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Key Points: 

 Climate change induced significant vegetation cover change has occurred in 

subregions of the Tibet plateau over the past three decades. 

 A diagnose method linked the supply and demand for water and energy in land 

surface climate-vegetation system is utilized. 

 Anthropogenic factor of vegetation browning has achieved obvious expansion in the 

past 30 years. 

 

Abstract 

Vegetation cover exerts a strong control on land-atmosphere interactions. To quantify the 

relative effects of external forcing (climate change) vs internal forcing (anthropogenic activity) 

on recent vegetation change over the Tibetan Plateau (TP), we apply an eco-hydrological 

diagnostic framework, developed from earlier work. We compare vegetation change during 

1986-2015 based on NDVI (Normalized Difference Vegetation Index) data with changes in 

environmental conditions (European Centre for Medium-Range Weather Forecasts Reanalysis 

5th-generation, ERA5). Results show that external forcing is the dominant factor behind 

significant vegetation change over the southeastern TP during 1986-2015. In the area with 

significant vegetation changing, 60.5%/41.5% of pixels have experienced a respective 

wetting/drying of climate, which in turn has supported greening/browning during 1986-

2005/1996-2015. However, during the greening/browning transition in the latter period, the 
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proportion of internal forcing on browning increased from 5.62% to 19.4%, indicating that 

anthropogenic factors are playing an increasingly role on impacting vegetation change in recent 

decades.  

Plain Language Summary 

In climate systems, vegetation is a layer that situated at the border of the atmosphere and land 

surface, controlling the exchange of water and energy. However, vegetation is fragile in cold 

and arid region like the Tibetan Plateau, and can easily be influenced both by climate change 

(sunlight, rainfall, temperature, etc.) and human activities (land use, grazing, farming, etc.). In 

order to figure out to what extent the vegetation is affected by climate change or human 

activities, we combine historical land surface climate data and satellite-observed vegetation 

data to investigate the theoretical inducement of climate and human factors. Results show that 

in the areas with significant vegetation changing (mostly southeastern Tibetan plateau), climate 

change is dominant control of vegetation change in the past three decades. However, the human 

factor has significantly increased in importance over recent decades.  

1 Introduction 

Energy and water transfers between the land surface and atmosphere are critical parts 

of climate systems, particularly over the Tibetan Plateau (TP). The elevated surface is a 

powerful “heat pump” to the global atmosphere [Ye, 1981; Yanai et al., 1992] and any change 

in that heat source can affect climate throughout the Northern Hemisphere [Li et al., 2017; Li 

et al., 2019]. Since transpiration from vegetation controls the ratio of sensible to latent heat 

given a fixed input of solar radiation [Thom, 1972], vegetation change on TP will affect the 
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strength of the “heat pump” by reducing/increasing the surface sensible/latent heat flux. 

Through dynamic forcing which can change the regional circulation pattern, sensible heat from 

the land surface can also influence summer rainfall over the whole of China [Zuo et al., 2011; 

Duan et al., 2012]. The TP is also recognized as the “Asian water tower”, playing an important 

role in both regional and global water cycles due to high storage of freshwater [Qiu, 2008; Xu 

et al., 2008]. The regional water cycle over the TP can also be affected by changes in 

transpiration, soil moisture, and ground runoff associated with vegetation change [Kleidon and 

Heimann, 2000; Moore et al., 2007; Seneviratne et al., 2010]. 

Climate change will influence vegetation composition and health [Overpeck et al., 1990; 

Theurillat and Guisan, 2001], and local anthropogenic activities also can act directly, e.g. 

deforestation and changing land-use [Piao et al., 2003; Wang et al., 2008; Wang and Hejazi, 

2011]. There are large-scale ecological protection projects within the region [Ouyang et al., 

2016; Xu et al., 2017; Bryan et al., 2018]. In particular, the impacts of anthropogenic vegetation 

restoration on the conservation of water resources over the TP deserves further research. Since 

energy and water transfers between land surface and atmosphere are critical parts of climate 

systems, approaches to quantify the role of various forcing factors on vegetation change are 

required to further understand the role of vegetation in environmental change. 

