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Abstract:  

Improving our knowledge of soil formation is critical so that we can better understand 

the first-order controls on soil thickness and more effectively inform land 

management decisions. Cosmogenic radionuclide analysis has allowed soil 

scientists to more accurately constrain the rates at which soils form from bedrock. In 

such analysis, the concentration of an isotope, such as Beryllium-10, is measured 

from a sample of bedrock. Since this concentration is partly governed by the 

lowering of the bedrock-soil interface, a cosmogenic depth-profile model can be fitted 

to infer the bedrock and surface lowering rates compatible with the measured 

concentrations. Given that bedrock-soil interface is shielded by soil, the cosmic rays 

responsible for the in-situ production of the radionuclide are attenuated, with 

attenuation rates dependent on the density profile of this soil. Many studies have 

assumed that soil bulk density is either equal to that of the bedrock or constant with 

depth. The failure to acknowledge the variations in soil bulk density means that 

cosmogenically-derived soil formation rates previously published may be under- or 

over-estimates. Here, we deploy a new model called ‘CoSOILcal’ to a global 

compilation of cosmogenic analyses of soil formation and, by making use of 

estimated bulk density profiles, re-calculate rates of soil formation to assess the 

sensitivity to this important parameter. We found that where a soil mantle > 0.25 m 

overlies the soil-bedrock interface, accounting for the soil bulk density profile brings 

about a significantly slower rate of soil formation than that previously published. 

Moreover, the impact of using bulk density profiles on cosmogenically-derived soil 
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formation rates increases as soil thickens. These findings call into question the 

accuracy of our existing soil formation knowledge and we suggest that future 

cosmogenic radionuclide analysis must consider the bulk density profile of the 

overlying soil.  

Key words: Bulk Density, Soil Formation, Cosmogenic Radionuclide Analysis, 

CoSOILcal, Beryllium-10 

Highlights:  

1. The effect of heterogeneities in soil bulk density on cosmogenically derived 

soil formation rates is unknown. 

2. Soil formation rates are re-calculated using a new model to analyse the effect 

of density variations.  

3. Accounting for density in soils > 0.25 m thickness brings about significantly 

slower soil formation rates. 

4. Measuring soil bulk density is essential when cosmogenically deriving soil 

formation rates.    
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Introduction:  

How, where and why do soils form? These questions represent some of the oldest 

scholarly enquiries within soil science (Dokuchaev, 1879). Being able to identify the 

processes of, and the factors that influence, soil formation can help to inform our 

understanding of the soil system: its processes and functions, and the delivery of 

multiple ecosystem services. Given the diverse range of environments in which soils 

form, the sub-discipline of pedogenesis has a wide focus. An inexhaustive list of the 

types of enquiries undertaken by soil formation scholars includes the study of the 

accumulation and transformation of parent material (Jenny, 1941; Simonson, 1959; 

Hurni, 1983; Minasny and McBratney, 1999); the horizonisation of soil profiles 

(McAuliffe, 1994; Bockheim and Gennadiyev, 2000; Wilkinson and Humphreys, 

2005); and the factors that influence the evolution of soil properties (Richter et al., 

2007; Schaetzl and Thompson, 2015; Vereecken et al., 2016). For this paper, we 

define ‘soil formation’ here and hereafter as the process by which bedrock material 

converts into soil (Targulian and Krasilnikov, 2007; Egli, 2014).   

One of the most important questions asked by soil scientists is: how fast does soil 

form? (Stockmann et al., 2014). Knowledge of the first-order balance between rates 

of soil formation and erosion is integral if we are to ensure the long-term 

sustainability of global soil resources (Montgomery, 2007). Whilst measuring soil 

erosion is a long-established practice within soil science (Quinton et al., 2010; 

Poesen, 2017), quantifying the rates that soils form from bedrock has received less 

widespread attention (Schertz, 1983; Duan et al., 2017).  Only within the past twenty 
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to thirty years have technological advancements and interdisciplinary liaisons 

allowed soil scientists to more precisely constrain the rates at which soils form from 

bedrock (Heimsath et al., 1997; Román-Sánchez et al., 2019a,b). By conducting 

analyses across a range of climatological and lithological contexts, it has also 

become possible to assess the extent to which the state factors of soil formation – 

climate, organisms, relief, parent material and time (Jenny, 1941) – influence these 

soil formation rates (Stockmann et al., 2014).  

