technology has achieved large
development in many aspects such as signal sensing, wireless
communication, data transferring and processing, and is ap-
plied widely in various fields [1–3], especially in the industry
environment [4]. For example, smart city is a highly important
field to exploit the IoT technology because low carbon con-
sumption and high quality of life are more emphasized than
ever before for urban inhabitants in recent years. Furthermore,
IoT enables to exploit public resources more conveniently and
to reduce the cost of public administration through building
smart city [5]. More and more different types of environment-
conscious devices, for example, smart sensors, RFID readers,
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cameras, mobile phones, intelligent vehicles, roadside termi-
nals, etc, are distributed in many territories and carried with
persons respectively. On the other hand, from the point of view
of trades there are many instrumental devices to implement
remote metering, such as in water utilities, power service and
natural gas provision. These devices which are affiliated with
smart city and connected by IoT can persistently collect a
large amount of data and impose a new challenge to data
processing in IoT. Therefore, it is necessary to supply enough
storage space to store the big-sized data [6]. In addition, there
can be some sensitive data that should be kept privacy [7] in
IoT applications. As a result, security of these sensitive data
sourced from some smart city applications based on IoT needs
to be guaranteed.

The cloud computing is an increasingly paramount comput-
ing paradigm that envisions a promising future, in which a user
can conveniently enjoy computability anywhere and anytime
by the Internet. The cloud storage service is also exploited by
increasingly growing number of applications, and it provides
consumers with data storage and access control services [8],
which can effectively solve the problems sourced from big
data mentioned earlier. For instance, in a prospective smart
city transportation system connected by IoT and assisted by
cloud storage respectively, the transportation data are collected
from the vehicles and roadside traffic monitoring terminals and
automatically stored in a cloud storing system. Then, a traffic
policeman, a vehicle administrative officer and even some
vehicle insurance companies or automobile manufacturers can
inquire the driving information of a person anywhere by using
mobile devices or some other network terminals. It offers big
convenience for a traffic policeman and an automobile service
provider to be able to remotely monitor and even control
traffic flow by IoT. However, a driver also concerns about
his/her privacy seriously. Thus, some sensitive information
relating to individuals should be stored in confidentiality. If
a curious internal staff or a deliberate external attacker can
access individual information of a driver without authorized
permission, it will pose a potential threat to security of the data
possessed by an owner. But the owner may be willing to share
his/her data with some authorized people. Furthermore, he/she
may want to share different data with different people. Then
access control to big-sized data like in smart city applications
based on IoT emerges as a challenge in order to cater for
heterogeneous requirements for security and convenience.

Ciphertext-policy attribute-based encryption (CP-ABE) [9]
is deemed as a promising technology for access control in a
cloud storage system for IoT applications because of flexibility
of access control policy. A data user (DU) can get shared
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access to data provided by a data owner (DO) if there
exist some attributes of a DU to satisfy the access policy
issued by the DO. Usually there is an authority responsible
for attribute management and key distribution in a variety
of attribute-based encryption schemes. Extensive researches
[10–14] have been done for a system with single authority
based on CP-ABE approach. However, a data user may hold
several attributes allocated from multiple authorities which are
managed by different sectors and a data owner may share data
with the users administrated by some different authorities in a
cloud storage system. For example, in the smart transportation
system of a city, data regarding to personal driving may
be shared only with a user who holds two attributes of
both “reparation” and “insurance” issued by a garage and an
automobile insurance company respectively, or shared with a
user possessing two attributes of both “traffic-guidance” and
“accident-treatment” only issued by a traffic policeman team.
Some multi-authority CP-ABE approaches, such as [15–17]
are proposed to conveniently implement data access control
between a data owner and some data users.

However, these approaches are designed to adapt to a
common situation and cannot be directly applied to a cloud
storage system. Therefore, in order to apply the multi-authority
CP-ABE approach to implement data access control in a cloud
storage system, two schemes [18, 19] are further proposed.
They implement distributed key management relating to at-
tributes of a user and realize data sharing among a data owner
and some data users through exploiting an attribute access
control policy. However, they are devised mainly to adapt to a
universal cloud storage system, and some features of IoT such
as device heterogeneity, resource limitation and large number
of users are not considered. In addition, many resource-limited
users in IoT face overlarge cost when exploiting the existing
data access control schemes for the cloud storage system,
which highly deteriorates performance of an individual data
device and an entire IoT system. Meanwhile, the data access
control scheme in [18] does not possess forward security
when revoking a user, and that in DAC-MACS [19] does not
have backward security when an attribute authority revokes
an attribute of a user [20]. Our further analysis shows that
the scheme in [19] lacks forward security when revoking an
attribute of a user, i.e. the revoked user can still decrypt the
previously-made ciphertext that may be decrypted only when a
user possesses the revoked attribute, which we will deal with.
Furthermore, big overheads in storage and computation of [19]
may incur a challenge to a broad range of resource-limited data
devices in many IoT applications.

The big-volumed data generated in IoT pose another chal-
lenge to devise an efficient and convenient data access control
system. And the dynamic change of a data user role will make
it more serious. Therefore, in this work we are inspired by the
secure cloud storage system presented in [19] to devise a new
secure and efficient multi-authority access control scheme of
a cloud storage system for IoT (SEM-ACSIT) based on CP-
ABE. The main contributions of this paper are summarized as
follows:

• Aiming to the heterogeneity features of IoT application-
s, we propose a new user-friendly data access control

framework for a cloud storage system, which provides
a unified user access interface by using an attribute
authority management (AAM) module.

• We construct a novel secure and efficient data access
scheme based on CP-ABE in our proposed framework
to realize data sharing for the cloud storage system in
IoT with multiple attribute authorities, which can ensure
both backward and forward security when revoking an
attribute of a data use.

• Our SEM-ACSIT scheme not only outsources decryption
to the cloud server, but also dumps public key storage of
both attribute authorities and users to an AAM module,
which can reduce computation cost and user storage in a
system level.

• For a specific user, we construct a user access control
list (UACL) in the cloud server to enable the specified
user to get direct and effective data access by adding an
authorization record in the UACL, enhancing flexibility
of shared data access.

This paper is organized as follows. Section II gives a de-
tailed review of the related work. Section III briefly introduces
some preliminary knowledge related to our scheme. Design
of the proposed scheme is presented in detail in Section
IV. Section V provides performance analysis and experiment
results. Section VI concludes this paper.

II. RELATED WORK

Several kinds of access control schemes have been proposed
for different user requirements, among which a model based
on attribute-based encryption (ABE) [21] attracts big interest
for securing cloud storage. ABE mechanisms can be divided
into two main categories, namely, key-policy attribute-based
encryption (KP-ABE) [22] and CP-ABE [9]. In a cloud storage
system, many factors such as computation overhead, com-
munication cost, management of attribute keys and security
requirements impose large challenge on design of access
control scheme and the model based on CP-ABE is commonly
exploited.

Initially, the research work in ABE application is mainly
related to a model of single authority. Hur et al. [10] proposed
a scheme which exploits CP-ABE and selective group key
distribution in each attribute group. The scheme requires a
trusted attribute authority to administrate all of the attributes
in the system and distribute secret keys to users. As a result,
the authority becomes a possible vulnerability and further a
performance bottleneck of the data access control system.
In addition, their scheme incurs heavy computing overhead.
Green et al. [11] proposed two kinds of ABE schemes that
outsource the decryption to a server in order to highly elim-
inate the overhead of users. In their schemes, the traditional
secret key is divided into a user secret key and a transformation
key which is sent to the server and exploited to generate a
constant-size temporary El Gamal-style ciphertext with the
server unable to learn content of the ciphertext.