Based on an eco-hydrological approach, a diagnostic method to quantify the role of 

vegetation in transferring energy and moisture originated from the pioneering work of Budyko 

[1974]. This approach later developed a dryness index [Tomer and Schilling, 2009; Renner et 

al., 2012] and more recent work has applied the eco-hydrological conceptual model to 

understanding of regional scale vegetation dynamics through merging remote sensing with 
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reanalysis data. Vegetation change is quantified in an eco-hydrological state related to water 

and energy transits [Cai et al., 2015; Cai et al., 2016]. The increase/decrease of vegetation 

would result in increase/decrease of water and energy demand, which lead to changes of eco-

hydrological state. Because of restricted data, the first eco-hydrological diagnoses of vegetation 

dynamics over the TP [Cai et al., 2015] and in south America [Cai et al., 2016] were limited 

to comparisons between two periods (1982-1993 and 1994-2006). Recent updated data 

provides an extension of nine years (2007-2015), allowing study of vegetation changes and 

eco-hydrological attributions for a longer period. In previous work [Cai et al., 2015; Cai et al., 

2016], significant change was defined by differences in relative amplitude (exceeding one 

standard deviation of water or energy excess). However, as vegetation is at the core of the 

water-energy link in the eco-hydrological diagnostic framework, the amplitude of vegetation 

change itself is a more efficient indicator of significant change in eco-hydrological status. 

Therefore, our study focuses on sub-regions where the absolute amplitude of vegetation change 

is large compared to other parts of the TP. 

2 Data and Methodology 

2.1 Temporal scale settings and the boundary of TP 

According to measurements of soil respiration in the alpine meadows of the TP [Li et 

al., 2019], the growing season in most of the TP starts in May and ends in September, which 

is defined in this study. Most areas in the central and southeastern TP have mean NDVI over 

0.2 during these five months. The choice of long-term average period is critical for eco-

hydrological diagnostics [Milne et al., 2002], because both climate and vegetation change over 
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time. We require ten years to define a reasonable period, and thus compare three periods: 1986-

1995, 1996-2005 and 2006-2015.  The average values of all variables in the growing season 

are used. 

The boundary of the TP is determined using 2,500-meter elevation contour, combined 

with national boundaries [Zhang, 2019]. The whole TP is represented by 4858 grid points. 

2.2 Remote sensing vegetation cover data 

NDVI is widely used to quantify land surface vegetation. The Global Inventory 

Monitoring and Modeling Studies (GIMMS) NDVI 3rd-generation gridded dataset has a 

horizontal spatial resolution of 1/12° and a half-monthly interval [Tucker et al., 2005]. The 

dataset spans from July 1981 to December 2015 

(https://ecocast.arc.nasa.gov/data/pub/gimms/). The observations are obtained from Advanced 

Very High Resolution Radiometer (AVHRR), placed on the National Oceanic and 

Atmospheric Administration (NOAA) satellite series (https://www.noaa.gov/). In this study, 

the GIMMS NDVI data were resampled to a horizontal spatial resolution of 1/4° and a monthly 

interval to make them comparable with the climate data. 

2.3 Surface climate data 

ERA5 is the 5th-generation reanalysis of the European Centre for Medium-Range 

Weather Forecasts (ECMWF). Currently available from 1979 to present, it has officially 

replaced ERA-Interim [Hans et al., 2019]. In our study, evaporation, total precipitation, surface 

net solar radiation, and surface net thermal radiation are used (accessible at: 

https://doi.org/10.24381/cds.f17050d7). Monthly means are gridded at 1/4° horizontal 

https://ecocast.arc.nasa.gov/data/pub/gimms/
https://www.noaa.gov/
https://doi.org/10.24381/cds.f17050d7
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resolution. Totally, ERA5 can capture the climate change representability of above-mentioned 

variables over the TP. 

2.4 Eco-hydrological diagnostic method 

 At the scale-appropriate to land surface ecosystems (each grid box has an area of 

approximately 120 km2), there are two simple balance equations in water and energy 

respectively: 

P = Ro + E                         (1) 

N = H + E                            (2) 

where P is total precipitation, Ro is runoff (surface and underground flow), E is 

evapotranspiration, N is surface net radiation, H is the surface sensible heat flux. 