The development of cosmogenic radionuclide analysis has demonstrated that soil 

thickness exerts a significant internal control on these state factors, and by 

extension, soil formation rates (Larsen et al., 2014). Many authors have observed 

that soil thickening leads to an exponential decline in soil formation rates (Wilkinson 

and Humphreys, 2005). Thicker soil more effectively insulates the parent material 

against temperature and precipitation variations that drive weathering processes 

(Minasny and McBratney, 1999; Heimsath et al., 2009).  

However, soil formation rates are not solely determined by this relationship with soil 

thickness. Moreover, Yu et al. (2017) show that rates of bedrock weathering are 

instead constrained by the transmission of water and solutes down the soil profile. A 

major determinant in the dynamics of this process is the bulk density of the soil, with 

greater bulk densities limiting the volume of water and solutes, and slowing their 

infiltration to the bedrock (Gabet et al., 2006).  
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Despite the fact that soil bulk density influences soil formation (Price and Velbel, 

2003; Neely et al., 2019), precise density profiles are usually not integrated into the 

cosmogenic nuclide’s production models. The cosmogenic nuclide concentrations in 

bedrock samples under the soil are fundamentally dependent upon two factors. One 

of these is the duration that the bedrock has been exposed to cosmic rays, as the 

cosmic bombardment of the minerals in the uppermost metres of bedrock produces 

these nuclides. Therefore, longer exposure times give rise to greater cosmogenic 

nuclide concentrations. The second factor is the evolution of the effective depth 

(lithostatic pressure) to the bedrock with time, which can be numerically related to 

the rate at which the bedrock weathers into soil (Lal, 1991; Stockmann et al., 2014). 

Given that the bedrock weathering rate is the desired dependent variable, 

concentrations of the radionuclide – N in Eq. (1) – can be measured using 

Accelerated Mass Spectrometry (AMS) and interpolated to solve for bedrock 

weathering rates (ε).  

𝑁𝑁 =  ∑ 𝑃𝑃𝑖𝑖(𝜃𝜃) ∙ 𝑒𝑒−𝑧𝑧𝑧𝑧/Λ𝑖𝑖

𝜆𝜆+ 𝜖𝜖𝜖𝜖/Λ𝑖𝑖𝑖𝑖=𝑠𝑠𝑠𝑠,𝜇𝜇𝑓𝑓,𝜇𝜇−                                                         (1)  

where, Pi is the annual production rate of the radionuclide by spallation, fast muons 

and stopping muons (sp, µf and µ-) at a surface with slope ϴ; z is the sample depth; 

ρ is the mean density of material overlying the sample; λ is the decay constant of the 

radionuclide and Λi are the mean attenuation lengths of the cosmic radiations (Lal, 

1991).  
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Cosmic rays are attenuated when they pass through the soil to reach the underlying 

bedrock. Accounting for the factors that drive this attenuation is critical so that 

accurate bedrock weathering rates can be determined. Two terms in Eq. (1) directly 

address this attenuation: the depth of the sample and the density of the overburden 

material (in this case, the soil) (Balco et al., 2008). Many studies (Heimsath et al., 

1997; Owen et al., 2011; Riggins et al., 2011) have assumed that the density of the 

soil is either equal to the bedrock density, or is constant with depth (but see Larsen 

et al., 2014). This fails to acknowledge the heterogeneities of the soil profile and, in 

particular, the spatial variation in bulk density (Evans et al., 2019).  As a result, all 

previous cosmogenic radionuclide analyses estimating soil formation rates for 

bedrock overlain by soil that have not measured and/or accounted for the variation in 

the soil density may have yielded data which are under- or over-estimates. 