Recently, there are some meaningful research efforts for
multi-authority based on CP-ABE. Ruj et al. [18] proposed
a distributed access control scheme (DACC) for a multi-
authority system that contains several key distribution centers
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to distribute attribute keys to data users and data owners. The
scheme avoids storing multiple encrypted copies of the same
data and also constructs an attribute revocation mechanism to
revoke a user. However, their scheme does not possess forward
security when revoking a user. Due to large calculation cost of
attribute revocation Liu et al. [23] proposed a multi-authority
attribute based encryption scheme with attribute revocation.
The scheme adds the user revocation list into ciphertext to
implement user revocation. Through decryption outsourcing
and proxy re-encryption technology it satisfies security re-
quirements, meanwhile reducing the computation overhead.
From point of view of privacy preservation Zhou et al. [24]
proposed a TR-MABE scheme for e-healthcare application,
namely a white-box traceable and revocable multi-authority
attribute-based encryption. The scheme can efficiently attain
multi-level privacy preservation without extra signatures. No-
mura et al. [25] proposed a multi-authority attribute-based
encryption scheme with attribute revocation for cloud storage.
It can revoke an attribute without updating a user’s secret key.

Yang et al. [19] proposed an effective data access con-
trol for multi-authority cloud storage systems (DAC-MACS)
based on CP-ABE and outsourced primary computation of
the decryption to a cloud server by generating a decryption
token. Moreover, they designed an efficient attribute revocation
method that incurs less cost of communication and revocation
computation. But, computing overhead and cost of attribute
revocation in DAC-MACS scheme are still the burden for a
resource-limited user in IoT. Wu et al. [26] analyzed the two
attacks in multi-authority cloud storage system with DAC-
MACS, including eavesdropping users secret key updates and
intercepting ciphertext update key. And, they proposed a new
extensive DAC-MACS scheme (NEDAC-MACS) for multi-
authority cloud storage system against the two attacks. The
scheme can guarantee more security and its performance is
similar to that of DAC-MACS. Considering low efficiency in
multi-authority access control system Xue et al. [27] proposed
a robust and auditable access control scheme for a public
cloud storage with multiple attribute authorities. It introduces
a central authority to generate secret keys for a legal user. In
addition, the scheme can detect which attribute authority has
maliciously carried out the legitimacy authentication through
an auditing mechanism. It makes big performance advantages
when key generating on the basis of guaranteeing the security
requirements. Aiming to access control for encrypted cloud
storage Xue et al. [28] proposed a scheme based on CP-
ABE to secure cloud data storage against economic denial
of sustainability (EDoS) attacks. At the same time, it pro-
vides resource consumption accounting to control service cost
through bloom filter and probabilistic check. The scheme is
secure and efficient when applied in a real-world environment.
Due to not complete trustworthiness for a cloud server Wei
et al. [29] proposed a secure and cost-effective access control
scheme for multi-authority cloud storage system based on CP-
ABE. The cloud storage access model supports scalable user
revocation and dynamic ciphertext updating. It is demonstrated
that the scheme is secure in the random oracle model and
has good practicality. Yahiatene et al. [30] proposed a new
framework to control access to the private data on online

social networks. The framework is based on cloud storage and
exploits a distributed multi-authority ABE model. Owing to
an integrated access control mechanism the scheme can ensure
data security and enable data access only to an authorized user.
In order to support users to gain access permission through
collaboration Xue et al. [31] proposed a collaborative access
control scheme based on attribute-based encryption model.
In the scheme a data owner can designate some selected
users to construct a group to collaborate for accessing shared
data. Further, it considers to resist collusion attack when
an adversary combines some attributes from different users.
The scheme can guarantee data security and is performance-
efficient according to storage and computation overheads.

III. SCHEME PRELIMINARY

A. Bilinear Map

Let G and GT be two multiplicative cyclic groups with a
prime order p. Let g be a generator of G. The map e : G×G →
GT is a bilinear map if it has the following properties:

1) Bilinearity: For all u ∈ G, v ∈ G and a, b ∈ Zq ,
e(ua, vb) = e(u, v)ab.

2) Non-degeneracy: e(g, g) ̸= 1.
3) Computability: For all u ∈ G, v ∈ G, e(u, v) is

computable efficiently.

B. Access Structure

Let P = {P1, P2, . . . , Pn} be a set of parties. An access
structure [13] is a collection A of nonempty subsets of P , i.e.,
A ⊆ 2{P1,P2,...,Pn}\{∅}. If a collection A is monotone, then
∀X , Y : if X ∈ A and X ⊆ Y , then Y ∈ A. A monotone
access structure means that A is monotone. In our research,
a party associates with an attribute of a user, and we assume
that the access structure is monotone.

An example of attribute access structure in the form of
a binary tree is shown in Fig. 1. If an owner defines an
access policy and a corresponding boolean expression is
A∧B ∨ (C ∧ (D∨E)), then an access structure of the policy
is R = {{A,B}, {C,D}, {C,E}}. Therefore, both user1 and
user2 with the sets of {A,B} and {C,D} respectively satisfy
requirements of the access structure, but user3 with an attribute
set {C} does not satisfy the access structure.

IV. CONSTRUCTION OF SEM-ACSIT SCHEME

In this section, we describe our proposed SEM-ACSIT
scheme in detail.

A. System Model and Security Assumptions

There are six kinds of entities in our cloud storage system
for IoT applications with multiple authorities. These entities
include a global certificate authority (CA), some attribute
authorities (AAs), an AAM module, a cloud server (CServer),
many DOs and DUs, as shown in Fig. 2.

In multi-authority storage system for IoT applications, being
a globally trusted certificate authority the CA is originally re-
sponsible for establishing the system and accepting registration
request from all users, owners (as some special users) and
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Fig. 1. Access structure of attributes by an owner.
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Fig. 2. Access control model of a cloud storage system in IoT applications
with multiple authorities.

AAs in the system. The AAM supported by a cloud platform
is functioned as a bridge between some AAs and many users
(including DOs and DUs) in order to improve data access
efficiency of users, especially in resource-limited scenarios of
IoT. Each of AAs is an independent attribute authority which
is mainly in charge of dynamically distributing and revoking
attributes of users according to their roles in its domain.
Furthermore, every AA is also responsible for generating and
distributing some different types of keys associated with a
users attributes. The CServer provides data storage and access
control services to users and manages the UACL for all shared
files, which contributes to support user-specific access control.
A DO encrypts shared data according to an access policy and
stores the corresponding ciphertext into the CServer. A DU
will be able to decrypt the encrypted data if his/her attributes
are matched to an access policy of the data owner.

We make following security assumptions for the multi-
authority storage system of IoT applications:

1) The CA is trusted in the system. As a system constructor,

it will accept the registration of AAs and data users. But,
the CA is not responsible for managing attributes of the
users and corresponding attribute key generation.

2) Each of AAs is also trusted, but it can be corrupted by
an adversary.

3) Both CServer and AAM in the cloud platform are
curious but honest. They are curious about the content
of encrypted data or a received message, but they will
correctly execute the tasks assigned by each AA, a user
and an owner.

4) The users are dishonest and may collude with other users
or AAs to obtain unauthorized access to shared data.

5) A decisional q-parallel bilinear Diffie-Hellman exponent
(q-parallel BDHE) assumption is made. We review the
decisional q-parallel BDHE problem followed as in [13].
Let a, s, b1, . . . , bq ∈ Zp be chosen at random and g be
a generator of a group G. An adversary must distinguish
e(g, g)a

q+1s ∈ GT from a random element R in GT if
it is given

y⃗ =

(
g, ga, ga

2

, . . . , ga
q

, , ga
q+2

, . . . , ga
2q

, gs

∀1≤j≤q : ga/bj , . . . , , ga
q+2/bj , . . . , ga

2q/bj , gsbj

∀1≤j,k≤q,k ̸=q : gasbk/bj , . . . , ga
qsbk/bj

)
.