Evapotranspiration occurs in both equations since it is both a flux of water and energy. When 

E is calculated in terms of energy (latent heat flux), water amount is transformed to energy flux 

units via multiplying by 2.5×106 J kg-1 (mm/day to J·m-2/day). Here the ground water and 

energy storage are ignored, because 10-year averages are applied to all variables, variations in 

long-term water and energy storage are negligible. The portion of water and energy supply not 

being used by the vegetation can be respectively defined as relative excess water W and relative 

excess energy U [Milne et al., 2002]: 

W = Ro / P                         (3) 

U = H / N                            (4) 
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Substituting equations (1) and (2) for R0 and H respectively, we obtain: 

W = 1 – E / P                      (5) 

U = 1 – E / N                         (6) 

The ratio of energy to water supply is defined as the drought index [Budyko and Miller, 

1974]:  

D = N / P                          (7) 

Here the unit of P is transformed to the equivalent energy flux as in the above-

mentioned transformation of E. Interpreting the energy supply N as the leading energy input 

for evaporation, the drought index D can separate energy limited regimes (D<1, wet) from 

water limited regimes (D>1, dry). Combining W and U, we can introduce the (W, U)-diagram 

(Figure 1a). The Schreiber curve in Figure 1a is the empirical formula of an ideal rainfall-

runoff chain [Fraedrich, 2010]. Eco-hydrological status in (W, U) coordinates is based on long-

term averages of climate variables [Milne et al., 2002]. Once the average (W, U) status changes 

from one period to another, the difference can be calculated and represented as a trajectory. 

Based on the direction of this trajectory, there are four types of eco-hydrological change: (W↓, 

U↑) indicates external forcing since energy is increasing and water supply is decreasing which 

occurs when an area becomes drier; (W↑, U↓) also indicates external forcing which occurs 

when an area becomes wetter (the opposite). However, the other two changes: (W↑, U↑) 

indicates an internal process associated with decreasing vegetation, whereas (W↓, U↓) indicates 

an internal process with increasing vegetation. Our definition of internal vs external forcing is 

based on the influence of vegetation change on surface water and energy flux. When the change 
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of (W, U) is mainly controlled by vegetation, there would be consequences as (W↑, U↑) and 

(W↓, U↓). Otherwise the change of (W, U) is mainly controlled by the climate change, which 

is external forcing (external of biosystem). 

3 Results 

3.1 Inconsistent changes in vegetation over time 

The average spatial pattern of growing season means NDVI in 1986-2015 is shown in 

Figure 1b. Yellow/green areas indicate lower/higher. The highest values are generally in the 

south and east of the plateau. Correspondingly, the geographical patterns of eco-hydrological 

status (W, U) are showed (Figure 1c, d). Black boundaries (Figure 1e-h) encircle areas where 

the changes in NDVI are inconsistent and differ between sub-periods. Significant contrast 

between periods is defined as |CS1 – CS2| > 0.03, where CS1 is the mean NDVI between 1986-

1995 and 1996-2005: Stage 1), CS2 is the mean NDVI between1996-2005 and 2006-2015: 

Stage 2). 

The vegetation change (inside the black boundaries) can be divided into two types; type 

1 (T1) in which the NDVI decreases in Stage 1 and increases in Stage 2, and type 2 (T2) in 

which the NDVI increases in Stage 1 and decreases in Stage 2.  There are 112 (2.3%) and 284 

(5.8%) grid points belonging to T1 and T2, respectively. T1grid points are dispersed across the 

plateau, including areas to the south of Qinghai lake (37°N, 100°E) (Figure 1e, f) and in the 

south of the Himalayas. T1 areas thus show wide range of environmental backgrounds such as 

latitude, altitude and exposure to the summer monsoon. On the other hand, T2 grid points 
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appear to be clustered in the southeast of the TP where there has been a significance change 

from greening (increased NDVI) in Stage 1 to browning (decreased NDVI) in Stage 2.  

3.2 Drought status background and eco-hydrological attribution 

In a similar way to vegetation change we also examine change in the climate forcing 

including the drought index. Based on 30 year climatology (1985-2016) (Figure 2a) there are 

three extremely arid regions over the TP where the drought index is mostly above D=5: the 

Pamirs plateau (35°N~39°N, 68°E~74°E), the Changtang region (28°N~36°N, 76°E~88°E) 

and the Qaidam basin (36°N~39°N, 89°E~98°E). Even in the growing season, these regions 

are rarely covered by extensive vegetation. The drought index changes in Stage 1 (Figure 2b) 

and Stage 2 (Figure 2c) show wetting (Stage 1) and drying (Stage 2) tendencies over much of 

the mid and southeast TP corresponding with the increased/decreased NDVI in the same region 

(T2).   