Here, we amass an inventory of cosmogenically-derived soil formation rates 

previously reported for bedrock underlain by soil, where spatial changes in soil bulk 

density have hitherto not been employed. Employing the CoSOILcal programme, the 

first of its kind that considers overburden density (Rodés and Evans, 2019), we aim 

to assess the sensitivity of these soil formation rates when bulk density data are 

accounted for.      
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Materials and Methods:  

Beryllium-10 (10Be)-derived rates of soil formation (n = 264) were amassed by 

compiling studies where in-situ 10Be has been measured under soil profiles 

(Heimsath, 2006; Heimsath et al., 1997; 1999; 2000; 2001a; 2001b; 2005; 2012; 

Wilkinson et al., 2005; Dixon et al., 2009; Owen et al., 2011; Riggins et al., 2011). 

More studies exist (e.g.: Portenga and Bierman, 2011) but these measure soil 

formation from samples extracted from bare rock (outcrops, tors) and catchment 

deposits (stream sediments), and as such were not appropriate for the aims here.  

From each of the shortlisted studies, raw data were extracted including sample 

latitude, longitude and elevation, 10Be concentration, the concentration uncertainty, 

and the soil formation rate. The density assumed by the authors (which was 

generally either bedrock density or average soil density) was also recorded. 

Although the production rate of 10Be is influenced by topographic obstructions, this 

can be addressed by calculating a shielding factor. This represents the ratio of the 

10Be production rate at the obstructed site to that at a site where the surface is flat 

and the horizon is clear (Balco et al., 2008). These shielding factors were recorded 

from each study. Some studies did not report data for all of the above criteria. As a 

result, the inventory was truncated to only analyse entries with a complete dataset. 

This resulted in the removal of 101 entries, permitting 163 for analysis.    

The resulting inventory of soil formation rates used in this analysis was collated from 

twelve studies, representing ten unique locations across Australia, USA, Chile and 
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the UK, five different climates (according to the Köppen classification system) and all 

three major rock types (n = 163; see Supplementary Information for the full dataset). 

The median depth for the inventory was 0.35 m, with 72% between 0 – 0.5 m, 25% 

between 0.5 – 1.0 m, and 12% > 1.0 m.   

The variations in the bulk density of the soil above the bedrock were not provided in 

any of the inventoried studies or their accompanying supplementary information files. 

Therefore, in the absence of these bulk density data, fine earth bulk densities were 

estimated for five depths (0, 50, 100, 150 and 200 cm) down the soil profile at each 

site using the International Soil Reference Information Centre (ISRIC) Global Soil 

Information System ‘SoilGrids’ (250 m resolution; June 2016 update; see Hengl et 

al., 2017). We acknowledge the fact that the ISRIC 250 m raster was not intended 

for this type of site-specific analysis; a better approach would be to measure the bulk 

densities down the soil profiles at each site studied in the inventory. However, in the 

absence of bulk densities measured at the site-scale, we use the ISRIC data here 

solely as a means by which to demonstrate the sensitivity of soil formation rates to 

bulk density.   

For this sensitivity analysis, we employed the CoSOILcal model (Rodés and Evans, 

2019) first applied in Evans et al. (2019). The main objective of the CoSOILcal model 

is to calculate a ‘best fit’ bedrock lowering rate and its associated uncertainty at a 

site with known latitude, longitude, elevation and shielding using measured 

concentrations of in-situ cosmogenic radionuclides (and their uncertainties) at or 
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below the bedrock-soil interface of known depth, taking into account the overlying 

soil bulk density (Eq. 2).  

A sequence of modelled bulk densities are generated and logarithmically distributed 

between 1 cm and 100 m, including those which are measured ‘in the field’ (z,x). 

Densities shallower and deeper than those measured are extrapolated using the 

shallowest and deepest measurement, respectively. The remaining densities to be 

calculated are those that lie in between each measured density; these are linearly 

interpolated from the nearest neighbours. Second, a sequence of erosion rates (ε) 

are generated and logarithmically distributed between 1 cm y-1 and 100 m My-1. 