An algorithm B that outputs z ∈ {0, 1} has advantage
ϵ in solving q-parallel BDHE in G if∣∣∣∣Pr[B(y⃗, T = e(g, g)a

q+1s) = 0]−

Pr[B(y⃗, T = R) = 0]

∣∣∣∣ ≥ ϵ.

We define that the decisional q-parallel BDHE assump-
tion holds if no polynomial time algorithm has a non-
negligible advantage in solving the q-parallel BDHE
problem.

B. Overview of SEM-ACSIT

There are a few multi-authority data access control schemes
proposed for a cloud storage system, such as [18, 19], which
are able to realize security of data sharing and attribute
revocation. However, these schemes cannot be directly applied
to the secure storage system for IoT applications because of
different security requirements. And high overheads sourced
from both system-level storage and user-level computation in
those schemes are additionally negative factors to apply them
in IoT applications. Thus, to design a secure and efficient data
access control scheme for IoT application storage systems is
still a big challenge.

IoT is widely enabled by the latest progress in smart sensors,
WSNs, RFID, cloud platform and some other communication
technologies. For many IoT applications, there exists a large
quantity of data sharing between data providers and data
consumers with limited resources. Number of these data
devices is enormous and their performance is heterogeneous.
Therefore, one challenge in designing a data access control
scheme for the IoT storage system is how to realize secure data
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access and reduce overhead of the system simultaneously. In
SEM-ACSIT, we adopt the key framework proposed by [19],
therefore every attribute has an attribute public key and an
attribute private key. Moreover, each of AAs possesses both
a public key and a secret key relating to unique authority
identification and every user has a set of keys relating to the
attributes distributed by some AAs, which provides a base to
resist collusion attack between an adversary and some other
users or attribute authorities. However, different from DAC-
MACS [19], SEM-ACSIT simplifies key organization and
optimizes key storage in order to improve computing efficiency
and lessen storage redundancy relating to attribute keys. To
exploit powerful performance of a cloud computing platform,
SEM-ACSIT introduces an attribute authority management
AAM into the cloud platform that can effectively manage
resources in the storage system. The AAM stores public keys
of all attributes, public keys of all authorities and hash values
of all attributes, which reduces key storage redundancy of data
owners in [19]. Furthermore, it provides a friendly-user data
access control interface by which a user is able to switch
from a one-to-many communication mode to a one-to-one
mode and highly decrease total number of communications
to all AAs. Finally, the AAM also undertakes some intensive
encryption computation to lower computational overheads of a
data owner. The SEM-ACSIT scheme has good applicability
and practicality due to its definite framework and less user
computation overheads, and can be applied in such fields as
smart traffic, community management and so on.

In some IoT applications, roles of many network data de-
vices are frequently changed, for example in such a clustering-
based scenario as LBC-DDU [32]. Role change of sensor
nodes inevitably induces many attributes to change. Thus,
another challenge is how to efficiently treat the frequent
attribute revocation of many data users in the access control
system for IoT applications. To solve this attribute revocation
problem, a corresponding AAk that manages the revoked
attribute problem updates the two keys relating to it. Then,
each of non-revoked users updates his/her secret key set, public
key of the revoked attribute, and many pieces of cipertext
relating to it are renewed locally by all owners and the CServer
respectively. However, frequent attribute revocation will lead
to a large number of communications for all owners, which
augments overheads of a system. In addition, due to ciphertext
updating by the CServer the existing scheme cannot resist
collusion attack between a revoked user and the cloud server
when the revoked user illegally obtains the ciphertext update
key [20]. Therefore, in SEM-ACSIT we apply an agent AAM
of authorities located in the cloud platform to store all attribute
public keys. It is enough to locally update an attribute public
key in the AAM module when an attribute is revoked from a
user, which is able to highly reduce communication overheads
for resource-limited data owners even in the case of frequent
attribute revocation in IoT applications. In order to solve
security problem when revoking an attribute from a user, our
proposed scheme processes ciphertext update through the AAk

managing the revoked attribute as opposed to by the CServer
in [19].

The SEM-ACSIT scheme also provides a specified user ac-

Owner

CServer

Users

SEM-ACSIT

Content 

key κ

Symmetric 

Decryption

File  f
Attribute Set

File  f Enκ  f Content 

key κ 

+

Symmetric 

Encryption

Access 

Policy
Content 

key κ

+
SEM-ACSIT

KCT

Decryption

Fig. 3. Data sharing process between the owner and each user.

cess control service by exploiting a UACL structure to improve
flexibility of data access authorization in IoT applications. A
DU, while not satisfying the access policy, can still be able to
access the shared file if the DU obtains an access authorization
from a DO directly.

We briefly describe a process of data sharing as shown
in Fig. 3. Initially, a DO wants to upload his/her data file
f to the CServer, and he/she will encrypt the file using
a symmetric algorithm with a content key κ to obtain the
ciphertext Enκ(f). Then, the DO defines an access policy,
such as “(reparation AND insurance) OR traffic-guidance”
in a smart city transportation system built through the IoT
technology, and encrypts the content key κ using SEM-ACSIT
scheme with the defined access policy to produce a piece
of key ciphertext (KCT ). To encrypt the content key rather
than to directly encrypt the content is able to highly reduce
computational overhead and communication cost for a cloud
storage system. If some users want to access the file f , they
must try to decrypt KCT through our scheme and obtain
κ first. Only if attributes of a DU satisfy the access policy
embedded into a piece of ciphertext, could the user decrypt the
key ciphertext. Then, the user can access the file successfully
because he/she can decrypt to obtain f using the symmetric
key κ.

A structure of the file storage in a cloud storage system is
shown in Fig. 4, where ID is a unique identity for file access
control and τ is the time of uploading a file. In the structure,
there are such two kinds of ciphertext as key ciphertext KCT
and data ciphertext Enκ{data}, which is corresponding to
the symmetric key as well as data themselves respectively.
UACL is created by the CServer for each shared file when
an owner uploads the encrypted file to the CServer. It consists
of a triple record like ⟨RNum,UV alue,AT ime⟩. RNum
is a value selected randomly and unique to each of records.
UV alue is a value which a data owner stores into the record.
If a data user obtains an access authentication from a DO
directly, the user can get the corresponding UV alue by which
he/she can decrypt the ciphertext readily. ATime is the current
time of adding the record.
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ID KCT Enκ{data} UACL

Key Ciphertext Data Ciphertext

 

UValue ATimeRNum

Fig. 4. Structure of encrypted file stored in the CServer.

C. Construction of SEM-ACSIT

We let SU and SA be a set of users (an owner representing
a special user in the period of registering) and a set of attribute
authorities in a cloud storage system for IoT respectively.
Let G and GT be two multiplicative groups with the same
prime order p and e : G × G −→ GT be a bilinear
map. Let g be a generator of G and define a hash function
F : {0, 1}∗ −→ G which maps an attribute into the group
G so that security of the system is in the random oracle.
The proposed SEM-ACSIT scheme consists of eight phases,
including system initialization, AA joining, user joining, user
secret key generation, data encryption, ciphertext decryption,
attribute revocation, and authenticated access for a specified
user as well.

1) Initialization of a Cloud Storage System: A cloud
storage system for IoT applications is established initially
by the CA. It executes an algorithm CASetup(λ)−→(SP ,
SKCA, V KCA) in this period and the input parameter λ is a
security parameter. Specifically, the CA first randomly chooses
a number a ∈ Zp as a parameter of the cloud storage system
and generates the system parameter SP = {g, ga, G,GT , F}.
Then, the CA generates a pair of secret key and verification
key {SKCA, V KCA}, such as by exploiting RSA algorithm in
order to authenticate validity of a user when obtaining secret
keys from an attribute authority AAk. Those prospective AAs
and users must register to the CA and obtain some security
parameters just when they join the cloud storage system for
IoT applications.