We use the eco-hydrological diagnostic method and examine how water and energy 

excess have changed in the 284 grid points representing the T2 area. From Stage 1 to Stage 2, 

the number of grid points with (W↑, U↓) declined from 172 to 19 (Figure 3), while the (W↓, 

U↑) grid points increased from 5 to 118. Thus, the greening in Stage 1 is mostly correlated with 

wetter climate forcing, 60.5% of the greened area experiencing an increase in water excess and 

decrease in energy excess (W↑, U↓) (Table 1). Browning in Stage 2 is correlated with dry 

climate forcing, 41.5% of the area experiencing reduced water and increased energy (W↓, U↑). 

The dominating eco-hydrological forcing from Stage 1 to Stage 2 is (W↑, U↓) to (W↓, U↑), 

which covers 32.7% of all status conversions. It is worth noting that although the anthropogenic 
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browning process (W↑, U↑) possesses the least proportion, it expands from 5.62% to 19.4% 

between the two stages. 

Drought index changes are numerically much larger in dry regions, so defining D=1 as 

the threshold between wet and dry conditions, we derived six drought change types (Figure 

2d, e). The dominance of the climate (external) forcing in accounting for greening and 

browning is also supported by changes in the drought index. Examining the drought status 

background of T2 grid points, 225 grid points (60 W→W, 123 D→W, 42 D→W while crossing 

D=1) show wetting tendencies in Stage 1. By Stage 2, 160 grid points show drying tendencies. 

In Stage 1, 42 grid points crossed the wet/dry threshold, changing from arid to humid. In Stage 

2, 28 grid points changed from humid to arid. This indicates that the spatial extent of wetting 

in Stage 1 is greater than the drying in Stage 2.  

3.3 Typical trajectories of eco-hydrological status  

We display typical trajectories of eco-hydrological status for T1 areas (Figure 4a) and 

T2 areas (Figure 4b) on the diagram. In theory, every grid point should have a trajectory from 

the first period (1986-1995) to the last period (2006-2015). However, some changes are too 

small to be visible on the diagram. Any change in water or energy excess between the two 

periods below 0.05 in T1 areas, and 0.08 in T2 areas is therefore ignored. There are 28/56 

plotted trajectories in T1/T2 areas respectively. 

The trajectories in T1 areas are mostly horizontal (Figure 4a), in other words, they are 

W induced. The NDVI decreased in Stage 1 while W increased. In Stage 2 NDVI increased but 

W continued to increase. T1 grid points are widely dispersed in different regions over the TP 
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and these trajectories are not conforming to an individual phenomenon. In T2 areas on the other 

hand (Figure 4b), the trajectories of Stage 1 and Stage 2 form acute angles with gray dots at 

the vertices. Unlike T1 areas, the terminal status of (W, U) (black dots) in T2 areas tends to 

stay near the initial status (hollow circles). This means that water and energy changes in Stage 

1 are often reversed in Stage 2. These typical trajectories provide detailed information about 

eco-hydrological diagnose, including the ratio of W to U, the amplitude of change, the 

diagnostic status presented by coordinate position, and NDVI tendency. The results indicate 

that, in spatial consistent and changing significant area (T2 area), the eco-hydrological 

diagnose framework has a satisfied adaptability, which shows the vegetation change tendencies 

practically agreed with the directions of trajectory. 

4 Conclusions and Discussions 

Our study has revealed the extent to which inter-decadal vegetation changes over the 

southeast TP are driven by climate forcing. As we focused on the absolute amplitude of 

growing season NDVI change, the eco-hydrological diagnostic approach is different to that of 

Cai et al. [2015]. We have also expanded the earlier approach by defining regions exceeding 

an agreed NDVI change threshold, utilizing growing season, and dividing contrastive types for 

NDVI change trends. Other recent studies claimed that changes in NDVI are positively 

correlated with regional precipitation changes [Sun et al., 2019], and that the precipitation-

evapotranspiration water balance is a critical control on vegetation evolution [Liu et al., 2019]. 

Our results also show that significant NDVI change is often correlated with climate forcing 

over the past three decades, agreeing with such studies. At the same time, faster urbanization 

[Tang et al., 2017] and grazing pressure increase over the southeastern plateau region [Hafner 
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et al., 2012] were revealed in recent decades. Further, we also provide evidences for 

anthropogenic influence increase, including normalized human activity pressure index, land 

use pattern and socioeconomic statistics (not shown). Our method acknowledges that both 

climate forcing and anthropogenic activity simultaneously influence vegetation change, and 

that the latter, although remaining relatively small in comparison with dominant climate 

forcing, anthropogenic influence has increased in the later part of our analysis period. 