Next, the surface production rates (P) of the radionuclide are calculated, based on 

the inputted latitude, longitude and elevation data, as well as the apparent 

attenuation lengths of fast (Λµf) and stopping muons (Λµ-) under the soil surface. The 

model then uses these surface production rate and attenuation data, as well as the 

generated bulk density profile (z,x) and the sequence of erosion rates (ε), to 

calculate the concentrations of the cosmogenic isotope at several depths (zs) down 

the soil profile for a given landscape age. The landscape age here refers to the time 

when the production and accumulation of the radionuclide began. In many cases this 

refers to the last major erosion event (e.g. the orogenic uplift of the bedrock in the 

study area, or the erosion associated with glaciation). The landscape age is inputted 

by the user. Time (t) is discretized in a sequence of 100 values logarithmically 

distributed between 100 years and the landscape age. For each of these 100 time 

steps, the model calculates an effective depth (x) by an interpolation of zs + ε ∙ t 
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down the profile. The concentration of the cosmogenic isotope that accumulates 

during each time step is then calculated using the following equation: 

𝑁𝑁 =  ∑ 𝑃𝑃𝑖𝑖(𝜃𝜃) ∙ 𝑒𝑒
− 𝑥𝑥
Λ𝑖𝑖

𝜆𝜆+𝜖𝜖𝑧𝑧Λ𝑖𝑖
𝑖𝑖=𝑠𝑠𝑠𝑠,𝜇𝜇𝑓𝑓,𝜇𝜇− (1 − 𝑒𝑒

−𝑡𝑡�𝜆𝜆+𝜖𝜖𝑧𝑧Λ𝑖𝑖
�
)                                     (2) 

where, N is the cosmogenic isotope concentration accumulated during Δt time step 

at the effective depth x; ε is the bedrock weathering rate; P is the annual production 

rate of the radionuclide by spallation, fast muons and stopping muons (sp, µf and µ-) 

at a surface with slope ϴ; λ is the decay constant of the radionuclide; Λ is the mean 

attenuation lengths of the cosmic radiations; and ρ is the density of overburden 

material for the time frame t – Δt to t.   

All of the modelled concentrations for the 100 time steps are then summed: 

                                                                  𝐶𝐶 =  ∑ 𝑁𝑁 ∙ 𝑒𝑒−𝜆𝜆∙𝑡𝑡𝑇𝑇
𝑡𝑡=0                                                   (3) 

where, T is the landscape age.   

Since isotope concentrations are measured using AMS, bedrock weathering rates (ε) 

can be found by the simple interpolation of N. ‘Best fit’ bedrock weathering rates can 

be computed by first calculating the deviation (s) of these modelled isotope 

concentrations (C) from those which were measured using AMS: 

                                                                           𝑠𝑠 =  ∑ 𝐶𝐶−𝑀𝑀
𝜎𝜎𝑀𝑀

                                                       (4)   
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where, C is the modelled isotope concentration; M is the measured isotope 

concentration; and σM is the uncertainty of the measured concentrations.  

Chi-square values are then computed as the sum of the squared deviations. Where 

chi-squared values are smaller than the minimum chi-squared value plus the number 

of samples, the modelled bedrock weathering rates are considered to fit the data 

within a one-sigma confidence level. Further details about the model can be found in 

Rodés and Evans (2019). This model was run for each entry within the soil formation 

rate inventory (n = 163). Soil formation rates from both the original inventory and 

those re-calculated using the CoSOILcal model were not normally distributed (the 

Anderson Darling Test statistics were -5.1 and -12.2, respectively; p > 0.05 for both 

tests), so the Mann Whitney U Test (a non-parametric statistical test for difference) 

was run. All statistical analyses were completed at 95% significance on a standard 

Excel workbook.   
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Results:  

Before the CoSOILcal model was applied, rates of soil formation as previously 

published spanned five orders of magnitude, ranging from 6 x 10-5 to 6 x 10-1 mm y-1 

with a median of 0.03 mm y-1. Climatologically, the fastest rates (0.01 – 0.59 mm y-1; 

median = 0.07 mm y-1) were associated with Warm Summer Mediterranean (Csb) 

climates (n = 80) whilst the slowest rates (0 – 0.01 mm y-1; median = 0.001 mm y-1) 

were found for Arid Cold (Bwk) climates (n = 25). With regards to the effects of 

lithology, the fastest rates (0 – 0.59 mm y-1; median = 0.05 mm y-1) were associated 

with metamorphic lithologies such as metasediments and gneiss (n = 70). These 

contrast with the slowest rates (0.01 – 0.06 mm y-1; median = 0.03 mm y-1) 

measured from soils developing on igneous lithologies, such as granites and 

granodiorites (n = 49).  