2) AA Joining: Every AA should register itself to the
CA when joining the cloud storage system for IoT applica-
tions. If an AA is a legal attribute authority, the CA first
allocates a global authority identity aid, namely k, to the
AA. Then, the CA sends the system parameter SP and
its verified key V KCA to the AA. After receiving these
security parameters, each AAk(k ∈ SA) executes an algo-
rithm AASetup(SP, k)−→(PKk, SKk, {PKxk

, V Kxk
}). It

chooses αk, βk∈ Zp randomly as the AAk authority secret
key SKk = {αk, βk}. In addition, AAk randomly chooses
vxk

∈ Zp for each attribute xk ∈ SAk
managed by itself as a

private version key V Kxk
and computes PKxk

= (gvxk )1/βk

as an attribute public key, where SAk
is a set of attributes

managed by AAk. Furthermore, AAk calculates the authority
public key as shown in formula (19):

PKk = {e(g, g)1/αk , gβk} (1)

Then, a set of attribute public keys {PKxk
} and a set of

hash values {F (xk)} corresponding to every attribute xk in
the AAk should be stored together with the authority public

TABLE I
ATTRIBUTES AND ITS PUBLIC KEYS AS WELL AS HASH

VALUES

Attribute Attribute Parameter Authority

x11 (PKx11 , F (x11)) AA1

x12 (PKx12 , F (x12)) AA1

x13 (PKx13 , F (x13)) AA1

x21 (PKx21 , F (x21)) AA2

... ... ...

TABLE II
PUBLIC KEYS OF ATTRIBUTE AUTHORITIES

Authority Authority Parameter

AA1 PK1

AA2 PK2

... ...

key PKk into the two index tables of AAM as shown in Table
I and II.

3) User Joining: Each of users (including owners) should
first register themselves to the CA when they join a cloud
storage system for IoT applications. The CA will assign a
globally unique user identity uid to a user if the user is
legal in the system. For a user with uid, the CA further
generates a global public key GPKuid = guuid and a
global secret key GSKuid = zuid by choosing two ran-
dom numbers uuid, zuid ∈ Zp respectively. In addition, the
CA produces a certificate Cert(uid) containing an entry of
SignSKCA

(uid, uuid, g
zuid). Finally, the CA gives GPKuid,

GSKuid and Cert(uid) to the user uid.
4) User Secret Key Generation by AAs: In order to obtain

secret keys from all AAs, a user Uj(j ∈ SU ) first sends
Cert(j) to the AAM, and then the AAM transparently sends
it to the all AAs, by which the cloud storage system can effec-
tively unify and simplify a user access interface to attribute au-
thorities. Every AAk(k ∈ SA) can verify Cert(j) by exploit-
ing verification key V KCA of the CA to obtain {j, uj , g

zj}.
If the user Uj is illegal, generation request of secret key will
be refused. Otherwise, the AAk allocates a set of attributes
SAj,k to the user Uj according to its role in the access control
system. Then, the attribute authority AAk runs an algorithm
SKeyGen(SAj,k, SKk, {PKxk

}, SP,Cert(j))−→SKj,k to
generate the secret key SKj,k of the user Uj as formula (2):

SKj,k = {Kj,k = ga·ujgzj(1/αk−1),

∀xk ∈ SAj,k : Kj,xk
= gvxk

((uj+1)/β2
k+1/βk) · F (xk)

uj/βk}
(2)

Here, j ∈ SU and k ∈ SA . Finally, the AAk returns the
secret key SKj,k to the AAM, and then the AAM will further
send all secret keys obtained from all AAs to the user Uj

collectively.
5) Data Encryption by an Owner: A data owner DO first

encrypts the file f with a content key κ using a symmetric
encryption method to generate data ciphertext Enκ(f). Let
SOP = {xoi}oi=1 to l be a set of attributes involved in the
access structure A like in Fig. 1, where l is the number of
attributes in an access control policy. Furthermore, let IA
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denote a set of the AAs who manage an attribute set SOP .
Then, the owner sends IA and SOP sets to the AAM. In
order to reduce computational overhead of the owner, the
AAM executes an algorithm MCTGen({PKk}k∈IA)−→T0

to generate the provisional ciphertext as formula (3):

T0 =
∏
k∈IA

e(g, g)1/αk−1 (3)

When computing T0, the AAM gets PKk by enquiring
Table II and sends it back to the data owner together with
{PKk}, {PKxk

} and {F (xk)} as well. Then, the data owner
takes as inputs T0, SP , κ, {PKk}k∈IA , {PKxk

}xk∈SAk
and

the access structure A = (M, ρ) to execute Encrypt algorithm
to generate key ciphertext KCT , where SAk

denotes a set of
attributes of the attribute authority AAk relating to the access
structure A. Each of the attributes involved in A is managed
by only one AA, and M is an l × n access matrix obtained
from an access tree associated with the access policy, where
l is the number of attributes as mentioned earlier and n is
related to specific logic expression of the access policy. The
function ρ maps a row number of matrix M to an attribute
xoi of the access policy. In addition, the data owner randomly
chooses s ∈ Zp and a vector v⃗ = (s, y2, ..., yn) ∈ Zn

p with s as
its first entry, where random values y2, ..., yn are employed to
share the secret s. For each row of matrix M, it also randomly
chooses r1, r2, ..., rl ∈ Zp to compute the key ciphertext. For
i = 1 to l, the data owner first computes

λi = v⃗ · Mi (4)

, where Mi is a row vector corresponding to the ith row of the
access matrix M. Then, the DO computes the key ciphertext
KCT according to formula (5) and uploads it as well as
Enκ(f) to the CServer.

KCT = ⟨M, ρ,KC = κ · (T0)
s, C0 = gs,

∀i = 1 to l :

Ci,1 = gaλi(gvρ(i)/βkF (ρ(i)))ri ,

Ci,2 = g−βkri , Ci,3 = g−ri ,

ρ(i) ∈ SAk
, k ∈ IA⟩

(5)

6) Ciphertext Decryption by the Cloud and User: In the
cloud storage system for IoT applications, any legal user can
obtain any interested ciphertext from the CServer. However,
only if attributes of a user meet the access policy, the user
will be able to decrypt to get the content key and exploit it
to further obtain the file. In order to reduce the computational
overhead of a user in IoT, the ciphertext decryption phase
consists of two steps. Initially, against the highly intensive
computation cost on a user the CServer decrypts the key
ciphertext to obtain a partially decrypted ciphertext PDCT .
Then, the user further decrypts the key ciphertext to recover
a content key with a small cost based on the PDCT .