When considering future application of the eco-hydrological diagnostic method elsewhere, 

we would urge caution in some circumstances. In desert regions with minimal vegetation, 

upward latent heat flux is not primarily controlled by vegetation, and thus an increase/decrease 

of vegetation in such regions may not systematically change the ratio of sensible/latent heat, 

making the method unreliable. NDVI itself in such regions can also respond to variance in 

other factors such as snow cover. In addition, although ERA5 is widely respected at 

representing environmental conditions, the diagnostic approach is only as reliable as the data 

which goes into it. 
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Table 1.  Percentages (%) of grid cells in area T2 with various changes in eco-hydrological 

diagnostic status from Stage 1 to Stage 2. All figures are the proportion of the 284 T2 grid 

points. Bold numbers are the conversion percentages from external to internal or vice versa. 

Italic numbers on the diagonal show the percentages of cells remaining unchanged. The 

numbers are rounded to 1 significant figure. 

Stage 2 
Stage 1  

(W↓, U↑) (W↑, U↑) (W↓, U↓) (W↑, U↓) sum 

(W↓, U↑) 0 0.3 8.4 32.7 41.5 

(W↑, U↑) 0.3 0 16.2 2.8 19.4 

(W↓, U↓) 0 4.5 3.1 24.6 32.3 

(W↑, U↓) 1.4 0.7 4.2 0.3 6.6 

sum 1.7 5.6 32.0 60.5 3.5 
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Figure 1. a) The principles of ecohydrological diagnosis. (b) Growing season (May - 

September) NDVI mean in 1986-2015; (c) Mean relative excess water W=Ro/P ; (d) Mean 

relative excess energy U=H/N ; (e) (g) Growing season NDVI changes among three periods: 

1986-1995, 1996-2005, 2006-2015; (f) (h) The classification of eco-hydrological state in the 

(W, U) diagram, in which the type of change can be expressed as the direction of trajectory; 

Areas included in black bounds are where there is inconsistent NDVI change between the two 

periods as defined by |CS1 – CS2| > 0.03, where CS1 and CS2 are the changes of NDVI value in 

Stage 1 (from 1986-1995 to 1996-2005) and Stage 2 (from 1996-2005 to 2006-2015), 

respectively. 
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Figure 2. Spatial patterns of drought index: climatology, change and changing types. (a) Mean 

drought index D=N/P in 1986-2015; (b) (c) Drought index changes over the two stages (stage 

1: 1986-1995 to 1996-2005, stage 2: 1996-2005 to 2006-2015); (d) (e) Spatial patterns of 

drought index change types in the corresponding stages. The threshold of wet vs dry status is 

defined as drought index D=1. Legend W→W refers to wet areas get wetter, D→D refers to 

dry areas get drier. Legend W→D (D<1) refers to wet areas becoming drier but remaining as 

D<1 and vice versa. Legend W→D (D1<1 and D2>1) refers to wet areas turning into dry areas 

through crossing the threshold D=1 and vice versa. 
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Figure 3. Number of land surface grid points within T1 and T2 showing each of (a) the four 

eco-hydrological diagnostic status classes and (b) the six drought change types.. Areas included 

in black bounds (Figure 1e, f) are separated into two types: area type 1 (T1) shows NDVI 

decrease in Stage 1 (1986-1995 to 1996-2005) and increase in Stage 2 (1996-2005 to 2006-

2015). Area type 2 (T2) shows the opposing NDVI change (increase in Stage 1 and decrease in 

Stage 2). 
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Figure 4. Ecohydrological change diagrams. (a) Trajectories of excess water and energy 

changes in area type 1. (b) Trajectories of excess water and energy changes in area type 2. The 

trajectories in both area types are filtered. In area type 1, trajectories with differences below 

0.05 in W and U in Stage 1 and Stage 2 are eliminated. In area type 2, trajectories with 

differences below 0.08 in W and U in Stage 1 and Stage 2 are eliminated. Thus, all displayed 

trajectories are significant in at least one variable with one changing stage. To the right of panel 

b) magnification makes the trajectories easier to see. 

 

 

 

 

 

 

 

 