Employing the CoSOILcal model, the median rate of soil formation for the total 

inventory increased by 16% to 0.034 mm y-1 (range: 0.001 – 0.47 mm y-1) (Figure 1). 

However, this was not found to be statistically significant (p > 0.05). Moreover, 68% 

of the inventory reported instances where soil formation rates decreased after the 

adoption of the CoSOILcal model. Within this subset, the mean reduction in soil 

formation rates was 0.02 mm y-1 (range: 0 – 0.21 mm y-1). In just under a third of 

instances, soil formation rates increased after applying CoSOILcal, with the mean 

increase for this subset being 0.03 mm y-1 (range: 0.001 – 0.22 mm y-1).With respect 

to the effect of climate, the fastest rates were still associated with Warm Summer 

Mediterranean (Csb) contexts and, although the median had decreased by 0.02 mm 
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y-1 in comparison to the original data, this was not found to be statistically significant 

(p > 0.05). On the contrary, the CoSOILcal output showed that the slowest rates 

were not associated with Arid Cold (Bwk) conditions, as was the case previously, but 

with Humid Subtropical (Cfa) climates (n = 26) (Figure 2; top panel). The median soil 

formation rate for the Humid Subtropical subset was 0.02 mm y-1, representing a 

decrease of 0.006 mm y-1 in comparison to the original data, which was not 

statistically significant (p > 0.05). For Arid Cold climates, the CoSOILcal output 

reported an increase of 0.04 mm y-1 in the median soil formation rate, which was 

statistically significant (p < 0.05).  

The CoSOILcal output had less of an impact on the lithological influence on soil 

formation (Figure 2; bottom panel). The fastest rates were again associated with 

metamorphic lithologies. For this subset, the median soil formation rate had 

increased by 0.01 mm y-1 but this was not found to be significant (p > 0.05). 

Likewise, the slowest rates were associated with igneous lithologies. For this subset, 

the CoSOILcal output reported a small decrease of 0.002 mm y-1 in the median soil 

formation rate, which again was not found to be significant (p > 0.05).  

Discussion: 

The lack of a significant difference between soil formation rates prior to the 

application of CoSOILcal and those after the model was run may be explained by 

soil thickness. Moreover, the basis of the CoSOILcal model is that more of the 

heterogeneity in the density of the soil overlying the bedrock is accounted for. It is, 
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therefore, reasonable to hypothesise that there is a threshold soil thickness under 

which the employment of these density data does not bring about a significant 

difference to soil formation rates. This was tested using the global inventory collated 

for this paper (Figure 2). It was found that the CoSOILcal model brought about a 

statistically significant difference in soil formation rates for soils > 0.25 m (p < 0.05). 

For those soils within the inventory > 0.25 m (n = 95), the median soil formation rate 

derived using the CoSOILcal model was 1.2 times slower than the median of the 

rates previously published. Furthermore, as soil thickness increased, the difference 

between the CoSOILcal median and that of the original inventory also increased. For 

instance, for soils > 0.4 m (n = 64) and > 0.5 m (n = 46) in thickness, the medians 

calculated using CoSOILcal were 1.3 and 1.7 times slower than those previously 

published, respectively.   

Given that over half of the soil formation rates in this study’s inventory are attributed 

to soils which are > 0.25 m (n = 95), of which 48% of these are > 0.5 m (n = 46), it 

calls into question the accuracy of these data. Moreover, it suggests that for these 

deeper soils, cosmogenically-derived soil formation rates may be slower than we 

have previously estimated. This may have wider implications on some of the land 

management decisions that have been based around these rates. For example, soil 

formation rates have been previously used to derive rates of soil loss tolerance. 