• PDCT Generation
To improve key ciphertext decryption efficiency of a user
the CServer undertakes a large number of computation.
A user Uj(j ∈ SU ) will send its global public key
GPKj , a set of secret keys {SKj,k}k∈SA and its

attribute set Ij to the CServer and require it to compute
a partially decrypted ciphertext PDCT . The CServer
first gets attribute public keys {PKxk

} relating to the
user Uj from the AAM and then computes a common
subset of attributes PjM = {ρ(i) : i ∈ L} ∩ Ij , where
L is a set of row numbers in the access matrix M. For
these attributes in set PjM , the CServer further checks
to find if there exists an index subset Ic of rows of
M, such that the vector (1, 0, · · · , 0) is a linear combi-
nation of these rows corresponding to the index subset
Ic in matrix M. If not, the decryption is terminated.
Otherwise, the CServer proceeds as follows. Let NA be
the number of attribute authorities corresponding to an
index set IA. The CServer calculates a set of constants
{ξi ∈ Zp}i∈Ic such that

∑
i∈Ic

ξiMi = (1, 0, · · · , 0),
i.e., a set {λi} is valid shares of the secret s =∑

i∈Ic
ξiλi. Then, the CServer executes an algorithm

CKGen(KCT,GPKj , {SKj,k}k∈SA
, {PKxk

}) −→
PDCT to obtain PDCT and sends it to the user Uj .
The PDCT is calculated as follows:

a) For each attribute authority index k ∈ IA, to
calculate

CT1 =
∏
k∈IA

e(C0,Kj,k) (6)

b) For each attribute index i ∈ Ic relating to the
access matrix M, to calculate

CT2 =
∏
i∈Ic

[e(Ci,1, GPKj) · e(Ci,2,Kj,ρ(i))

· e(Ci,2Ci,3, PK−1
ρ(i))]

ξiNA

(7)

c) The Cserver computes PDCT as following

PDCT = CT1/CT2 (8)

• Ciphertext Decryption
A user Uj can execute an algorithm
Decrypt(KC,PDCT,GSKj) −→ f to get the
content key κ and the plaintext f after receiving
PDCT from the CServer.

κ = KC/(PDCT 1/GSKj ) (9)

The user Uj can use κ to decrypt the encrypted file to
obtain plaintext as

f = Decκ(Enκ(f)) (10)

7) Attribute Revocation by the AAk and Some User-
s: If an attribute x̃k of a user Uφ is revoked from
an AAk, What is the most important for the AAk is
that it will update the version key and public key as-
sociated with the revoked attribute x̃k. The AAk can
execute UKeyBase(SKk, {GPKj}j∈Su,j ̸=φ, V Kx̃k

) −→
(SKUj,x̃k

, CTUx̃k
) algorithm which takes as inputs the au-

thority secret key SKk, the current attribute version key
V Kx̃k

, namely vx̃k
, and global public keys of some user-

s {GPKj}j∈Su,j ̸=φ. Initially, the attribute authority AAk

chooses a new random value v′x̃k
∈ Zp as the new V K ′

x̃k
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and obtains the attribute update key, namely AUKx̃k
=

(v′x̃k
−vx̃k

)/βk. The algorithm can output the secret key update
SKUj,x̃k

= (GPKj · gβk+1)AUKx̃k
/βk and the ciphertext

update CTUx̃k
= −AUKx̃k

/βk. Then, the AAk updates the
public attribute key of the revoked attribute x̃k as shown in
formula (11) and sends it to the AAM who then updates the
corresponding item in Table I.

PK ′
x̃k

= PKx̃k
· gAUKx̃k (11)

Finally, the AAk sends SKUj,x̃k
through the AAM to the

all non-revoked users. We will then be in the following two
attribute revocation phases which consist of key update and
ciphertext update.

• Non−Revoked Users Updating Secret Keys
When receiving the SKUj,x̃k

, a non-revoked user Uj

will execute an algorithm SKUpdate(SKj,k, SKUj,x̃k
)

to get NKj,x̃k
= Kj,x̃k

· SKUj,x̃k
and then construct a

new secret key as

SK ′
j,k ={K ′

j,k = Kj,k,

∀xk ∈ SAj,k, xk ̸= x̃k : K ′
j,xk

= Kj,xk
,

∀xk ∈ SAj,k, xk == x̃k : K ′
j,x̃k

= NKj,x̃k
}

(12)

These secret key updates SKUj,x̃k
are different for all

non-revoked users, thanks to the unique uj . Therefore,
the revoked user Uφ fails to use update keys of other
non-revoked users to update its secret key, guaranteeing
security of the shared data. In addition, there is a
component of a constant factor 1 in exponent of g of
expression Kj,xk

in formula (2), which contributes that
the revoked user Uφ cannot update its secret key by
colluding with any other non-revoked users. Thus, the
scheme further guarantees backward security of the data
access.

• AAk Updating Ciphertext
For an attribute authority AAk managing some attributes
in the IoT storage system, we consider to take full
advantage of its capacity and extend its functions to
update the ciphertext when revoking an attribute of a
user in order to enhance security of the shared data.
The AAk first obtains those ciphertext relating to a
revoked attribute x̃k from the CServer who can check
the access policy embedded into the ciphertext and
find out which ciphertext to be updated. After receiv-
ing the ciphertext, the AAk will get some necessary
components CTx̃k

= {Ci,1, Ci,2} associated with the
revoked attribute x̃k in the ciphertext. Then, it will
run an algorithm CTUpdate(CTx̃k

, CTUx̃k
) −→ Ĉ to

produce the new ciphertext components Ĉ and send it to
the CServer. The AAk updates the ciphertext associated

with the revoked attribute x̃k through formula (13).

KCTUPD =⟨∀i = 1 to l :

Ci,1 = gaλi(gvρ(i)/βk′ F (ρ(i)))ri ,

Ci,2 = g−βk′ri , ρ(i) ∈ SAk′ , k
′ ∈ IA

if ρ(i) == x̃k :

C ′
i,1 = Ĉ = Ci,1 · (Ci,2)

CTUx̃k ⟩
(13)

Note that the AAk just needs to update only a compo-
nent Ci,1 which is associated with the revoked attribute
x̃k. This can highly improve efficiency of the attribute
revocation. Through ciphertext updating provided by
the AAk, the proposed scheme can guarantee forward
security of the access control system that a newly joined
user is able to decrypt the ciphertext if he/she possesses
sufficient attributes satisfying the access policy. In addi-
tion, the new ciphertext updating scheme can also resist
collusion attack between a revoked user and the non-
revoked users or some AAs (not including the AAk in
charge of the revoked attribute) because the ciphertext
update key CTUx̃k

is possessed only by the AAk, which
enhances backward security.

8) Authenticated Access for a Specified User: In a
scenario, such as transportation system of a smart city based
on IoT, a data owner may want to give the access permission
to a user Uj who holds an attribute of “reparation” that does
not satisfy the access policy “insurance AND traffic-guidance”
of the owner. However, if the data owner changes the access
policy as “(insurance AND traffic-guidance) OR reparation”,
the data sharing range will be domain-expanded, which the
data owner does not intend to grant. Consequently, we need
to implement a flexible authenticated access for a specified
user. The access control steps are as follows.

An owner-specified user Uj sends a specific request Req =
gµUj to an owner, where the user Uj randomly chooses an
exponent µUj ∈ Zp. If the owner agrees access request, he/she
will add a record into the UACL field in the CServer and set
UV alue = κ · e(ga, Req)µowner which will be exploited by
the user Uj , where the owner chooses µowner ∈ Zp randomly.
In addition, the CServer returns RNum to the owner. Then,
the owner sends Ans = gµowner and RNum to the user Uj

who can compute content key according to formula (14) and
further decrypt to get the file successfully.

κ = UV alue/e(Ans, ga)µUj (14)

We note that the number of records in the UACL is a
system parameter whose value is set as a constant value Lu.
Therefore, when a buffer of the UACL is full, the owner
notifies the oldest user of an invalid RNum according to a
FIFO rule in order to obtain the vacancy to provide an access
authorization to a new user.

V. PERFORMANCE ANALYSIS AND
EXPERIMENTS

In this section, we initially analyze security of the proposed
SEM-ACSIT scheme. Then we analyze performance of a cloud
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storage system for different schemes. Finally, we carry out
some computational overhead comparisons through simulation
experiments.

A. Security Analysis and Proof

We will demonstrate that only authorized users can decrypt
ciphertext stored in the CServer. Some users also cannot
collude to decrypt the ciphetext that they are not able to
decrypt individually. The proposed scheme can guarantee both
forward security and backward security when an attribute
of a user is revoked. We can draw the following security
conclusions.
Theorem 1. In the SEM-ACSIT scheme just authorized

users can decrypt the shared data.
Proof : According to CP-ABE, a user is able to decrypt

the ciphertext if and only if attributes of the user satisfy an
access policy embedded into the ciphertext. It follows that
an access matrix M constructed from the access policy has a
subset of rows corresponding to attributes of the user if and
only if there exists a set of linear constants {ξi ∈ Zp}, such
that

∑
i∈Ic

ξiMi = (1, 0, · · · , 0). From formulas (6) and (7),
we have respectively

CT1 =
∏
k∈IA

e(C0,Kj,k)

= e(g, g)a·UjsNA ·
∏
k∈IA

e(g, g)(1/αk−1)szj
(15)

CT2 =
∏
i∈Ic

[e(Ci,1, GPKj) · e(Ci,2,Kj,ρ(i))·

e(Ci,2Ci,3, PK−1
ρ(i))]

ξiNA

= e(g, g)UjaNA

∑
i∈Ic

λiξi

(16)

Thus, we have PDCT as follows

PDCT = CT1/CT2

=
∏
k∈IA

e(g, g)szj(1/αk−1) (17)

There exist λi = v⃗·Mi and v⃗ · (1, 0, 0, · · · , 0) = s. Thus,

KC/(PDCT 1/GSKj )

= κ · (
∏
k∈IA

e(g, g)1/αk−1)s/(
∏
k∈IA

e(g, g)szj(1/αk−1))1/zj

= κ
(18)

Finally, the user executes symmetric algorithm through content
key κ to obtain plaintext.

For an unauthorized user, there does not exist a subset of
rows in an access matrix M corresponding to attributes of the
user, such that

∑
i∈Ic

ξiMi = (1, 0, · · · , 0). Hence, the content
key κ cannot be calculated out. �
Theorem 2. The SEM-ACSIT scheme is resistant to collu-

sion attack between a user and some other users.
Proof : In SEM-ACSIT scheme, every legal user is granted

for a globally unique identity uid by the certificate authority
CA. The secret keys of a user issued by each of AAs are
correlated with the uid of the user. Therefore, it is impossible

for some users who cannot individually decrypt ciphertext
to exchange components of the secret keys to collusively
decrypt the ciphertext. On the other hand, suppose that there
exists a subset of attributes from colluding users, such that
Σi∈IcξiMi = (1, 0, · · · , 0) . However, in computing CT2
according to formula (7), different users have different GPKj

and Kj,ρ(i), and one of authority secret keys βk is just only
possessed by the AAk exclusively. Therefore, even if the
colluding users combine their attributes together, they still
cannot decrypt the ciphertext.

Besides, in a process of the specified user authorizing, even
if an illegal user can obtain RNum of other users, he/she
still cannot decrypt the ciphertext without the corresponding
parameter µUuid

. Hence, our scheme can guarantee the data
security. �

Theorem 3. When revoking an attribute of a user Uφ,
the SEM-ACSIT scheme can hold both forward security and
backward security.

Proof : In SEM-ACSIT scheme, secret keys of all non-
revoked users and all pieces of ciphertext in the CServer
relating to a revoked attribute will be updated when this
attribute of a user Uφ is revoked. Even if the revoked user
Uφ can collude with some non-revoked users, he/she still
cannot update a set of secret keys since the item gvxk

/β2
k in

a user‘s secret keys from the AAk can prevent the revoked
user Uφ from updating the secret keys through updated keys
of collusive non-revoked users. Therefore, the revoked user
that has old-version secret keys cannot decrypt the newly
generated ciphertext that can be decrypted just through the
new-version secret keys, which guarantees backward security
of the scheme.

Furthermore, in our SEM-ACSIT scheme ciphertext updat-
ing is implemented by the AAk which manages the revoked
attribute and does efforts to keep the ciphertext update private.
And the mechanism can resist collusion attack rooted in a
cloud if the cloud is responsible for updating ciphertext.
Therefore, our scheme can overcome vulnerability problem
when revoking an attribute of a user. If a newly-joined user
has matching attributes to an access policy embedded into the
previously generated ciphertext, he/she still can decrypt the
ciphertext, which guarantees forward security of the SEM-
ACSIT scheme. �

Theorem 4. If the decisional q-parallel BDHE assumption
holds, then no polynomial time adversary can selectively break
SEM-ACSIT scheme with a challenge matrix of size l∗ × n∗,
where n∗ ≤ q − 1.

Proof : We suppose there is an adversary A with non-
negligible advantage ϵ = AdvA in the selective security
game against our construction. Furthermore, assume that the
adversary chooses a challenge matrix M∗ with dimension at
most q columns. In the security game, the adversary can query
for any private keys that cannot be used for decryption together
with any keys it can obtain from the corrupted AAs. We
can devise a simulator B that deals with the decisional q-
parallel BDHE problem with non-negligible advantage. Due
to limitations of the space we give the detailed theory proof
for security in Appendix A. �
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TABLE III
COMPREHENSIVE COMPARISON FOR OUR SCHEME WITH OTHER TWO SCHEMES

Scheme Authority Computation Cost Revocation
Message(|p|)

Revocation
Controller

Ciphertext
Updater

Global
Center

Revocation Security Support of
Specified userEnc. Dec.♣ Backward Forward

DACC [18] Multiple O(tc) O(tu) O(nc,x̃ · nnon,x̃) Owner Owner No Yes No No
DAC-MACS [19] Multiple O(tc + tk) O(1) O(nnon,x̃) +O(nowner) AA‡ CServer Yes No [20] No No

SEM-ACSIT Multiple O(tc) O(1) O(nnon,x̃ + dc) +O(1) AA† AA Yes Yes Yes Yes

♣: just decryption on a user. ‡: including both non-revoked users and the CServer. †: including only non-revoked users. |p|: size of group element.
tc: number of attributes in an access policy imbedded in the ciphertext. tk: number of attribute authorities involved in the ciphertext.
nowner : number of all owners in an access control system. tu: number of attributes in a user.
dc: number of the ciphertext relating to a revoked attribute x̃ in the CServer.
nc,x̃: number of the ciphertext containing a revoked attribute x̃. nnon,x̃: number of non-revoked users holding an attribute x̃.

TABLE IV
COMPARISON OF STORAGE OVERHEAD FOR TWO SCHEMES

Entity DAC-MACS [19] SEM-ACSIT

AAk (na,k + 3)|p| (na,k + 2)|p|

AAM / (2NNA +
NNA∑
k=1

na,k)|p|

Owner (3NNA + 1 +
NNA∑
k=1

na,k)|p|

|p|

User (3NNA + 1 +
NNA∑
k=1

na,k,uid)|p|

(NNA + 1 +
NNA∑
k=1

na,k,uid)|p|

CServer (3tc + 2 +NA)|p| (3tc + 2 + Lu)|p|

na,k: number of all attributes managed by AAk .
NNA: number of all AAs in a cloud storage system.
na,k,uid: number of attributes assigned to a user uid from AAk .
NA: number of attribute authorities corresponding to a set IA.
tc: number of attributes in an access policy imbedded in the ciphertext.
Lu: buffer length of the UACL. |p|: size of group element.

B. Comprehensive Analysis

We compare proposed SEM-ACSIT scheme with existing
schemes, including DACC [18] and DAC-MACS [19], as
shown in Table III for data access control in a cloud storage
system of IoT with multiple authorities. Among these schemes,
both DAC-MACS and SEM-ACSIT have a certificate authority
CA that is responsible for managing join of a user or an AA.
From the Table III, we can conclude that computational cost of
decryption is constant O(1) for SEM-ACSIT similar to DAC-
MACS, which is due to decryption outsourcing of these two
schemes. However, decryption cost in DACC scheme is deter-
mined by the total number tu of attributes of a user. Therefore,
the decryption complexity is O(tu). Compared with DAC-
MACS, SEM-ACSIT reduces encryption overhead by O(tk).
There are two reasons. The first one is that SEM-ACSIT
simplifies a key framework and the encryption algorithm. The
other is that some heavy pairing computation is transferred to
the AAM. Reduction in encryption computation overhead will
bring significant benefit to resource-limited IoT data devices.