Although there are multiple methods of calculating soil loss tolerance values, one of 

those that has been popularly used is based on the premise that rates of soil erosion 

should be curtailed to those of soil formation (Di Stefano and Ferro, 2016). A review 
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of the soil formation rates used hitherto to calculate soil loss tolerance values is 

beyond the scope of this study. However, our findings suggest that if the soil 

formation rates used stem from studies where the soil depth exceeded 0.25 m, the 

soil loss tolerance values may have been over-estimated.  

To address the potential inaccuracies of the existing soil formation rate data, the 

CoSOILcal model can be applied post hoc so that the measurement of radionuclide 

concentrations does not have to be repeated. However, this would require bulk 

density values being measured from the positions where sampling for cosmogenic 

radionuclide analysis took place. To ensure that these re-calculated rates are as 

accurate as possible, we argue that the approach taken in this paper (that is, the use 

of the ISRIC 250 m raster for soil bulk density) should not be used to make these 

corrections. The use of the ISRIC data here was solely to demonstrate the sensitivity 

of soil formation rates to bulk density. Nevertheless, following the preliminary 

analyses presented in this paper, a global effort is now required to revisit our network 

of soil formation studies, and recalculate rates using soil bulk density data measured 

at the site-scale.  

Furthermore, we argue that future attempts to derive soil formation rates using 

cosmogenic radionuclide analysis should encompass the measurement of bulk 

density down the soil profile and the use of these data in the CoSOILcal model when 

calculating bedrock lowering rates. Accurately quantifying soil formation rates is 

essential given that these are often used to guide policy decisions on soil 

conservation and erosion mitigation (Montgomery, 2007; Verheijen et al., 2009).  
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Although we have focused this paper on the implications of bulk density on soil 

formation rates, it is also important to acknowledge that these findings are equally 

impactful beyond soil science. Cosmogenic radionuclide analysis has been used to 

derive rates of bedrock weathering for a range of geomorphological discourses and 

Earth System models (Cockburn and Summerfield, 2004). These include calculating 

the long-term rates of landscape evolution (Heimsath et al., 1997) and quantifying 

the mobilisation of bedrock-derived petrogenic carbon (Hemingway et al., 2018). The 

bulk density profiles of the unconsolidated material overlying the bedrock in these 

studies will have a similar effect on attenuating cosmic rays and should be 

accounted for. As a result, we argue that both our findings and the CoSOILcal model 

represent a significant contribution to multiple communities across Earth Sciences.  
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Conclusion:  

We have demonstrated that applying higher resolution estimates of soil bulk density 

when using cosmogenic radionuclide analysis to calculate rates of soil formation is 

an important consideration.  Applying the CoSOILcal model to a global inventory of 

previously published analyses, we found that soil formation rates, modelled from 

measured concentrations of 10Be in the bedrock, were significantly different when 

high-resolution bulk density data for soils > 0.25 m in thickness were applied. 

Furthermore, the impact of soil bulk density on cosmogenically derived rates 

increases with soil thickness. These findings highlight potentially important 

implications for the use of cosmogenic radionuclide analysis both within and beyond 

soil science. Not only does our work suggest that our existing soil formation rate 

inventory might require re-visiting, but it also implies that future work that uses 

cosmogenic radionuclide analysis to derive soil formation rates should account for 

the bulk densities down the soil profile, and employ the CoSOILcal model to 

calculate the rates of bedrock lowering. This is especially important given that soil 

formation rates have been, and continue to be, employed when constructing land 

management policies and decisions.   
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Figure 1: Soil formation rates from the global inventory previously published (x axis) 

and those calculated using the CoSOILcal model (y axis). The diagonal line 

represents y = x. The inset shows a zoomed projection of rates between 0 and 0.1 

mm y-1. Full dataset can be found in Supplementary Information.  
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Figure 2: Difference in the soil formation rate when the CoSOILcal was employed in 

comparison to the original dataset (n = 163) for different climatic regions (top panel) 

and lithologies (bottom panel). Full dataset can be found in Supplementary 

Information. 

This article is protected by copyright. All rights reserved.