Moreover, in SEM-ACSIT ciphertext updating is done by
the AAk managing a revoked attribute when the attribute
of a user is revoked. Although it increases number of com-
munication messages by O(dc) as the AAk is necessary to
send updated ciphertext back to the CServer, SEM-ACSIT can
guarantee backward security, where dc is the total number
of ciphertext to be updated. In addition, due to storing of
attribute public keys in the AAM agent SEM-ACSIT just
needs to update them locally, which highly reduces number of
communications of the public keys. However, all data owners

TABLE V
COMMUNICATION COST COMPARISON IN SOME

OPERATIONS

Operation DAC-MACS [19] SEM-ACSIT

Data Encryption (3tc +NA + 2)|p| (4tc + 2NA + 3)|p|
Public Key Update nnon,x̃|p| |p|
Ciphertext Update |p| nc,x̃(2nl,x̃ + 1)|p|

tc: number of attributes in an access policy imbedded in the
ciphertext.
NA: number of attribute authorities corresponding to set IA.
|p|: size of group element.
nnon,x̃: number of non-revoked users holding an attribute x̃ .
nc,x̃: number of the ciphertext containing a revoked attribute x̃.
nl,x̃: average number of attributes in the ciphertext containing x̃.

must access public board of the AAk to get the newly-updated
attribute public key in DAC-MACS, and thus communication
overhead is O(nowner) that is enormous for a scenario with
a large number of data owners, especially in the case of
frequent attribute revocation in IoT. Through UACL, SEM-
ACSIT scheme provides access authorization for specific users
compared with other two schemes, augmenting elasticity of
data access. It can be shown from Table III that for DACC
decryption cost is overlarge and forward security cannot be
guaranteed when a user is revoked. And DAC-MACS lacks
security when revoking a user attribute.

In the following section, we will just compare SEM-ACSIT
with DAC-MACS because they have the same key frames and
these two schemes commonly have the CA.

1) Storage Overhead: The storage overhead is a critical is-
sue of attribute-based access control scheme in a cloud storage
system for resource-limited IoT applications. Comparison of
storage overhead with DAC-MACS scheme is shown in Table
IV.

In these two schemes storage overhead on each AAk is
resulted from key storage of each attribute managed by the
AAk and that of the AAk itself. The storage overhead of our
scheme is similar to that of DAC-MACS. In SEM-ACSIT,
the newly-introduced AAM module has storage overhead of

(2NNA +
NNA∑
k=1

na,k)|p| to store authority public keys of

all AAs and public keys of all attributes in Tables I and
II. Although the AAM adds an extra storage overhead, it
can substantially reduce storage overheads of all owners in
a system level, which plays an important role in the IoT
applications. The two kinds of public keys mainly contribute
to storage overhead for an owner. From Table IV we can
conclude that for an owner storage overhead of SEM-ACSIT
is constant. However, that of DAC-MACS is determined by
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the total number of the AAs and the number of attributes in
the AAk. Consequently, storage overheads of DAC-MACS are
far more than those of SEM-ACSIT, especially due to having
large redundancy of public keys storage. The storage overhead
of a user in both DAC-MACS and SEM-ACSIT schemes
includes a global secret key issued by the CA, attribute-
irrelevant and attribute-relevant secret keys issued by all AAs.
Due to simplified secret key structure, user storage overhead
of SEM-ACSIT scheme is 2 ∗ NNA less than that of DAC-
MACS scheme. Note that in the CServer the key ciphertext is
primary storage overhead considered only, not including the
encrypted data because there are the same overheads for the
data ciphertext in these two schemes. Compared with DAC-
MACS scheme, storage overhead of our scheme is mainly
determined by buffer length Lu of the UACL as opposed
to the number NA of attribute authorities involved in the
ciphertext. In summary, Fig. 5 and Fig. 6 present storage
overhead comparisons of the two schemes for an owner and a
user as changed with number of the AAs and average number
of attributes managed by the AAk respectively.

2) Communication Cost: The communication cost of
SEM-ACSIT is similar to that of DAC-MACS in several
phases of data access, including initialization phase, secret key
generation phase for a user and so forth. However, there exist
some differences between the two schemes, especially in both
encryption phase and attribute revocation phase. We compare
communication cost of the two schemes, as shown in Table V.
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Because public keys of all authorities and attributes are stored
in the AAM module of SEM-ACSIT scheme, communication
cost of our scheme to encrypt data and update ciphertext is
a little more than that of DAC-MACS scheme. Due to the
large number of data owners in a cloud storage system for
IoT applications, DAC-MACS incurs a heavy communication
cost for updating the attribute public keys for non-revoked
users. However, the AAM in our scheme is functioned as an
agent of all AAs and in charge of distributing updated public
keys, which can highly reduce the communication cost of AAs,
especially in the frequent attribute revocation scenarios. Our
SEM-ACSIT scheme guarantees both backward security and
forward security at the cost of increasing communication cost
by O(nc,x̃∗nl,x̃) as compared to DAC-MACS scheme, which,
however, still has big significance because of basic security
requirements.

C. Simulation Experiments

In this section, we will compare SEM-ACSIT scheme with
DAC-MACS scheme [19] and DACC scheme [18] in encryp-
tion and decryption efficiency. We conduct a large number
of simulation experiments on a Windows system with the
JDK1.8 developing environment and an Intel Core i3-3240
CPU at 3.3GHz and 16.0 GB RAM. In addition, we adopt Java
pairing-based cryptography library version 1.2.1 to simulate
the three schemes. All simulation results are averaged over 40
simulation tests.

In the experiments, we adopt the same parameters as DAC-
MACS scheme due to the similar framework, for example,
|p| = 160 and compare computation time of both encryption
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Fig. 9. Decryption time comparison on the CServer with varying AAs
number.
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Fig. 10. Decryption time comparison on the CServer with varying attribute
number from each AA.

and decryption in such two different conditions as the number
of attribute authorities and the number of attributes managed
by each authority. We present the comparisons of encryption
time on an owner, decryption time on the CServer and that
on a user respectively versus an increasing number of AAs,
as shown in Fig. 7, Fig. 9 and Fig. 11, where the number of
attributes on each AA is set to be a mean of 10. Moreover,
the comparisons of encryption time on an owner, decryption
time on the CServer and that on a user respectively, versus a
growing number of attributes on each AA, are shown in Fig.
8, Fig. 10 and Fig. 12, where the number of AAs is also set
to be a mean of 10.

As shown in Fig. 7, encryption computation overhead of an
owner in the three schemes grows linearly with an increasing
number of the AAs and encryption computation overhead of
SEM-ACSIT is less than that of DAC-MACS and DACC.
Fig. 8 demonstrates that encryption computation overhead
of an owner in the three schemes is also linear to grow
with an increasing number of attributes on each AA and
the encryption computation overhead of our scheme is also
less than that of DAC-MACS and DACC. The reason of
reduction in encryption overhead is that our scheme simplifies
an encryption algorithm and a portion of encryption compu-
tation is transferred to the AAM. Our scheme is NA scalar
multiplications less than DAC-MACS for each of encryptions.
We do some decryption performance comparisons between
our scheme and DAC-MACS since the DACC scheme has
no cloud decryption outsourcing. Similarly, because of less
computation on the CServer, the decryption overhead of our
scheme is reduced, as shown in Fig. 9 and Fig. 10. According
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Fig. 11. Decryption time comparison on a user with varying AAs number.
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Fig. 12. Decryption time comparison on a user with varying attribute number
from each AA.

to formula (6) and (7) our scheme reduces the number of
paring operations to compute e(g, g) by NA times compared
with DAC-MACS when decrypting every ciphertext. Whereas,
the pairing operation is the most expensive calculation in an
access control system. From Fig. 11 and Fig. 12, we can
demonstrate that decryption computation overheads of a user
in both SEM-ACSIT and DAC-MACS are low since the two
schemes outsource a large number of decryption computation
to the cloud server and thus the user only needs to perform
a few computation. However, the decryption computation
overhead of a user in DACC is highly bigger than those in our
scheme and DAC-MACS since all decryption computation is
done totally by the user for DACC scheme. Besides, for the
two schemes of SEM-ACSIT and DAC-MACS computational
overhead of a user is irrelevant to the number of AAs and the
number of attributes in each AA. Finally, we note that SEM-
ACSIT scheme incurs similar updating computation cost to
DAC-MACS scheme on a user since computational overhead
for the ciphertext updating in DAC-MACS is shifted from the
cloud server to the AAk in SEM-ACSIT to guarantee security.

VI. CONCLUSION

A secure access to shared data stored in a cloud server
is becoming a considerable demand for IoT applications.
There are many limitations to design an effective and secure
data access scheme, such as performance of a cloud server,
heterogeneity of data devices, large number of data users,
and different requirements for security in IoT. These factors
motivated us to propose SEM-ACSIT, an efficient and secure
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access control system for IoT applications, where storage
overhead of the system is reduced significantly, and both
forward security and backward security are guaranteed when
an attribute of a user is revoked. In addition, a specific user
can be supported to be authorized and access to the shared
data with big flexibility. Results from analysis and simulation
experiments show that SEM-ACSIT clearly improves storage
efficiency with reduced computational overhead, and provides
strong data sharing security in a cloud storage system for IoT
applications as compared to the existing schemes.

APPENDIX A
PROOF OF THEOREM 4

We show the detailed proof of Theorem 4 here as follows.
Init : The simulator B takes in a q-parallel BDHE chal-

lenge y⃗, T . The adversary gives the algorithm the challenge
access structure (M∗, ρ∗), where M∗ has n∗ columns.
Setup : The simulator runs two algorithms of CASetup

and AASetup respectively and provides g to the adversary.
Accordingly, the adversary chooses an authority set SA′ ⊂
sA, which have been corrupted, and reveals these corrupted
authorites to the simulator. For every uncorrupted authority
AAk(k ∈ SA − S′

A), the simulator chooses two randoms
αk, βk ∈ Zp.

Then, we despict how the simulator programs a random
oracle F (x), where x is an attribute in the system. For each
x the simulator chooses a random value zx ∈ Zp. If there
does not exist an i in the access strcture (M∗, ρ∗) such that
ρ∗(i) = x, then let F (x) = gzx . Otherwise let X denote a set
of indices i, and let

F (x) = gzx
∏
i∈X

gaM
∗
i,1/biga

2M∗
i,2/bi . . . ga

n∗
M∗

i,n∗/bi .

Note that due to randomization of the gzx value the ora-
cle F (x) is distributed randomly. Obviously, by using the
αk, βk ∈ Zp mentioned above the simulator can generate
a public key PKk of each uncorrupted authority AAk as
follows.

PKk = {e(g, g)1/αk , gβk}

Similarly, a public key PKxk
associated with an attribute xk

for the authority AAK can also be generated by randomly
choosing a version number vxk

as PKxk
= (gvxk )1/βk .

The adversary is assigned a user identity uid by the simu-
lator. And the simulator further chooses two random numbers
u′
uid, zuid ∈ Zp to set GSKuid = zuid. Then it implicitly sets

uuid = u′
uid − (aa+1/zuid) by setting

GPKuid = gu
′
uid(ga

q+1

)−1/zuid

Then the simulator sends the public/secret key pair
(GPKuid, GSKuid) to the adversary.
Phase1 :In this phase, the simulator answers some pri-

vate key queries and update key queries from the adversary.
Suppose the simulator is given key queries by the adversary
through submitting a tuple (uid, Sk), where Sk is a set of
attributes belonging to an uncorrupted authority AAk. Another
assumption is that Sk does not satisfy M∗ in combination with
any keys which can be obtained from corrupted authorities.

Therefore, the simulator can construct Kuid,k as

Kuid,k = gau
′
uid(ga

q+2

)−1/zuidgzuid(1/αk−1).

Now, we calculate Kuid,xk
(∀xk ∈ SAj,k). First, we consider

the attribute xk ∈ SAj,k for which there is no i in the access
structure such that ρ∗(i) = xk. For these attribute xk, we can
simply let

Kuid,xk
= gvxk

((u′
uid−aq+1/zj+1)/β2

k+1/βk)×
F (xk)

u′
uid/βk(ga

q+1

)−zx/βkzuid .

Another task is to create attribute keys for some attribute xk,
where xk is used in the access structure, namely there exists
ρ∗(i) = xk. The simulator creates Kuid,xk

as follows.

Kuid,xk
= gvxk

((u′
uid−aq+1/zj+1)/β2

k+1/βk)×

F (xk)
u′
uid/βk(ga

q+1

)−zx/βkzuid×∏
i∈X

∏
j=1···n∗

(ga
j+q+1/bi)

−M∗
i,j

βkzuid

Challenge :In this phase, we build the challenge ciphertext.
The adversary gives two messages m0,m1 to the simulator.
The simulator flips a coin b. It creates

KC = mbT
∏
k∈IA

e(g, g)(1/αk−1)s

and C0 = gs. The hard part is to simulate the value Ci,1 since
this contains some terms that must be cancelled out. However,
the simulator can choose the secret splitting, such that these
items can be dealt with. Intuitively, the simulator will choose
some random values y′2, y

′
3, · · · , y′n∗ ∈ Zp and share the secret

using the vector.

v⃗ = (s, sa+ y′2, sa
2 + y′3, . . . , sa

n∗−1 + y′n∗) ∈ Zn∗

p .

It also chooses random numbers r′1, r
′
2, . . . , r

′
l∗ . For i =

1, 2, . . . , l∗, let Ri be a set of all k ̸= i such that ρ(i)∗ =
ρ(k)∗. That means the set of all other row indices corresponds
to the same attribute as row i. We can generate the challenge
ciphertext components as

Ci,2 = (gr
′
igsbi)−βk , Ci,3 = (gr

′
igsbi)−1.

From the vector v⃗, we can also construct the share of the secret
as

λi = v⃗ · M∗
i

s · M∗
i,1 +

∑
j=2,...,n∗

(saj−1 + y′j)M
∗
i,j .

Then, the challenge ciphertext component Ci,1 can be simu-
lated as

Ci,1 = (gvρ(i)/βkF (ρ(i)))−r′i(
∏

j=2,...,n∗

(ga)M∗
i,jy

′
j )×

(gbis)vρ∗(i)/βk+zρ∗(i)(
∏
k∈Ri

∏
j=1,...,n∗

(ga
jsbi/bk)M∗

kj ).

Phase2: Same as Phase 1.
Guess : The adversary will ultimately output a guess b′ of b.

The simulator then outputs 0 to indicate that T = e(g, g)a
q+1s
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if b == b′; otherwise, it outputs 1 to show that it believes
T is a random group element in GT . When T is a tuple, the
simulator B gives a perfect simulation. Therefore we have
that

Pr[B(y⃗, T = e(g, g)a
q+1s) = 0] = 1/2 +AdvA.

When T is a random group element, the message mb is com-
pletely hidden from the adversary and we get at Pr[B(y⃗, T =
R) = 0] = 1/2. Thus, B can play the decisional q-parallel
BDHE game with non-negligible advantage.
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